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ABSTRACT

Foundation models (FMs) for natural language processing have many coherent
definitions of hallucination and methods for its detection and mitigation. How-
ever, analogous definitions and methods do not exist for multi-variate time-series
(MVTS) FMs. We propose new definitions for MVTS hallucination, along with
new detection and mitigation methods using a diffusion model to estimate hal-
lucination levels. We derive relational datasets from popular time-series datasets
to benchmark these relational hallucination levels. Using these definitions and
models, we find that open-source pre-trained MVTS imputation FMs relationally
hallucinate on average up to 59.5% as much as a weak baseline. The proposed
mitigation method reduces this by up to 47.7% for these models. The definition
and methods may improve adoption and safe usage of MVTS FMs.

1 INTRODUCTION

Foundation models (FMs) trained on large and diverse datasets, that can be prompted to perform
many types of computation, have enjoyed rapid progress in Natural Language Processing (NLP).
Examples include Llama [Touvron et al.| (2023)), ChatGPT |Achiam et al.[ (2023)), Claude Min et al.
(2023) and Gemini |Anil et al.| (2023). Models with similar capabilities are now also seen in other
domains including time-series modelling. Recent works have shown that pre-trained models for
time-series forecasting can be used effectively on unseen forecasting domains in a zero-shot man-
ner. This is achieved by training on large quantities of time-series data from diverse domains as in
Chronos |Ansari et al.| (2024), TimesFM |Das et al.[(2023), Lagl.lama Rasul et al.| (2023)), TimeGPT
Garza & Mergenthaler-Canseco| (2023), MOIRAI |Woo et al.|(2024). Similar models have also been
successful for time-series imputation such as MOMENT |Goswami et al.| (2024), TIMER [Liu et al.
(2024), TOTEM [Talukder et al. (2024), TimesNet|(Wu et al. (2022) and GPT4TS [Zhou et al. (2023).

We argue that pre-trained models for multi-variate time-series (MVTS) imputation are closer than
MVTS forecasting to what are typically referred to as FMs in NLP as these can be prompted to
handle different tasks. Prompts are the provided values and responses are the imputed values. For
example, forecasting can be prompted for by masking future time-steps and asking the model to fill
in these masked values; while interpolation can be prompted for with data from both before and
after the missing period. Imputation therefore provides an interface for arbitrary question answering
in MVTS. This work will therefore focus on these models, particularly MOMENT |Goswami et al.
(2024) and TIMER [Liu et al.|(2024) which are the only FMs of this type that currently have open-
source weights available.

For MVTS question answering to be useful in real-world cases, a measure of confidence in the
model’s response is required, analogous to hallucination detection in NLP. To our knowledge, there
is no literature on hallucination definition and detection in MVTS imputation, even with the ad-
vent of MVTS FMs. This is in stark contrast to NLP, where a large and active body of work ex-
ists on defining, categorizing, and detecting different types of hallucinations Rawte et al.| (2023);
Zhang et al.| (2023c)); |Ye et al.| (2023). Much like in NLP, where new definitions have emerged and
pre-existing concepts were unified under the umbrella of ‘hallucination’, we argue that the MVTS
research would benefit similarly from this unification. This is especially true with the increasing
transfer of concepts from NLP such as FMs.
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The contributions of this work include the definition of two types of hallucination in the context
of MVTS imputation: distributional and relational. These are defined using established definitions
from the NLP literature. Distributional hallucination is grounded by a pre-existing concept in the
MVTS literature while relational hallucination is a new concept, which is the main focus of this
work. We use diffusion models |Ho et al.[| (2020) for MVTS imputation and propose a method to
detect and mitigate hallucination in its response. We also show that MVTS FMs hallucinate heav-
ily using popular MVTS datasets, and that this can be detected and mitigated using our proposed
methods. Source code will be provided here upon acceptance.

1.1 DIFFUSION MODEL PRELIMINARIES

Diffusion models are probabilistic generative models that iteratively degrade data by introducing
noise, then learn to reverse this process. This allows them to iteratively generate new samples by
sampling from a simple prior, which is typically a Gaussian distribution |Yang et al.| (2023)). They
have become well known in image generation Rombach et al.| (2022) and have been applied exten-
sively to various fields including time-series generation |Yuan & Qiaol (2024), forecasting Meijer &
Chen| (2024) and imputation [Wang et al.[(2024)); [Yang et al.| (2024b)). Ever since diffusion models
have been applied to time-series imputation [Tashiro et al.| (2021), there has been growing work to
improve them for this use case. These include improvements to the masking criteria during training
Xiao et al.|(2023); Chen et al.|(2023b)); Liu et al.|(2023)), the architectures used|Alcaraz & Strodthoff]
(2022) and the sampling process [Wang et al.| (2023)). Diffusion models have since become widely
popular, becoming one of the best performing methods for time-series imputation|Zhou et al.| (2024)).
The background on diffusion models that is directly used in this work will be explained in the fol-
lowing sections. This includes the mathematical notations for Denoising Diffusion Probabilistic
Models (DDPM) |Ho et al.|(2020) and conditioning through RePaint|Lugmayr et al.|(2022).

1.1.1 UNCONDITIONAL DIFFUSION MODELS

In the forward process, samples from the training data zy are increasingly corrupted through the
addition of Gaussian noise for 7" time-steps to generate noisy samples x1, ..., z7:
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The Gaussian noise is determined by the variance schedule (i, ..., B which is typically linearly
increasing. The forward process also admits sampling timestep ¢ directly:
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The reverse process is used to successively denoise the corrupted data by learning pg(x+—1|x+) using
a neural network with learnable parameters 6:
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where p19(x¢,t) is the predicted mean used to sample z;_; and ep(x¢, 1) is the noise predicted by
a neural network at time-step t. The original DDPM [Ho et al.| (2020) sets ¥g(2¢,t) = o1, where

= B¢. We will use this DDPM formulation of diffusion models in this work due to its popularity
and simplicity.
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1.1.2 CONDITIONING DIFFUSION WITH REPAINT

Diffusion models as described above are referred to as unconditional diffusion models as they do
not directly allow for conditioning to be applied. It is however possible to guide the unconditional
diffusion model using the RePaint Lugmayr et al.| (2022) method. Here, components of the input
vector z are split into conditioning values z(¢) and missing values (™) to be imputed by the model.
The missing values are sampled in the same way as Eq. [5}

polef™ ™) i= N (2 o™, 0), (™, 1)) @
The conditioning values however uses the corrupted version obtained using Eq. [3}
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In this way, at each time-step ¢ of the reverse process, x; is composed of the imputed missing values
xﬁm) obtained by denoising, and the conditioning values xﬁc) obtained by corrupting the actual given
values to the correct noise level associated with the time-step ¢. The predicted mean at each diffusion

time-step is then computed as usual using Eq. ]

We will use RePaint to condition an unconditional diffusion model trained on our dataset and impute
missing values. This allows for arbitrary question answering using the prompt-response framework
at inference without modification to the training procedure of the diffusion model.

