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Abstract

There is a growing concern about applying batch normalization (BN) in adversarial training
(AT), especially when the model is trained on both adversarial samples and clean samples
(termed Hybrid-AT). With the assumption that adversarial and clean samples are from two
different domains, a common practice in prior works is to adopt Dual BN, where BNadv

and BNclean are used for adversarial and clean branches, respectively. A popular belief for
motivating Dual BN is that estimating normalization statistics of this mixture distribution
is challenging and thus disentangling it for normalization achieves stronger robustness. In
contrast to this belief, we reveal that disentangling statistics plays a less role than disen-
tangling affine parameters in model training. This finding aligns with prior work (Rebuffi
et al., 2023), and we build upon their research for further investigations. We demonstrate
that the domain gap between adversarial and clean samples is not very large, which is
counter-intuitive considering the significant influence of adversarial perturbation on the
model accuracy. We further propose a two-task hypothesis which serves as the empirical
foundation and a unified framework for Hybrid-AT improvement. We also investigate Dual
BN in test-time and reveal that affine parameters characterize the robustness during infer-
ence. Overall, our work sheds new light on understanding the mechanism of Dual BN in
Hybrid-AT and its underlying justification.

1 Introduction

Adversarial training (AT) (Ganin et al., 2016; Madry et al., 2018; Shafahi et al., 2019; Andriushchenko
& Flammarion, 2020; Bai et al., 2021) that optimizes the model on adversarial examples is a time-tested
and effective technique for improving robustness against adversarial attack (Qiu et al., 2019; Xu & Yang,
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2020; Dong et al., 2018; Zhang et al., 2021b). Beyond classical AT (also termed Madry-AT) (Madry et al.,
2018), a common AT setup is to train the model on both adversarial samples and clean samples (termed
Hybrid-AT) (Goodfellow et al., 2015; Kannan et al., 2018; Xie & Yuille, 2020; Xie et al., 2020a). Batch
normalization (BN) (Ioffe & Szegedy, 2015; Santurkar et al., 2018; Bjorck et al., 2018; Li et al., 2017) has
become a de facto standard component in modern deep neural networks (DNNs) (He et al., 2016; Huang
et al., 2017; Zhang et al., 2019a; 2021a), however, there is a notable concern regarding how to use BN in the
Hybrid-AT setup. This concern mainly stems from Xie & Yuille (2020); Xie et al. (2020a), which claims the
adversarial and clean samples are from two different domains, and thus a separate BN should be used for
each domain. This technique applying different BN for different domains has been adopted in multiple works
with different names, e.g., Dual BN (Jiang et al., 2020; Wang et al., 2020; 2021) and mixture BN (Xie &
Yuille, 2020). With different names, however, they refer to the same practice of adopting BNadv and BNclean

for adversarial and clean samples, respectively. To avoid confusion, we use Dual BN for the remainder of
this work.

Despite the increasing popularity of Dual BN, the mechanism of how Dual BN helps Hybrid-AT remains not
fully clear. Toward a better understanding of this mechanism, we revisit a long-held belief in Xie & Yuille
(2020); Xie et al. (2020a). Specifically, it justifies the necessity of Dual BN in Hybrid-AT with the following
claim (quoted from the abstract of Xie & Yuille (2020)):

“Estimating normalization statistics of the mixture distribution is challenging" and “disentangling the mixture
distribution for normalization, i.e., applying separate BNs to clean and adversarial images for statistics
estimation, achieves much stronger robustness."

The above claim (Xie & Yuille, 2020) emphasizes the necessity of disentangling the normalization statistics
(NS) in Hybrid-AT. The underlying motivation for the above claim is that BN statistics calculated on the
clean domain are incompatible with training the model on the adversarial domain, and vice versa. Therefore,
Hybrid-AT with a single BN suffers from such incompatibility with BN statistics calculated from the mixed
distribution, while Dual BN can avoid the incompatibility through training the clean and adversarial samples
with two BN branches separately. As a preliminary investigation, our work experiments with a new variant
of AT with Cross-BN, namely training the adversarial samples with BNclean and vice versa. Interestingly,
we find that using BN from another domain only has limited influence on the performance. This observation
inspires us to have a closer look at how Dual BN works in Hybrid-AT. Through untwining normalization
statistics (NS) and affine parameters (AP) in Dual BN to include one effect while excluding the other,
we demonstrate that two AP sets can achieve comparable performance to the original Dual BN, which is
consistent with the finding in Rebuffi et al. (2023). We also reveal that disentangled NS can achieve similar
performance to Dual BN under certain conditions like small perturbations (ϵ = 8/255). These findings refute
the prior claim emphasizing the role of disentangled NS in Dual BN (Xie & Yuille, 2020; Xie et al., 2020a),
and also inspires us to investigate whether the motivation for Dual BN holds, i.e., the two-domain hypothesis
in Xie & Yuille (2020); Xie et al. (2020a).

As the motivation for adopting Dual BN, the two-domain hypothesis assumes that “clean images and adver-
sarial images are drawn from two different domains" (quoted from Xie & Yuille (2020)). This hypothesis is
verified in Xie & Yuille (2020) mainly by the visualization of NS, which highlights a large adversarial-clean
domain gap. However, we point out that their visualization has a hidden flaw, which makes their claim
regarding the domain gap between adversarial and clean samples deserve a closer look. Specifically, the vi-
sualization in Xie & Yuille (2020) ignores the influence of different AP when calculating NS. After fixing this
hidden flaw, we demonstrate that the adversarial-clean domain gap is not as large as claimed in prior work.
Interestingly, under the same perturbation/noise magnitude, we show that there is no significant difference
between adversarial-clean domain gap and noisy-clean counterpart.

