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Abstract

Understanding both the evolutionary dynamics
and subpopulation or subclonal structure that im-
pacts tumour progression has important clinical
implications for patients. However, deconvoluting
subclonal structure and performing evolutionary
parameter inference have largely been treated as
two independent or step-wise tasks. Here, we
show that combining stochastic simulations with
hybrid deep generative models enables joint in-
ference of subclonal structure and evolutionary
parameters. Ultimately, by jointly learning these
two problems, we show that our proposed ap-
proach leads to improved performance across a
multitude of cancer evolution tasks including, but
not limited to, detecting subclones, quantifying
subclone frequency, and estimating mutation rate.
As an additional benefit, we also show that hybrid
deep generative models also provide substantial
reductions in inference time relative to existing
methods.

1. Introduction
1.1. Cancer evolution inference

The observation that evolutionary processes such as muta-
tion, genetic drift, and selection can shape the heterogeneity,
adaptability, and growth trajectory of tumour cell popula-
tions has made understanding the evolutionary or subclonal
dynamics in patient tumours one of the major goals of cancer
genomics (Black & McGranahan, 2021). Notably, quanti-
fying and classifying evolutionary dynamics in biopsied
and bulk DNA sequenced tumours has been shown to help
stratify patient risk, identify critical subpopulations of cells,
predict future clinical progression, and uncover important in-
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formation on the underlying genetic determinants of tumour
development (Fittall & Van Loo, 2019). And while much at-
tention has focused on new single cell genomic applications,
clinically, the majority of tumor biopsies will continue to
be sequenced in “bulk” (Berger & Mardis, 2018). Thus,
emphasizing the necessity for continued development of
evolutionary inference methods that support this data type
and, by proxy, future personalized genomics protocols.

1.2. Detecting subclones and quantifying selection

In general, cancer evolutionary inference from noisy bulk
DNA sequenced tumours has been split across two funda-
mental tasks. The first task defined as subclonal clustering
is focused on deconvoluting subpopulations of cells with
similar characteristics such as mutational haplotypes (Den-
tro et al., 2017). The second task has been to use population
genetic models of tumour evolution to infer parameters,
such as mutation rate or subclone fitness, that are consis-
tent with the observed data (Bozic & Wu, 2020). Together,
subclonal clustering provides insight into the underlying
cellular composition and genetic architecture of the tumour
while evolutionary parameter inference helps inform on
quantitative or qualitative properties related to the historical
development and future growth of the tumour.

In the first task of subclonal clustering, the guiding principle
is that each subpopulation of cells harbor a unique set of
mutations that are ‘sampled’, or DNA sequenced, in propor-
tion to their cellular fraction within the tumour. Practically,
in the context of single nucleotide or insertion-deletion mu-
tations, this means that the sequencing read count or variant
allele (mutation) frequency (VAF) distributions should be a
mixture representing different subpopulations of cells. Ev-
idently, subclonal clustering has largely been framed as a
mixture model problem which has inspired the development
of a variety of nonparametric or parametric methods using
beta, binomial, or beta-binomial mixtures to describe the ob-
served VAF or read count distributions in sequenced tumour
biopsies (Nik-Zainal et al., 2012; Miller et al., 2014; Gillis
& Roth, 2020). However, recent seminal work has shown
that early subclonal clustering methods systematically over-
estimate the number of true subclonal populations unless
the underlying evolutionary process is taken into account
(Caravagna et al., 2020); namely that low VAF mutations
do not represent a single subclonal population but rather a



Understanding the evolution of tumours using hybrid deep generative models

polyphyletic cluster or neutral power law ‘tail’ that is at-
tributed to new mutations accruing in all dividing cells in
the growing tumour (Caravagna et al., 2020).