1.2 HALLUCINATION DETECTION AND MITIGATION IN NLP

Example methods for hallucination detection and mitigation in NLP include the use of external
knowledge retrieved from the web or task-specific databases to identify and correct non-factual
content in responses Peng et al.[(2023));|Shuster et al.|(2021); Lewis et al.| (2020); (Chen et al.|(2023a);
Varshney et al.|(2023). However, effective knowledge retrieval can be challenging and costly to run
in practice Miindler et al.| (2023). It is unclear how this transfers to MVTS as there are no clear-cut
facts to retrieve. There are also methods that do not use external knowledge but instead uses multiple
samples from the same prompt to measure consistency of the generated information Manakul et al.
(2023)); [Elaraby et al.| (2023)); Zhang et al.| (2023a); |[Farquhar et al.| (2024). This can also be done
using an ensemble of models Du et al|(2023). Similarly to these methods, this work will mitigate
hallucination through sampling. The concept of consistency, however, does not transfer to MVTS
as these require clear-cut facts and contradictions. A separate hallucination detection model can
also be trained to detect hallucination from the generated text|Chen et al.| (2023c); [Pacchiardi et al.
(2023)); Mishra et al.| (2024); Zha et al.|(2023) or the model’s internal states [Su et al.| (2024). This is
the approach that will be adopted in this work using a diffusion model. There has also been work on
scaling the generation of datasets that can be used to train these models Su et al.| (2024); |Gu et al.
(2024). Hallucination mitigation can also be achieved through direct supervised finetuning Gu et al.
(2025)); Tian et al.| (2023); Lin et al.| (2024)); |[Zhang et al. (2024); (Chen et al.| (2024). However, the
fine-tuned model still has to be used in conjunction with hallucination detection methods since they
can still hallucinate, albeit at a potentially reduced rate.

2 DEFINING HALLUCINATION FOR MULTI-VARIATE TIME-SERIES
IMPUTATION

There is a large and active literature on defining, detecting and mitigating hallucination in NLP. In
this context, hallucination is commonly defined as the behaviour when models generate responses
with information that is false Rawte et al.| (2023); [Zhang et al.| (2023c)); |Ye et al.| (2023). In time-
series however, there are no clear-cut facts as in language. Consequently, there is no absolute truth
to time-series, only what is probable relative to the provided context dataset. We therefore define
distributional hallucination as a type of hallucination in time-series where the combination of the
prompt and the generated response is out of distribution (OOD) with respect to a target dataset.
Note that if an OOD prompt is provided to a model, all responses will automatically be classified
as a distributional hallucination. This is important in the context of FMs trained on large quantities
of data since it is typically unknown whether a prompt is OOD or not. In practice, distributional
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hallucination is a continuous concept, so a threshold must be chosen to define a prompt-response
pair as distributionally hallucinating.

Another definition of hallucination in NLP is the generation of self-contradictory responses|Miindler
et al.[(2023)); with incoherent explanation and reasoning |[Zhang et al.| (2023b)); or responses that are
irrelevant to the prompt |Gallifant et al.| (2024). These definitions will be used as the NLP analogue
of what will be referred to as relational hallucination. A relation between a set of IV variables
x = {x1,z9,...,xN} can be written as f(x) = 0, where f is some ground-truth function that
defines the relation. The ‘relational error’ which measures the degree of which the relation is broken
can then be defined as E,. := |f(x)|. Relational hallucination can then be defined as the case when
the model returns a set of variables that has ‘high’ relational error, relative to some threshold. This
occurs when the prompt and the response are incompatible, given f. This is analogous to a response
that is irrelevant to the prompt in the NLP case. Additionally, relational hallucination can occur when
the variables returned in the response are incompatible with themselves. This case is analogous to
self-contradiction in NLP hallucination. Incoherent explanations and reasoning can also be seen as
a form of self-contradiction. In the same way as distributional hallucination, relational hallucination
is also defined relative to a given dataset.

Examples In contrast to distributional hallucination, an OOD prompt may not necessarily result
in relational hallucination. As a concrete example, consider the following case with three variables
{zo, 1,2} where the ground truth relation is addition: xy + 21 — 25 = 0. The training dataset
consists of zg,z1 € [0,10] and z2 € [0, 20]. The combination of the prompt, where =y = 21 and
1 = 22, and the response zo = 43, will be classified as distributionally hallucinating but not rela-
tionally hallucinating. The combination of the prompt, where o = 1 and ;1 = 2, and the response
x9 = 7, will be classified as both distributionally hallucinating and relationally hallucinating. In this
sense, relational hallucination is a subset of distributional hallucination.

Relational Hallucination is More Important Distributional hallucination is important for detect-
ing whether a question is OOD, which is typically not known at inference. Relational hallucination
also captures all the in-distribution data, since by definition they all have correct relations between
the variables. They however also extend to regions of the state space that is OOD. In this sense,
relational hallucination is less restricted than distributional hallucination. Models being able to gen-
eralise to and operate in regions which are OOD is important as a large family of important question
types are OOD. For example, to optimise variables to achieve better performances given the current
data or to simulate a system under new conditions. This work will therefore focus on relational
hallucination.

