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ABSTRACT

The information-theoretic framework promises to explain the predictive power of
neural networks. In particular, the information plane analysis, which measures
mutual information (MI) between input and representation as well as representa-
tion and output, should give rich insights into the training process. This approach,
however, was shown to strongly depend on the choice of estimator of the MI.
The problem is amplified for deterministic networks if the MI between input and
representation is infinite. Thus, the estimated values are defined by the different
approaches for estimation, but do not adequately represent the training process
from an information-theoretic perspective. In this work, we show that dropout
with continuously distributed noise ensures that MI is finite. We demonstrate in
a range of experiments1 that this enables a meaningful information plane analysis
for a class of dropout neural networks that is widely used in practice.

1 INTRODUCTION

The information bottleneck hypothesis for deep learning conjectures two phases of training feed-
forward neural networks (Shwartz-Ziv and Tishby, 2017): the fitting phase and the compression
phase. The former corresponds to extracting information from the input into the learned represen-
tations, and is characterized by an increase of mutual information (MI) between inputs and hidden
representations. The latter corresponds to forgetting information that is not needed to predict the
target, which is reflected in a decrease of the MI between learned representations and inputs, while
MI between representations and targets stays the same or grows. The phases can be observed via
an information plane (IP) analysis, i.e., by analyzing the development of MI between inputs and
representations and between representations and targets during training (see Fig. 1 for an example).
For an overview of information plane analysis we refer the reader to (Geiger, 2022).

While being elegant and plausible, the information bottleneck hypothesis is challenging to inves-
tigate empirically. As shown by Amjad and Geiger (2020, Th. 1), the MI between inputs and the
representations learned by a deterministic neural network is infinite if the input distribution is contin-
uous. The standard approach is therefore to assume the input distribution to be discrete (e.g., equiv-
alent to the empirical distribution of the dataset S at hand) and to discretize the real-valued hidden
representations by binning to allow for non-trivial measurements, i.e., to avoid that the MI always
takes the maximum value of log(|S|) (Shwartz-Ziv and Tishby, 2017). In this discrete and deter-
ministic setting the MI theoretically gets equivalent to the Shannon entropy of the representation.
Considering the effect of binning, however, the decrease of MI is essentially equivalent to geomet-
rical compression (Basirat et al., 2021). Moreover, the binning-based estimate highly depends on
the chosen bin size (Ross, 2014). To instead work with continuous input distributions, Goldfeld

1Code for the experiments is public on https://github.com/link-er/IP_dropout.
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(a) Information dropout (b) Gaussian dropout (our) (c) Gaussian dropout (binning)

Figure 1: IPs w.r.t. the activations of one layer with information dropout or Gaussian dropout in a
LeNet network. In contrast to the IP based on estimating MI using binning, our estimates (both for
Gaussian and information dropout) clearly show compression. This suggests that even if MI is finite,
the binning estimator fails to converge to the true MI (see also Section 4).

et al. (2019) suggest to replace deterministic neural networks by stochastic ones via adding Gaus-
sian noise to each of the hidden representations. This kind of stochastic networks is rarely used in
practice, which limits the insights brought by the analysis.

In contrast, dropout, being a source of stochasticity, is heavily used in practice due to its effective
regularizing properties. The core questions investigated in this work therefore are: i) Can we obtain
accurate and meaningful MI estimates in neural networks with dropout noise? ii) And if so, do IPs
built for dropout networks confirm the information bottleneck hypothesis? Our main contributions
answer these questions and can be summarized as follows: We present a theoretical analysis showing
that binary dropout does not prevent the MI from being infinite due to the discrete nature of the noise.
In contrast, we prove that dropout noise with any continuous distribution not only results in finite
MI, but also provides an elegant way to estimate it. This in particular holds for Gaussian dropout,
which is known to benefit generalization even more than binary dropout (Srivastava et al., 2014),
and for information dropout (Achille and Soatto, 2018). We empirically analyze the quality of the
MI estimation in the setup with Gaussian and information dropout in a range of experiments on
benchmark neural networks and datasets. While our results do not conclusively confirm or refute
the information bottleneck hypothesis, they show that the IPs obtained using our estimator exhibit
qualitatively different behavior than the IPs obtained using binning estimators and strongly indicate
that a compression phase is indeed happening.

2 MUTUAL INFORMATION ESTIMATION FOR NEURAL NETWORKS

We use the following notation: Lower-case letters denote realizations of random variables (RVs),
e.g., b denotes a realization of the RV B; H(A) denotes the Shannon entropy of a discrete RV A
whose distribution is denoted pa; h(B) is the differential entropy of a continuous RV B whose
distribution is described by the probability density function pb; I(A;B) is the MI between RVs
A and B; X ∈ X ⊆ Rn and Y ∈ Y are the RVs describing inputs to a neural network and
corresponding targets; f(X) is the result of the forward pass of the input through the network to the
hidden layer of interest; Z is an N -dimensional RV describing the hidden representations.

The caveats of different approaches to measure the MI between input X and hidden representation
Z of a neural network – e.g., the MI being infinite for deterministic neural networks and continuous
input distributions, the dependence of the MI estimate on the parameterization of the estimator, etc.
– were discussed widely in the literature (Saxe et al., 2019; Geiger, 2022) and are briefly reviewed
in this section. These caveats do not appear for the MI measured between representations Z and
targets Y , since the target is in most cases a discrete RV (class), for which MI is always finite.

One option for estimating I(X;Z) is to assume the input to be drawn from a discrete distribution.
This view is supported by the finiteness of the accuracy of the used computational resources (Loren-
zen et al., 2021) and makes it easy to use a finite dataset S to describe the distribution. In such
setup, the distribution of (X,Y ) is assumed uniform on the dataset S, and the discretization of Z
is performed at a fixed bin size (e.g., corresponding to the computer precision). The MI between
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X and the discretized Ẑ is computed as I(X; Ẑ) = H(Ẑ) − H(Ẑ|X) = H(Ẑ) − 0 = H(Ẑ),
where H(Ẑ|X) = 0 since f(·) and the discretization of Z are deterministic. Thus, the estimated
MI between input and representation corresponds to the entropy of the discretized representation,
which for small bin sizes is equal to the entropy H(X) = log |S| of the empirical distribution on
the dataset, unless f(·) maps different points from the dataset to the same point in latent space.