In the second task of evolutionary parameter inference, the
goal has been to use the theoretical connection between ob-
served mutation frequencies (VAFs) and underlying models
of tumour growth to differentiate between competing mod-
els of evolution and to assign quantitative parameters based
on these models to the observed data. Existing approaches to
estimate evolutionary parameters, such as mutation rate, sub-
clone fitness, and subclone emergence time, have primarily
utilized classic likelihood-free methods such as approximate
Bayesian computation (ABC) (Williams et al., 2018), para-
metric bootstrap methods that connect re-sampled mutation
counts from mixture model fits to analytical evolutionary
theory (Caravagna et al., 2020), or synthetic supervised
learning which combines simulations and discriminative
neural networks (Ouellette & Awadalla, 2022)

1.3. New strategies for understanding tumour evolution

A downside of existing approaches is that both of the above
tasks are treated and inferred independently and/or esti-
mated in a stepwise manner, i.e. detecting mixtures before
parameters or vice versa. However, theoretical work across
evolutionary systems has shown that understanding subpop-
ulation structure can inform on evolutionary parameters,
making simultaneous estimation of both tasks important.

Here, we present preliminary work that takes advantage of
recent advances in neural simulation-based inference and
deep generative modeling to jointly infer subclonal clusters
and evolutionary parameters using stochastic simulations
of tumour evolution and end-to-end differentiable hybrid
variational autoencoders (HVAE). We provide early experi-
ments showing improved accuracy and performance across
multiple cancer evolution tasks, relative to existing methods,
and provide a brief commentary on future improvements.

Detectable 
subclone

Observed process
Variant allele frequencies (VAF)

Latent process
Tumour growth and evolution

Lineage 
specific or tail Subclone

background

Clonal, fixedTumour tree

Figure 1. The connection between the latent process of tumour
growth and evolution (left) and the observable process captured in
the distribution of variant allele frequencies (right).

2. Methods
2.1. Setup

The frequency of observed mutations in bulk sequenced
tumour biopsies encode information about the underlying
evolutionary dynamics (Figure 1). Therefore, to perform
neural simulation-based inference, we require a simulator
f(x|θ,M) that generates synthetic tumour sequencing data,
and a prior that specifies our assumptions about the set of
plausible parameters and models that define the evolutionary
process p(θ,M).

An important nuance in notation is that we allow for θ
to also specify latent information generated and collected
during simulation, in addition to user-specified simulation
parameters.

By generating millions of realizations from the joint distri-
bution f(x|θ,M)p(θ,M) and building a synthetic dataset
D = {(xi, θi,Mi)}1:D, we can then train a HVAE to:

1. Decompose the observed VAF distribution1 ∈ R1×b

into a matrix of component VAF distributions ∈ Rk×b
where b represents the number of bins used to gener-
ate a VAF distribution and k indicates the number of
mixtures representing neutral, subclonal, and clonal
components.

2. Perform model selection p(M|x) and provide approxi-
mate posterior estimates for evolutionary parameters
of interest p(θ|x).

Notably, the HVAE is trained to perform amortized, rather
than sequential, likelihood-free inference. The reason for
this is that standard Gillespie algorithms used to simulate
tumour growth and evolution are generally slow and com-
putationally expensive. By performing amortized inference,
we can build a large synthetic dataset in advance using
highly parallel processes that aren’t feasible for sequential
inference schemes.

2.2. Simulator — xi ∼ f(x|θi,Mi)

Previous computational and experimental work has shown
that individual tumours generally follow an exponential
growth trajectory. Therefore, we implemented a simula-
tion framework based on a stochastic branching process
model of exponential tumour growth and evolution, similar
to previous work (Waclaw et al., 2015; Williams et al., 2018;
Ouellette & Awadalla, 2022). A complete description of the
simulator is provided in the Appendix A.1.1.

Overall, a single simulation returns a tuple that includes a

1A VAF distribution is simply a histogram of the variant allele
frequencies and provides a way to standardize the input feature
size for neural networks
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Figure 2. A stochastic generative process or simulator implicitly defines the likelihood of tumour sequencing data (VAF information for
each mutation) given underlying parameters of tumour evolution. By generating a synthetic dataset of data (xi), parameter (θi), and model
(Mi)) tuples we can train hybrid variational autoencoders to jointly decompose subclonal mixtures and infer associated evolutionary
parameters. Once trained, we can perform inference in real ’bulk’ sequenced patient tumour biopsies.

synthetic VAF distribution xi ∈ R1×b that represents the ob-
servable mutation data measurable from sequenced tumour
biopsies, a set of synthetic VAF distributions representing
the decomposed neutral, clonal, and potentially subclonal
component distributions ki ∈ Rk×b, a vector of evolutionary
parameters θi, and the corresponding model Mi. Consistent
with previous studies, we consider models Mi with i ∈ {0,
1, 2} where the value indicates the number of detectable
subclones between 20 - 90% tumour cellular fraction (or 10
- 45% VAF when normalizing by diploid copy number).