Related Concepts OOD detection aims to detect test samples that do not exist in the training
distribution |Yang et al.|(2024a)). This is what we refer to as distributional hallucination in our work.
We adopt the term ‘hallucination’ as this is the common term with respect to FMs, and also because
it has proven useful to place pre-existing concepts under the same umbrella to consolidate definitions
as seen in NLP. Anomaly Detection in contrast aims to detect unusual cases which may exist in the
training setZamanzadeh Darban et al.|(2024)), assuming that the majority of training data is from the
‘correct’ distribution and a minority of data is from an ‘anomalous’ distribution. Anomaly detection
can therefore be seen as OOD detection but with the definition of being ‘in distribution’ replaced
with being in the ‘correct distribution’. Anomaly detection in MVTS predicts which time indices
within a single MVTS window correspond to anomalous values. Relational hallucination differs
from these definitions, as it measures the compatibility of all the values in a MVTS window. A
MVTS window can be out of distribution but still be relationally correct. Relational hallucination is
a new concept in MVTS that is transferred from NLP for MVTS FMs. It is the main focus of this
work.

3 RELATIONAL HALLUCINATION DETECTION AND MITIGATION USING
DIFFUSION MODELS

Previous works have shown that diffusion models trained to generate images can detect hallucina-
tions in their generated outputs |Aithal et al.| (2024). They have also been successfully applied to
MVTS imputation [Zhou et al.[| (2024)) and anomaly detection |Chen et al.| (2023b). We therefore
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Figure 1: (Left Top) Flattening a datapoint with three variables. (Left Bottom) Example of addi-
tional context provided on the UC task. (Middle Left) Different type of tasks (OC, UC and FC) for
the prompt. Masked variables are shown as blank green boxes and unmasked variables are used as
the prompt. The imputation process can be done using the diffusion model or pre-trained foundation
models. (Middle Right) The combination of the prompt and response obtained from the imputation
is used as the prompt for a diffusion process, which is used to compute Combined Error (CE) metric.
(Right) CE heatmap for a diffusion model fit to a small non-linear 2D dataset. Red dots are the data
points in the training set and darker colours correspond to lower CE values.

consider diffusion models a promising candidate for arbitrary MVTS question answering through
imputation, and the detection of relational hallucination.

Notations To describe the prompt-response framework for MVTS imputation, we will use the
following notation for each data point: x;, where ¢ € Z indexes the data dimension. A prompt is
defined by specifying the set of variables that will be used as the prompt i € Z, and setting their
values accordingly. The values for the remaining indices Z, = Z \ Z,, will be masked and imputed
by the model to generate the response. As before, the predicted mean at each diffusion time-step
will be denoted p; ; where t € {0, ..., T}. Note that denoising decrements the time-step from 7" to
0. The final output (prediction) from the model (¢ = 0) will be denoted as &;, where the imputed
response is &;, Vi € I, and &; ~ x;, Vi € L.

Conditioning Once the prompt is defined, RePaint Lugmayr et al.| (2022) is used to condition an
unconditional diffusion model trained on the dataset. The prompt is used as the conditioning z(¢)
in RePaint as described in Section[T.1.2] This allows diffusion models to act as a prompt-response
model for general time-series question answering.

Relational Hallucination Metric We propose the Combined Error (CE) metric that can be used
to estimate the level of relational hallucination and a method to extract it from a diffusion model
trained on the dataset. This metric can be computed for a given prompt-response pair Z;,Vi € T
obtained from some model such as a FM. It is computed by using RePaint to condition the diffusion
model and setting the prompt as x; := %;,V: € Z. The output of this process will be referred to

as 2; where the double hat denotes a prediction where the target is a previous prediction. The CE
metric can be computed as

Mcg = RMSE; (&, &;), Vi€ T, 9)

where the root mean square error is taken across the data dimension. Note that Z; can be computed
using a single denoising step (the final time-step going ¢ = 0). This is because RePaint allows the
diffusion process to be skipped to the final step for all conditioning values, which in this case is the
entire data dimension. This is done using the forward process (Eq. [8). Denoising using Eq. {]is
therefore only done on the final diffusion time-step and obtaining this metric is not computationally
expensive. This process is shown in Fig. [T (middle right).

To highlight properties of the CE metric, a diffusion model was trained on a small nonlinear 2D
dataset. Fig. [T] (right) visualises the value of the CE metric for each point in this space. The CE
metric is low in regions where the relations hold. This is true even in OOD regions without data.
We also tested variations of metrics similar to |Aithal et al.| (2024)). However, these are not effective,
as shown in Appendix [A]
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Hallucination Detection To use the proposed CE metric to gauge the expected level of relational
hallucination, a dataset-specific scale is required to determine whether the metric is high/low relative
to the dataset. We propose a simple method. Firstly, the CE metric is obtained for all the prompt-
response pairs obtained from the training set, over all the imputation tasks. The quartiles of the
CE metric are then computed. These quartiles are then used to classify the prompt-response pairs
into classes of expected relational hallucination levels at inference: low (below the second quartile),
medium (between the second and third quartile) and high (greater than the third quartile).

Hallucination Mitigation we also propose a simple method for mitigating relational hallucination
for non-deterministic models. For a given prompt, N responses are sampled from the model. The CE

metric can then be computed for all the obtained prompt-response pairs (i(j ), M g 2;) € Xampled-

The prompt-response pair with the lowest metric #U"), where j* = arg min (Mg};) , is then se-
lected as the response with the expected lowest relational hallucination.

4 EXPERIMENTS

Evaluation Method In real-world settings, the ground-truth relation function f is typically un-
known. So, the ground-truth relational error cannot be computed for a given prompt-response pair.
This work proposes the use of diffusion models to generate a metric for a given prompt-response
pair, that can be used as an indirect measure for the relational error, and hence relational hallu-
cination. To evaluate our proposed methods however, we require a known f that can be used to
compute the ground-truth relational error. To achieve this, we can add ‘relational variables’ to a
dataset, which has a known relation f with other variables, and use this to compute the ground-truth
relational error for evaluation. Since our method has to model all the variables together as a joint
distribution, it does not have access to this ground-truth relation f. This effectively allows us to
evaluate our method in the real-world situation where the ground-truth f is not known. We apply
this procedure to popular MVTS datasets.

