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ABSTRACT

Learning probability distribution is an essential framework in classical learning
theory. As a counterpart, quantum state learning has spurred the exploration of
quantum machine learning theory. However, as dimensionality increases, learning
a high-dimensional unknown quantum state via conventional quantum neural net-
work approaches remains challenging due to trainability issues. In this work, we
devise the quantum sequential scattering model (QSSM), inspired by the classical
diffusion model, to overcome this scalability issue. Training of our model could
effectively circumvent the vanishing gradient problem to a large class of high-
dimensional target states possessing polynomial-scaled Schmidt ranks. Theoret-
ical analysis and numerical experiments provide evidence for our model’s effec-
tiveness in learning both physical and algorithmic meaningful quantum states and
show an out-performance beating the conventional approaches in training speed
and learning accuracy. Our work has indicated that an increasing entanglement, a
property of quantum states, in the target states, necessitates a larger scaled model,
which could reduce our model’s learning performance and efficiency.

1 INTRODUCTION

The innovation of classical machine learning has brought significant convenience and efficiency in
industry and society. In particular, learning distributions between individual events and data is one
of the crucial tasks for multiple usages in decades Anderson et al. (1977); Geng (2016). A plethora
of approaches and schemes have been designed to learn probability distributions, such as continuous
evolutionary algorithms Hansen et al. (2015); Kern et al. (2004) and supervised learning within the
neural network (NN) framework including Boltzmann machine, graph neural network and diffusion
model Baum & Wilczek (1987); Franceschi et al. (2019); Hoogeboom et al. (2021)

Meanwhile, by the fast growth of the requirement on computational power, quantum computing,
as a prospective new framework, is expected to provide advantages over classical technology. The
remarkable achievements from classical machine learning models LeCun et al. (2015); Serban et al.
(2016) have spurred the generation of their counterparts within the field of quantum machine learn-
ing (QML) Biamonte et al. (2017); Schuld et al. (2015); Lloyd et al. (2013); Schuld et al. (2014).
Quantum neural networks (QNNs) composed of layers of parametrised quantum circuits have re-
ceived massive attention regarding various architectures addressing computation challenges Reben-
trost et al. (2018); Zhao et al. (2019); Cong et al. (2019), including quantum state learning.

In quantum, the correlations between quantum data are encoded in the quantum states. Conse-
quently, the task of learning an arbitrary quantum state bears a resemblance to classical distribution
learning, which has inspired developments of state learning QML models Chowdhury et al. (2020);
Ghosh et al. (2019); Wang et al. (2021a). As a main solution to quantum state learning, however,
the implementation of the QNN-based methods suffers obstacles in efficiency, scalability and train-
ability. Specifically, training deep QNNs composed of multiple layers can experience exponentially
vanishing gradients, or called barren plateaus (BP) McClean et al. (2018) when targeting high-
dimensional states.

This work proposed a quantum sequential scattering model (QSSM) to overcome this bottleneck in
QNN-powered state learning techniques. We provide both theoretical and numerical demonstrations
of QSSM on training efficiency and learning accuracy, which can outperform the conventional QNN
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model using universal layers. Recent research on the trainability issue of QNNs indicates prospec-
tive directions by reducing the expressibility of QNN architectures Cerezo et al. (2021); Liu et al.
(2022a), adopting clever parameterization strategies Grant et al. (2019); Kulshrestha & Safro (2022);
Volkoff & Coles (2021); Friedrich & Maziero (2022) and using adaptive algorithms Grimsley et al.
(2019); Zhang et al. (2021); Skolik et al. (2021); Grimsley et al. (2022).

We drew inspiration from the classical diffusion model Yang et al. (2022) by conducting the state
learning with progressively augmenting sublevels in a sequential manner. Our model combines the
ideas of quantum purification theory and adaptive and layerwise training Quek et al. (2021); Skolik
et al. (2021) for which the training process can be treated as the dilation of quantum information
from subsystems to the entire one. The structure of the model ensures a dramatic reduction in the
number of optimized parameters at each training step and, therefore, avoids barren plateaus for a
large class of target states.