Inspired by the above findings, we propose a two-task hypothesis to replace the two-domain hypothesis in
Xie & Yuille (2020); Xie et al. (2020a) for justification on how Dual BN works in Hybrid-AT. Specifically,
we claim that there are two tasks in Hybrid-AT: one task for clean accuracy and the other for robustness.
Our two-task hypothesis offers empirical foundations and a unified framework for Hybrid-AT improvements,
which generalizes Hybrid-AT with Dual BN to various model designs, including the adapter method in
Rebuffi et al. (2023) and Trades-AT (Zhang et al., 2019b). In addition to exploring BN for training Hybrid-
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AT models, our study delves into Dual BN at test time, uncovering that affine parameters characterize
robustness during inference.

We summarize our main contributions as follows.

• Our work thoroughly investigates how disentangled normalization statistics (NS) and affine param-
eters (AP) in Dual BN impact the training Hybrid-AT models, leading to a comprehensive and solid
refutation of prior claims about the significance of NS.

• Our work investigates the adversarial-clean domain gap. We point out a hidden flaw of NS visual-
ization in prior work, and demonstrate the adversarial-clean domain gap is not as large as expected
both visually and quantitatively.

• Our work proposes a two-task hypothesis as an empirical foundation and unified framework for
enhancing Hybrid-AT, connecting diverse methods like Dual BN, Dual Linear, Adapters and Trades-
AT. This hypothesis may bring new inspirations to Hybrid-AT improvements from a new perspective.

• Our study examines Dual BN at test time, exploring various NS and AP types with a pretrained
model and revealing that AP determines robustness during inference.

2 Problem overview

2.1 Adversarial training

Adversarial training. Adversarial training (AT) (Ganin et al., 2016; Madry et al., 2018; Shafahi et al.,
2019; Andriushchenko & Flammarion, 2020; Bai et al., 2021) has been the most powerful defense method
against adversarial attacks, among which Madry-AT (Madry et al., 2018) is a typical method detailed as
follows. Let’s assume D is a data distribution with (x, y) pairs and f(·, θ) is a model parametrized by θ. l
indicates cross-entropy loss in classification. Instead of directly feeding clean samples from D to minimize the
risk of E(x,y)∼D[l(f(x, θ), y)], Madry et al. (2018) formulates a saddle problem for finding model parameter
θ by optimizing the following adversarial risk:

arg min
θ

E(x,y)∼D

[
max
δ∈S

l(f(x + δ; θ), y)
]

(1)

where S denotes the allowed perturbation budget which is a typically lp norm-bounded ϵ. We term the above
adversarial training framework as Classical-AT. It adopts a two-step training procedure (inner maximization
+ outer minimization), and trains the robust model with only adversarial samples. Following the same
procedure, Xie & Yuille (2020); Xie et al. (2020a) propose to train the robust model with both clean and
adversarial samples, termed as Hybrid-AT. The loss of Hybrid-AT is defined as follows:

LHybrid = αl(f(x; θ), y) + (1 − α)l(f(x + δ; θ), y) (2)

where x and x + δ indicate clean and adversarial samples, respectively. α is a hyper-parameter for balancing
the clean and adversarial branches, is set to 0.5 in this work following Goodfellow et al. (2015); Xie & Yuille
(2020).

2.2 Batch normalization in AT

Batch normalization (BN). We briefly summarize how BN works in modern networks. For a certain
layer in the DNN, we denote the feature layers of a mini-batch in the DNN as B = {x1, ..., xm}. The feature
layers are normalized by mean µ and standard deviation σ as:

x̂i = xi − µ

σ
· γ + β (3)
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Figure 1: Clean accuracy and robustness (PGD10 Accuracy) of Cross-AT during training. In Cross-AT, the
adversarial samples are normalized by the BN statistics calculated by clean samples. Interestingly, Cross-AT
yield comparable robustness to original Self-BN(BNadv).

Table 1: Test accuracy of Cross-Hybrid-AT (ϵ = 16/255). In Cross-Hybrid-AT, the adversarial branch is
normalized by BNclean, and the clean branch is normalized by BNadv. Experimental results show that Cross-
Hybrid-AT achieves comparable results to Hybrid-AT with vanilla Dual BN.

Model Training Test Clean PGD-10 AA
Hybrid-AT Dual BN BNadv 61.84 31.67 22.51
Cross-Hybrid-AT Dual BN BNclean 59.56 31.25 22.40
Hybrid-AT Single BN 93.70 29.86 0.48

where γ and β indicate the weight and bias in BN, respectively. To be clear, we refer µ and σ as normalization
statistics (NS), γ and β as affine parameters (AP). During training, NS is calculated on the current mini-
batch statistics for the update of model weights. Meanwhile, a running average of NS is recorded in the
whole training process, which is applied for inference after training ends.