2.3. Prior — θi,Mi ∼ p(θ,M)

We selected prior simulation parameter ranges consistent
with previous experimental and computational estimates
in tumour evolution analyses (Loeb et al., 2008; Williams
et al., 2018; Werner et al., 2020; Ouellette & Awadalla,
2022). All variable parameters were uniformly sampled.
A complete table of prior parameter ranges for simulating
synthetic tumour VAF distributions is provided in Appendix
A.2.

2.4. Hybrid variational autoencoder (HVAE)

The architecture of an HVAE includes an encoder, decoder,
and an additional prediction neural network used for param-
eter estimates. Although multiple different factorizations of
the VAE can be arranged when adding a prediction network,
e.g. M2-VAE Kingma et al. (2014), we opted for a simple
’linear’ design for preliminary analyses (Figure 2).

Concretely, given a dataset D = {(xi, ki, θi,Mi)}1:D, the
HVAE jointly trains an encoder with parameters ψ, a de-
coder with parameters ϕ, and a prediction network with

parameters π to learn a latent mapping from an (i) input
VAF distribution xi ∈ R1×b → (ii) latent variable zi → (iii)
k component VAF distributions representing neutral ’tail’,
subclonal peaks, and/or clonal peak → (iv) evolutionary
parameters θi.

Considering a single datapoint, the HVAE is trained to min-
imize the following objective:

Li(ϕ, ψ, π;xi) = −Eqψ(z|xi)[ log pϕ(ki|z)]︸ ︷︷ ︸
reconstruction error

+

β ·KL(qψ(z|xi) || p(z))︸ ︷︷ ︸
KL-divergence

−α · Eqψ(z|xi)[log pπ(θi|ki)]︸ ︷︷ ︸
prediction error

Some important notes:

• The reconstruction error is on ki and not the input VAF
distribution xi. This is because the goal of decoding
is to learn decompose the component distributions as-
signed to ki via the decoder.

• We also include both β and α coefficients to account
for large discrepancies in numerical values across VAF
distribution features xi and ki (values up to 60000)
versus target variables θi (normalized to 0 - 1). This
ensures that that gradients aren’t biased by any given
term in the objective.

• Both the prior p(z) and variational distribution qψ(z|x)
were chosen to be Gaussian in this study.

Additional description of the training procedure and imple-
mentation is provided in Appendix A.2.
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2.5. Datasets

To evaluate existing subclonal clustering methods, we cu-
rated or generated a total of 3 different datasets. We note
that, in this study, we focus on analyzing sequencing data
consisting only of VAF information from diploid copy num-
ber regions as this facilitates easier evaluation against exist-
ing methods.

2.5.1. DATASET I

Dataset I was collected from Caravagna et al. (2020). The
dataset is composed of synthetic tumour sequencing data
from 150 samples grown to a final population size > 108 at
a birth rate of 1 and death rate of 0.2, and then sequenced to
a mean depth of 120x. In terms of detectable subclones, 40
samples have no detectable subclone whereas 110 have one
detectable subclone (10 - 45% VAF).

2.5.2. DATASET II

Dataset II consists of synthetic tumour sequencing data
from 500 samples generated using the simulator described
in Section 2.2 and Appendix A.1.1. Half of the samples were
simulated with 0 subclones and half were simulated with
1 subclone. Each model had 10 replicates per sequencing
depth (50 - 150x) and minimum alternate reads (4 - 12)
combination.

2.5.3. DATASET III

Dataset III was generated by directly sampling VAF infor-
mation from mixture component distributions. For each
replicate, m/3 mutations were randomly sampled from a
Pareto distribution (shape = 20), representing the low fre-
quency neutral ’tail’, and 2 beta distributions (α, β = 50,
50), representing the subclonal (centered at 25% VAF) and
clonal peaks (centered at 50% VAF). A total of 5 replicates
across m = 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384 mutations were generated. This dataset was used to
evaluate how subclonal clustering time scales with increas-
ing mutational burden.