2 PRELIMINARIES

2.1 CLASSICAL DISTRIBUTION LEARNING

We briefly introduce the formalism concerning classical probability distribution learning. Corre-
lations between discrete data variables, denoted as X , can be characterized by some probability
distributions D Kearns et al. (1994). The learning of such a distribution can be described as con-
structing a generator GD′ that takes x ∈ X as an argument and outputs GD′ [x] ∈ X with respect
to a distribution D′. The generator can be realized via a classical machine learning model, which is
trained to achieve d(D,D′) ≤ ε for some legal metric d, e.g., Kullback-Leibler divergence Csiszar
(1975), and some threshold error ε.

2.2 QUANTUM STATE LEARNING

A typical quantum state learning task for an unexplored target state ρ, as a density matrix, solves
for a generator that can be efficiently constructed to produce a representation ρ′ which D(ρ, ρ′) ≤ ε
resembling classical distribution learning. Here D is a feasible distance measure on matrix space.
Such a generator can veritably produce ρ′ instead of numerically simulating it Vidal (2003) and
can be repeatedly used in further computational tasks. This work focuses on the QNN-powered
algorithms combining both classical and quantum computation. Utilizing parameterized quantum
circuits working as the state generators that are trained by gradient descent or gradient-free methods
to determine the optimal parameters Peruzzo et al. (2014); Kandala et al. (2017). Beyond our scope,
schemes using shadow tomography Aaronson (2018); Huang (2022) fulfil another category of state
learning with the aim of characterizing the classical information of quantum states.

2.3 QUANTUM COMPUTING & QNN LAYERS

Our notations follow the conventional textbook by Nielsen and Chuang Nielsen & Chuang (2010).
For more, we invite readers to have access to the supplementary material Appendix A for more
details on quantum computing and quantum machine learning.

Quantum information is encoded and processed via the fundamental cells, namely, qubits. An n-
qubit state can be mathematically represented by a 2n × 2n positive semi-definite density matrix
ρ, i.e., ρ ⪰ 0 over the complex field and Tr[ρ] = 1. A pure state, in this formulation, satisfy
Rank (ρ) = 1 and can be expressed in Dirac bra-ket notation as ρ = |ψ⟩⟨ψ| where |ψ⟩ ∈ C2n

denotes a Hilbert space unit column vector with the corresponding dual vector ⟨ψ|† = |ψ⟩ and †
denoting the complex conjugate transpose operation. A mixed state satisfies Rank (ρ) > 1, and
based on Spectral theorem, it has a decomposition form ρ =

∑
j pj |ψj⟩⟨ψj | where pj > 0 denotes

the probability of observing |ψj⟩⟨ψj | in ρ and
∑
j pj = 1.

The evolution of a quantum state ρ is realized by applying a series of quantum gates which are
mathematically described as unitary operators. The state ρ′ that undergoes transformation via a
quantum gate U can be obtained through direct matrix multiplication, expressed as ρ′ = UρU†.
Common single-qubit gates include the Pauli rotations {RP (θ) = e−i

θ
2P |P ∈ {X,Y, Z}}, which
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×d
U3(θ1) • U3(θ5) • U3(θ9)

U3(θ2) • U3(θ6) • U3(θ10)

U3(θ3) • U3(θ7) • U3(θ11)

U3(θ4) U3(θ8) U3(θ12)

Fig 1: The general architecture of the QNN layers used for quantum state learning. The U3-gates
can be decomposed as a combination of RZ(ϕ1)RX(−π/2)RZ(θ1)RX(π/2)RZ(λ1) where the
parameter vector θ1 = (θ1, ϕ1, λ1). The layer consists of CNOT gates and U3 gates. The dashed
block circuit repeats d times as the depth of the layer. The above has a layer width w = 4, which
applies to 4 quantum registers. In reality, the above circuit diagram represents a way of applying
quantum gates sequentially in order from left to right.