A different option that is more aligned to the common description of real-world data is to assume X
to be drawn from a continuous distribution. If the network transformation f(·) results in a discrete
distribution of the representations Z, one can use the decomposition I(X,Z) = H(Z)−H(Z|X) =
H(Z) to estimate MI based on Shannon entropy, provided that the sample size is sufficiently large
(note that the dimensionality N of Z may be large, and therefore the estimation of H(Z) may
suffer from the curse of dimensionality). However, as shown in Theorem 1 of (Amjad and Geiger,
2020) for neural networks with commonly used activation functions the distribution of the latent
representation is not discrete. In this case (i.e., f(·) is deterministic, X is continuous, and Z is not
purely discrete) the MI between X and Z is infinite2. By binning, i.e., by quantizing Z to a discrete
RV Ẑ, the MI I(X; Ẑ) = H(Ẑ) remains finite, but the qualitative behavior of this entropy will be
defined by properties of activation functions and selected bin size (Saxe et al., 2019).

From the discussion above it follows that estimating I(X;Z) in deterministic neural networks is
an ill-posed problem, and that the estimates reveal not an information-theoretic picture, but often
rather a geometric one that is determined by the properties of the chosen estimators. As a solution to
the aforementioned challenges, several authors have suggested to investigate the information planes
of stochastic neural networks instead (Amjad and Geiger, 2020; Goldfeld et al., 2019). Goldfeld
et al. (2019) proposed to add zero-mean Gaussian noise D to the representations during training.
This transforms a deterministic neural network into a stochastic one that was shown to yield similar
training results and predictive abilities of the model. The addition of Gaussian noise in Z = f(X)+
D guarantees a finite MI3 and therefore allows for estimating MI using Monte Carlo sampling with
bounds on the estimation error. Futhermore, it links the information-theoretic perspective of the IP to
geometric effects taking place in latent space. Indeed, when the MI between input and representation
is decreasing, it means that noise-induced Gaussians centered at the representations of different data
points overlap more strongly. Thus, it is becoming harder to distinguish between inputs of the same
class based on their representations, which translates into lower MI between representation and input
while leaving MI between representation and target unchanged.

As discussed above, for continuous input distributions both the IPs of deterministic neural networks
as well as of stochastic neural networks with additive noise show a geometric picture (and in the
former case the geometric interpretation is the only valid one, since MI is infinite in this case).
Therefore, in this work we study the estimation of MI in networks with dropout layers, i.e., in
settings where the stochasticity is introduced by multiplicative, rather than additive noise. In what
follows we will investigate the requirements on the multiplicative noise for MI to remain finite, and
whether the resulting IPs confirm the information bottleneck hypothesis.

3 MUTUAL INFORMATION IN DROPOUT NETWORKS

As discussed in the previous section, the MI between inputs and hidden representations of deter-
ministic networks is infinite, if we assume the input distribution to be continuous. To overcome this
problem, some form of stochasticity has to be introduced. While adding noise to activations (Gold-
feld et al., 2019) indeed allows to compute the MI, this is not used in most contemporary neural
networks. In contrast, neural networks with dropout are one of the most popular classes of neural
networks used in practice and are stochastic in nature as well: Adding a dropout layer to a neu-
ral network corresponds to multiplying the hidden representation with some form of random noise.
Formally, denoting the random noise by a RV D of the same dimension as f(X), the hidden repre-
sentation becomes Z = f(X) ◦D, where ◦ denotes element-wise multiplication. In the most basic
form, D follows a Bernoulli distribution (Srivastava et al., 2014). Such binary dropout is widely used
and can intuitively been understood as “turning off” a fraction of neurons during training. There is a

2There are multiple mathematical derivations explaining why MI is infinite, one for example is discussed in
(Saxe et al., 2019, Appendix C).

3At least when the px and f(·) are such that f(X) has finite variance, then the finiteness of MI follows from
the result about the capacity of the additive Gaussian noise channel, cf. (Cover and Thomas, 1991, eq. (10.17)).
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variety of other dropout schemes, including multiplicative Gaussian noise, fast dropout (Wang and
Manning, 2013), or variational dropout (Kingma et al., 2015). Information dropout (Achille and
Soatto, 2018) is a variant that uses a closed-form expression of MI as regularization term. In order
to obtain such closed form, dropout noise is sampled from a log-normal distribution, and the prior
distribution on representations is chosen depending on the activation function (ReLU or Softplus).
We provide details on the derivation in Appendix A.1.

In this section, we investigate whether neural networks with dropout have indeed finite MI between
input X and representation Z. While we first show a negative result by proving that binary dropout
still leads to I(X;Z) =∞, our Theorem 3.3 shows that dropout with continuous distribution keeps
MI finite. This fact allows us to estimate MI for such dropout neural networks in Sections 4 and 5.

3.1 BINARY DROPOUT

We start by analyzing binary dropout, which forces individual neurons to be “turned off” with some
probability. More formally, the output of each neuron is multiplied with an independent Bernoulli
RV that is equal to 1 with a predefined probability p. The following theorem shows that this kind of
(combinatorial) stochasticity is insufficient to prevent I(X;Z) from becoming infinite.
Theorem 3.1. In the setting of (Amjad and Geiger, 2020, Th. 1), let the output f(·) of a hidden
layer be parameterized as a deterministic neural network with N̂ neurons, let B ∈ {0, 1}N̂ be the
set of independent Bernoulli RVs characterizing the dropout pattern, and let Z = fB(X) denote the
output of the hidden layer after applying the random pattern B. Then it holds that I(X;Z) =∞.

In the proof (provided in Appendix A.2) we use the fact that dropout mask b = (1, 1, . . . , 1) leads
to an infinite MI. While the Bernoulli distribution guarantees that b = (1, 1, . . . , 1) always has non-
zero probability, other distributions over {0, 1}N̂ might not have this property. Theorem 3.1 can
however be generalized to arbitrary distributions over {0, 1}N̂ :
Theorem 3.2. In the setting of (Amjad and Geiger, 2020, Th. 1), let the output f(·) of a hidden layer
be parameterized as a deterministic neural network with N̂ neurons, let B ∈ {0, 1}N̂ be the binary
random vector characterizing the dropout pattern, and let Z = fB(X) denote the output of the
hidden layer after applying the random pattern B. Then, it either holds that I(X;Z) = ∞ or that
I(X;Z) = 0 if the dropout patterns almost surely disrupt information flow through the network.