2.6. Evaluated tasks

• DATASET I was used to evaluate the ability for tumour
evolution models to differentiate between samples with
0 or 1 detectable subclones (TASK I.1).

• DATASET II was used to (TASK II.1) evaluate each
models ability to differentiate between 0 or 1 subclones
at variable sequencing depths and minimum alternate
read combinations, (TASK II.2) to accurately quantify
the true subclone population fraction in the synthetic
tumour, and (TASK II.3) to estimate the mutation rate
at increasing sequencing depths.

• DATASET III was used to evaluate inference time per
sample with increasing mutations (TASK III.1).

2.7. Additional methods

In addition to our proposed HVAE, we also evaluated three
additional subclonal clustering methods on each of the four
tasks.

• SciClone (Miller et al., 2014) is a variational Bayesian
mixture model with either beta, binomial, or gaussian
component distributions. We use the beta distribution
variant.

• MOBSTER (Caravagna et al., 2020) is Dirichlet mix-
ture model combining Pareto/power-law and beta dis-
tribution components. MOBSTER uses the power-law
component to model the low frequency neutral tail that
arises due to expanding tumour populations - this helps
to avoid overestimating the number of subclones.

• TumE (Ouellette & Awadalla, 2022) is a synthetic su-
pervised learning model that also uses simulations and
deep learning to perform subclonal clustering - how-
ever, parameter inference and clustering are performed
independently and only discriminative neural networks
are used.

3. Experiments
3.1. Predicting the number of subclones

In TASK I.1, we find that the proposed HVAE leads to sub-
stantial improvements in accurately classifying the presence
or absence of subclonal populations using VAF information
(defined by accuracy and Matthew’s correlation coefficient;
Table 1).

Table 1. Performance metrics on TASK I.1 for classifying 0 or 1
detectable subclones (MCC = Matthew’s correlation coefficient).

METHOD MCC ACCURACY

SCICLONE 0.067 37.8%
MOBSTER 0.226 62.5%
TUME 0.458 73.4%
HVAE (OURS) 0.565 81.3%

Furthermore, in TASK II.2, we find that the HVAE maintains
superior performance across all evaluated mean sequencing
depth and minimum alternate read combinations considered
here (Figure 3)

3.2. Quantifying the subclone cellular fraction

We next evaluated the ability for each method to quantify
the cellular fraction of a single subclonal population, present
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Figure 3. Performance metrics on TASK II.1 for classifying 0 or 1
subclones at variable sequencing depths (50 - 150x) and minimum
alternate reads to call a mutation (4 - 12)

between 10 - 45% VAF (20 - 90% cellular fraction). In this
task, the HVAE outperformed both mixture models (Sci-
Clone and MOBSTER) but had lower performance than
TumE (Table 2). However, compared to TumE which also
uses a neural simulation-based inference approach, the pro-
posed HVAE was only trained on approximately 12.5% of
the training set size as TumE (5 vs 40 million samples).
Additional scaling of the dataset size and additional eval-
uation of alternative architectures will likely resolve any
differences in performance on this task.

Table 2. Performance metrics on TASK II.2 for quantifying the
true subclone fraction in the tumour (MAPE = mean absolute
percentage error)

METHOD MAPE

SCICLONE 34.5%
MOBSTER 19.5%
TUME 5.6%
HVAE (OURS) 12.5%

3.3. Predicting mutation rate

The majority of available methods do not provide evolution-
ary parameter estimates. However, MOBSTER provides
an option to connect observed subclone frequencies and
neutral ’tail’ fits to analytical theory of subclonal dynamics.
Although this work is preliminary, we performed a brief
comparison of mutation rate estimates between MOBSTER
and the HVAE (Figure 4). Estimates from both MOBSTER
and HVAE improve substantially with increasing sequenc-
ing depth. This is expected as excessive sequencing noise
due to lower sequencing depth confounds accurate assign-
ment of mutations into each frequency distribution compo-
nent (e.g. neutral tail, subclonal, or clonal mutations).