Dual BN in AT. There is an increasing interest in investigating BN in the context of adversarial robust-
ness (Awais et al., 2020; Cheng et al., 2020; Nandy et al., 2021; Sitawarin et al.; Gong et al., 2022). This
work focuses on Hybrid-AT with Dual BN (Xie & Yuille, 2020; Xie et al., 2020a) which applies BNclean and
BNadv to clean branch and adversarial branch, respectively.

2.3 Experimental setups

Pang et al. (2020) demonstrates that AT’s basic training settings significantly impact model performance
and recommended specific parameters for a fair comparison of AT methods. If not specified, we adhere to
the suggested settings in Pang et al. (2020).

Experimental setups. In this work, we perform experiments on CIFAR10 (Krizhevsky et al., 2009; An-
driushchenko & Flammarion, 2020; Zhang et al., 2022) with ResNet18 (Andriushchenko & Flammarion,
2020; Targ et al., 2016; Wu et al., 2019; Li et al., 2016; Zhang et al., 2022). Specifically, we train the model
for 110 epochs. The learning rate is set to 0.1 and decays by a factor of 0.1 at the epoch 100 and 105. We
adopt an SGD optimizer with weight decay 5 × 10−4. For generating adversarial examples during training,
we use ℓ∞ PGD attack with 10 iterations and step size α = 2/255. For the perturbation constraint, ϵ is set
to ℓ∞ 8/255 (Pang et al., 2020) or 16/255 (Xie & Yuille, 2020). Following Pang et al. (2020), we evaluate
the model robustness under PGD-10 attack (PGD attack with 10 steps) and AutoAttack (AA) (Croce &
Hein, 2020).

3 On the BN induced misalignment

In Hybrid-AT, the model is trained with two branches: a clean branch and an adversarial branch. These
two branches share all model weights but are found to require independent BN modules, i.e., Dual BN (Xie
& Yuille, 2020; Xie et al., 2020a). At test time, only a single branch can be used by choosing either BNadv
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Table 3: Test accuracy (%) of untwining NS and AP in Dual BN. For NSs, 1 indicates mixed distribution
and 2 indicates disentangled distribution for normalization. For APs, 1 indicates a single set and 2 indicates
double sets of APs. The subscripts of APadv and APclean indicate the input data type used during training.
Setup1 with two sets of APs achieves comparable results with Dual BN.

Setups NS AP ϵ = 8/255 ϵ = 16/255
Clean PGD-10 AA Clean PGD-10 AA

Single BN 1 1 88.06 49.75 7.03 93.70 29.86 0.48
Dual BN (BNadv) 2 2 82.77 51.33 46.19 61.84 31.67 23.14
Dual BN (BNclean) 2 2 94.91 0.32 0.10 94.18 0.00 0.00
Setup1 (APadv) 1 2 81.86 50.99 44.63 60.02 30.89 23.43
Setup1 (APclean) 1 2 94.74 0.10 0.04 94.30 0.00 0.00
Setup2 (NSadv) 2 1 85.49 49.39 42.96 55.91 21.92 10.64
Setup2 (NSclean) 2 1 89.22 49.48 42.95 86.35 1.08 0.00

or BNclean. The adversarial branch (with BNadv) is adopted in Xie & Yuille (2020) for prioritizing high
model robustness, while BNclean is adopted in Xie et al. (2020a) for only considering clean accuracy.

Table 2: Test accuracy (%) of Hybrid-AT
with Dual BN. BNclean leads to almost zero
robustness under both perturbation bud-
gets (ϵ): 8/255 and 16/255.

ϵ Setups Clean PGD-10 AA
8/255 Dual BN (BNadv) 82.77 51.33 46.19

Dual BN (BNclean) 94.91 0.32 0.10
16/255 Dual BN (BNadv) 61.84 31.67 23.14

Dual BN (BNclean) 94.18 0.00 0.00

However, swapping the BN during inference, i.e., adopting
BNclean for robustness and BNadv for clean accuracy, leads to
a significant performance drop. As shown in Table 2, BNclean

leads to almost zero robustness during inference. This interest-
ing phenomenon inspires us to investigate the following ques-
tion: will BNclean achieve robustness if it is trained with the
adversarial branch, and vice versa? To facilitate discussion of
the above misalignment, we introduce a new term Cross-BN
which refers to adopting BNclean for the adversarial branch or BNadv for the clean branch. With a similar
terminology rule, BNclean for the clean branch or BNadv for the adversarial branch is termed as Self-BN.

Figure 2: Cross-AT: Replacing BNadv with
BNclean in the adversarial branch. The adversar-
ial samples are normalized by the BN statistics
calculated by clean samples.

Cross-AT: a preliminary investigation. Before inves-
tigating Hybrid-AT with Cross-BN, we first investigate a
setting where only adversarial samples are used for model
training. Note that it is adversarial branch, and the base-
line model with a Self-BN adopts BNadv. Cross-AT is con-
ducted by replacing the default BNadv with a Cross-BN,
i.e., BNclean (see Figure 2). Specifically, the adversarial
samples are normalized by the BN statistics calculated by
clean samples. It should be noted that in Cross-AT, the
clean samples are used only for forward propagation to
get the BN statistics, and the model weights are updated
only by the adversarial branch. Interestingly, although
the adversarial branch is normalized by BNclean, Figure 1 shows that Cross-AT achieves comparable per-
formance as the baseline model with Self-BN(BNadv).