The proof for the theorem is provided in Appendix A.3.

Both Theorem 3.1 and Theorem 3.2 cover as a special case the setting where dropout is applied to
only a subset of layers, by simply setting those elements of B to 1 that correspond to a neuron output
without dropout. If dropout is applied to only a single layer, then fB(X) = f(X) ◦B′, where B′ is
the dropout pattern of the considered layer and ◦ denotes the element-wise product.

As a consequence of Theorem 3.2, for neural networks with binary dropout any finite estimate of
MI is “infinitely wrong”, and the resulting IP does not permit an information-theoretic interpre-
tation. Essentially, the stochasticity added by binary dropout is combinatorial, and hence cannot
compensate the “continuous” stochasticity available in the input X .

3.2 DROPOUT WITH CONTINUOUS NOISE

As proposed by Srivastava et al. (2014), dropout can also be implemented using continuous Gaus-
sian noise with mean vector µ = 1 and diagonal covariance matrix Iσ2 with fixed variance σ2.
Achille and Soatto (2018), in contrast, proposed log-normally distributed dropout noise, the vari-
ance of which depends on the input sample x (this is termed information dropout). Generalizing
both Gaussian and information dropout, in this section we consider continuously distributed mul-
tiplicative noise D. In contrast to binary noise sampled from a discrete distribution, continuously
distributed noise turns the joint distribution of (Z,X) to be absolutely continuous with respect to the
marginals of Z and X allowing for finite values of MI between the input X and the hidden repre-
sentation Z. The following theorem states that the MI between input and the hidden representation
of the dropout layer is indeed finite even if the variance of the noise depends on the input.
Theorem 3.3. Let X be bounded in all dimensions, f(·) be parameterized by a deterministic neural
network with Lipschitz activation functions, and let Z = f(X) ◦ D(X), where the components of
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noise D(X) = (D1(X), . . . , DN (X)) are conditionally independent given X and have essentially
bounded differential entropy and second moments, i.e., E[Di(X)2] ≤M <∞X-almost surely, for
some M and all i = 1, . . . , N . Then, if the conditional expectation E[log(|f(X)|) | |f(X)| > 0] is
finite in each of its elements, we have I(X;Z) <∞.

Theorem 3.3 (proof in Appendix A.4) can be instantiated for Gaussian dropout, where Di(x) =
Di ∼ N (1, σ2), and for information dropout, where Di(x) ∼ logN (0, α2(x)). Note that for
information dropout we have to ensure that the (learned) variance α2(x) stays bounded from above
and below; e.g., in the experiments of Achille and Soatto (2018), α2(x) is restricted to be below 0.7.

The requirement that the conditional expectation E[log(|f(X)|) | |f(X)| > 0] is finite in each of its
elements is critical for the proof. Indeed, one can construct a synthetic (albeit unrealistic) example
for which this condition is violated:
Example 3.4. Let X ′ have the following probability density function

px′(x′) =

{
2−n, if x′ ∈ [2n, 2n + 1), n = 1, 2, . . .

0, else

Evidently, E[X ′] =∞. Then, X = e−X′
is bounded, since its alphabet is a subset of (0, e−2].

Now consider a neural network with a single hidden layer with one neuron. Let the weight from X
to the single neuron be 1, and assume that the neuron uses a ReLU activation function. Then,

E[log |f(X)|] = E[log |X|] = E[log |e−X′
|] = E[−X ′] = −∞ .

It can be shown that in this example the probability density function of X (as well as of f(X)) is
not bounded. Under the assumption that the probability density function pf of f(X) is bounded, the
conditional expectation in the assertion of the theorem is finite: Assuming that pf ≤ C <∞, by the
law of unconscious statistician we have

Ex[log(|f(X)i|) | |f(X)i| > 0] =

∫ ∥f(X)i∥∞

0

log(f)pf (f)df

=

∫ 1

0

log(f)pf (f)df︸ ︷︷ ︸
I1

+

∫ ∥f(X)i∥∞

1

log(f)pf (f)df︸ ︷︷ ︸
I2

.

It is obvious that I2 is positive and finite. Due to the boundedness of pf we also have I1 ≥
C
∫ 1

0
log(f)df = Cf(log(f)− 1)|10 = −C > −∞.

However, the boundedness of pf of is hard to guarantee for an arbitrary neural network. In contrast,
the boundedness of px is more realistic and easier to check. For bounded px we can prove (in
Appendix A.5) the finiteness of the expectation E[log(|f(X)|) | |f(X)| > 0] for ReLU networks:
Proposition 3.5. Consider a deterministic neural network function f(·) constructed with finitely
many layers, a finite number of neurons per layer, and ReLU activation functions. Let X be a
continuously distributed RV with probability density function px that is bounded (px ≤ P < ∞)
and has bounded support X . Then, the conditional expectation E[log(|f(X)|) | |f(X)| > 0] is
finite in each of its elements.

Finally, note that Theorem 3.3 assumes that the network is deterministic up to the considered dropout
layer. This does not come with a loss of generality for feed-forward networks (e.g., with no residual
connections): Indeed, one can apply Theorem 3.3 to the first hidden layer representation Z(1) with
dropout, where this assumption always holds. Then, for the ℓ-th hidden layer and irrespective of
whether this layer also has dropout, the MI I(X;Z(ℓ)) is finite due to the data processing inequal-
ity (Cover and Thomas, 1991, Th. 2.8.1). Therefore, Theorem 3.3 ensures that MI is finite for all
hidden layers after the first continuous dropout layer.

4 ESTIMATION OF MI UNDER CONTINUOUS DROPOUT

We now consider estimating I(X;Z) in networks with continuously distributed dropout, starting
with information dropout. As discussed by Achille and Soatto (2018), networks with information
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dropout are trained with the cross-entropy loss ℓce (which is involved in the known variational lower
bound I(Z;Y ) ≥ H(Y )− ℓce) and regularized using a variational upper bound on I(X;Z). There-
fore, estimates of the quantities displayed in the information plane are directly used in the training
loss and, thus, easy to track, at least for softplus activation functions4.