Relational Variables We add relational variables to popular MVTS datasets and refer to these
datasets by prefixing ‘r’ to their names. The relational variable added to the Electricity Con-
suming Load (rECL) dataset [Trindade| (2015) is the difference between two other variables. The
relational variable added to the Weather dataset (rfWTH) Max Planck Institute for Biogeochem-
istry| (2024)), is added by computing the vapour pressure deficit (VPD) between the Temperature
T and humidity H, which is a non-linear function of temperature and humidity f,,q(T, H) =

0.6108 x exp <1T7+2273§731> x (1 — H), where T is the temperature in Celsius and H is the relative

humidity expressed as a decimal. This is a real-world example dataset that include the variables
important for agriculture. The relational variable added to the Traffic (1Traffic) dataset (California
Department of Transportation|(2024) is the sum of two other variables. The relational variable added
to the Illness (rlllness) dataset |Centers for Disease Control and Prevention| (2024) is the difference
between two other variables. The relational variable added to the ETTH1 (rETT) dataset Zhou et al.
(2021) is the product of two other variables. A context length of L = 24 is used for each data point,
which is then flattened. A schematic of this for three variables is as shown in Fig.[T] (left top).

Tasks We consider the following prompts, which will be referred to as tasks. Take the two vari-
ables and their corresponding relational variable and refer to them as z(, z;, and 2, respectively.
Let 7 € {0, ..., L—1} index the time-step within the data point (not to be confused with the diffusion
time-step ¢). Over-constrained (OC): xg,z; and 7 € {0, ..., L — 1} are used for the prompt. This
task effectively test the model’s ability to learn the deterministic relation z2 = f(zo,x1). Under-
constrained (UC): x5 and 7 € {0,...,L — 1} are used for the prompt. This task effectively tests
the model’s ability to learn the probabilistic relation x3 ~ p(z2|zo,z1). Forecast (FC): All the
variables and 7 € {0, ..., L/2 — 1} are used for the prompt. This also tests the model’s capacity to
learn a probabilistic function. Illustrations of the tasks are shown in the middle left of Fig. [I]

Models that will be evaluated on the tasks above are:
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TASK = OC TAsK = UC TASK = FC
DATASET MODEL E, <E, >/<E'_>(BASI;LINL) E, <E, )/(E'_>(BASLLII\'L) E, <E,>/<E, >(BA>LL1\L)
BASELINE | 0.9841 % 0.3500 1.0000 0.9841 £ 0.3500 1.0000 0.9841 % 0.3500 1.0000
RECL DM (OURS) | 0.1491 +0.0543 0.1515 0.0572 + 0.0265 0.05812 0.0138 + 0.0037 0.0140
MOMENT | 0.5744 %0.2019 0.5837 0.5495 % 0.2203 0.5584 0.2164 % 0.1272 0.2199
TIMER 0.6197 & 0.2400 0.6297 0.5121 +0.2127 0.5203 0.2182 £ 0.1260 0.2217
BASELINE | 0.6283 & 0.3026 1.0000 0.6283 % 0.3026 1.0000 0.6283 + 0.3026 1.0000
RWTH DM (OURS) | 0.0550 £ 0.0600 0.0875 0.0932 + 0.0673 0.1483 0.0160 + 0.0076 0.0255
MOMENT | 0.2683 % 0.1820 0.4270 0.2651 £ 0.1801 0.4219 0.0785 £ 0.0507 0.1249
TIMER 0.6477 % 0.2167 1.0309 0.3492 % 0.2179 0.5558 0.2459 % 0.0467 0.3913
BASELINE | 0.1058 % 0.0579 1.0000 0.1058 % 0.0579 1.0000 0.1058 % 0.0579 1.0000
RTRAFFIC DM (OURS) | 0.0027 £ 0.0010 0.0255 0.0096 + 0.0056 0.0907 0.0014 + 0.0006 0.0132
MOMENT | 0.0513 % 0.0314 0.4849 0.0533 =+ 0.0326 0.5038 0.0046 + 0.0040 0.0435
TIMER 0.0974 % 0.0284 0.9206 0.1006 % 0.0309 0.9509 0.0043 % 0.0035 0.0409
BASELINE 4469 £ 3585 1.0000 4469 + 3585 1.0000 4469 £ 3585 1.0000
RILLNESS DM (OURS) | 1521+ 951.6 0.3403 996.4 + 661.9 0.2230 380.1+224.7 0.0851
MOMENT 3183 +£1913 0.7122 3815 =+ 2098 0.8537 1174 £ 681.0 0.2627
TIMER 3314+ 1545 0.7416 3459 =+ 2096 0.7740 1554 + 1384 0.3477
BASELINE | 0.5600 == 0.2804 1.0000 0.5600 £ 0.2894 1.0000 0.5600 =+ 0.2894 1.0000
RETT DM (0URS) | 0.2312 +0.1704 0.4129 0.2875 + 0.1750 0.5134 0.0597 + 0.0398 0.1066
MOMENT | 0.3796 + 0.2392 0.6779 0.3231 +0.1977 0.5770 0.1440 % 0.0908 0.2571
TIMER 0.3177 4+ 0.2185 0.5673 0.4666 + 0.2721 0.8332 0.2271 +0.1324 0.4055

Table 1: Relational error E,. for each model on each dataset (lower is better). The best values for
each dataset are highlighted in bold. The mean values relative to the weak baseline are also given.

* Baseline - Since each dataset will have different scales, a baseline is required to com-
pare against. A weak baseline that returns the training set mean for each variable for all
responses will be used.

* Diffusion Model - The diffusion model trained on each dataset, which will be used for
hallucination detection on that dataset. It can also be used for question answering. This will
serve as a stronger baseline. The model uses a simple five layer MLP ~1M parameters.

« MOMENT |Goswami et al.| (2024) - A MVTS FM using a transformer encoder architec-
ture with 24 layers and 385M parameters, pre-trained on Time-Series Pile (20GB). This
model will be used for question answering only. MOMENT models MVTS in a channel-
independent manner, a popular choice |[Nie et al.[(2022). As shown in Fig. || (left bottom),
we therefore provide additional context (24 time-steps) to each task to allow MOMENT to
function on tasks like the OC and UC task. This makes the task easier.

* TIMER [Liu et al|(2024) - A MVTS FM using a transformer decoder architecture with 4
layers and 2M parameters, pre-trained on the UTSD-4G dataset (1.2GB). This model will
be used for question answering only. Since TIMER requires at least the first token (24 time-
steps) to be provided, additional context is also provided in the same way as MOMENT.
This allows for a fair comparison.