Cross-Hybrid-AT: Hybrid-AT with Cross-BN. Here, for the Dual BN in Hybrid-AT, we replace the
default Self-BN with Cross-BN and term it Cross-Hybrid-AT. In Cross-Hybrid-AT, the adversarial branch
is normalized by BNclean, and the clean branch is normalized by BNadv. As shown in Table 1, BNclean in
Cross-Hybrid-AT achieves comparable results to BNadv in Hybrid-AT. The finding in Cross-Hybrid-AT is
consistent with that in Cross-AT, which indicates that Cross-BN achieves comparable results to Self-BN.

Implication of the above results. As discussed above, training the model with Cross-BN leads to a
comparable performance as with Self-BN in Hybrid-AT. However, this finding appears counter-intuitive
considering the results of Hybrid-AT with Single BN. As shown in Table 1, Single BN leads to almost
zero robustness (0.48%) under AA attack. Note that a single BN is calculated by a mixture of clean and
adversarial samples. If calculating BN statistics on either clean examples or adversarial examples can lead
to high robustness, how come training on BN calculated on hybrid samples leads to an AA robustness close
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to zero? This finding also conflicts with the claims in Xie & Yuille (2020); Xie et al. (2020a) that emphasize
the importance of NS, and inspire us to investigate how Dual BN works in Hybrid-AT.

4 Understanding how Dual BN works in training of Hybrid-AT

The failure of prior claims Xie & Yuille (2020); Xie et al. (2020a) to explain our observations in Section
3 inspires us to investigate how Dual BN works in Hybrid-AT. On top of the single BN as a default case,
Dual BN introduces an auxiliary BN component and causes two changes: (i) disentangling the mixture
distribution for normalization statistics (NS) and (ii) introducing two sets of affine parameters (AP). To
fully understand Dual BN in Hybrid-AT, we delve into its mechanisms.

Figure 3: Illustration of different BN setups for un-
twining NS and AP in Dual BN of Hybrid-AT.

Untwining NS and AP in Dual BN. As
discussed above, compared with Hybrid-AT with
Single-BN, Dual BN brings two effects: disentangled
NSs and two sets of APs. To determine the influence
of each effect on the model performance, we design
two setups of experiments to include only one effect
while excluding the other. In Setup1, we only in-
clude the effect of two sets of APs, by applying two
different sets of APs (βadv/γadv and βclean/γclean)
in the adversarial and clean branches while using
the default mixture distribution for normalization.
In Setup2, we only include the effect of two sets of
NSs by disentangling this mixture distribution with
two different sets of NSs while making BNclean and
BNadv share the same set of APs. The above setups
of BNs are summarized in Figure 3 and we discuss the experimental results in Table 3 as follows.

Role of disentangled NS and AP. As shown in Table 3, Dual BN (with BNadv during inference) brings
significant robustness improvement over the Single BN baseline, which is consistent with findings in Xie
& Yuille (2020). Interestingly, under the attack of PGD-10, their robustness gap is not significant, how-
ever, under AA, the Single BN achieves very low robustness (7.03% and 0.48% for ϵ = 8/255 and 16/255,
respectively). Moreover, Setup1 (APadv) achieves comparable robustness as that of Dual BN (BNadv) for
ϵ = 8/255 and 16/255, suggesting two sets of APs alone achieve similar performance as Dual BN for yielding
higher robustness (APadv) than single BN setting. The effect of two sets of NSs is more nuanced: for a small
perturbation ϵ = 8/255, disentangling mixture distribution is beneficial for boosting the robustness under
strong AA; for a large perturbation ϵ = 16/255, this benefit is less significant. This can be explained by the
fact that training under ϵ = 16/255 is much harder than ϵ = 8/255.

Conclusions. Overall, we have two conclusions. First, two sets of AP achieve comparable performance to
Dual BN, aligning with the findings in Rebuffi et al. (2023). Moreover, our research extends beyond Rebuffi
et al. (2023) by not only disentangling AP but also exploring the disentanglement of NS for a more thorough
examination of Dual BN. Although not as effective as disentangling AP, disentangling NS can also achieve
comparable robustness to Dual BN under certain conditions even against the strong AutoAttack, such as
the small perturbation(ϵ = 8/255). However, the benefit of disentangling NS narrows significantly for large
perturbation.

5 On the domain gap between clean and adversarial samples

A model trained on a source domain performs poorly on a new target domain when there is a domain
shift (Daumé III, 2007; Sun et al., 2017). With BN as the target, it is common in the literature (Li et al.,
2017; Benz et al., 2021a; Schneider et al., 2020; Xie & Yuille, 2020; Xie et al., 2020a) to indicate the domain
gap by the difference of NS between two domains. In adversarial machine learning, prior work (Xie & Yuille,
2020; Xie et al., 2020a; Jiang et al., 2020) perceive the adversarial domain as a new domain. Specifically, Xie
& Yuille (2020) highlights the adv-clean domain gap by visualizing the difference of NS in BNadv and BNclean
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Figure 4: Visualization of normalization statistics (NS) by randomly choosing 20 channels and displaying
the NS calculated with different APs. The superscript and subscript of NS refer to the AP and input images
when calculating NS, respectively. For example, NSadv

clean is computed on clean samples with APadv. NSs
calculated by the same AP are close to each other, such as NSadv

adv and NSadv
clean calculated by APadv, so is

similar NSclean
clean and NSclean

adv calculated by APclean.