In the case of Gaussian dropout, to estimate I(X;Z) we approximate h(Z) and h(Z|X) separately
(pseudocode is given in Algorithm 1 in Appendix A.6).

(a) σ = 0.1, n = 2 (b) σ = 0.1, n = 50

Figure 2: Independent of the dimensionality, MC estimation
of h(Z|X) stabilizes with increasing amount of samples.

For estimating h(Z) we employ a
Monte Carlo (MC) estimate, simi-
lar to the one proposed by Gold-
feld et al. (2019). That is, we
approximate the distribution of Z
as a Gaussian mixture, where we
draw samples f(x(j)), j = 1, . . . , |S|
and place Gaussians with a diago-
nal covariance matrix with variances
σ2|f(x(j))i|2, i = 1, . . . , N on each
samplef(x(j)). For a sanity check,
we also compute an upper bound of
h(Z) given by the entropy of a Gaus-
sian with the same covariance matrix
as Z. Note that the estimation of the
upper bound requires a sufficiently large number of samples to guarantee that the sample covariance
matrix is not singular and that the resulting entropy estimate is finite.

(a) σ = 0.1, n = 1 (b) σ = 0.1, n = 50

Figure 3: Estimates of the differential entropy h(Z) of the
hidden representation Z. With growing dimensionality of
X , the Gaussian upper bound becomes very loose, com-
pared to the Gaussian mixture-based MC estimation.

For each fixed x the conditional dis-
tribution pz|x is a Gaussian distribu-
tion N (f(x),diag({σ2|f(x)i|)2})).
Moreover, when the input is fixed,
the components of Z|X = x are in-
dependent, since components of the
noise are independent. This allows
to compute h(Z|X) as a sum of
h(Zi|X) where Zi is the i-th compo-
nent of the representation vector. The
computation of h(Zi|X) requires in-
tegration over the input space for
computing the mathematical expec-
tation Ex[h(Zi|X = x)]. This can
be approximated via MC sampling.
That is, we approximate h(Zi|X) by
1/|S|

∑|S|
j=1 h(Zi|X = x(j)) where

h(Zi|X = x(j)) = log(|f(x(j))i|σ
√
2πe).

We consider a simple toy problem for validating our approach to estimating MI: the input X is
generated from an n-dimensional standard normal distribution, modified with a function f(X) =
2X+0.5, and then subjected to Gaussian dropout distributed according toN (1, σ2). We investigate
the convergence of our estimator for h(Z|X) for increasing number of samples. For each input data
point, we generate 10 noise masks, thus obtaining 10 samples of Z for each x(j). The results in
Fig. 2 show that the estimation stabilizes with larger amount of samples for different dimensionality
of the data. We also compare the estimate to the upper bound for h(Z) in Fig 3.

We finally compare our estimation of MI to binning, the EDGE estimator (Noshad et al., 2019), and
the lower bounds analyzed by McAllester and Stratos (2020). The results are shown in Fig. 4. In
the plot, doe stands for the difference-of-entropies (DoE) estimator and doe l stands for DoE with
logistic parametrization (McAllester and Stratos, 2020). The binning estimator underestimates the

4Indeed, for softplus activation functions, the variational approximation of I(X;Z) is available in closed
form, while for ReLU activation functions, the available expression is only useful for minimizing, rather than
for computing, I(X;Z) (see Appendix A.1).

6



Published as a conference paper at ICLR 2023

(a) σ = 0.1, n = 1 (b) σ = 0.1, n = 50

Figure 4: Comparison of various approaches to MI estimation for the toy example with multiplica-
tive Gaussian noise. For low-dimensional X and Z, different bin sizes lead to different MI estimates
of the binning estimator. For higher dimensions, the binning-based estimate is collapsing. Our es-
timation is very close to the lower bound estimation proposed by McAllester and Stratos (2020),
while still being larger as expected.

MI when the bin size is large and overestimates it with small bin size (Ross, 2014), which can be
clearly seen in the plots where bins are organized both by size (upper axis) and by number (lower
axis). Moreover, with the high-dimensional data, binning hits the maximal possible value of log(|S|)
very fast, not being able to reach larger MI values. According to McAllester and Stratos (2020),
lower bound-based MI estimators (e.g., MINE (Belghazi et al., 2018)) also need exponentially (in
the true value of MI) many data points for a good value approximation, otherwise they will always
heavily underestimate the MI.

Further plots for different dropout variances and inputs dimensionality are given in Appendix A.6.

5 INFORMATION PLANE ANALYSIS OF DROPOUT NETWORKS

(a) Our estimator (b) Binning estimator

Figure 5: IPs for a FC network with Gaussian dropout
trained on MNIST. Compared to the binning estimation of
MI our approach shows compression.

We use the estimators described in
the previous section for an IP anal-
ysis of networks with Gaussian and
information dropout. We always con-
sider only the representation corre-
sponding to the first dropout layer 5

and measure the MI in nats, e.g., use
the natural logarithm. For estimating
I(Y ;Z), we employ the EDGE esti-
mator (Noshad et al., 2019) for Gaus-
sian dropout and variational estimate
for information dropout. IPs created
using the binning estimator use bin-
ning for both I(X;Z) and I(Y ;Z).

In the first set of experiments we in-
vestigate the difference between IPs
obtained via our proposed estimator
and via binning. The analysis on the MNIST dataset was performed for a LeNet network (LeCun
et al., 1998) that achieves 99% accuracy and a simple fully-connected (FC) network with three hid-
den layers (28×28−512−128−32−10) and softplus activation functions achieving 97% accuracy.
We analyze both information dropout and Gaussian dropout in the LeNet network and only Gaussian
dropout in the FC network. In both cases dropout is applied on penultimate layers. We compare IPs
based on binning estimators to IPs based on our estimators in Fig. 1 and Fig. 5.

5This makes the MI estimation more efficient, since the previous part of the network is deterministic which
allows for an analytical expression of h(Z|X = x). Note however, that the estimation could be extended to
higher layers as well since for those MI also remains finite. However, an estimator different from ours should
be used for those layers.
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(a) Our estimator (b) Binning estimator

Figure 6: IPs for a ResNet18 network with Gaussian dropout
trained on CIFAR10. In contrast to the binning-based esti-
mator of MI our approach clearly shows compression.