are in the matrix exponential form of Pauli matrices

X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
. (1)

Multi-qubit gates, e.g., controlled-X gate CX (or CNOT) = I⊕X and controlled-Z gate CZ= I⊕Z
where ‘⊕’ denotes the direct sum operation live in high-dimensional linear operator space over
C. Quantum measurements working as projections are applied at the end of the quantum circuits.
Quantum neural networks are usually formed by layers of parameterized circuits shown in Fig. 1
consisting of a bunch of single-qubit gates and several two-qubit gates.

3 MAIN RESULTS

In this paper, we design a quantum sequential scattering model (QSSM) absorbing the ideas of
classical diffusion model and adaptive learning Quek et al. (2021), which has modular structured
parametrised circuits, or we called the scattering layer, at each training step. Each layer ensures
learning the reduced density matrix of a specific part in the target state so that the model can gradu-
ally rebuild the entire state after accomplishing all training steps.

Our main contributions involve (1) conceptually proposing the idea of combining quantum infor-
mation diffusion and adaptive quantum state learning, (2) technically devising a new quantum neu-
ral network model, namely QSSM and the state learning algorithm via a sequentially subsystem-
learning strategy, (3) theoretically proving the effectiveness of the state learning algorithm and a
polynomial-scaled gradient variance of QSSM which indicates an avoidance of barren plateaus for
rank-restricted state learning, (4) numerically demonstrating our results on learning different quan-
tum states involving the noise effects. We compare QSSM directly to the conventional QNN model
for handling state learning tasks and showcase its enhancement in both training efficiency and learn-
ing accuracy. The main results are presented in the following sections.

3.1 QUANTUM SEQUENTIAL STATE COMPOSITING

Quantum states are represented in a multiple-qubit system with a fixed order. We treat each qubit as
a quantum register, just like classical bit and classical register, and label it qk for the k-th register.
We then define a special characteristic for quantum states.

Definition 1 Given an n-qubit quantum state ρ represented by n ordered quantum registers labeled
as q1, q2, · · · , qn, denoting ρk as the k-th reduced density matrix of the first k-register state, i.e.,
ρk = Trqk+1:qn [ρ] for 1 ≤ k ≤ n where the operation Trqi:qj [·] representing a partial tracing over
registers qi to qj , the (Schmidt) rank sequence of ρ is an ordered listRρ,

Rρ = {r1, r2, · · · , rn−1, rn}, (2)
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where rk indicates Rank[ρk]. In particular, if ρ is pure, then rn = 1 since ρ can be represented as
|ϕ⟩⟨ϕ| for some pure state vector |ϕ⟩.

With these clarified, we could then present our sufficient and necessary conditions for QSSM to
completely learn a target state using Algorithm 1, provided enough training time and layer width.
Our analysis will concentrate on the pure target state ρ. However, the statement applies to the cases
of mixed target states i.e., Rank[ρ] > 1, since we could equivalently learn its purification state by
introducing auxiliary systems. The formal version of proposition 1 can be found in Appendix B.

Proposition 1 For a given n-qubit pure target state ρ represented by n ordered quantum registers
q1, q2, · · · , qn, if the rank sequence of ρ isRρ = {r1, r2, · · · rn−1, rn}. Then there exists a quantum
algorithm 1, based on QSSM, that could produce a state σ exactly satisfying σ = ρ, if and only if
the k-th scattering layer Uk(θk) of QSSM has a width wk scales O(⌈log2 rk⌉).

We see that the width of each scattering layer scales only logarithmic regarding the target states’ rank
sequence. In general, even the rank of quantum pure state scales O(2⌈n/2⌉), the logarithmic scaling
in wk still guarantees a linear growth in the requirement of layer width concerning the number of
qubits n, in the worst case.

