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Abstract

Direct Alignment Algorithms (DAAs), such as
Direct Preference Optimisation (DPO) and Iden-
tity Preference Optimisation (IPO), have emerged
as alternatives to online Reinforcement Learning
from Human Feedback (RLHF) algorithms such
as Proximal Policy Optimisation (PPO) for align-
ing language models to human preferences, with-
out the need for explicit reward modelling. These
methods generally aim to increase the likelihood
of generating better (preferred) completions while
discouraging worse (non-preferred) ones, while
staying close to the original model’s behaviour.
In this work, we explore the relationship between
completion likelihood and model performance in
state-of-the-art DAAs, and identify a critical issue
of likelihood over-optimisation. Contrary to ex-
pectations, we find that higher likelihood of better
completions and larger margins between better
and worse completion likelihoods do not neces-
sarily lead to better performance, and may even
degrade it. Our analysis reveals that while higher
likelihood correlates with better memorisation of
factual knowledge patterns, a slightly lower com-
pletion likelihood tends to improve output diver-
sity, thus leading to better generalisation to un-
seen scenarios. Moreover, we identify two key
indicators that signal when over-optimised output
diversity begins to harm performance: Decreas-
ing Entropy over Top-k Tokens and Diminishing
Top-k Probability Mass. Our experimental results
validate that these indicators are reliable signs of
declining performance under different regularisa-
tion schemes, helping prevent over-optimisation
and improve alignment with human preferences.

1. Introduction

Recent advancements in Large Language Models (LLMs)
(Touvron et al., 2023; Achiam et al., 2023; Roziere et al.,
2023; Dubey et al., 2024; Land & Bartolo, 2024) have sig-
nificantly expanded their capabilities, enabling applications
such as code generation, tool use, and interactive communi-
cation. As LLMs become increasingly powerful, the chal-

lenge of aligning them with human preferences has grown
in importance. Direct Alignment Algorithms (DAAs), such
as Direct Preference Optimisation (DPO) (Rafailov et al.,
2023) and Identity Preference Optimisation (IPO) (Azar
et al., 2024), have emerged as alternatives to Reinforcement
Learning from Human Feedback (RLHF) (Ziegler et al.,
2019; Bai et al., 2022) for training LMs on human pref-
erence data. These methods aim to bypass the traditional
RLHEF pipeline by directly optimising the policy without
explicit reward modelling.

DAAs are designed to increase the likelihood of better com-
pletions while reducing the likelihood of worse ones, all
while staying close to the original model’s behaviour. How-
ever, a known issue with standard DAAs is that they may
decrease the likelihood of better completions as long as the
relative probability between better and worse completions
increases (Rafailov et al., 2023; Pal et al., 2024). Recent
research has sought to address this by focusing on main-
taining a high likelihood for better completions (Pal et al.,
2024). For example, several works (Pang et al., 2024; Hong
et al., 2024), including LLAMA-3.1 (Dubey et al., 2024)
and NVIDIA NEMOTRON (Adler et al., 2024), introduce a
scaled negative log-likelihood (NLL) loss on better comple-
tions, aiming to stabilise DAA training by preserving the
desired formatting and preventing a drop in log probability
for better completions. Despite these efforts, key research
questions remain: Is it truly necessary to maintain a higher
likelihood of better completions, and aim for a larger likeli-
hood margin between better and worse completions? And if
not, How can we strike a balance for completion likelihood
to maximise model performance in terms of alignment with
human preferences?

In this work, we first explore the relationship between com-
pletion log-likelihood and model performance in state-of-
the-art DAAs (§A). Specifically, we find that neither a higher
likelihood of preferred completions nor larger margins be-
tween better and worse completion likelihoods necessarily
lead to better performance (measured by win probability)
and may even degrade it (§3.2), as shown in Figure 1. Fur-
thermore, our experiments demonstrate that optimising both
factors simultaneously also does not guarantee improve-
ment. Our results reveal that while a higher likelihood of
better completion generally has better memorisation of fac-
tual knowledge patterns, an excessively high likelihood can
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Figure 1. Mean Log Likelihood (LLH) of Better Completion vs Win Probability (Left) and Average Number of Tokens in Model
Outputs (Right). We report 7B and 35B model results on the ULTRAFEEDBACK dataset. Our results indicate that: (1) A higher likelihood
for better completions does not necessarily translate to higher win probability; and (2) There is no obvious correlation between the average
number of tokens in model outputs and the likelihood of better completions.

result in over-optimisation. In contrast, slightly lower com-
pletion likelihood tends to improve output diversity, thus
leading to better generalisation to unseen scenarios (§3.3).

While avoiding an overly high completion likelihood tends
to improve model diversity and generalisation, it is crucial
to strike a balance between diversity and maintaining a high
likelihood for desired outputs preferred by humans. To this
end, our study outlines two key indicators that signal when
overly generating diverse outputs begins to negatively im-
pact model performance (§3.4): (1) Decreasing Entropy
over Top-k Tokens : As the likelihood of better completions
decreases during training, an increasing entropy suggests
that tokens within better completions still have higher prob-
abilities relative to other tokens in the Top-k, though the
gap is narrowing. However, a decreasing entropy over the
Top-k tokens is a warning sign that the model is assign-
ing disproportionately low probabilities to tokens within
better completions, allowing other tokens to rise in proba-
bility, which may lead to outputs that are not aligned with
human preferences. Notably, a reversed entropy trend is
a particularly strong indicator of over-optimised diversity;
and (2) Diminishing Top-k Token Probability Mass: This
occurs when the probability mass concentrated on the top
k most likely tokens declines, resulting in more random
outputs and a higher likelihood of selecting tokens outside
the top k. Such a flattening of the probability distribution
can lead to phenomena such as code-switching (Dogru6z
et al., 2021; Marchisio et al., 2024), making the model more
prone to confusion. Our experimental results validate that
these two indicators are strong predictors of declining model
performance, providing critical markers to help avoid over-
optimization while balancing diversity.

2. Related Work

Preference learning. Recent years have seen significant
progress in aligning LLMs with human preferences (Hosk-
ing et al., 2024; Kirk et al., 2024a). RLHF, pioneered by
Christiano et al. (2017); Ziegler et al. (2019) and developed

in subsequent works (Stiennon et al., 2020; Bai et al., 2022;
Ouyang et al., 2022b), typically consists of three stages:
supervised fine-tuning (SFT), reward modelling, and RL
fine-tuning (Schulman et al., 2017; Mnih, 2016; Aryabumi
et al., 2024; Ahmadian et al., 2024). The reward model
is trained to predict human preferences between pairs of
model outputs, while the RL phase optimises the model
to maximise the reward (Ye et al., 2024; Lambert et al.,
2024; Zhou et al., 2024a; Liu et al., 2024b). More recently,
researchers have proposed Direct Alignment Algorithms
(Rafailov et al., 2023; Zhao et al., 2023; Azar et al., 2024)
that aim to simplify RLHF by directly optimising the policy
without a reward modelling or RL phase.