We also analyze the IPs for a
ResNet18 trained on CIFAR10 (see
Fig. 6), where we added an addi-
tional bottleneck layer with 128 neu-
rons and Gaussian dropout before the
output layer, and which achieves an
accuracy of 94%.

Interestingly, for all networks and
datasets we observe significant com-
pression for our estimator and a lack
of compression for binning estima-
tors (also for different bin size, see
Appendix A.8). This indicates that
either the MI compression measured
in dropout networks is different from
purely geometrical compression, or
that the number of samples |S| is insufficient to reliably estimate I(X;Z) by binning.

(a) fullCNN with β = 3 (b) fullCNN with β = 20

(c) 0.25fullCNN with β = 3 (d) 0.25fullCNN with β = 20

Figure 7: IPs demonstrate more (a), (c) and less (b), (d)
compression of MI between input and representation de-
pending on β. The values of I(X;Z) are smaller for the
smaller network (c) and (d).

In the second set of experiments, we
analyze IPs in information dropout
networks, with MI estimations as de-
scribed before. To this end, we
trained a fully convolutional neural
network (fullCNN) on CIFAR10 us-
ing code provided by Achille and
Soatto (2018). Training proceeded
for 200 epochs using SGD with mo-
mentum and, different from the origi-
nal setup, with only one dropout layer
after the third convolutional layer.
The batch size was set to 100, the
learning rate was initially set to 0.05
and was reduced by multiplying it
with 0.1 after the 40, 80, and 120
epoch. The network was trained with
different values of the regularization
weight β and different amounts of fil-
ters in the convolutional layers. That
is, the full-size fullCNN has 3 layers
with 96 filters succeeded by 4 lay-
ers with 192 filters, while only 25%
of these filters are constituting the
small network. Also different from
the original setup, we allowed the
noise variance to grow up to 0.95 in
order to see the effect of the limited
information between representation and input more pronounced. Results are shown in Fig. 7. It
can be seen that regularizing I(X;Z) is effective (i.e., larger values of β lead to smaller I(X;Z)),
and that regularizing too strongly (β = 20) leads to worse performance: the test error is 5% higher
and train error is 10% higher. We can further see stronger compression for smaller β and almost
no compression for larger β. We conjecture that compression can only become visible if sufficient
information is permitted to flow through the network (which happens only for small β). Fig. 7 (c)
and (d) show the IPs for the small fullCNN. It can be seen that the smaller network appears not to
compress at all (see Fig. 7 (c)), but that I(X;Z) rather increases throughout training until it is at
the same level as in Fig. 7 (a). This indicates that β determines to which point in the IP information
compresses, and that the IP curve that is traversed during training depends on the overall capacity of
the neural network.

Plots for the additional experiments can be found in Appendix A.8.
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6 DISCUSSION

Whether or not information-theoretic compression is correlated with improved generalization is the
main question connected to and the most prominent justification for information plane analysis of
deep neural networks. Such a connection, however, can only be tested for neural networks for which
MI is finite and therefore measurable. In our theoretical analysis, we investigate if different variants
of dropout noise allow for finite values of MI under an assumption of a continuous input distribution.
We answered this question positively by showing that in networks with certain constraints on the
induced distribution of the representations, continuous dropout noise with finite differential entropy
prevents I(X;Z) from becoming infinite. We have further shown that these constraints on the
distribution of the representation are satisfied in ReLU networks if the probability density function
of the input is bounded.

Following this conclusion we propose an MC-based estimate of MI in Gaussian dropout networks
and perform an IP analysis for different networks with Gaussian and information dropout on dif-
ferent datasets. The experiments show that the binning estimator behaves very differently from our
estimator: While our estimator mostly exhibits compression in the IP, the binning estimator does
not. Further, the values of I(X;Z) for our estimator are often orders of magnitude larger than the
values of I(Y ;Z), especially when compared to the binning estimator. Assuming that the proposed
estimators are reasonably accurate, this makes a connection between information-theoretic com-
pression and generalization questionable. While these preliminary experiments do not conclusively
answer the question if such a connection exists, they show a practically relevant setting in which this
correlation can be studied.

The discrepancy between the binning estimator and our estimator further suggests that either the
information-theoretic compression we observe using our estimator is not geometric, or that there are
insufficient samples to obtain reliable estimates from the binning estimator. This is in contrast with
the work of Goldfeld et al. (2019), which showed that information-theoretic and geometric compres-
sion were linked in their networks with additive noise. We thus believe that a closer investigation of
whether multiplicative noise induces geometric compression, and whether the induced compression
improves generalization performance, are interesting questions for future research.
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A APPENDIX

A.1 INFORMATION DROPOUT

One type of dropout with continuous noise is termed information dropout (Achille and Soatto,
2018). It is a technique that combines dropout noise sampled from a log-normal distribution
ϵ ∼ pϵ = logN (0, α2

θ(x)), where αθ(x) is a learnable parameter dependent on the parameters
θ of a network, and the introduction of a regularization term KL(pz|xi

||
∏|Z|

i=1 pzi). This regular-
ization term is based on an information bottleneck objective for training neural networks: Rewriting
the information bottleneck Lagrangian and adding a disentanglement term (i.e., we want each el-
ement of representation Z to be independent of the others) results in the aforementioned formula.
Additionally, it is proposed to use as prior pz , defined by the choice of activation function (ReLU or
Softplus), a particular distribution whose validity is empirically verified. Such priors and selected
dropout noise allow for deriving a closed form of KL-divergence, which makes it easy to directly
track IP values while training.

In the following, we provide the closed form for computation of I(X;Z) as proposed by Achille
and Soatto (2018):

I(X;Z) = KL(px,z||pzpx) =
∫

px,z(x, z) log

(
px,z(x, z)

pz(z)px(x)

)
dxdz

=

∫
px(x)pz|x(z) log

(
px(x)pz|x(z)

pz(z)px(x)

)
dxdz =

∫
px(x)KL(pz|x||pz)dx

= Ex[KL(pz|x||pz)] .