Moreover, though many quantum states have full rank, there is a polynomial number of dominant
components in their spectral decomposition. Learning their low-rank approximation pre-determined
by the quantum principal component analysis (QPCA) Lloyd et al. (2014) can be treated as a quan-
tum compressing of unknown states, which still captures the main statistical behaviours of target
states. With a certain error tolerance for the low-rank approximation, the layer width can be fur-
ther reduced, leading to more advantages in QSSM state learning. In the Numerical Simulations
(Section 5), we provide evidence of learning different states’ rank-restricted approximation.

Compared to the n-qubit universal-QNN model state learning, QSSM demands significantly fewer
parametric degrees of freedom (DOF) to reach the same approximating error. The generating Lie
algebra of an n-qubit universal QNN model has to span SU(2n), resulting in a model DOF ofO(4n).
On the contrary, since the k-th scattering layer involves at most (⌊n2 ⌋+1) quantum registers, the total
DOF of QSSM experiences a quadratic reduction to at mostO(4⌊n

2 ⌋). Also, to learn the polynomial
rank-bounded target state ρ, i.e., rmax = maxRρ ∼ O(Poly(n)). The DOF required for each
scattering layer in QSSM scalesO(Poly(n)). Therefore, the entire model comprises fewer quantum
gates, rendering this approach considerably more hardware-efficient.

3.2 AVOIDING BARREN PLATEAUS

Trainability is a critical challenge for the usage of quantum neural networks. Using a global deep
QNN model brings stronger expressibility despite significantly increasing the randomness of ini-
tialization. Therefore, the initial gradient of trainable parameters in the model would exponentially
vanish as the system scales up, called the Barren Plateau (BP) issue McClean et al. (2018).

With the diffusion of local quantum state information, QSSM has illustrated a potential to address
trainability issues by focusing on subsystems in each scattering layer instead of the whole state.
From the perspective of adaptive learning, we align the reduced quantum states of the k-th subsystem
by minimizing the k-th adaptive cost function of equation 3 during the respective layer training,

Ck(θ) = ∥σk(θ)− ρk∥22 = Tr
[
(σk(θ)− ρk) (σk(θ)− ρk)†

]
, (3)

where ∥A∥2 for some linear operator A denotes the Schatten-2 norm, σk(θk) and ρk represent the
k-th scattering layer produced state and the k-th reduced target state, respectively.

In this section, we show that QSSM has explicit advantages in trainability by investigating the
statistical properties of the partial gradient with respect to particular layer parameters. For the
cost gradient ∂µCk regarding the µ-th trainable parameter in the k-th scattering layer denoted as
Uk(θ) = U

(k)
+ (θ+)e

−iθµHµU
(k)
− (θ−), all the parameters in the layer are represented in a parameter

vector θ = (θ+, θµ,θ−), where θ− and θ+ represent the parameters of the forward and the back-
ward parts within the k-th scattering layer having e−iθµHµ centralized. The results are summarized.
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Proposition 2 Given the state learning algorithm stated in Proposition 1, for an n-qubit pure target
state ρ represented by n ordered quantum registers q1, q2, · · · , qn with a rank sequence Rρ =

{r1, r2, · · · rn−1, rn}, if one of the U (k)
± in the k-th scattering layer Uk forms at least local unitary

4-design, the expectation and the variance of Ck with respect to θµ can be upper bounded by,

E[∂µCk] = 0; Var[∂µCk] ∈ O
(
g(ρk)

rk

)
, (4)

where the expectation is computed regarding the Haar measure and the factor g(ρk) scales polyno-
mially in Tr[ρ2k] known as the purity of ρk.

The formal statement of Proposition 2 is presented in Appendix C. This proposition notably implies
that the gradient magnitude is significantly determined by rmax in Rρ rather than the total number
of quantum registers n. In other words, the gradient magnitude can escape from barren plateaus by
carefully setting the width of each scattering layer to adapt to the target state. A typical example is
to learn an n-qubit GHZ state, which, by its symmetry, requires setting wk ≤ 2 for all scattering
layers in QSSM and hence achieves O(1) upper bound in the variance of the gradient.