Over-optimisation for preference learning. Over-
optimisation occurs when a model’s performance on a proxy
measure improves while its true performance declines. Gao
et al. (2023) was the first to extensively characterise this is-
sue for RLHF, where optimisation against a learned reward
model leads to increased proxy rewards, while actual task
performance plateaus or worsens, a phenomenon termed “re-
ward over-optimisation”. Subsequent studies have observed
similar patterns (Eisenstein et al., 2023; Touvron et al., 2023;
Dubois et al., 2023). To mitigate this, researchers have pro-
posed various approaches, such as using ensembles or data
smoothing for reward modelling (Eisenstein et al., 2023;
Zhang et al., 2024; Coste et al., 2024; Zhu et al., 2024; Yang
et al., 2024b), and leveraging uncertainty signals (Yang
et al., 2023; Zhai et al., 2023; Zhou et al., 2024b; Yang et al.,
2024a). Rafailov et al. (2024) extended this analysis to
DAAs, showing that even without an explicit reward model,
DAAs exhibit similar over-optimisation patterns at higher
KL-divergence budgets, where KL divergence as a primary
metric. In contrast, we explore the DAAs’ over-optimisation
in the context of completion likelihood, which does not di-
rectly correlate with KL-divergence. Both increases and
decreases in completion likelihood can result in higher KL,
divergence from the reference model. KL divergence is
more about how far the model should move, while our like-
lihood analysis is more about which direction the model



should move.

Generalisation and diversity. Generalisation and diver-
sity in LM outputs has been a growing concern in the field of
NLP, particularly regarding the impact of fine-tuning meth-
ods (Hendrycks et al., 2020). Several studies have explored
how RLHF influences output diversity and generalisation.
Khalifa et al. (2021); Perez et al. (2022) suggests that RLHF
tends to produce models with reduced output diversity. Kirk
et al. (2024b) highlights a trade-off between generalisation
and diversity in current LLM fine-tuning, with RLHF show-
ing better out-of-distribution generalisation but substantially
decreased output diversity compared to SFT. This trade-off
between alignment, performance, and diversity relates to
the broader concept of “alignment tax” in LM fine-tuning.
Bai et al. (2022); Ouyang et al. (2022a); Bai et al. (2023);
Kotha et al. (2023) observed that aligning models with hu-
man preferences, through RLHF, can sometimes degrade
performance on specific tasks, especially for smaller mod-
els. Various approaches have been proposed to mitigate
the alignment tax (Noukhovitch et al., 2023; Shi & Lipani,
2024; Qi et al., 2024). For example, Ouyang et al. (2022a)
suggested incorporating pretraining data into RLHF fine-
tuning to minimise performance regressions on standard
NLP datasets. However, these studies have not explored
how the optimisation of completion likelihood correlates
with model performance, including diversity and generalisa-
tion.

3. Understanding the impact of Completion
Likelihood

3.1. Experimental Setup

Model and Datasets. In our experiments, we utilise two
instruction-tuned models: Cohere Command R (7B) and
Cohere Command R (35B) (Cohere For Al, 2024). We
train and evaluate them on two datasets: (1) A binarised
version of ULTRAFEEDBACK (Tunstall et al., 2024), which
is collected based on Cui et al. (2024), containing 62,600
training examples and 647 examples for evaluation. (2) A
Binarised preference dataset BINARIZEDPREF, which com-
prises over 100,000 examples (see details in Appendix §B).
These include annotated conversational data across multi-
ple languages, synthetic code generation, and specialised
tasks such as length control, safety, tool use, and natural
language-to-SQL generation.

Training and Evaluation Details. For each method
(Hinge, DPO, and TPO), we test six different values for
its hyper-parameter (i.e., a, 3, or T), respectively. We use
a batch size of 32 for both training and evaluation, with a
maximum sequence length of 8192. The model is trained
with a peak learning rate of either 5 x 107 or 1 x 10~° and
an end learning rate ratio of 0.1. Following recent studies

(Ouyang et al., 2022a; Howard & Whitaker, 2023; Shi et al.,
2024), we train all models within a single epoch. The learn-
ing rate warms up over 128 steps. We monitor the model
training every 50 steps to apply early stopping. We use the
Adam optimiser (Kingma, 2014) with 5; = 0.9, 82 = 0.95,
€ = 1 x 1078, an additive weight decay of 0.1, and a gradi-
ent clipping norm of 1.0. The model training is conducted
on TPU v5-128 for the 7B model and TPU v5-256 for the
35B model, utilising the flash attention (Dao et al., 2022)
to improve training efficiency. For both DPO and IPO, we
use the sum of the token log-likelihoods as the comple-
tion log-likelihood during training. For the Hinge method,
we compute the average token log-likelihood instead for
better performance. During evaluation, we calculate the log-
likelihood for both the better and worse completions from
the validation set. For all methods, we report the average of
token log-likelihoods for better and worse completions re-
spectively, without normalising against the reference model.
Additionally, we monitor the difference in log-likelihood
between better and worse completions.

Generalisation Evaluation. Following the previous work
(Kirk et al., 2024b), we evaluate the model in open-ended
text generation tasks to assess generalisation ability. Specif-
ically, we employ the LL.M-as-a-Judge framework (Zheng
et al., 2023; Taori et al., 2023) with a reward model to com-
pare our models’ outputs against leading models, including
GPT-3.5-Turbo, GPT-40 (Achiam et al., 2023), Claude-3-
Sonnet (Claude, 2024), Llama-3 8B and 70B Chat (Dubey
et al., 2024). The evaluation uses a closed-source reward
model, which ranked the top position on REWARDBENCH
(Lambert et al., 2024), validating that the evaluation pro-
vides a reliable proxy for human preferences. We use win
probability, denoted as Py, as the primary evaluation met-
ric. It is computed as:

Pwin = O—(rv - Tc)y (1)

where o (-) is the sigmoid function, ,, is the reward assigned
to the policy model’s output, and r,. is the reward assigned
to the competitor model’s output by the same reward model.
We prompt models with 433 diverse prompts, including code
generation, chain-of-reasoning questions, closed QA, and
length control (see Appendix B for examples and details).
During the decoding, we use a top-p probability threshold
of p = 0.75, a temperature of 0.5, and a maximum limit of
2048 tokens.