Empirically we can approximate this as I(X;Z) =
∑|S|

j=1 KL(pz|x(j) ||pz), where we sum over the
dataset of size |S| of samples of X .

First, we discuss ReLU neural networks. The prior distribution pz in this case consists is a mixture
of two parts: and improper log-uniform distribution and a point mass at 0. Such prior is empirically
valid for ReLU activations. First we restrict the derivation to the case when f(X) ̸= 0 (which in
turn means that Z ̸= 0, since noise ϵ is log-normal and cannot be 0). In the following we will omit
the subscript of probability density functions, when it is clear from its argument.

KL(pz|x(j) ||pz) = KL(plog(z|x(j))||plog(z)) (1)

=

∫
p(log(z|x(j))) log

(
p(log(z|x(j)))

p(log(z))

)
dz

=

∫
p(log(ϵ) + log(f(x(j)))|x(j)) log

(
p(log(ϵ) + log(f(x(j)))|x(j))

c

)
dϵ (2)

=

∫
p(log(ϵ)) log(p(log(ϵ)))dϵ−

∫
p(log(ϵ)) log(c)dϵ (3)

=

∫
p(log(ϵ)) log(p(log(ϵ)))dϵ− log(c) = −h(log(ϵ))− log(c) (4)

= −(log(α(x(j))) +
1

2
log(2πe))− log(c) , (5)

where equation 1 holds due to the invariance of the KL-divergence under parameter transformation
with a strictly monotone function (log(·)); equation 2 holds since log(Z) = log(ϵ) + log(f(X))
and plog(z) = c for the improper log-uniform distribution; equation 3 is taking into account that
px+const = px, that log(f(x))|x(j) is constant, and that plog(ϵ)|x(j) = plog(ϵ) because ϵ is indepen-
dent of X; equation 4 uses that

∫
plog(ϵ)dϵ = 1; finally equation 5 holds because log(ϵ) is normally

distributed and its entropy can be computed in closed form.

Now we put f(X) = 0, and also get Z = 0. Then pZ|X = δ0 (point mass or Dirac delta) and MI
becomes:

KL(pz|x(j) ||pz) =
∫

pz|x(z) log

(
pz|x(z)

pz(z)

)
dz =

∫
δ0 log

(
δ0
qδ0

)
dz = − log(q) , (6)
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where q is the weight of the point mass in the prior pz .

Combination of equation 5 and equation 6 results in a computable I(X;Z). As it can be seen, one
has to correctly combine non-zero and zero values of f(X) and also know the parameters of the
prior pz: constant c and weight q. This makes it not practical for IP analysis.

If instead of ReLU the network has softplus activations, then the prior on the representations distri-
bution is standard log-normal instead of log-uniform with delta Dirac. In this case the computation
is very simple, since KL divergence between two log-normal distributions is computed as KL diver-
gence between corresponding normal distributions:

KL(pz|x(j) ||pz) =
1

2σ2
(α2(x(j)) + µ2)− log(α(x(j)))

σ
− 1

2
, (7)

where σ2 = 1 and µ = 0 are known parameters of the prior. Thus, softplus activations (equation 7)
allows for direct computations of I(X;Z).

A.2 PROOF OF THEOREM 3.1

Proof. Using the chain rule of MI, we have

I(X;Z) = I(X;Z,B)− I(B;X|Z) = I(X;Z|B) + I(B;X)− I(B;X|Z)

≥ I(X;Z|B)−H(B)

where the inequality follows from dropping I(B;X) since B and X are independent and the fact
that I(B;X|Z) ≤ H(B). Having B ∈ {0, 1}N̂ as a discrete RV, it immediately follows that
H(B) ≤ N̂ log 2. Now note that

I(X;Z|B) =
∑

b∈{0,1}N̂

P(B = b)I(X;Z|B = b).

Since the Bernoulli RVs are independent, positive probability mass is assigned to b = (1, 1, . . . , 1),
i.e., to the case where all neurons are active. Evidently, when b = (1, 1, . . . , 1) it follows that
Z = f(X). Thus, with (Amjad and Geiger, 2020, Th. 1)

I(X;Z|B) ≥ P(b = (1, 1, . . . , 1))I(X; f(X)) =∞

and I(X;Z) =∞.

A.3 PROOF OF THEOREM 3.2

Proof. If the binary dropout is such that nonzero probability is assigned to the dropout mask b =
(1, 1, . . . 1), then the statement of the theorem follows as in the proof of the theorem 3.1.

Assume now that B is such that zero mass is assigned to b = (1, 1, . . . , 1). To treat this case, we
suppose that the distribution of X has a portion with a continuous probability density function on
a compact set and that the neural network has activation functions that are either bi-Lipschitz or
continuously differentiable with a strictly positive derivative (following the requirements of Amjad
and Geiger (2020, Th. 1)). Then, we obtain I(X; f(X)) =∞ from (Amjad and Geiger, 2020, Th. 1)
for almost all parameterizations of the neural network. Under this setting, fB(X) is again a neural
network with activation functions that are either bi-Lipschitz or continuously differentiable with a
strictly positive derivative. Assuming that b is such that the input of the network is not completely
disconnected from the considered layer, for this pattern we have I(X;Z|B = b) = ∞. Otherwise,
we obviously have I(X;Z|B = b) = 0. The statement of the theorem follows from taking the
expectation over all patterns b.

A.4 PROOF OF THEOREM 3.3

Proof. W.l.o.g we first restrict our attention to the dimensions of representations Z that are different
from zero. Specifically, suppose that Z = (Z1, . . . , ZN ) and that B = (B1, . . . , BN ) with Bi = 0
if Zi = 0 and Bi = 1 otherwise. Clearly, B is a function of Z, hence I(X;Z) = I(X;Z,B) =
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I(B;X) + I(Z;X|B). Since B is binary, we have that I(X;B) ≤ H(B) ≤ n log 2. Let ZB =
(Zi|i: Bi = 1) denote the sub-vector of non-zero elements of Z, then

I(X;Z) ≤ n log 2 +
∑
b

P(B = b)I(Zb;X)

where, if B = b, I(Zb;X) = I(Z;X|B = b) holds because constant (i.e., 0) RVs do not contribute
to MI. Therefore, I(X;Z) is finite iff I(Zb;X) = I(Z;X|B = b) is finite B-almost surely. We
thus now fix an arbitrary B = b and continue the proof for Z = Zb.