Moreover, Proposition 2 implies that QSSM can efficiently facilitate the learning of any pure states
with polynomial-scaling rmax in n. This encompasses a broad class of quantum states, including
slightly entangled states Vidal (2003) and matrix product states Perez-Garcia et al. (2006), which ex-
tends the efficient-learnable region of quantum states using quantum neural network models. Even
in the case where rmax scales exponentially, the gradient magnitude still gains a square root en-
hancement by the bounded variance of O(2−⌊n/2⌋) compared with the conventional model, scaling
as O(2−n) to reach the same learning accuracy.

One may also apply the previous statement by allowing the error tolerance on the state learning and
omitting the influence of the tail eigenvalues of the target states based on QPCA. Therefore, the
efficient training condition of QSSM still applies to the low-rank state approximation learning by
fixing a maximum scattering layer width.

4 QUANTUM SEQUENTIAL SCATTERING MODEL

The fundamental idea of state learning using the quantum sequential scattering model (QSSM) is
to composite the target states by gradually aligning reduced density matrices of subsystems. The
model diffuses the local quantum information into the global system, which can be considered a
quantum analogy of the classical diffusion model. In contrast, the conventional QNN model handles
the entire system at a time. We now present the overview of our QSSM with an efficient state
learning algorithm.

Suppose we have access to the copies of an n-qubit pure target state ρ = |ϕ⟩⟨ϕ| from some other
quantum instances. The target state can be represented in a system containing n ordered quantum
registers. Recalling ρk as the reduced density matrix on the first k registers, i.e., ρk = Trqk+1:qn [ρ],
our model aims to construct a purification |ψk(θk)⟩ = Uk(θk)|ψk−1⟩ of ρk at the k-th learning step
(1 ≤ k ≤ n) by training the k-th scattering layer realized as a parameterised circuit Uk(θk). Notice
that the learning results from the previous step are naturally involved in the state |ψk−1⟩ having all
first k registers aligned.

The training of each layer is based on minimizing some adaptive cost functions, which in this
work, we use the modified distance function of form 3 where the k-th layer output state σk(θk) =
Trqk+1:qn [|ψk(θk)⟩⟨ψk(θk)|]. By hierarchically training the scattering layers until all registers are
aligned, we could then construct the entire target through our trained quantum sequential scattering
model. We summarize our quantum state learning algorithm via QSSM in Algorithm 1.

4.1 COST FUNCTION EVALUATION

As a hybrid quantum-classical model, we declare some details of the realization of the model in
the following. For the adaptive k-th step cost function defined in equation 3. By rearranging equa-
tion equation 3 as,

Ck(θk) = Tr[σ2
k(θk)] + Tr[ρ2k]− 2Tr[σk(θk)ρk], (5)
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Algorithm 1 Quantum sequential scattering model for (pure) state learning
Require: Copies of the n-qubit target state ρ = |ϕ⟩⟨ϕ|, Cost tolerance δ.
Ensure: The entire model has n quantum registers as q1, q2, · · · , qn, and are initialized to |0⟩⊗n.
Parameter: All layer parameters are randomly initialized regarding Uniform distribution of [0, 2π).
Set k = 1 and maximum layer width wmax.

1: Update scattering layer width wk = k + 1, |ψk⟩ = |0⟩⊗n.
2: while k ≤ n do
3: if k ≤ ⌊n/2⌋ then
4: wk = min{k + 1, wmax}.
5: else if k > ⌊n/2⌋ then
6: wk = min{n− k + 1, wmax}.
7: end if
8: Apply Uk(θk) to the quantum registers indexing qk to qk+wk−1, i.e., qk : qk+wk−1.
9: Minimize Ck(θk) via running classical training algorithm based on the analytic cost function

and gradient∇θk
Ck evaluations. The minimization stops until the cost difference reaches δ.