Diversity Evaluation. To assess output diversity, we
also measure Per-Input Diversity, defined as the av-
erage diversity of the output sets over inputs, and
Cross-Input Diversity, which captures the diversity of out-
puts across different inputs, similar to previous works (Kirk
et al., 2024b; Hong et al., 2024). However, instead of gen-
erating a set of K outputs from the model, we take a more



efficient way to measure Per-Input Diversity. Specifically,
we compute the entropy over the top k tokens with the high-
est probability in the model’s next token distribution (Kuhn
et al., 2023). Let py, represent the probability distribution
over the top k tokens, and H (py) represent the entropy of
the distribution. The entropy is calculated using the follow-
ing formula:

H(pk) = — Zpi logy, (pi), (2)
i=1

where b is the logarithm base. Here we set b = 2 and
k = 10. This formula quantifies the uncertainty within the
top k token predictions as a proxy for Per-Input Diversity.
This entropy is highest when the output is minimally in-
formative: predicting the same probability for all possi-
ble tokens, indicating more diverse outputs. To evaluate
Cross-Input Diversity, we use distinct N-grams (Li et al.,
2016), which counts the unique N-grams across model out-
puts and averages them over n = 1,2,3,4,5. Following
Kirk et al. (2024b), we use the expectation-adjusted distinct
N-grams (EAD) formula to remove the bias towards shorter
outputs.

Factuality Evaluation. We also evaluate model factuality
performance on open-domain question-answering tasks us-
ing NATURALQUESTIONSOPEN (Kwiatkowski et al., 2019)
and TRIVIAQA (Joshi et al., 2017) validation sets, with
3610 and 7993 examples respectively. Greedy decoding is
used to ensure deterministic outputs, and the word-level F;
score is reported.

3.2. Evaluating Likelihood Over-optimisation

In this section, we explore the relationship between model
likelihood and performance. Below, we discuss our key
findings in detail.

1) Higher likelihood for better completions and larger
gaps between better and worse completions do not neces-
sarily improve model performance. As shown in Figure
1, we plot the likelihood of better completions against the
win probability (compared to GPT-3.5-Turbo) with differ-
ent methods across two model sizes, with points recorded
every 500 steps. Our analysis reveals that simply increasing
the likelihood of better completions does not consistently
result in performance improvements. Previous work in clas-
sical RLHF has established scaling laws for reward model
scores (Gao et al., 2023). Similarly, Figure 1 exhibits a
clear scaling law behaviour. We extend their analysis to the
relationship between win probability and the log-likelihood
of better completions in DAAs. When fitting the data to
a second-degree polynomial, the Root Mean Square Error
decreases by approximately 24.42% for the 7B model and
25.78% for the 35B model, compared to a linear fit. We

show similar results when comparing against different mod-
els, including GPT-40, Claude-3-Sonnet, Llama-3-8B, and
Llama-3-70B-Chat, in Figure 7 of Appendix §C.

Figure 2 tracks win probability alongside the average log-
likelihood difference between better and worse completions
throughout training. Notably, while larger differences in
log-likelihood, such as those represented by the pink line
typically with the largest difference, are often observed,
they do not correspond to better performance. Instead, ex-
cessively larger likelihood gaps can lead to performance
degradation in win probability, especially for DPO and IPO
after 1,000 steps. We observe similar results for the 35B
model on BINARIZEDPREF using Hinge, DPO, and IPO in
Appendix §C.

Figure 3 presents a heatmap of win probabilities based on
the better and worse completion log-likelihoods on ULTRA-
FEEDBACK and BINARIZEDPREF datasets, using both 7B
and 35B models. Points are plotted every 50 steps. Our find-
ings indicate that the best performance (highlighted by the
red star) does not occur at the Pareto frontier of maximising
the likelihood of better completions while minimising it for
worse ones. Instead, optimal performance is often found in
the middle range.

2) Length Correlation. We investigate the relationship
between the mean log-likelihood of better completions and
the average number of tokens in completions, as shown in
Figure 1. To quantify this relationship, we calculate the
Pearson correlation coefficient and perform its associated
significance test. The null hypothesis posits no linear re-
lationship between these two variables. For the 7B model,
we find a weak negative correlation (r = —0.114, p-value
=0.266), while the 35B model shows a weak positive cor-
relation (r = 0.198, p-value = 0.173). In both cases, the
p-values exceed the conventional significance level of 0.05,
indicating insufficient evidence to reject the null hypothesis.

3) Training Negative Log-Likelihood Loss on better com-
pletions has limited influence on the model when it can-
not affect completion likelihood. As shown in Figure 4,
we experiment with DPO using three different values of 3,
adding NLL loss as an auxiliary loss with four A coefficients.
Our results indicate that when there is limited impact on
the likelihood (from the left column to the right column),
the NLL loss has minimal impact on model performance.
This suggests that NLL loss can be seen as a tool to reg-
ulate completion likelihood, but it remains susceptible to
likelihood over-optimisation: higher likelihood may lead to
a sub-optimal performance. We observe similar results on
BINARIZEDPREF using the 35B model, as shown in Figure
11 of Appendix §C.
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Figure 2. Learning curves across training steps for various metrics. Results are reported for the 7B models using the Hinge, DPO,
and IPO on the ULTRAFEEDBACK dataset. Our results indicate that: (1) A higher likelihood for better completions does not necessarily
improve model performance. (2) Lower Completion likelihood improves the models’ Cross-Input Diversity. (3) Decreasing in Probability
Mass in Top k Tokens and Decreasing Entropy over Top-k tokens are signals for likelihood over-optimisation.

3.3. Generalisation and Diversity 1) Lower Completion likelihood improves the
models’ Cross-Input Diversity. Figure 2 presents

In this section, we explore the impact of model likelihood Cross-Tnput Diversity (measured by distinct N-grams) of

on generalisation and diversity.