Figure 5: Visualization of affine parameters (AP). Randomly chose 20 channels for visualizing APclean and
APadv. There exists a gap between APclean and APadv.

(see Figure 5 of (Xie & Yuille, 2020)). The large domain gap visualized in (Xie & Yuille, 2020) is somewhat
in conflict with the finding in Section 4 that disentangling NS plays a less role for high performance. We
further investigate the adv-clean domain gap for a comprehensive understanding.

5.1 A hidden flaw leads to a misleading visualization

With our analysis in Section. 4, we know that the AP in BNclean and BNadv are different. The clean branch
and adversarial branch still have different weights, i.e., AP, even though the same set of convolutional filters
are shared. Therefore, the NS difference between BNclean and BNadv is characterized by two factors: (a)
AP inconsistency and (b) different domain inputs. We discuss the influence of these two factors on the NS
difference as follows.

Re-calibrated NS for disentangled analysis. In the default setup of Dual BN, NSclean is calculated
on clean samples with APclean, while NSadv is calculated on adversarial samples with APadv. In order to
analyze the influence of different AP and domain inputs on the NS, we additionally calculate the NS on
clean samples with APadv (denoted as NSadv

clean) and calculate the NS on adversarial samples with APclean

(denoted as NSclean
adv ). These two NS are termed re-calibrated NS since the AP and inputs are from

different branches. Following NSclean
adv and NSadv

clean to indicate AP choice with the superscript and indicate
sample choice with the subscript, we can also denote vanilla NSclean as NSclean

clean and denote NSadv as NSadv
adv.

Both NSclean
clean and NSadv

adv are termed as vanilla NS for differentiation. Details of obtaining various NS is
reported in Section A.1 of the appendix.
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Figure 6: Layer-wise discrepancy vi-
sualization. For all layers, there exists
a large distance (higher than zero) be-
tween APclean and APadv, see γ and
β in the figure. However, with the
same APadv, the gap between NSadv

adv

and NSadv
clean stays almost zero in all

layers, see µ and σ in the figure.

A hidden flaw of NS visualization in Xie & Yuille (2020). To exclude the influence of AP inconsis-
tency, we intend to compare NS between clean and adversarial samples with the same AP (the superscript
in NS). In other words, the domain gap is characterized by the difference between NSclean

clean and NSclean
adv or

that between NSadv
adv and NSadv

clean. Following the procedures in Xie & Yuille (2020), we plot different types of
NS in Figure 4 by randomly sampling 20 channels of the second BN layer in the first residual block. Fig. 4
shows that there exists a gap between NSclean

clean and NSadv
adv, which is consistent with the findings in Xie &

Yuille (2020). Moreover, there are two other observations from Figure 4. First, if we fix the input samples
and calculate NS with different AP, there exists a large gap, i.e., the gap between NSadv

clean and NSclean
clean, as

well as the gap between NSadv
adv and NSclean

adv . Second, those NSs with the same APs are very close to each
other: NSadv

adv and NSadv
clean are very similar to each other, and the same applies to NSclean

adv and NSclean
clean. We

report the visualization results of AP in Figure 5 for comparison, which shows a significant gap between
APclean and APadv.

Conclusions. We point out a flaw in Xie & Yuille (2020) that the large adv-clean gap visualized in Xie
& Yuille (2020) is caused by the AP consistency. When adopting the same AP, the adv-clean domain gap
significantly narrows. Our investigations suggest that the visualization and conclusions in Xie & Yuille
(2020) might convey a misleading message. Our findings update the understanding on the adv-clean domain
gap.

5.2 Adv-clean domain gap is not as large as expected

Quantitative measurement of domain gap. Figure 4 investigates the adv-clean domain gap qualita-
tively. For a quantitative comparison, we measure the Wasserstein distance between clean and adversarial
branches in different layers in Figure 6. As shown in Figure 6, the Wasserstein distance of NS between
clean and adversarial branches is much smaller than the difference of AP for a certain layer. This finding is
consistent with that in Figure 4 and Figure 5.

Table 4: Test accuracy (%) under random noise
and adversarial perturbation during inference.

Noise/perturbation Size 0 8/255 16/255
Random noise 94.0 92.7 86.6
Adversarial perturbation 94.0 0.00 0.00

Adv-clean versus noisy-clean domain gap. As sug-
gested in Benz et al. (2021a); Schneider et al. (2020),
noisy samples (images corrupted by random noise) can
be seen as a domain different from clean samples. Adver-
sarial perturbation is a worst-case noise for attacking the
model. Taking a ResNet18 model trained on clean samples for example, we report the performance under
adversarial perturbation and random noise (with the same magnitude) in Table 4. As expected, the model
accuracy drops to zero with adversarial perturbation. Under random noise of the same magnitude, we find
that the model performance only drops by a small margin. Given that the influence of adversarial pertur-
bation on the model performance is significantly larger than that of random noise, it might be tempting to
believe that the adversarial-clean domain gap is much larger than noisy-clean domain gap.