3.4. Inference time across methods

Existing methods used for subclonal clustering tend to scale
poorly in terms of compute and time with increasing muta-
tional burden. As such, we evaluated the inference time for
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Figure 4. TASK II.3 Mutation rate estimates in 500 synthetic
tumours

each method with increasing mutational burden. Compared
to existing approaches, even non-mixture model approaches
such as TumE, we observe substantial reductions in wall
time with the HVAE (Figure 5).
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3.5. Fitting the HVAE to real patient tumour sequencing
data

In Figure 6, we provide an example fit to VAF distribution
recovered from a real patient tumour biopsy.
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Latent process
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specific or tail Subclone

background

Clonal, fixedTumour tree

Figure 6. An example clustering of a VAF distribution from a real
patient tumour biopsy using the HVAE. A total of 100 stochastic
samples were used for this fit. Colored traces represent the neutral
tail (red), subclone (green) and clonal peak (orange). Black repre-
sents the mean trace across all combined components.
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4. Conclusion
We provide preliminary experiments and analyses showing
that combining stochastic simulations of tumour evolution
with generative neural networks, such as HVAEs, enables
joint subclonal clustering and parameter inference in tumour
populations. Evidently, it appears that jointly learning to
decompose subclones and estimate evolutionary parameters
improves accuracy over existing methods on the majority of
tasks considered here.

However, we note that we primarily focused on benchmark-
ing subclonal clustering performance with minimal evalu-
ation of evolutionary parameter estimates. This is largely
because only a limited number of methods enable this type
of inference. In future method comparisons, parameter es-
timates should undergo additional benchmarking, taking
into account classical simulation-based inference methods
such as ABC and likely more recent neural simulation-based
inference methods that utilize conditional density estima-
tors such as normalizing flows (Papamakarios & Murray,
2016; Greenberg et al., 2019; Durkan et al., 2020) (although
constraints on the input/output dimensionality of certain
invertible neural networks may pose challenges when per-
forming clustering inference as proposed in this study).

In addition, although we provide accurate estimates across
a variety of tasks, it isn’t entirely clear if the approximate
posterior derived from repeatedly sampling the HVAE ac-
curately captures uncertainty in a potentially multi-modal
ground truth posterior. Additional experiments focused on
sampling reference or ’proxy’ ground truth posteriors using
sequential methods with theoretical guarantees (e.g. ABC)
would help address this unresolved issue.

Lastly, the choice of architecture and structure of the objec-
tive function was kept simple for straightforward implemen-
tation and optimization. In this regard, evaluating a vari-
ety of alternative VAE factorizations (Kingma et al., 2014)
while providing a more formal description of the objective
function under joint inference of data and parameters would
likely be justified and, ultimately, aid in interpretability and
model performance.
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A. Appendix
A.1. Additional information on the synthetic data generation process

A.1.1. SIMULATION ALGORITHM

The stochastic branch process of tumour growth and evolution follows a variant of the Gillespie algorithm (Williams et al.,
2018). Here, a tumour grows with each cell dividing or dying with probabilities proportional to the birth rate b or death rate
d, respectively. During each division, a cell will acquire a Poisson-distributed number of mutations based on the mutation
rate µ. If a cell acquires a driver mutation, its overall growth rate (b− d) is scaled by a factor of (1 + s) where s indicates
the selection coefficient for the driver mutation. Once a tumour reaches a specified final population size N , the tumour is
virtually sequenced under a binomial or beta-binomial sequencing noise model that is consistent with the empirical data
generation process. This can be more formally denoted within a pseudo-algorithm.

Algorithm 1 Pseudo-algorithm for simulating tumour evolution and synthetic tumour sequencing data
Set the detectable subclone frequency range (fmin, fmax) for simulations with ≥ 0 subclones
Sample parameters from prior θi,Mi ∼ p(θ,M)
while (fmin > subclone frequency > fmax) & (number of subclones ̸= Mi) do

Set current population size n = 1
Set time t = 0.0
Initialize founder cell with nclonal clonal mutations
while n < N do

Randomly sample a cell j from population
Sample r ∼ Unif(a,b) where a = 0 and b = bmax + dmax
if bj > r then

Cell divides and both daughter cells acquire k mutations where k is Poisson distributed with mean equal to the per
genome division mutation rate µ
n = n+ 1

else if bj + dj > r >= bj then
Cell dies
n = n− 1

else
Nothing happens

end if
τ ∼ Exp(1) or -log(Unif(0, 1))
t = t+ τn−1(bmax + dmax)