Hinge (7B) - UltraFeedback

DPO (7B) - UltraFeedback

IPO (7B) - UltraFeedback

0 7 0 7 0 7
-1 * -0.40 -1 T * -0.40 -1 % -0.40
7 g
-2 * 4 03 g -2 S 035 g -2 o 035 g
I3 prd 0302 5 o3 i 0302 5 -3 e -0.30 2
=} 5 so3 A 3 5 A
c -4 T e 0250 € -4 L025m  © -4 v L0250
2 e E 3 E 8 e &
=5 - ‘- -0.200 -5 - -0.200 -5 ‘- -0200
z Vi g 2 g 2 2
o -6 Vil 0155 @ -6 vl 0155 @ -6 vl 015 5
£ . g £ v g g . g
& -7 o 0. mE & -7 7 —010E g -7 7 -0 10E
-8 - A HINGE o052 -8 - ® DPO o052 -8 - W PO o052
,~" % Highest Win Prob=37.9% ,*° % Highest Win Prob=35.7% ,*° % Highest Win Prob=36.7%
=0 7" % initial Win Prob=19.9% ~0.00 =0 77 initial Win Prob=19.9% +0.00 s % Initial Win Prob=19.9% -o.00
-10 “ -10 “ -10 #
-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 -10 -8 -6 -4 -2
Worse Mean LLH Worse Mean LLH Worse Mean LLH
Hinge (35B) - UltraFeedback DPO (35B) - UltraFeedback IPO (35B) - UltraFeedback
0 7 0 d 0 A
-1 x 06 -1 x 0.6 -1 * 06
-2 * 2 -2 * S -2 n7id Py
’ -0.52 - -058 - -058
I s - 2 53 7 ER - 2
g ; > g
4 ., o O s 3 * v A
c -4 +Z 04 c -4 04 c -4 A7 040
o e E 8 E 8 e 5
~! v 030 - ‘- 030 - v 030
= 5 ’ w = 5 e v = 5 ’ ©
A . £y W £y % g
g ya 028 £ a 028 = ya -028
2 -7 7 & 27 + & © -7 7 <
@ s c o - c @ - <
_8 ¢ A HINGE [0.15 _8 @ DPO [0.15 _g _+ W P0 015
,*" % Highest Win Prob=56.6% L~ % Highest Win Prob=53.9% ,*" % Highest Win Prob=54.8%
o % Initial Win Prob=36.7% 0o o * Initial Win Prob=36.7% o0 o % Initial Win Prob=36.7% oo
-10 “ -10 “ -10 #
-10 -8 -6 -4 -2 -10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0
Worse Mean LLH Worse Mean LLH Worse Mean LLH
Hinge (7B) - Binarised Pref DPO (7B) - Binarised Pref 1IPO (7B) - Binarised Pref
0 7 0 d 0 A
. g .
1 g -0.40 = & -0.40 o < 0,40
*o s -0359 -0359 -0.35 9
T2 7 g -2 g z-2 5
] . 4 030 2 3 4 030 2 ] 030 2
= ¥ L L R w3 i "
c—3 A 025 73 v 025 c 73 0250
3 s E 3 53 m, b
- . | _ . | _ . |
s -4 7 0208 s-4 7 0206 s-4 " o zouz
oy / EO g g T . £
9 s e -0.15 5 9 s e -0.15 s e 015 5
k=1 s 3 o - o 1 -~ [
9 e 010 o e 010 o i 0.10&
@6 £ £ P-6 7 £ ®-6 £ £
- A HINGE LoosS - ® DPO LoosS - m PO Lo.os =
7 ,*" % Highest Win Prob=39.0% —7 " % Highest Win Prob=34.9% _7 " % Highest Win Prob=35.1%
L % Initial Win Prob=19.9% 000 il * Initial Win Prob=19.9% 000 7 % Initial Win Prob=19.9% 000
_g - g - g~
-8 -6 -4 -2 0 -8 -6 -4 -2 4 -8 -6 —4 -2 0
Worse Mean LLH Worse Mean LLH Worse Mean LLH
Hinge (35B) - Binarised Pref DPO (35B) - Binarised Pref IPO (35B) - Binarised Pref
0 7 0 7 0 7
e ’ e
. * 0.6 1 % 0.6 1 * 0.6
° * ° > °
-2 L 058 -2 >~ 052 -2 r 058
3 b 2 3 ° 2 3 J 2
7 A & A
%—3 B 042 %,3 ... ) —OAE- %,3 704;2.
L., 036 2.4 o 036 L4 g 035
0 / v 0
= $ = % $ o . g
g o2g E-s @ 28 85 p 028
o A ., & o} e IS o} e &
@ _g 2 . c 0 _g 2 | < o _g y . c
- A HINGE o1g , ® DPO o1g ,~ W 1P0 o1g
7 ,*" % Highest Win Prob=56.9% —7 g ~* * Highest Win Prob=56.6% 7 .7 % Highest Win Prob=56.7%
L % Initial Win Prob=36.7% oo * Initial Win Prob=36.7% 00 7 * Initial Win Prob=36.7% oo
g - _g

_8 - _g -

—4 -2
Worse Mean LLH

—4 -2
Worse Mean LLH

0 -8 - 0

—4 -2
Worse Mean LLH

Figure 3. Win Probability Heatmaps Across Better and Worse Mean Log-Likelihoods. Results are reported for both 7B and 35B
models on ULTRAFEEDBACK and BINARIZEDPREF datasets. Best performance does not always occur at the Pareto frontier of high
likelihood for better completions and low likelihood for worse completions.

the model outputs throughout training. Specifically, within
each DAA, models with lower likelihood tend to produce
more diverse outputs. For example, the pink lines for DAAs
indicate that models with lower completion likelihood
typically show the highest level of Cross-Input Diversity
scores throughout training. Better output diversity tends
to improve their generalisation to unseen scenarios, as
reflected in increased win probability at the early stage
of the training phase. Figure 4 further demonstrates
that output diversity follows a similar trend under the
different regularisation (i.e., Negative Log-Likelihood
Loss), suggesting a strong correlation between likelihood
and model diversity. However, it is worth noting that the
relationship between diversity and win probability is not
linear. While some diversity is beneficial for generalisation,
excessive diversity can lead to performance degradation,
similar to our previous discussion in §3.2. We will explore

this phenomenon further in §3.4.

2) Higher Likelihood tends to have better memorisa-
tion of factual patterns. Figure 5 showcases the rela-
tionship between model performance on NATURALQUES-
TIONSOPEN and TRIVIAQA and the log-likelihood of bet-
ter completions. Our findings reveal a clear trend: higher
mean log-likelihood values are associated with improved F;
scores. A higher F; reflects better memorisation for some
specific patterns, which can come at the expense of diver-
sity. This can create a trade-off between the ability to recall
facts and the capacity to generate diverse, adaptive outputs
in more creative or open-ended tasks. To understand the
potential issue of stylistic variations in answers, we provide
a further analysis with case studies and LL.M-as-a-Judge
as evaluation in Appendix §D. Specifically, instead of re-
lying on exact string matching, which can be overly rigid,
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Figure 4. Learning curves for DPO with different weights ()\) of NLL loss. We report the performance with different values of 5 and
A on the ULTRAFEEDBACK dataset. Our results indicate that: (1) Training Negative Log-Likelihood Loss on better completions has
limited influence on the model when it cannot affect completion likelihood. (2) A reversed entropy trend trending for entropy is a strong

indicator of diversity over-optimisation.

we employ an LL.M-as-a-Judge using the GPT-40 model.
Our analysis reveals that while the model performance from
LLM-as-a-Judge evaluation consistently yields higher per-
formance metrics, it demonstrates a trend similar to the F;
score.