Implementation is in Python 3.11 using PyTorch. The diffusion models trained were all MLPs
with five hidden layers of size 512. A linear variance schedule ranging from a value of le-4 to
le-2 was used with 1000 diffusion steps. Models were trained using the ADAM optimizer Diederik
(2014), one-cycle learning rate scheduler |Smith & Topin| (2019)), a maximum learning rate of le-3
and batch size of 1024. All models were trained up to a maximum of 8000 epochs with early stop-
ping. The model with best validation loss was used for all subsequent experiments. The relational
datasets use all the data present in the original dataset and were split into train, validation and test
sets with a ratio of 5:1:1 in a chronologically increasing manner such that there is no overlap in time.
Training runs on a single NVIDIA T1000 in 2-22 hours depending on the dataset.

4.1 MULTI-VARIATE TIME-SERIES MODELS HALLUCINATE

Using our evaluation method described above, the degree of relational hallucination exhibited by a
model can be quantified. This is achieved by using each model to respond to all the prompts from
the OC, UC and FC tasks on each dataset (test set), and then computing the relational error F,.. The
lower the average E,. is, the better. As each dataset has different value scales, all E;,. comparisons
are relative to the weak baseline. Since the diffusion model was trained on the training set of each
dataset, it can be taken as a strong baseline. These values are shown in Tab. |I| (mean and standard
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deviation) for each model, task and dataset (test set). The mean values normalised by the baseline’s
mean is also provided so that it is easier to compare across the datasets with different scales.

The results show that even with the handicap of being given extra context, both the pre-trained FMs
(MOMENT and TIMER) hallucinate heavily. They typically hallucinate less than the weak baseline
but in some cases can match or even exceed it. The diffusion model (strong baseline) hallucinates
the least, but nevertheless still hallucinates. All models relationally hallucinate the least on the FC
task. This may be because there are no hard constraints on the values that must be predicted and
the model is free to sample/predict values that are relationally correct. Averaging over the tasks and
datasets, the relational hallucination level of the diffusion model, MOMENT and TIMER are 15.3%,
44.6% and 59.5% the values of the weak baseline. The results demonstrate that even models trained
on each dataset can relationally hallucinate relative to that dataset, with this being exhibited much
strongly in pre-trained FMs.

4.2 ESTIMATION OF HALLUCINATION LEVELS AT INFERENCE

The following proposed quartile thresholding method is used to classify responses by their expected
relational hallucination level: low, medium and high. This can be evaluated by computing the
relational error E,. for all the prompt-response pairs classified into each class. This gives us the
distribution of E,. for each class. The overlap coefficient between the distribution of FE,. for the
low and high classes can be computed. These distributions will be referred to as P() and P,
respectively. They are of the form P = {P,, P, ..., P,_1}, where n is the number of bins and the
values are the probability in each bin with >, P, = 1. The overlap coefficient between them can

be computed as ZZ;& min (P,EL), P,EH) . Lower coefficients mean better hallucination detection.

A value of zero implies zero overlap, and a value of one implies that the distributions are identical.
The results (mean and standard deviation) obtained for the models on each dataset averaged over
five runs are shown in Tab.[2] The overlap coefficients are low (generally below 1%) except for the
the rETT dataset which is a moderate value of around 15%. The histogram of the relational error
for each class of hallucination level is shown in Fig. 2] The results show that quartile thresholding
is a simple and effective way to classify responses into their expected relational hallucination levels
where the distributions with high and low hallucination have low overlap.

DATASET  MODEL OVERLAP COEFFICIENT Ag, (0C) Ag, (UC) Ag, (FC)
DM (OURS) 0.0008 £ 0.0003 0.6230 +0.1060  0.4789 4+ 0.1045  0.6705 4+ 0.1061
RECL MOMENT 0.0000 =+ 0.0000 0.7397 4+ 0.1159 0.7549 £+ 0.12 0.7249 4+ 0.2889
TIMER 0.0000 =+ 0.0000 0.7289 +0.1854  0.705+0.1919  0.5468 + 0.2581
DM (OURS) 0.0167 4 0.0007 0.7051 +0.1656  0.5089 +0.1782  0.8550 + 0.2287
RWTH MOMENT 0.0005 £ 0.0005 0.8086 +0.1195 0.8143 +0.1242  0.7231 £ 0.239
TIMER 0.0002 £ 0.0001 0.81754+0.149  0.7877+£0.1752 0.7753 £0.1772
DM (OURS) 0.0009 £ 0.0003 0.6600 £ 0.0902 0.4493 +0.1162  0.8057 4+ 0.2055
RTRAFFIC MOMENT 0.0000 =+ 0.0000 0.7769 £0.1229 0.7638 £ 0.1197 0.8739 4+ 0.1409
TIMER 0.0000 =+ 0.0000 0.7743 £0.1679  0.7985 + 0.161 0.5228 £ 0.2608
DM (OURS) 0.0111 £ 0.0040 0.7311 £0.1372  0.7079 £ 0.1225 0.8787 4+ 0.1986
RILLNESS MOMENT 0.0008 £ 0.0017 0.8392 £0.2418 0.7860 £+ 0.1810  0.9647 4+ 0.3061
TIMER 0.0000 =£ 0.0000 0.6475 £0.2664 0.5988 £+ 0.2501  0.5343 4+ 0.3847
DM (OURS) 0.1538 £ 0.0054 0.7681 £0.2128 0.6724 £+ 0.2382 0.9074 4+ 0.3903
RETT MOMENT 0.0880 £ 0.0045 0.8291 £0.1645 0.8269 £+ 0.1597 0.7353 +0.3114
TIMER 0.0371 £ 0.0061 0.7752 £0.2439 0.7833 £0.1976  0.672 + 0.2444

Table 2: Overlap coefficient between the data distribution classified as low and high hallucination
(lower is better). Relative change in relational error Ag, of the selected response using filtering
(lower is better).

4.3 MITIGATION OF HALLUCINATION AT INFERENCE

The proposed filtering method for mitigating relational hallucination can be evaluated by computing

the relational error E,. for the response selected by filtering Eﬁj

)

and comparing it to the mean
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Figure 2: Histogram showing the distribution of relational error for the data points with expected
low (blue), medium (red) and high (green) hallucination level. The x-axis is the relational error and
the y-axis is the probability. The subplots are aligned by dataset (column) and model (row).

relational error for the N sampled responses (F,.) = % Zj\;l E,(j ). The relative change in relational

error can then be computed Ag, = G /{E;). The lower A, _is the better, with Ay = 1
meaning there is no improvement. Since the FMs (MOMENT and TIMER) are deterministic, a
simple way to make sample from them is to activate the dropout layers used for their training. The
sample with the lowest CE is then selected. Instead of computing A g, relative to the mean of the
ensemble, it should be relative to the response from the model with deactivated dropout.