10: k = k + 1.
11: Update |ψk⟩ = Uk(θk)|ψk−1⟩.
12: end while
13: Store all optimized θ1, · · · ,θn in classical memory.
14: return model reconstructed representation |ψn⟩ = Un · · ·U1|0⟩⊗n ≈ |ϕ⟩.
Output: The trained QSSM as an approximate state generator U = Un · · ·U1 of target |ϕ⟩.

which is convex according to Theorem 2.10 of Carlen (2009).We chose this cost form since it can
be efficiently evaluated on quantum hardware. The high-order state overlap terms involving Tr[ρ2]
and Tr[ρσ] can be evaluated via swap test Barenco et al. (1997), which have been experimentally
demonstrated on real quantum devices Islam et al. (2015); Linke et al. (2018). The training of the
k-th layer can be described as finding the k-th step optimal parameters θoptk so that Ck(θ

opt
k ) is

minimized to approximately zero. To implement that, classical gradient-based and gradient-free
methods, such as ADAM and COBYLA Kingma & Ba (2014); Powell (1994), can either be used
during optimizations. Other metrics can also be employed in training procedures, and we left this
aspect open for future research.

4.2 ANALYTIC GRADIENT EVALUATION

Further, the analytical gradients of the cost function in equation 3 can be computed efficiently,
making the gradient-based scheme a prospective candidate for the training processes. According
to Schuld et al. (2018); Mitarai et al. (2018); Ostaszewski et al. (2019); Wang et al. (2021b). Suppose
the k-th layer Uk consists of the gates satisfying the parameter-shift rule Mitarai et al. (2018);
Schuld et al. (2018) and contains m trainable parameters. Each optimization iteration is driven by
the estimations of cost gradient given by,

∇θk
Ck(θk) =

(
∂1Ck(θk), · · · , ∂mCk(θk)

)
, (6)

where ∂µ := ∂
∂θµk

indicating the partial derivative with respect to a fixed θµk in the k-th layer. In
particular, we derive the analytic gradient of Ck as follows,

∂µC
∗
k = ⟨G∗

k⟩(θµk )∗+π
2
− ⟨G∗

k⟩(θµk )∗−π
2

(7)

The symbol ∗ indicating the corresponding quantity evaluated at θk = θ∗
k. Gk is a Hermitian

operator involves both σk and ρk having an expression,

Gk(θk) := ∆k(θk)⊗ Γk (8)

where ∆k(θk) = σk(θk) − ρk representing the k-th step state difference between two density
matrices; Γk is the maximally mixed state I/d where I is the identity operator of dimension
d = 2wk−1. Γk = 1 when wk = 1. The bra-ket operation in the analytic form, ⟨A⟩α =

⟨ψk−1|U†
k(θk)AUk(θk)|ψk−1⟩ for some Hermitian operatorA is evaluated at θµk = α. This quantity

of Gk in equation 7 indicates the expectation value of Gk regarding the k-th step variational ansatz
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Fig 2: Effectiveness validation of QSSM in learning diverse 12-qubit quantum states regarding their
final state fidelities. On the right, we show the QSSM learnt state (b) from the MINST dataset
concerning the original data (a) using amplitude encoding. With different maximum layer widths,
our QSSM outperforms global QNN on state learning tasks.

|ψk⟩ evaluated at (θµk )
∗ ± π/2 where all other scattering layers remain unchanged. The detailed

derivation of these definitions and forms can be found in Appendix D.

Each partial derivative of Ck at θ∗
k can be explicitly determined by equation 7, which can be ef-

ficiently computable via shifting the corresponding parameter and applying variational quantum
eigensolver Peruzzo et al. (2014). The gradient-based optimization could be applied to the cost by
specifically updating the parameters θk in the k-th layer as,

θk ← θ∗
k − η∇θk

Ck(θ
∗
k) (9)

where η is the learning rate settled for the classical optimizers, defining the iteration step size. The
cost function would converge to the optimal minimum by iterating the training processes. We then
repeat the above procedures for each k-th layer to complete the model training with a final output
circuit representation U(θopt) = Un(θ

opt
n ) · · ·U1(θ

opt
1 ) to finish the state learning.