3.4. Signals for Likelihood Over-optimisation

We have shown that completion likelihood correlates with
model performance due to increased output diversity. How-
ever, the key question remains: when should we stop reduc-
ing completion likelihood? Here, we outline two indicators

of over-optimising likelihood.

1) Decreasing Entropy over Top-k tokens
(Per-Input Diversity). Figure 2 and 4 presents
Per-Input Diversity (measured by the entropy) of the model
outputs throughout training. For DPO and IPO curves,
at the beginning of the training, the Per-Input Diversity
increases, signifying a broader distribution of selected
tokens and a more uniform output distribution for the next
token prediction. Considering that the better completion
likelihood is decreasing across the training, the increase of
entropy at the beginning phase indicates that those tokens
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Figure 5. NATURALQUESTIONSOPEN and TRIVIAQA vs Better Mean LLH on the ULTRAFEEDBACK dataset. A higher LLH tends to

memorise the factuality knowledge better.

from better completion have a higher probability at the
initial policy model over other tokens in the top &k (here
k = 10). The decrease better completion likelihood gives
the model a better chance to select other tokens, which
increases diversity and enhances generalisation, as reflected
in the win probability. However, at a certain point in train-
ing, this trend reverses. As Per-Input Diversity (entropy)
starts decreasing, the model begins to over-prioritise certain
tokens. This suggests that those tokens in the better comple-
tion now have an overly low likelihood, lower than other
tokens in the top k. Despite this, Cross-Input Diversity
keeps increasing, which indicates that the model is still
generating diverse outputs, but now it includes tokens that
are less relevant or nonsensical, i.e., tokens that humans do
not prefer. Notably, entropy turning points often align with
drops in win probability for DPO and IPO, as the model’s
outputs become less aligned with desirable outcomes.

2) Decreasing in Probability Mass in Top & Tokens. In
another scenario, the entropy of the top 10 tokens continues
to increase, suggesting a progressively broader and more
uniform output distribution (refer to the hinge curves in
Figure 2). This suggests that even as the likelihood of better
completions decreases, the model does not tend to over-
prioritise any specific tokens during training. However, this
can result in degraded model performance. As depicted in
the bottom row of the figure, the probability mass of all top-
10 tokens diminishes, leading to more random outputs, with
an increased likelihood of selecting tokens outside the top
10. This can introduce issues such as code-switching, where
the model becomes prone to world-level language confusion
when the number of tokens in the sampling nucleus is high
and the distribution becomes too flat (Dogrudz et al., 2021;
Marchisio et al., 2024). Interestingly, hinge loss models do
not exhibit the same patterns observed with DPO and IPO.
This could be attributed to the fact that DPO and IPO apply
different forms of regularisation compared to hinge loss.

To demonstrate the generalisability of our findings, we pro-
vide additional experimental on different datasets with dif-
ferent model sizes in Figure 8, 9, and 10 of Appendix §C.

4. Epilogue

Limitations. This study primarily focuses on two models
(7B and 35B), which may not fully represent the broader
spectrum of LLMs available. However, most LLMs are very
standard transformers (Vaswani et al., 2017), and we would
not expect other LLMs to behave differently. While we ac-
knowledge the reviewer’s concern about testing additional
methods such as KTO (Ethayarajh et al., 2024) or ORPO
(Hong et al., 2024), our experiments with major DAA fami-
lies (e.g., , DPO, IPO, SLiC) provide strong evidence for the
generalisability of our findings, which we leave for future
work to validate further.

Implications for Practical Applications. The findings
of this study have several implications for enhancing of-
fline preference learning methods in practical applications:
(1) Early stopping signal. In practice, we can integrate
entropy/probability mass monitoring into the training loop.
Training can employ adaptive methods like early stopping
once entropy falls below a specific threshold. (2) Adaptive
regularisation for over-optimisation. Rather than using a
fixed coefficient for the NLL loss (Dubey et al., 2024), we
could implement an adaptive regularisation based on the
entropy and probability mass, i.e., adding dropout or noise
to prevent over-prioritisation of tokens or adding an explicit
regularisation term that maintains a certain degree of en-
tropy and the probability mass of the top-k tokens. While
maintaining a certain degree of entropy and probability mass
of the top-k tokens is important, care should be taken not to
overly constrain the model, as some tasks inherently require
a broader token distribution (e.g., give me a random number
between 0 and 10).



Reproducibility Statement

To ensure the reproducibility of our results, we have taken
comprehensive steps to provide detailed information about
our experimental setup. In Section 3.1, we offer full de-
tails on the models used (7B and 35B parameter models)
and the datasets (ULTRAFEEDBACK and BINARIZEDPREF),
including exact versions and sizes. While the 7B model
and reward model are closed-source, and the 433 prompts
for the LLM-as-a-Judge framework are proprietary, we pro-
vide a summary of the prompt dataset to give insight into
its composition. All hyperparameters for training, includ-
ing learning rates, batch sizes, and optimizer settings, are
specified. We detail the hardware used (TPU v5-128/256)
and provide comprehensive descriptions of all evaluation
metrics. Statistical analyses, including Pearson correlation
coefficients and p-values, are reported in Section 3.2. The
ULTRAFEEDBACK dataset is publicly available, and while
BINARIZEDPREF is proprietary, we describe its contents
and size. Importantly, we test our findings on ULTRAFEED-
BACK, which is a public dataset, indicating that our findings
are generalisable. While some aspects could not be fully
open-sourced due to the use of proprietary models or data,
we have described these in as much detail as possible. Fur-
thermore, we posit that our findings are likely generalisable
to other LLMs, as most LLMs (e.g., Llama, Gemini) are
based on standard transformer architectures (Vaswani et al.,
2017). For example, the Llama model family has very stan-
dard features such as RoPE embeddings (Su et al., 2024).
Indeed, the designers note that they tried to avoid innovating
on the model architecture (Dubey et al., 2024). As such,
we would not expect significantly different behaviours. We
welcome questions from the community and are committed
to providing additional clarification.
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Appendix Overview

The appendix is structured as follows:
Appendix §A restates preliminaries for completeness and ease of reference.
Appendix §B provides a detailed description of evaluation datasets, including examples and statistical summaries.

Appendix §C presents supplementary experimental results, including analyses of win probability, likelihood scaling, and
the effects of different regularization techniques.

Appendix §D further investigates model performance on NATURALQUESTIONSOPEN and TRIVIAQA.

A. Overview of Direct Alignment Algorithms
A.1. Direct Alignment Algorithms

Direct Alignment Algorithms (DAAs) are a family of methods designed to train LMs to align with human preferences
without the need for explicit reward modelling. These algorithms aim to optimise a policy model to maximise the probability
of better completions over worse ones.