The relative change in relational error A, for each dataset averaged over 20 runs is given in Tab2]
(mean and standard deviation). The average relative change A g, is always less than unity, which
means that the filtering method is effective, even when the pre-trained FMs with dropout. The pro-
posed method can on average reduce the relational error by up to 55.0% for the diffusion model and
47.7% for the pre-trained FMs. This demonstrates that filtering using CE is a simple and effective
method for mitigating relational hallucination.

5 CONCLUSION

Hallucination in MVTS imputation has been defined using analogies from established definitions
in NLP. Pre-trained open-source MVTS FMs are seen to hallucinate in this manner. By training a
diffusion model on data in a target domain and extracting the proposed CE metric, it is possible to
detect and mitigate MVTS hallucination, being able to on average reduce the hallucination of pre-
trained FMs by up to 47.7%. This work encourages the responsible use of MVTS FMs by formally
defining, detecting and mitigation MVTS hallucination.

Limitations and Further Work While our work shows promising results, it is largely empirical.
For instance, our mitigation method statistically improves responses, but is not guaranteed to always
do so. Additionally, the MLP architecture used for the diffusion model is simple, and hence does not
naturally support variable length responses. Since we stack each variable into one time-series as the
input to the model, the simple MLP architecture does not scale well to a high number of variables
or long windows. This is however not a limitation with the method itself but rather a design choice
chosen for simplicity. Future work can be done to investigate neural architecture choices and the
use of latent diffusion or tokenisation. Although the current method used to convert deterministic
pre-trained MVTS FMs into non-determinstic ones that can be sampled works, it is very simple.
Exploring decoding strategies and methods from NLP for sampling responses that can be applied to
MVTS is another promising direction.
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6 REPRODUCIBILITY STATEMENT

We provide the necessary details to ensure the reproducibility of our work. The theoretical prelimi-
naries required for our methods are provided in Section[I.1] Our proposed method and approach are
described in Section [3] Implementation details, including hardware and software, training proce-
dures, experimental setting, data processing and information on models are presented in Section [4]
Sources and licenses for the standard datasets and pre-trained models used in our work are provided
in Appendix [D] Additional information on training procedures, experimental settings and data pro-
cessing is detailed in the provided source code, which contains instructions as part of a README
file.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv:2303.08774, 2023.

Sumukh K Aithal, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Understanding hallucina-
tions in diffusion models through mode interpolation. arXiv:2406.09358, 2024.

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and fore-
casting with structured state space models. arXiv:2208.09399, 2022.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 1, 2023.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv:2403.07815, 2024.

California Department of Transportation. Performance measurement system (pems). http://
pems .dot .ca.gov/, 2024. Accessed: 2025-01-16.

Centers for Disease Control and Prevention. Fluview: Flu activity & surveillance. https://gis.
cdc.gov/grasp/fluview/fluportaldashboard.html), 2024. Accessed: 2025-01-
16.

Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu. Purr: Ef-
ficiently editing language model hallucinations by denoising language model corruptions.
arXiv:2305.14908, 2023a.

Weixin Chen, Dawn Song, and Bo Li. Grath: Gradual self-truthifying for large language models.
arXiv preprint arXiv:2401.12292, 2024.

Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen Li, Shilin He,
Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Imdiffusion: Imputed diffusion models
for multivariate time series anomaly detection. arXiv:2307.00754, 2023b.

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
language models. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pp. 245-255, 2023c.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv:2310.10688, 2023.

P Kingma Diederik. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving

factuality and reasoning in language models through multiagent debate. arXiv:2305.14325, 2023.

10


http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Under review as a conference paper at ICLR 2026

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xueying Zhang, Yu Wang, and Shizhu Liu.
Halo: Estimation and reduction of hallucinations in open-source weak large language models.
arXiv:2308.11764, 2023.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625-630, 2024.

Jack Gallifant, Amelia Fiske, Yulia A Levites Strekalova, Juan S Osorio-Valencia, Rachael Parke,
Rogers Mwavu, Nicole Martinez, Judy Wawira Gichoya, Marzyeh Ghassemi, Dina Demner-
Fushman, et al. Peer review of GPT-4 technical report and systems card. PLOS Digital Health, 3
(1):e0000417, 2024.

Azul Garza and Max Mergenthaler-Canseco. TimeGPT-1. arXiv:2310.03589, 2023.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv:2402.03885, 2024.

Yuzhe Gu, Ziwei Ji, Wenwei Zhang, Chengqi Lyu, Dahua Lin, and Kai Chen. Anah-v2: Scaling
analytical hallucination annotation of large language models. arXiv preprint arXiv:2407.04693,
2024.

Yuzhe Gu, Wenwei Zhang, Chengqi Lyu, Dahua Lin, and Kai Chen. Mask-dpo: Generalizable
fine-grained factuality alignment of llms. arXiv preprint arXiv:2503.02846, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, and Xilun Chen.
Flame: Factuality-aware alignment for large language models. Advances in Neural Information
Processing Systems, 37:115588-115614, 2024.

Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional
diffusion framework for spatiotemporal imputation. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE), 2023.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
1d=bYRYb7DMNo.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11461-11471, 2022.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language models. arXiv:2303.08896, 2023.

Max Planck Institute for Biogeochemistry. Weather data. https://www.bgc-jena.mpg.de/
wetter/, 2024. Accessed: 2025-01-16.

Caspar Meijer and Lydia Y Chen. The rise of diffusion models in time-series forecasting.
arXiv:2401.03006, 2024.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1-40, 2023.

Abhika Mishra, Akari Asai, Vidhisha Balachandran, Yizhong Wang, Graham Neubig, Yulia
Tsvetkov, and Hannaneh Hajishirzi. Fine-grained hallucination detection and editing for language
models. arXiv preprint arXiv:2401.06855, 2024.

11


https://openreview.net/forum?id=bYRYb7DMNo
https://openreview.net/forum?id=bYRYb7DMNo
https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/

Under review as a conference paper at ICLR 2026

Niels Miindler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations
of large language models. arXiv:2305.15852, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv:2211.14730, 2022.