With Wasserstein distance of NS between different domains as the metric, we compare the adversarial-clean
domain gap with noisy-clean counterpart on the above ResNet18 model trained on clean samples, as shown
in Figure 7. The perturbation and noise magnitude are set to 16/255. Interestingly, we observe that there
is no significant difference between the adversarial-clean domain gap and noisy-clean counterpart.
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Figure 7: Visualization of adversarial-
clean domain gap and noisy-clean do-
main gap (perturbation/noise magni-
tude is set to 16/255).

Conclusions. Based on the visualization and quantitative results, we reveal that the adversarial-clean
domain gap is not as large as many might expect, considering the strong performance drop caused by
adversarial perturbation.

5.3 Interpreting Hybrid-AT from a two-task perspective

Table 5: Test accuracy of Hybrid-AT with Dual linear,
ϵ = 16/255. Hybrid-AT with Dual Linear achieves a
similar trend and comparable results with Dual BN.

Setups Branch Clean PGD10 AA

Dual BN BNadv 61.84 31.67 22.51
BNclean 94.18 0.00 0.00

Dual Linear Linearadv 60.72 28.84 16.50
Linearclean 91.43 2.21 1.30

New empirical foundation for Hybrid-AT im-
provement. Prior work (Xie & Yuille, 2020) takes
the two-domain hypothesis as the empirical foun-
dation for applying Dual BN in Hybrid-AT. Our
investigations in Section 5.1 and Section 5.2 iden-
tify a flaw in the two-domain hypothesis, and point
out that the adv-clean domain gap is not as large
as expected. These findings suggest discarding the
two-domain hypothesis in Hybrid-AT improvement. Instead, we propose a new empirical foundation for
Hybrid-AT improvement: the two-task hypothesis. Intuitively, with the two branches in Hybrid-AT, the
model weights are trained for two tasks: one for clean accuracy and the other for robustness. A common
approach for handling two tasks with a shared backbone is to make the top layers unshared. Here, we
experiment with a shared encoder of single BN but with dual linear classifiers. The results in Table 5 show
that Dual Linear results in similar behavior as Dual BN, validating the two-task hypothesis. Rebuffi et al.
(2023) proposes to use adapters for each type of input in Hybrid-AT model, which matches the classification
performance of Dual BN with significantly fewer parameters. The success of adapters in Rebuffi et al. (2023)
also validates our two-task hypothesis.

Table 6: Test accuracy of Hybrid-AT (Single BN) with
KL loss, ϵ = 16/255.

Setups Clean PGD10 AA
Single BN 93.70 29.86 0.48
Single BN (with KL loss) 68.86 33.61 23.60
Dual BN (BNadv) 61.84 31.67 22.51
Dual BN (BNclean) 94.18 0.00 0.00

A unified framework for Hybrid-AT improve-
ments. Our new perspective on Hybrid-AT enables
alternative solutions to mitigate the two-task con-
flict without resorting to two sets of APs. Here, we
experiment with including an additional regulariza-
tion loss, which is introduced to minimize the gap
between two tasks. As a concrete example, we add a
KL loss on the basic loss of Hybrid-AT in Eq 2. The
extra loss is designed to explicitly minimize the discrepancy between the outputs of adversarial and clean
branches. Interestingly, this simple change improves the AA result of Single BN significantly from 0.48%
to 23.60%. Compared to BNadv (the default branch during inference), Hybrid-AT with KL loss achieves
superior performance on both clean accuracy and robustness. Interestingly, the Hybrid-AT with KL loss
reminds us of another AT framework termed Trades-AT (Zhang et al., 2019b), which is also trained on hybrid
samples and has a KL loss. This might provide an explanation for the effectiveness of Trades-AT (Zhang
et al., 2019b) by analyzing the KL term. Admittedly, KL loss on the output is just a naive attempt, but its
promising result invites future works to explore other solutions.

Conclusions. Our investigations on the adv-clean domain gap suggest discarding the prior two-domain
hypothesis. Instead, we propose a two-task hypothesis as the new empirical foundation for Hybrid-AT
improvement. The two-task hypothesis also serves as a unified framework that collaborates different methods
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Table 7: Evaluation results of various NS and AP pairs, ϵ = 16/255. During inference, re-calibrated NS
achieves comparable performance to the default setting.

Setups NS AP ϵ = 8/255 ϵ = 16/255
PGD10 AA PGD10 AA

Default BNadv NSadv
adv APadv 51.33 46.19 31.67 22.51

BNclean NSclean
clean APclean 0.32 0.10 0.00 0.00

Swap Setup1 NSclean
clean APadv 17.1 9.16 10.02 9.80

Setup2 NSadv
adv APclean 0.00 0.00 0.45 0.00

Re-calibration Setup3 NSadv
clean APadv 51.75 46.55 32.73 24.40

Setup4 NSclean
adv APclean 0.00 0.00 0.00 0.00

together, such as Dual BN, adapters in Rebuffi et al. (2023) and Trades-AT (Zhang et al., 2019b) that seem
to be unrelated at first sight.

5.4 AP characterizes robustness in test-time

Investigation on BN in test-time has been a widely discussed topic in other areas (Li et al., 2017; Benz et al.,
2021a; Schneider et al., 2020). Different from Section 4 and Rebuffi et al. (2023) that investigates model
training, we further investigate how Dual BN works in test-time. Specifically, we compare the robustness
with various NS and AP combinations, as reported in Table 7. Details of obtaining various NS are reported
in Section A.1 of the appendix.