Direct Preference Optimisation. Direct Preference Optimisation (DPO) (Rafailov et al., 2023) is a foundational DAA
method. The DPO loss function is defined as follows:

Lppo (705 Tret) = —E(z,y, yi)~D 108 0 (BA(Z, Yu, y1))] (3)
A,y ) = log 20D, _ 1o, TowIT) S
7Tref(l/w|w) 7Tl'ef(yl|x)

where 7 is the policy model being optimised, 7 is a reference model where 7y is initialised from, D is the dataset of
preference pairs, « is the input, y,, and y; are the better and worse completions respectively, o is the sigmoid function, and
B is a temperature hyperparameter. The term A(z, ., ;) quantifies the difference in log probabilities between better and
worse completions.

Identity Preference Optimisation. Identity Preference Optimisation (IPO) (Azar et al., 2024) is a variant of DAA
methods. Specifically, IPO uses a quadratic loss function, which is defined as:

1 2
(TA(xaywa yl) - 2> ) (5)

where 7 is a temperature hyperparameter. This formulation aims to push the difference in log probabilities A(z, Y., ¥1),
defined within the DPO framework, towards a target value of %

LIPO('/TH; 7Tref) = E(x,ywwl)wD

Hinge Loss. The hinge loss method (Zhao et al., 2023; Liu et al., 2024a) represents another variation within the DAA
framework. Specifically, we adopt the loss function from SLIC-HF (Zhao et al., 2023), which is defined as follows:

7o (Yuw |2)
Lttinge (705 Tret) = Bz, y)~D [max (07’7 — log Wﬂ ; (6)

where v is a hyperparameter and we set to v = 1 for simplicity. In line with Zhao et al. (2023), we incorporate a regularisation
term into the hinge loss, defined as follows:

70 (Y|
Lreg(ﬂ'O; 7Tref> = E(z,yw,yl)ND |:10g (1 + exp (1 — log (W)))} » @)

which represents a smoothed version of hinge loss (Huber, 1992; Cristianini & Shawe-Taylor, 2000). This term encourages
the likelihood of better completions to remain higher than that of the reference model. The total hinge loss is given by
Ltinge (763 Tret) = Litinge (763 Trer) + tLieg (o3 Trer), Where «v is a scaling coefficient.
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A.2. Better Likelihood Support

Standard DA As do not guarantee an increase in the absolute probability of better completions. This can lead to scenarios
where the model assigns very low probabilities to both better and worse completions, as long as the better completion has a
higher relative probability.

Negative Log-Likelihood Loss. To mitigate this issue, Negative Log-Likelihood (NLL) loss is commonly employed as a
regularisation term in DAA (Hong et al., 2024; Pang et al., 2024; Adler et al., 2024; Dubey et al., 2024). It encourages the
policy to maintain a high likelihood of better completions. The NLL loss is formulated as:

LNLL(ﬂ-O) = 7E(a[:,yw)~D [IOg Uy (yw|l’)] ) (8)

where y,, represents the better completion for a given input . This loss term is typically combined with the primary
objective of the DAA using a scaling coefficient \.

Several other regularisation methods have been proposed to address this issue. For example, Pal et al. (2024) introduces an
7Tref(yw |3?)
7o (Yo |)
relative to that of the reference model. In this work, we mainly discuss the impact of Negative Log-Likelihood Loss.

additional term, — max (O7 log ), to A(x, yw, y1) to ensure that the log-likelihood of better examples remains high

B. Datasets

This section provides an in-depth look at the datasets used in our experiments, focusing on the BINARIZEDPREF, LLM-as-a-
Judge framework, NATURALQUESTIONSOPEN, and TRIVIAQA datasets.

BINARIZEDPREF Dataset. The BINARIZEDPREF collection process used a robust multi-source approach combining
professional annotators, multiple independent annotation pipelines, and various validation methods. The foundation comes
from professional annotation services ( 70% of data), with rigorous quality control through multi-annotator consensus,
adversarial validation sets, and specialized verification datasets for issues like hallucination and repetition. We’ve ensured
broad domain coverage, incorporating specialised modules for code generation, RAG interactions, STEM, and medical
domains while maintaining strong multilingual capabilities across French, Spanish, Korean, Japanese, German, and Italian -
including dedicated datasets for handling code-mixing and language transition cases. Quality control is implemented through
multiple layers: consensus-based annotation (1-3 annotators depending on complexity), dedicated adversarial validation
sets, and specific datasets targeting quality aspects like anti-repetition, length control, and format adherence. The data is
predominantly recent (2024), with carefully weighted components and explicit test sets for key capabilities. We use strategic
copy multipliers (up to 5x) for crucial capabilities, and the entire dataset is organised into functional groups (multilingual,
code, RAG) to ensure balanced training across all target capabilities.

LLM-as-a-Judge Framework Dataset. We utilize a diverse set of prompts for the LLM-as-a-Judge framework. Figure 1
illustrates a representative example from this dataset, showcasing different generations from various competitor models. To
provide insight into the composition of our LLM-as-a-Judge dataset, Figure 6 presents the distribution of prompt examples.
This visualisation helps to understand the variety and balance of the prompts used in our evaluation framework.

NATURALQUESTIONSOPEN Dataset. Table 2 presents examples from the NATURALQUESTIONSOPEN dataset', show-
casing the types of questions and answers used in our evaluation. The NATURALQUESTIONSOPEN dataset, introduced by
Kwiatkowski et al. (2019), is an open-domain question-answering benchmark. It consists of English questions paired with
possible answer strings, all answerable using English Wikipedia content. Each data instance contains a question field and an
answer field with potential correct responses. We use the validation set for our evaluation. Table 2 presents representative
examples from this dataset, illustrating the types of questions and answers used in our evaluation.

TRIVIAQA Dataset. The TRIVIAQA dataset® is a comprehensive reading comprehension benchmark containing over
650,000 question-answer-evidence triples (Joshi et al., 2017). It includes 95,000 question-answer pairs, each accompanied

'https://huggingface.co/datasets/google-research-datasets/ng_open/viewer/nq_open/

validation
2https://huggingface.co/datasets/mandarjoshi/trivia_qa/viewer/rc.wikipedia/validation
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Table 1. Examples for datasets.

Role Example

User I am looking to put a house on the market. 4 bedrooms, 3 bathrooms, 3000 sq ft. Nice neighbourhood and local school,
strong community feel. Safe for kids, lots of young families. Can you write me a general description for the house in
around 100-150 words? Make it professional sounding, emphasizing key aspects that you think would be attractive to
young families.