We decompose MI into differential entropies as I(X;Z) = h(Z)−h(Z|X). The differential entropy
of the representations h(Z) is upper-bounded by the entropy of a Gaussian RV with the same covari-
ance matrix Σ as the distribution of Z = (Z1, . . . , ZN ), i.e., by N/2 log(2π) + 1/2 log(det(Σ)) +
N/2. From Hadamard’s inequality and since Σ is positive semidefinite it follows that det(Σ) ≤∏n

i=1 σ
2
ii, where σ2

ii are diagonal elements of the covariance matrix, i.e., σ2
ii = V ar[Zi]. This vari-

ance can be bounded from above. Specifically, since Xi is bounded and f(·) is a composition of
Lipschitz functions, f(X)i is bounded as well. Recalling that E[Di(x)

2] ≤ M holds X-almost
surely, this yields

V ar[Zi] ≤ Ex[f(X)2iDi(X)2] = Ex[f(X)2iEd[Di(X)2 | X]]

≤MEx[f(X)2i ] ≤M∥f(X)i∥2∞

It remains to show that the h(Z|X) > −∞. Due to the conditional independence of Di and Dj

given X , for all i ̸= j, the conditional differential entropy of Z factorises in the sum of conditional
differential entropy of its components, i.e., h(Z|X) =

∑N
i=1 h(Zi|X). We write this conditional

entropy as an expectation over X and obtain using (Cover and Thomas, 1991, Th. 9.6.4)

h(Zi|X) = Ex[h(Zi|X = x)] = Ex[h(Di(x)|f(x)i||X = x)]

= Ex[h(Di(x)|X = x)] + Ex[log(|f(X)i|)]

by the formula of change of variables for differential entropy. Both terms are finite as per the
assertion of the theorem. The first term is finite since we assumed that the differential entropy of
Di(X) is essentially bounded, i.e., there exists a number C <∞ such that h(Di(x)) ≤ C X-almost
surely. The second term is finite since we assumed that the conditional expectation E[log(|f(X)|) |
|f(X)| > 0] is finite in each of its elements, and since Zi ̸= 0 implies |f(X)i| > 0. This completes
the proof.

A.5 PROOF OF PROPOSITION 3.5

Proof. We assume w.l.o.g. that f(·) has a range with dimension D = 1, i.e., f : X → R, where X ⊆
Rn is the function domain. The proof can be straightforwardly extended to the several dimensions
of f(·).
Since f(·) is constructed using a finitely-sized neural network with ReLU activation functions, it is
piecewise affinely linear on a finite partition of the function domain. The fact that E[log(|f(X)|) |
|f(X)| > 0] <∞ follows then immediately from the fact that X , and thus |f(X )|, is bounded.

To investigate whether E[log(|f(X)|) | |f(X)| > 0] > −∞, split domain X in the following
partitions:

1. X0 = f−1({0}) denotes the element of the partition on which f(X) vanishes;

2. {X c
i }i=1,...,ℓ denotes elements of the partition of X on which f(X) = ci, i.e., on which

f(·) is constant;

3. X a =
⋃m

i=1 X a
i denotes the union of the all other sets {X a

i }i=1,...,m of the partition, where
f(·) is not constant.

For the last subset, define the function f̃ : X a → Rn via f̃(x) = (|f(x)|, x2, x3, . . . , xn). Note
that f̃(·) is piecewise bijective, hence W̃ = f̃(X) has a probability density function that is obtained
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from the change of variables formula:

pw̃(w̃) =
∑

x∈f̃−1(w̃)

px(x)

|det(Jf̃ (x))|

where Jf̃ (x) =
[
∂f̃i
∂xj

(x)
]

is the Jacobian matrix of f̃(·), with f̃1(x) = |f(x)| and f̃j(x) = xj for all

j ≥ 2. It follows that Jacobian matrix is diagonal and has determinant | ∂f∂x1
(x)|. The density pw|Xa

of the conditional random variable W = |f(X)| | X ∈ X a can be then obtained by marginalization
from pw̃:

pw|Xa(w) =

∫
pw̃(w, x

n
2 )dx

n
2 =

∫ ∑
x∈f̃−1(w,xn

2 )

px(x)

| ∂f∂x1
(x)|

dxn
2 (8)

where xn
2 = (x2, . . . , xn) and where we perform an (n− 1)-fold integral.

Thus, by the Lebesgue decomposition, the distribution of W = |f(X)| can be split into an absolutely
continuous component with a probability density function pw|Xa and a discrete component with
finitely many mass points, for which we have P(W = ci) =

∫
X c

i
px(x)dx =: px(X c

i ). By the law
of unconscious statistician, we then obtain

E[log(|f(X)|) | |f(X)| > 0]

= E[log(W ) |W > 0]

=

ℓ∑
i=1

px(X c
i ) log |ci|+ px(X a)

∫ ∞

0

log(w)pw|Xa(w)dw

=

ℓ∑
i=1

px(X c
i ) log |ci|+ px(X a)

∫ ϵ

0

log(w)pw|Xa(w)dw︸ ︷︷ ︸
I1

+px(X a)

∫ ∞

ϵ

log(w)pw|Xa(w)dw︸ ︷︷ ︸
I2

where in the last line we split the integral at a fixed ϵ≪ 1. Clearly, the first sum is finite since ci > 0
for all i. For the remaining summands involving integrals, suppose for now that pw|Xa(w) ≤ C <
∞. Then,

I1 =

∫ ϵ

0

pw log(w)dw ≥
∫ ϵ

0

C log(w)dw = C(ϵ log(ϵ)− ϵ) > −∞

I2 =

∫ ∞

ϵ

pw log(w)dw ≥
∫ ∞

ϵ

pw

(
1− 1

w

)
dw ≥

∫ ∞

ϵ

pw

(
1− 1

ϵ

)
dw ≥ 1− 1

ϵ
> −∞.