Robustness with various NS and AP pairs. Table 7 shows that given APadv, re-calibrated NSadv
clean

achieves a robustness of 51.75%, which is comparable to 51.33% with NSadv
adv. Note that the only difference

between NSadv
clean and NSadv

adv is that they are calculated by clean and adversarial samples, respectively. More-
over, given APclean, both NSclean

adv and NSclean
clean yield zero robustness. The results of swapping NSclean

clean and
NSadv

adv when AP is fixed is also given in Table 7 for comparison. We find that directly replacing NSadv
adv with

NSclean
clean in BNadv (Setup1) results in lower robustness (17.1%) than original BNadv (51.33%).

Conclusions. We conclude that AP characterizes the large robustness gap between BNclean and BNadv

during inference. When AP is consistent for both NS computation and robustness evaluation, the robustness
gap between the NS calculated on clean or adversarial samples is limited.

6 Related work

Adversarial training. Since the advent of Classical-AT (Madry et al., 2018) and Hybrid-AT (Xie & Yuille,
2020; Xie et al., 2020a), numerous works have attempted to improve AT from various perspectives. From
the data perspective, Uesato et al. (2019); Carmon et al. (2019); Zhang et al. (2019c) have independently
shown that unlabeled data can be used to improve the robustness. From the model perspective, AT often
benefits from the increased model capacity of models (Uesato et al., 2019; Xie & Yuille, 2020). Xie et al.
(2020b); Pang et al. (2020); Gowal et al. (2020) have investigated the influence and suggested that a smooth
activation function, like parametric softplus, is often but not always (Gowal et al., 2020) helpful for AT.
Another branch of studies aims to improve the training efficiency of adversarial training based on PGD
attack, termed as FAST AT (de Jorge et al., 2022; Jia et al., 2022b; Park & Lee, 2021; Wong et al., 2020;
Andriushchenko & Flammarion, 2020; Jia et al., 2022a). Specifically, FGSM attack is adopted in Wong
et al. (2020); Andriushchenko & Flammarion (2020); de Jorge et al. (2022) to replace PGD attack during
training, which achieves promising robustness with catastrophic overfitting problem tackled.

Dual BN in AT. Prior work (Xie et al., 2020a) shows that adversarial samples can be used to improve
recognition (accuracy) by adversarial training where adversarial samples are normalized by an independent
BNadv. Moreover, Xie & Yuille (2020) has shown that adding clean images in adversarial training (AT)
can significantly decrease robustness performance, where such negative effects can be alleviated to a large
extent by simply normalizing clean samples with an independent BNclean. Inspired by their finding, Jiang
et al. (2020) also adopts Dual BN in adversarial contrastive learning, showing that single BN performs
significantly worse than Dual BN. Beyond Dual BN, triple BN has been attempted in Fan et al. (2021) for
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incorporating another adversarial branch. Wang et al. (2021) has also combined Dual BN with Instance
Normalization to form Dual batch-and-Instance Normalization for improving robustness. Prior work (Xie
& Yuille, 2020) interprets the necessity of Dual BN from the perspective of an inherent large adversarial-
clean domain gap. By contrast, Rebuffi et al. (2023) demonstrates that separate batch statistics are not
necessary for Hybrid-AT and it is sufficient to use adapters with few domain-specific parameters for each type
of input. Extensive experimental results in Rebuffi et al. (2023) show that the proposed model matches
Dual BN’s performance and the adversarial model soups perform better on ImageNet variants than the
advanced masked auto-encoders. Our investigations extends the scope of Rebuffi et al. (2023) by reporting
new findings on previously unaddressed topics, including but not limited to the role of disengaged NS in
model training and the new understanding of adversarial-clean domain gap. Our two-task hypothesis extends
the adapter method proposed in Rebuffi et al. (2023) by not only underpinning the adapter method with
empirical evidence but also serving as a foundation for various methods utilizing domain-specific trainable
parameters. This hypothesis also links the adapter method to broader Hybrid-AT enhancement strategies,
such as Trades-AT (Zhang et al., 2019b). Additionally, the adapter’s success in Rebuffi et al. (2023) reinforces
our hypothesis, highlighting how our work complements and expands upon the contributions of Rebuffi et al.
(2023).

BN applications beyond AT. Prior work investigates BN in various fields beyond AT, such as for ad-
versarial transferability (Benz et al., 2021b; Dong et al., 2022). Benz et al. (2021b) investigates BN from
the non-robust feature perspective. Specifically, Benz et al. (2021b) empirically reveals that BN shifts
a model towards being more dependent on the non-robust features. Based on this finding, Benz et al.
(2021b) suggests strategies like removing BN or early stopping during the training of substitute models to
improve adversarial transferability. Another work Dong et al. (2022) provides both empirical and theo-
retical evidence which shows that the upper bound of adversarial transferability is influenced by the types
and parameters of normalization layers. Based on this observation, (Dong et al., 2022) proposes a Random
Normalization Aggregation (RNA) module to replace original normalization layers and create a combination
of different sampled normalization. Extensive experiments demonstrate that the proposed RNA module
achieves superior performance on different datasets and models. Another branch of work adopts Dual BN in
domain adaptation. AdaBN (Li et al., 2017) leverages different statistics for two domains but loses source
domain information by using only target domain statistics during inference. DSBN (Chang et al., 2019)
introduces a separate BN branch for unsupervised domain adaptation, extendable to multisource scenarios.
Huang et al. (2023) proposes reciprocal normalization that structurally aligns the source and target domains
by conducting reciprocity across domains. In this work, we mainly focus on investigating Dual BN in the
Hybrid-AT.