Lorenzo Pacchiardi, Alex J Chan, Soren Mindermann, Ilan Moscovitz, Alexa Y Pan, Yarin Gal,
Owain Evans, and Jan Brauner. How to catch an ai liar: Lie detection in black-box 1lms by asking
unrelated questions. arXiv:2309.15840, 2023.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv:2302.12813, 2023.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin BiloS, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
et al. Lag-llama: Towards foundation models for time series forecasting. arXiv:2310.08278,
2023.

Vipula Rawte, Amit Sheth, and Amitava Das. A survey of hallucination in large foundation models.
arXiv:2309.05922, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proc. IEEE/CVF conference on com-
puter vision and pattern recognition, 2022.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. arXiv:2104.07567, 2021.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations

applications, volume 11006, pp. 369-386. SPIE, 2019.

Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu, Zhijing Wu, Yujia Zhou, and Yiqun Liu. Un-
supervised real-time hallucination detection based on the internal states of large language models.
arXiv preprint arXiv:2403.06448, 2024.

Sabera Talukder, Yisong Yue, and Georgia Gkioxari. Totem: Tokenized time series embeddings for
general time series analysis. arXiv:2402.16412, 2024.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information Pro-
cessing Systems, 2021.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-tuning
language models for factuality. In The Twelfth International Conference on Learning Represen-
tations, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv:2307.09288, 2023.

Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves
nine: Detecting and mitigating hallucinations of 1lms by validating low-confidence generation.
arXiv preprint arXiv:2307.03987, 2023.

Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen.
Deep learning for multivariate time series imputation: A survey. arXiv:2402.04059, 2024.

12



Under review as a conference paper at ICLR 2026

Xu Wang, Hongbo Zhang, Pengkun Wang, Yudong Zhang, Binwu Wang, Zhengyang Zhou, and
Yang Wang. An observed value consistent diffusion model for imputing missing values in multi-
variate time series. In Proc. 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sa-
hoo. Unified training of universal time series forecasting transformers, 2024. URL https:
//arxiv.org/abs/2402.02592,

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2D-variation modeling for general time series analysis. arXiv:2210.02186, 2022.

Chunjing Xiao, Zehua Gou, Wenxin Tai, Kunpeng Zhang, and Fan Zhou. Imputation-based time-
series anomaly detection with conditional weight-incremental diffusion models. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2742-2751,
2023.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. International Journal of Computer Vision, 132(12):5635-5662, 2024a.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1-39, 2023.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal
data. arXiv:2404.18886, 2024b.

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and Weiqiang Jia. Cognitive mirage: A review of
hallucinations in large language models. arXiv:2309.06794, 2023.

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation.
arXiv:2403.01742, 2024.

Zahra Zamanzadeh Darban, Geoffrey I Webb, Shirui Pan, Charu Aggarwal, and Mahsa Salehi. Deep
learning for time series anomaly detection: A survey. ACM Computing Surveys, 57(1):1-42, 2024.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. Alignscore: Evaluating factual consistency
with a unified alignment function. arXiv preprint arXiv:2305.16739, 2023.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley A Malin, and Sricharan Kumar. Sac3: Reliable
hallucination detection in black-box language models via semantic-aware cross-check consis-
tency. arXiv:2311.01740, 2023a.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A Smith. How language model
hallucinations can snowball. arXiv:2305.13534, 2023b.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and
Helen Meng. Self-alignment for factuality: Mitigating hallucinations in 1lms via self-evaluation.
arXiv preprint arXiv:2402.09267, 2024.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the Al ocean: a survey on hallucination in large
language models. arXiv:2309.01219, 2023c.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proc. AAAI
conference on Artificial Intelligence, 2021.

Jianping Zhou, Junhao Li, Guanjie Zheng, Xinbing Wang, and Chenghu Zhou. Mtsci: A conditional
diffusion model for multivariate time series consistent imputation. arXiv:2408.05740, 2024.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained LM. Advances in neural information processing systems, 2023.

13


https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2402.02592

Under review as a conference paper at ICLR 2026

A OTHER METRICS

It has been shown on a computer vision and toy Gaussian dataset that a measure of hallucination
can be extracted from unconditional diffusion models during the generation process |Aithal et al.
(2024). This measure will be referred to as the the trajectory variance (TV), which is the variance
of the predicted mean with respect to the diffusion time-step. The predicted mean at each diffusion
time-step (Eq. ) is obtained from the generation process and will be written as ; ¢, where 7 indexes
the data dimension and ¢ indexes the diffusion time-step. The TV metric is calculated as

My = Mean; <Vart(ui,t)), (10)

where variance is taken across the diffusion time-step and mean across the data dimension. A
schematic example of this is shown in Fig. 3] This measures the variation in the trajectory of the
variables during the diffusion process.

TV however only applies to unconditional generation and does not apply to the prompt-response
framework using imputation. This is because in the prompt-response framework, the subset of the
data dimension that is used for the prompt is not unconditionally generated. Three modifications to
the TV metric that address this are proposed. These are response trajectory spread (RTS), prompt
trajectory spread (PTS) and combined trajectory spread (CTS) metrics. We also propose two ad-
ditional metrics that use the magnitude of the noise returned by the diffusion model as a metric to
detect hallucination. These are prompt error (PE) and combined error (CE). The combined error is
the metric presented in the main text as this is the most effective metric and the other metrics fail at
detecting relational hallucination.
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Figure 3: Schematic showing the computation of the trajectory variance (TV) metric. The variance
is taken across the diffusion time-step ¢ and the mean is taken across the data dimension .

Response Trajectory Spread (RTS) Since TV is computed for unconditional generation, the sim-
plest generalisation to the prompt-response framework is to compute this metric for the response
only, as this is the part which is generated in a similar manner. Instead of using the variance how-
ever, this work uses the standard deviation since it is simpler and is more interpretable. The response
trajectory spread (RTS) can be computed as

MgTts = Mean; (Stdt(/ﬁi}t)>a Vi € 1., (11

where standard deviation is taken across the diffusion time-step, and mean across the data dimension.
This is illustrated in Fig. [3|but with standard deviation instead of variance.

Prompt Trajectory Spread (PTS) As we are using RePaint [Lugmayr et al.|(2022) to condition
the diffusion model, all predicted means of the prompt are clamped to the values provided by the
prompt. The values provided by the prompt can therefore be used as the mean that is required to
compute the standard deviation. The prompt trajectory spread (PTS) can be computed as

Mprs = Mean; <RMSEt(,U/i,t, LL’i)), Vi € Ip, (12)
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where the root mean square error is taken across the diffusion time-step and the mean across the data
dimension.