−1

end while
end while
Virtual biopsy synthetic tumour

The virtual biopsy procedure follows the expected variation seen in next-generation sequencing data. Namely, given a tumour
with population sizeNt and mean sequencing depth d̄, the total observed read depth di covering each mutation i is distributed
as di ∼ BetaBin(n = Nt, p = d̄/Nt, ρ). Here, ρ indicates the overdispersion parameter for the Beta distribution. When ρ
is zero, d is is binomially distributed. Then, given the total read depth di, the true variant allele frequency V AFti , and the
tumour purity ϕ, the alternate read count ri for mutation i is distributed as ri ∼ Binomial(n = di, p = V AFti). Given ri,
the observed noisy V AFoi for each mutation i is computed as ri/di.

A.1.2. SIMULATION PARAMETERS

For simulation parameter selection, we follow similar specifications as previous work (Williams et al., 2018; Ouellette &
Awadalla, 2022). Most notably, we take advantage of the fact that VAF distributions do not encode information on tumour
population size (Williams et al., 2018). This means we can simulate smaller population sizes to take advantage of the
reduced computational burden and improved simulation speed. In addition, we fix the death rate to 0 as it also improves
computational efficiency. We do note that previous work has shown that the ratio of birth and death rates may lead to
potentially detectable deviations in the shape of the VAF distribution (Bozic et al., 2016). However, we do not consider
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that problem here, as it has been previously shown that simulation-based cancer evolution inference methods are robust to
changes in the underlying birth and death rate combinations (Ouellette & Awadalla, 2022). Below we list the variable and
fixed parameters used to generate synthetic tumour sequencing data.

Table 3. Prior parameter ranges for tumour evolution simulations

PARAMETER MIN MAX SAMPLING

MUTATION RATE (GENOME/DIVISION) 1 500 UNIFORM
NUMBER CLONAL MUTATIONS 1 5000 UNIFORM
SUBCLONE FITNESS (1+S) 1 24 UNIFORM
SUBCLONE EMERGENCE TIME (% Nfinal) 0.002 0.5 UNIFORM
SEQUENCING DEPTH 50 200 UNIFORM
SEQUENCING OVERDISPERSION (ρ) 0.0 0.01 UNIFORM
MINIMUM ALTERNATE READS TO CALL MUTATION 4 12 UNIFORM
BIRTH RATE log(2) log(2) FIXED
DEATH RATE 0.0 0.0 FIXED
FINAL TUMOUR SIZE (Nfinal) 1000 1000 FIXED

A.2. Details on HVAE training and implementation

We simulated 5 million samples under each model (0, 1, or 2 subclones) described in the simulator above. Input VAF
distributions xi, and each component distribution within ki, were histograms with b = 100 bins generated by tabulating all
mutations from 0 to 70% VAF. Using this synthetic dataset, we then trained four different HVAE models in total:

• HVAEms was used to perform model selection across each evolutionary model (0, 1, or 2 subclones)

• HVAE0 was used to perform VAF distribution clustering and parameter estimates under the 0 subclone evolutionary
model (M0)

• HVAE1 was used to perform VAF distribution clustering and parameter estimates under the 1 subclone evolutionary
model (M1)

• HVAE2 was used to perform VAF distribution clustering and parameter estimates under the 2 subclone evolutionary
model (M2)

For each HVAE, the encoder, decoder, and prediction networks were fully-connected multi-layer perceptrons implemented
in pytorch. To select optimal configurations for each neural network, we performed random hyperparameter search 150
times with the following hyperparameter ranges:

Table 4. Hyperparameter ranges used in random search

HYPERPARAMETER MIN MAX

HIDDEN NEURONS 256 1024
HIDDEN LAYERS 3 7
LATENT DIMENSIONS 2 12
ACTIVATION FUNCTIONS GELU, RELU,HARDSWISH,LEAKY RELU
RECONSTRUCTION LOSS L2, L1, SMOOTH L1
PREDICTION LOSS L2, L1, SMOOTH L1
ALPHA 1 100
BETA 0.5 1.5
DROPOUT 0 0.5
LEARNING RATE 10−10 10−3

WEIGHT DECAY (ADAM OPTIMIZER) 0 0.2
BATCH SIZE 256 1024