We thus remain to show that pw|Xa(w) ≤ C for w ∈ [0, ϵ]. To this end, we revisit equation 8 and
note that the integral is finite if i) px is bounded, ii) the integration is over a bounded set, and iii)
| ∂f∂x1

(x)| ≥ ϵ1 > 0. Conditions i) and ii) are ensured by the assertion of the lemma. It remains to
show that condition iii) holds.

Note that in contrast to using f̃(x) = (|f(x)|, x2, x3, . . . , xn), the same pw|Xa(w) can also be
obtained by using the piecewise bijective function f̃(x) = (x1, |f(x)|, x3, . . . , xn), etc. Hence,
pw|Xa(w) ≤ C if the partial derivative of f is bounded from below for at least one dimension, i.e.,
if there exists an i such that | ∂f∂x1

(x)| ≥ ϵ1. Since we have

∥∇xf(x)∥1 =

n∑
i=1

∣∣∣∣ ∂f∂xi
(x)

∣∣∣∣
this is equivalent to requiring that the L1 norm of the gradient is bounded from below. Indeed,
remember that f is piecewise affinely linear with finitely many pieces, and its restriction to X a is
non-constant. On its restriction to X a we thus have ∇xf(x) = gi > 0 for all x ∈ X a and some
i ∈ {1, . . . ,m}. Hence, we can find an ϵ1 such that mini gi ≥ n · ϵ1 > 0, which implies that there
exists an i for which | ∂f∂xi

(x)| ≥ ϵ1 for all x ∈ X a. This completes the proof.
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A.6 ESTIMATION OF MI UNDER GAUSSIAN DROPOUT

In the Algorithm 1 we describe how the estimation of I(X;Z) with Z being a representation under
Gaussian dropout can be done. This is the way we estimated MI for our experiments, but any other
estimator can be used in this setup.

Algorithm 1 Estimation of MI under Gaussian dropout

Require: GMM-MEANS, σ, nonoise-reprs ▷ Amount of Gaussians in GM for approximation;
noise variance; no noise representations
reprs← [] ▷ Generate noisy samples with corresponding variance
for all nr in nonoise-reprs do

for i← 1, n do
ϵ← noisep
reprs← reprs+ nr ∗ ϵ

end for
end for
points← nonoise-reprs[: GMM-MEANS] ▷ Create a GMM on restricted amount of points for
faster computation
d← []
for all p in points do

d← d+ Gaussian(p, σ ∗ |p|)
end for
gmm← MixtureModel(d)
lp← [] ▷ Get estimates of log-probabilities from GMM for noisy samples
for all r in reprs do

lp← lp+ gmm.log probability(r)
end for
h(z)← mean(lp)
h(z|x)← 0 ▷ Compute conditional entropy using closed form formula
for i← 1, dim(reprs[0]) do ▷ For each dimension of the representation

h(z|x)← h(z|x) + mean(ln(
√
2πeσ|nonoise-reprs[:, i]|)) ▷ Use no noise representations

here, each dimension separately
end for
I(x, z)← h(z)− h(z|x) ▷ Obtain final estimate for the MI

A.7 EVALUATION OF ESTIMATOR

Fig. 8 shows upper bounds and estimation of h(Z) with a higher noise than in the Fig. 3. Larger
noise increases the gap between the Gaussian entropy based upper bound and the mixture based
estimation as expected.

In Fig. 9 we see convergence of the MC estimate for h(Z|X) under larger noise.

As expected larger noise variance results in smaller MI values (Fig. 10), while the trend observed
when changing dimensionality stays the same.

A.8 INFORMATION PLANE ANALYSIS

Note, that in the experiments we analyze IPs on the training samples and test samples separately. In
order to obtain a valid sample of hidden representations for the MI estimation during inference, we
apply MC-Dropout, as opposed to the usual way of performing inference with dropout being turned
off. According to Srivastava et al. (2014) this is the theoretically sound way to obtain predictions,
while turning off dropout and re-scaling weights results in an approximationthat allows for faster
computation.

In Fig. 11, Fig.12, and Fig. 13 we provide IPs built on the test set of the corresponding datasets
(MNIST, MNIST, and CIFAR10).

15



Published as a conference paper at ICLR 2023

(a) Noise variance 0.4, dimensionality 1 (b) Noise variance 0.4, dimensionality 50

Figure 8: Entropy of the hidden representation. It can be seen that with growing dimensionality the
Gaussian upper bound becomes very loose, compared to the Gaussian mixture estimation.

(a) Noise variance 0.4, dimensionality 2 (b) Noise variance 0.4, dimensionality 50

Figure 9: Conditional entropy of the hidden representation. Independent of the dimensionality the
MC estimation of h(Z|X) stabilizes with increasing amount of samples.

(a) Noise variance 0.4, dimensionality 1 (b) Noise variance 0.4, dimensionality 50

Figure 10: Comparison of various approaches to MI estimation for the setup of the multiplicative
Gaussian noise.
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(a) Information dropout (b) Gaussian dropout (our) (c) Gaussian dropout (binning)

Figure 11: Compared to the IP analysis based on binning (discrete) estimation of MI, the IP based
on our approach shows compression as well for Gaussian as for information dropout.

(a) Our estimator (b) Binning estimator

Figure 12: Compared to the IP analysis based on binning (discrete) estimation of MI, the IP based
on our approach shows compression.

In the Fig. 14 we provide additional IPs for the binning estimator with varying amount of bins used
for MI estimation. We report the results for the fully-connected network trained on MNIST with
Gaussian dropout variance 0.2.

In the Fig. 15 we show the IPs obtained for the same fully-connected network trained on MNIST
with the variance of the Gaussian dropout set to 0.4.
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(a) Our estimator (b) Binning estimator

Figure 13: Comparing to the discrete estimation of MI for an IP analysis our approach clearly shows
compression.

(a) Amount of bins 3 (b) Amount of bins 8

(c) Amount of bins 15 (d) Amount of bins 30

Figure 14: Larger amount of bins used for estimation of MI leads to collapse of the IP into one point
corresponding to the amount of samples available. All the smaller amount of bins demonstrates no
compression in terms of I(X;Z).
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(a) Our estimator (training) (b) Binning estimator (training)

(c) Our estimator (testing) (d) Binning estimator (testing)

Figure 15: Same as for the variance of the dropout 0.2 we observe compression when measured with
our estimator compared to no compression with binning.
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