GPT-3.5-turbo Welcome to this spacious and inviting 4 bedroom, 3 bathroom home located in a desirable neighbourhood with a strong
sense of community. Boasting over 3000 sq ft of living space, this property is perfect for growing families looking for a
safe and welcoming environment to call home. The open-concept layout offers ample room for entertaining, while the
well-appointed bedrooms provide a peaceful retreat for all. The nearby local school and abundance of young families in
the area make this the ideal setting for children to thrive and make lasting friendships. Don’t miss out on the opportunity
to make this house your family’s forever home.

GPT-40 Welcome to your dream family home! Nestled in a vibrant, family-friendly neighborhood, this spacious 4-bedroom,
3-bathroom residence offers 3,000 sq ft of comfortable living space. The open floor plan seamlessly connects the living,
dining, and kitchen areas, making it perfect for both everyday living and entertaining. Each bedroom is generously sized,
providing ample space for relaxation and privacy.\n\nLocated in a top-rated school district, this home ensures your
children will receive a quality education. The community boasts a strong, supportive atmosphere with plenty of young
families, making it easy to form lasting friendships. Safety is a priority here, with well-maintained streets and parks
where kids can play freely. Don’t miss the opportunity to create cherished memories in this exceptional home. Schedule
a viewing today!

Claude-3-Sonnet Nestled in the heart of a vibrant community, this spacious 3,000 square foot home offers the perfect blend of comfort and
convenience for growing families. With four generously sized bedrooms and three beautifully appointed bathrooms, this
residence provides ample space for daily living and entertaining. The neighborhood boasts a strong sense of community,
with a local school nearby and a safe, family-friendly environment where children can thrive. The area is home to
numerous parks, playgrounds, and recreational facilities, ensuring endless opportunities for outdoor activities and quality
family time. Designed with modern amenities and a welcoming ambiance, this property is an exceptional choice for
families seeking a comfortable and secure haven to call home.

Llama-3-70b-chat-hf Here is a general description for your house:\n\nWelcome to this stunning 4 bedroom, 3 bathroom residence, perfectly
situated in a highly sought-after neighborhood that embodies the essence of community living. With its spacious 3000
square feet of living space, this beautiful home offers the perfect blend of comfort, functionality, and charm. Ideal for
young families, this property boasts a prime location within walking distance to a top-rated local school, ensuring a safe
and convenient commute for kids. The neighborhood itself is a hub of activity, with a strong sense of community and a
plethora of young families, making it the perfect environment for children to grow and thrive. With its generous layout,
abundance of natural light, and exceptional curb appeal, this property is sure to impress even the most discerning buyers.
Don’t miss out on this incredible opportunity to make this house your dream home!\h\nLet me know if you’d like me to
make any changes!

Llama-3-8b-chat-hf Here is a general description for your house:\n\n"Welcome to this stunning 4-bedroom, 3-bathroom residence, perfectly
situated in a highly sought-after neighborhood. This beautiful home offers a spacious 3000 square feet of living space,
ideal for growing families. With its prime location, you’ll enjoy the convenience of being close to top-rated local schools,
making it an ideal choice for young families. The neighborhood exudes a strong sense of community, with plenty of
opportunities for kids to make friends and for parents to connect with neighbors. The home itself is a haven of comfort
and style, with ample natural light, modern fixtures, and plenty of storage. With its safe and family-friendly atmosphere,
this property is the perfect place to call home. Don’t miss this incredible opportunity to make memories with your loved
ones in this wonderful community!\”n\nLet me know if you’d like me to make any changes!

Table 2. Examples for NATURALQUESTIONSOPEN.

Question Answer
who does the voice of mickey mouse on mickey mouse clubhouse? [’Bret Iwan’, "Wayne Allwine’]
who wrote knock knock knocking on heavens door? [’Bob Dylan’]

by an average of six independently gathered evidence documents. This structure provides high-quality distant supervision
for question-answering tasks. However, we do not use any evidence in our experiments. We use the validation set for our
evaluation. Table 3 presents representative examples from the TRIVIAQA dataset.

C. Additional Experimental Results

As supplementary of the main experiment, we provide the following experiments.
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Figure 6. Distribution of LLM-as-the-judge prompt dataset.
Table 3. Examples for TRIVIAQA.
Question Answer
Who was the next British Prime Minister after Arthur Balfour?? [’Sir Henry Campbell-Bannerman’, ’Campbell-
Bannerman’, ’Campbell Bannerman’, ’Sir
Henry Campbell Bannerman’, ’Henry Campbell
Bannerman’, "Henry Campbell-Bannerman’]
Which Lloyd Webber musical premiered in the US on 10th December 199327 [’Sunset Blvd’, "West Sunset Boulevard’, ’Sun-
set Boulevard’, ’Sunset Bulevard’, ’Sunset
Blvd.’]

Win Probability vs. Better Completion Likelihood. Figure 7 illustrates the relationship between win probability and
better mean likelihood across different competitor models, including GPT-4, Claude-3-Sonnet, Llama-3-8B, and Llama-3-
70B-Chat. We record points every 500 steps across varying hyperparameters for each method. Our results are consistent
with our findings in the main text (§3.2), suggesting that simply increasing the likelihood of better completions does not
consistently result in performance improvements.

IPO Learning curves with 7B model on the ULTRAFEEDBACK dataset. To demonstrate the generalisability of our
findings, we experiment with the IPO using three different values of 7, adding NLL loss as an auxiliary loss with four A
coefficients on the ULTRAFEEDBACK dataset using the 7B model. Figure 8 illustrates several key findings:

1. Likelihood and Performance Correlation: As shown in the first and second rows of the figure, a Higher likelihood
for better completions and larger gaps between better and worse completions do not necessarily translate to improved
model performance.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance the models’
Cross-Input Diversity, as shown in the second and fourth rows, where lower better completion likelihood gener-
ally corresponds to improved Cross-Input Diversity.

3. Entropy and Over-optimisation: Decreasing entropy over top-k tokens (Per-Input Diversity) appears to be an
indicator of over-optimisation for diversity. The fifth row demonstrates that curves with lower entropy typically do not
perform as well, as reflected in their win probability. Particularly, this result shows that the turning points of the entropy,
which transits from the increasing diversity to the decreasing entropy is a strong indicator of the over-optimisation for
diversity.
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Figure 7. Win Probability vs Better Mean Likelihood Scaling Law. with different competitor models. including GPT-40, Claude-3-Sonnet,
Llama-3-8B, and Llama-3-70B-Chat

4. Probability Mass Distribution: We do not observe a decrease in probability mass in top k tokens in this case, as
shown in the last row of the figure. This observation aligns with our findings: in runs without decreasing entropy, we
do not observe a significant decline in win probability.