Combined Trajectory Spread (CTS) The final output from the model &; which combines both
the prompt and the response can also be used to compute the trajectory spread. The full diffusion
process can be computed one more time by setting the prompt as x; = &;,Vi € Z. The combined
trajectory spread (CTS) can then be computed for this as

McTs = Mean; <RMSEt(m,t,ﬁi)>7 VieZ, (13)

where the root mean square error RM SEy(p; ¢, ;) = \/% Zthl(,um — x;)2 is taken across the

diffusion time-step and the mean is taken across the data dimension. Since the full diffusion process
has to be computed completely an additional time, this metric is computationally expensive. CTS is
like PTS but includes both the prompt and response.

Prompt Error (PE) The previous metrics are all based on the trajectory variance |Aithal et al.
(2024). This work proposes two additional simple metrics based on the reconstruction error of the
final output of the model. The first considers the reconstruction error of the output with respect to
the prompt. Only indices ¢ € Zp are used since as are the only values where ground-truth is available
through the values provided by the prompt. PE can be computed as

Mpg = RMSEZ(JA?“J?J, Vi € Ip, (14)

where the RMSE is taken across the data dimension.

Combined Error (CE) The PE metric can be extended to also include the response indices Zg in
the same way as the CTS metric, which leads to the CE metric of Eqn. [0}

A.1 SENSITIVITY TO RELATIONAL HALLUCINATION

RTS The sensitivity of the RTS metric to the relational error on the test set for each task and
dataset is shown in Fig.[d] The metric is not sensitive to the relational error.

rECL rWTH rTraffic rIllness rETT
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Figure 4: Scatter plot showing the relationship between the RTS metric (z-axis) and the ground-truth
relational error (y-axis) on the test set. The subplots are aligned by dataset (column) and task (row).
The axis limits are the same within each dataset (column).
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PTS The sensitivity of the PTS metric to the relational error on the test set for each task and dataset
is shown in Fig.[5] The metric is not sensitive to the relational error.
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Figure 5: Scatter plot showing the relationship between the PTS metric (z-axis) and the ground-truth
relational error (y-axis) on the test set. The subplots are aligned by dataset (column) and task (row).
The axis limits are the same within each dataset (column).

CTS The sensitivity of the CTS metric to the relational error on the test set for each task and
dataset is shown in Fig.[6] The metric is not sensitive to the relational error.
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Figure 6: Scatter plot showing the relationship between the CTS metric (z-axis) and the ground-
truth relational error (y-axis) on the test set. The subplots are aligned by dataset (column) and task
(row). The axis limits are the same within each dataset (column).

PE Sensitivity of PE to relational error on the test set for each task and dataset is shown in Fig.[7}
PE is not as robustly and consistently sensitive to the relational error as the CE metric, which is
shown in Fig. [8] This may be because PE only includes the prompt, and since relational hallucination
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is the inconsistency of a prompt-response pair, it is expected that a metric including both the prompt
and response such as CE would perform better.
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Figure 7: Scatter plot showing the relationship between the PE metric (z-axis) and the ground-truth
relational error (y-axis) on the test set. The subplots are aligned by dataset (column) and task (row).
The axis limits are the same within each dataset (column).

CE Sensitivity of CE to relational error on the test set for each task and dataset is shown in Fig.[§]
The CE metric is sensitive to the relational error.
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Figure 8: Scatter plot showing the relationship between the CE metric (z-axis) and the ground-truth
relational error (y-axis) on the test set. The subplots are aligned by dataset (column) and task (row).
The axis limits are the same within each dataset (column).
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B OUT OF DISTRIBUTION BEHAVIOR

The difference in behavior between distributional hallucination (OOD) and relational hallucination
can be studied by probing the diffusion model with prompts that are on the edge of the training
distribution in the data space. One can achieve this by taking prompts from the training set and
pushing it out of distribution in some way. Two ways to achieve this is to apply a constant offset to
the prompt (this preserves the prompt shape but pushes the values out of distribution), or to flatten
the prompt to the mean of that prompt (this pushes the prompt shape out of distribution but leaves
the values in-distribution). As shown in Figures[9]and [I0] respectively, the relationship between CE
metric and the ground truth E, under these conditions is maintained. Particularly, this relationship
holds as the offset increases. This shows that prompts that are most out of distribution but are
relationally correct can still be detected using the CE metric.
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Figure 9: Scatter plot showing the relationship between the CE metric (z-axis) and the ground-truth
relational error (y-axis) for out of distribution data constructed by offsetting in-distribution prompts.
Points with blue, red and purple colors correspond to points that are increasingly out of distribution,
respectively. The subplots are aligned by dataset (column) and task (row). The axis limits are the
same within each dataset (column).
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Figure 10: Scatter plot showing the relationship between the CE metric (x-axis) and the ground-truth
relational error (y-axis) for out of distribution data constructed by flattening variables. The subplots
are aligned by dataset (column) and task (row). The axis limits are the same within each dataset
(column).

C

FILTERING

Our proposed filtering method mitigates hallucination by sampling N responses and selecting the
response with the lowest CE. The reduction in hallucination levels Ag, as N is increased is shown
in Figure@ for all the tasks, datasets and models. As expected, A, decreases as NV is increased,
with the ‘elbow’ of the plots occurring around the value of NV = 20. The value of N = 20 is what
is used in the main body of this work.
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Figure 11: The reduction in hallucination levels A g,
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D LICENSES FOR EXISTING ASSETS

D.1 DATASETS

The datasets are commonly used MVTS time-series datasets and can be accessed from the Auto-
former repository (https://github.com/thuml/Autoformer) which is under MIT license.

« ECL-CCBY 4.0

e WTH - N/A

e Traffic - CC BY 4.0
Illness - N/A

*« ETT - CC BY-ND 4.0

D.2 MODELS

* MOMENT - MIT (https://github.com/moment-timeseries-foundation-model/moment)
e TIMER - MIT (https://github.com/thuml/Large-Time-Series-Model)

E USE OF LARGE LANGUAGE MODELS

Large language models were not used beyond grammar checking and polishing writing.
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