5 NUMERICAL EXPERIMENTS

As described above, the adaptation of our quantum sequential scattering model indicates the under-
lying enhancement of information diffusion in quantum state learning. We now present numerical
experiments to illustrate the effectiveness and trainability of QSSM.

We first conduct numerical simulations on QSSM for learning 12-qubit quantum states with phys-
ical or algorithmic meaning and compare our results with the performances from the conventional
QNN model. The ground states from Heisenberg (XXX & XXZ) models Takahashi (1971) and the
LiH molecular model are pre-determined via the OpenFermion library developed by McClean et al.
(2020). For the Gaussian distribution and MNIST data learning experiments, the distribution and
image data are normalized and mapped to the unit quantum state vectors of dimension 2n via am-
plitude encoding Schuld (2021) with automatic padding of 0’s filling out the extra grayscale pixels.

In our numerical simulations involving the global QNN and the QSSM, we employ a general hard-
ware efficient ansatz (HEA) Kandala et al. (2017) of depth d = 20 with random initialized parame-
ters for both the global model and each scattering layer in QSSM. The optimization uses the ADAM
optimizer with a learning rate of 0.1 and cost tolerance 0.001, spanning 200 iterations.

As shown in Fig. 2, comparing the outcomes with those of the global QNN, we discern clear ad-
vantages exhibited by QSSM, which consistently attains notably high fidelity in learning diverse
quantum states. Conversely, the conventional model does not perform well, primarily due to the sig-
nificantly decreased convergence speed during the training processes with a large number of qubits.

Besides, states with exponential growth in Schmidt ranks are not necessarily hard to learn. Only
highly entangled states, e.g., random states and maximally entangled states (MES) Gisin &
Bechmann-Pasquinucci (1998), are challenging for QSSM. Those with concentrated Schmidt co-
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Fig 3: Noisy quantum simulation of QSSM for learning a 4-qubit GHZ state. (a) Comparison of
the variation of cost function noisy quantum simulation and noise-free simulation. For both cases,
the optimization was processed via COBYLA optimizer Gomez & Hennart (1994) on swap-test
estimated cost values. (b) The distribution of measurement outcomes generated noise-freely from
the state obtained by the noisy trained QSSM. The figure validates the efficacy and efficiency of
QSSM in noisy environments, consequently reinforcing our method’s practical applicability.

efficients, though owning large ranks, can be learnt up to a high fidelity Liu et al. (2022b) with
limited resources.

In Table 2, we reasonably constrain the maximum scattering layer widths to some fixed values,
which counterintuitively yield superior performance with smaller layer width. Larger values of
wmax, contrarily, decrease the QSSM performances of state learning. A plausible explanation for
this phenomenon could be the over-parameterization and the mild BP effect during the training of
the halved-dimensional scattering layers. Notably, learning random state undoubtedly obtains the
worst learning results.

We also examine the noise robustness of using QSSM to learn a 4-qubit GHZ state on the IBMQ
Qiskit simulator Qiskit contributors (2023). We build our noise model from single qubit and multi-
qubit depolarizing channels (DCs) and thermal relaxation channels (TRCs) Georgopoulos et al.
(2021). The error rate of DCs are set to 10−3, and the T1, T2 and gate time of TRCs are set to
1000 µs, 100 µs and 1 ns respectively.

At each step, we run the optimization of the QSSM circuit 20 times in parallel and use the parameters
that correspond to the lowest cost to update the circuit before going to the next step. This trick can
significantly alleviate the randomness arising from sampling of bit strings in the measurement of
quantum circuits. Shown in Fig. 3, each learning step has cost converged well compared with the
ideal training in (3a). The final fidelity between the quantum state generated from QSSM and the
true GHZ state could reach 91%, giving almost the same statistical behaviours plotted from the
sampling experiments (3b).