7 Conclusion

We experiment with Cross-AT and demonstrate the compatibility of clean samples’ BN statistics with the
adversarial branch, which inspires us to doubt the claims of prior work for justifying the necessity of Dual
BN in Hybrid AT. We investigate the effect of disentangled NS and AP on training a Hybrid-AT model,
leading to a thorough refutation of prior claims about the significance of NS. Our work further identifies a
visualization flaw of the prior two-domain hypothesis, and points out that the adversarial-clean domain gap
is not as large as expected. In addition, we propose a new interpretation of Hybrid-AT with Dual BN from
the two-task perspective. Finally, we investigate different types of NS and AP in test-time, revealing that
AP characterizes robustness during inference. Our study provides a comprehensive understanding of Dual
BN as well as the adversarial examples.
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A Appendix

A.1 Experimental Setups

Experimental setups. We train and evaluate all models in the paper using the same setups following Pang
et al. (2020). In this work, we perform experiments on CIFAR10 (Krizhevsky et al., 2009; Andriushchenko
& Flammarion, 2020; Zhang et al., 2022) with ResNet18 (Andriushchenko & Flammarion, 2020; Targ et al.,
2016; Wu et al., 2019; Li et al., 2016; Zhang et al., 2022) and follow the suggested training setups in Pang
et al. (2020) unless specified. Specifically, we train the model for 110 epochs. The learning rate is set to
0.1 and decays by a factor of 0.1 at the epoch 100 and 105. We adopt an SGD optimizer with weight decay
5×10−4. For generating adversarial examples during training, we use ℓ∞ PGD attack with 10 iterations and
step size α = 2/255. For the perturbation constraint, ϵ is set to ℓ∞ 8/255 (Pang et al., 2020) or 16/255 (Xie
& Yuille, 2020). Following Pang et al. (2020), we evaluate the model robustness under PGD-10 attack (PGD
attack with 10 steps) and AutoAttack (AA) (Croce & Hein, 2020).

Re-calibrate NS. The NSclean
clean and NSadv

adv correspond to original Dual BN’s NSclean and NSadv, respectively.
For re-calibrated NS, we simulate vanilla NS calculations, specifying the input domain following the subscript
and AP following the superscript. For example, NSadv

clean is computed by processing clean images through
the branch with APadv. To simulate the computation of running means in the original Dual BN, we forward
the samples for multiple epochs for converged results. In Table 7, we first calculate various types of NS and
then evaluate robustness by combining NS with AP.

Training details of models in Section 5.3. For the Dual Linear model, we add two linear layers above its
penultimate layer and train it using the Hybrid loss outlined in Equation 1. For models with regularization
loss, we train using a single BN and augment the original Hybrid-AT loss with an additional KL-divergence
between the predictions on adversarial and clean inputs.

A.2 Further investigations beyond BN

Inspired by finding that two sets of AP can achieve comparable results to Dual BN, we further investigate
whether this holds in cases beyond BN where disentangling NS is not applicable. For example, layer nor-
malization (LN) adopts sample-wise NS, and therefore it is not applicable to disentangle distribution-wise
NS between two domains. We experiment with dual AP on ResNet with LN and the results are reported
in Table 8. We observe that with Dual AP, LN performs similarly with BN in either setup (b) and (c) in
Figure 3. We also investigate other normalization methods and model architectures (such as ViT) in Table 8.
Table 8 shows that across various normalization methods and architectures, two AP sets achieve comparable
performance to Dual BN while single AP set fails to achieves high robustness against AA.

Table 8: Effect of dual AP on various types of normalizations and models(ϵ = 16/255), where LN, GN and
IN denote Layer Normalization, Group Normalization and Instance Normalization, respectively.

Norm Norm Setups Branch Clean PGD10 AA
ResNet BN Single BN / 93.70 29.86 0.48

Dual BN BNadv 61.84 31.67 22.51
Dual BN BNclean 94.18 0.00 0.00

LN Single AP / 75.12 18.81 11.80
Dual AP APadv 62.56 26.98 16.90
Dual AP APclean 88.41 0.00 0.00

GN Single AP / 81.85 21.94 14.50
Dual AP APadv 70.27 29.36 18.30
Dual AP APclean 91.82 0.00 0.00

IN Single AP / 92.55 23.06 1.20
Dual AP APadv 52.29 25.27 16.10
Dual AP APclean 92.35 0.00 0.00

ViT LN Single AP / 92.21 33.60 1.84
Dual AP APclean 58.02 30.08 12.44
Dual AP APadv 91.60 0.00 0.00

15


	Introduction
	Problem overview
	Adversarial training
	Batch normalization in AT
	Experimental setups

	On the BN induced misalignment
	Understanding how Dual BN works in training of Hybrid-AT
	On the domain gap between clean and adversarial samples
	A hidden flaw leads to a misleading visualization
	Adv-clean domain gap is not as large as expected
	Interpreting Hybrid-AT from a two-task perspective
	AP characterizes robustness in test-time

	Related work
	Conclusion
	Appendix
	Experimental Setups
	Further investigations beyond BN