Learning curves with 7B model on the BINARIZEDPREF dataset. To demonstrate the generalisability of our findings,
we perform additional experiments using the 7B model on the BINARIZEDPREF dataset. The results, consistent with our
previous observations, underscore the broad applicability of our insights across various datasets. Figure 9 illustrates several
key findings:

1. Likelihood and Performance Correlation: Higher likelihood for better completions and larger gaps between better
and worse completions do not necessarily translate to improved model performance. This is evident in the first
and second rows of the figure, where models with the highest better completion likelihood do not achieve the best
performance.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance the models’
Cross-Input Diversity. This trend is observable when comparing the second and fourth rows, where lower better
completion likelihood generally corresponds to improved Cross-Input Diversity.

3. Entropy and Over-optimisation: Decreasing entropy over top-k tokens (Per-Input Diversity) appears to be a good
indicator of over-optimisation for diversity. The fifth row demonstrates that curves with overly low entropy do not
perform as well (i.e., pink curves), as reflected in their win probabilities. Additionally, as the entropy begins to rise
again, an improvement in win probability is also observed.

4. Probability Mass Distribution: We do not observe a decrease in probability mass in top k tokens in this case, as
shown in the last row of the figure. This observation aligns with our findings: in runs without decreasing entropy, we
do not observe a significant decline in win probability.
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Learning curves with 35B model on the BINARIZEDPREF dataset. To demonstrate the generalisability of our findings,
we perform additional experiments using the 35B model on the BINARIZEDPREF dataset. The results align well with our
previous observations. Figure 10 illustrates several key findings:

1. Likelihood and Performance Correlation: Similarly, results from larger model sizes suggest that higher likelihoods
for better completions and larger gaps between better and worse completions do not necessarily lead to improved model
performance, as shown in the first and second rows of the figure.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance the models’
Cross-Input Diversity. Specifically, the curve with a lower better completion likelihood generally tends to have
a higher Cross-Input Diversity.

3. Entropy and Over-Optimisation: A decrease in entropy over the top-%k tokens (Per-Input Diversity) appears to
indicate over-optimisation for diversity. For instance, the pink lines for DPO and IPO show a clear drop in entropy after
500 steps, accompanied by a decline in win probability.

4. Probability Mass Distribution: Similarly, we do not observe a decrease in probability mass in top k tokens in this
case, as shown in the last row of the figure.

Training Negative Log-Likelihood Loss on better completions has limited influence on the model when it cannot
affect completion likelihood. To demonstrate the generalisability of our findings, we perform further experiments with
35B models on the BINARIZEDPREF dataset. As shown in Figure 11, we experiment with DPO using three different values
of 3, adding NLL loss as an auxiliary loss with four distinct coefficients for each 5. Similarly to our findings in the main text,
results indicate that when there is limited impact on the likelihood, the NLL loss has minimal impact on model performance.
Training Negative Log-Likelihood Loss on better completions remains susceptible to over-optimisation.

Table 4. Examples for TRIVIAQA.

Question: {question}
Reference Answer: {reference_answer}
Model Output: {model_output}

Evaluate the correctness of the model output compared to the reference answer.
Respond with EXACTLY ONE of the following options:

- Yes

- No

- Unsure

Guidelines:

- Yes: If the model output is correct or equivalent to the reference answer.

- No: If the model output is incorrect or contradicts the reference answer.

- Unsure: If you can’t determine the correctness or if there’s insufficient information.

Do not provide any explanation or additional text. Your entire response must be a single word.

Your response:

Discussion about Relationship Between KL and Completion likelihood. We report the L, loss between the policy
model and the reference model with respect to the likelihood. This serves as a proxy for KL divergence, as both measure the
divergence between the policy and reference models. While we could not generate a direct KL vs. Likelihood plot due to
access restrictions, this proxy analysis allows us to provide relevant insights without requiring additional model retraining.

As shown in Figure 12, our experiments reveal that likelihood does not strictly correlate with the Lo loss: lower likelihood
(higher cross-entropy loss) does not necessarily correspond to a higher Lo loss. This result suggests that the relationship
between the likelihood of preferred completions and the divergence between the models is more nuanced than a simple
monotonic association. In particular, the observed patterns reinforce the idea that likelihood and KL divergence, while
connected under specific assumptions, are not directly interchangeable.

19



Table 5. Model output examples for NATURALQUESTIONSOPEN and TRIVIAQA.
Examples for NATURALQUESTIONSOPEN

Field Content F; Word
Question Where is dakar located on the world map? -

High Likelihood Answer Senegal 100.0%
Mid Likelihood Answer Dakar is the capital of Senegal and is located in West Africa. It is situated on the 8.7%

western coast of the country, on the Atlantic Ocean.

Examples for TRIVIAQA

Field Content F; Word
Question How many Rings of Power were there, in total? -

High Likelihood Answer 20 100.0%
Mid Likelihood Answer There were 20 Rings of Power in total, 3 of which were given to the Elves, 7 to the 8.7%

Dwarves, and 9 to the Men.

D. Further investigations for Question Answering Tasks

Case studies for NATURALQUESTIONSOPEN and TRIVIAQA tasks. Table 5 provides two examples for NATU-
RALQUESTIONSOPEN and TRIVIAQA tasks, respectively.

LLM-as-a-Judge for the NATURALQUESTIONSOPEN task. We implement a more flexible evaluation method to
understand the potential issue of stylistic variations in answers. Instead of relying on exact string matching, which can be
overly rigid, we employ an LLM-as-a-Judge using the GPT40 model. As shown in Table 4, this LLM-based evaluation
system is presented with the original question, the reference answer, and the model’s output. It then assesses whether
the model’s output is correct, incorrect, or if there’s not enough information to make a determination, responding with
“Yes”, “No”, or “Unsure” respectively. We compute the model performance based on the percentage of “Yes”. Figure 13
shows the model performance on the ULTRAFEEDBACK dataset using the 7B model. Our analysis reveals that while the
LLM-as-a-Judge evaluation method demonstrates a trend similar to the F; score, it consistently yields higher performance
metrics.
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Figure 9. Learning curves across training steps for various metrics. Results are reported for the 7B models using the Hinge, DPO, and
IPO on the BINARIZEDPREF dataset.
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Figure 11. Control Likelihood via training on better completion on the BINARIZEDPREF dataset, using the 35B model. When different
runs have similar likelihoods, the win probability and diversity of their model outputs tend to follow the same trend throughout training.
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Figure 12. Our results indicate that completion likelihood does not strictly correlate with the L loss: lower likelihood (higher cross-
entropy loss) does not necessarily correspond to a higher Lo loss.
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Figure 13. NATURALQUESTIONSOPEN vs Better Mean LLH on the ULTRAFEEDBACK dataset using the 7B model. The F; score and
LLM-as-a-Judge results are reported.
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