From the analytical description and numerical demonstration, we see that QSSM has the ability to
learn arbitrary quantum states with high fidelity compared to the conventional model. The diffusion
strategy only requires narrow circuits in learning quantum states that are weakly entangled, thus
being extremely efficient in learning such a class of quantum states.

We then present the result to demonstrate Proposition 2 by comparing the gradient variances of
cost equation 3 as a function of the number of registers for QSSM and global QNN model. We
typically investigate the values in the first step, the middle step (n2 -th step), and the last step of
the QSSM learning procedure by looking into a single parameter RZ gate in the middle of each
scattering layer. By assuming the two parts U (k)

± split by the RZ gate are deep enough to form
local unitary 4-designs, we sample local Haar random unitaries Dankert et al. (2009) to simulate the
behaviours of random initialization on U (k)

± and compute the gradient variances with respect to the
parameter in RZ . Similar experiments are performed for the conventional QNN model by sampling
global Haar unitaries with a RZ gate sandwiched in. We target the GHZ state and the ground state
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of the Heisenberg model, as before, with maximum width wmax being 2 and 4, respectively. The
variance values are computed from sampling 500 Haar unitary pairs for both cases.
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Fig 4: Comparison of the gradient variances as a function of the number of qubits on a semi-log
plot from different steps in QSSM and global QNN computed by sampling Haar random unitaries.
Panel (a) and (b) correspond to the learning of the GHZ state and the ground state of the Heisenberg
model, respectively. The red, black and blue lines represent the gradient magnitudes of the first step,
n
2 -th step and the last step training, respectively, comparing with the global QNN results in yellow.
Our method apparently outperforms conventional global QNN in terms of gradient variance scaling,
indicating the absence of barren plateaus.

As we can observe in Fig. 4. The variance of the gradient vanishes exponentially with the number
of qubits when using the randomly initialized global QNNs. In contrast, QSSM demonstrates a
constant scaling of variance magnitude. We note that there is a decay of the gradient variance of the
middle step in panel (b). Nevertheless, this decay is caused by a constant factor g(ρk) that originates
from the nature of the physical system and does not exponentially influence the training processes.

6 CONCLUSION AND DISCUSSION

In this paper, we have presented the development and application of the Quantum Sequential Scat-
tering Model (QSSM) for quantum state learning. Our model is inspired by the classical diffusion
model, which the designing of it involves quantum information theory and adaptive quantum ma-
chine learning techniques. Our theoretical analysis and numerical experiments demonstrate the
superiority of the QSSM over conventional QNN approaches in terms of training speed and learning
accuracy. In particular, the QSSM addresses the barren plateaus issues and provides an efficient
solution to learning high-dimensional unknown quantum states based on sequentially learning the
reduced target states.

Moreover, We have analyzed the impact of increasing entanglement, a key property of quantum
states, on the performance and efficiency of the QSSM. Our results show that the model can effec-
tively handle polynomially increased entanglement, enabling us to learn complex quantum states
accurately. Numerical demonstrations have shown out-performances for learning physical and al-
gorithmic quantum states in terms of their rank-restricted approximations, indicating the broad ap-
plicability of QSSM state learning and the deep connection between state learning and quantum
entanglement.

There are remaining issues of QSSM for future discussion. Different choices of scattering layers
would influence the learning performance, which has to be exemplified. How to further improve the
state fidelity provided the high fidelity state from QSSM could become a significant open question.
Understanding and resolving the effect of over-parameterization from QSSM should be explained. A
theoretical performance guarantee and the connection between scattering layer dilation and QSSM
state learning information flow should be established for a complete story of truncated state learning.
We also expect some extended applications of QSSM as a new quantum generative model instead of
only state learning on near-term quantum devices.
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