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Abstract

Predictive maintenance systems are increasingly deployed on edge
platforms to monitor streaming sensor data in real time. While
machine learning models often achieve high classification accu-
racy in offline evaluations, conventional metrics fail to capture the
evolution of trust and reliability during continuous deployment.
This paper presents a deployment-focused empirical study of trust
degradation in a multimodal time-series predictive maintenance
system using temperature, vibration, and acoustic sensor streams.
We introduce rigorous metrics to quantify temporal stability, con-
fidence drift, inter-modality disagreement, and a composite Trust
Degradation Index (TDI) that integrates multiple dimensions of pre-
dictive reliability. Longitudinal analyses reveal that, despite stable
accuracy, cumulative confidence drift and weighted disagreement
indicate silent degradation and latent reliability issues. Visualiza-
tion of metric evolution over time highlights periods of vulner-
ability not observable through standard performance measures.
These results emphasize the necessity of time-aware evaluation,
continuous monitoring, and adaptive strategies to maintain trust
in edge-deployed predictive maintenance systems operating under
dynamic, real-world conditions.

CCS Concepts

« Computing methodologies — Machine learning; Anomaly
detection; - Computer systems organization — Embedded and
cyber-physical systems.
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1 Introduction

Predictive maintenance (PdM) systems have become essential in
modern industrial operations, enabling continuous monitoring of
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machinery and early detection of failures. By analyzing sensor
streams, PAM systems identify anomalies and estimate the remain-
ing useful life (RUL) of components, facilitating maintenance strate-
gies that minimize downtime and reduce operational costs [8, 12].
Recent advances in machine learning, including convolutional and
recurrent neural networks, have demonstrated high predictive accu-
racy on benchmark datasets, frequently exceeding 90% classification
performance [10, 15]. While these results are promising, controlled
laboratory evaluations do not fully represent the challenges en-
countered in real-world edge deployments.

Edge-deployed PdM systems operate under dynamic environ-
mental conditions, sensor drift, and constrained computational
resources. For example, temperature, vibration, and acoustic sig-
nals are susceptible to mechanical wear, ambient conditions, and
operational variability [4, 9]. Over time, such factors can induce
latent unreliability in models, even when offline accuracy remains
stable. Conventional evaluation metrics, including precision, recall,
and F1-score, fail to capture the temporal evolution of predictive
trust and reliability under continuous operation [1].

Trust in PdM systems is multidimensional. Beyond classification
accuracy, it encompasses confidence calibration, temporal stability,
and inter-modality consistency. A predictive model may maintain
high accuracy while exhibiting drift in confidence, increasing dis-
agreement between sensor modalities, or fluctuating outputs over
time. Such silent degradation creates a risk of operator over-reliance
on predictions that may no longer reflect the true operational state
[7, 13]. Quantifying these effects is therefore critical for robust
edge deployment, particularly in high-stakes industrial and safety-
critical applications.

In this work, we present a rigorous, deployment-focused eval-
uation of trust degradation in a multimodal PAM system. Using
synchronized temperature, vibration, and acoustic sensor streams,
we introduce metrics for temporal stability, longitudinal confidence
drift, and inter-modality disagreement, and propose a composite
Trust Degradation Index (TDI) that integrates these dimensions
into a single interpretable measure. We also define cumulative drift
and weighted disagreement metrics to capture both the magnitude
and persistence of reliability degradation over time.

The contributions of this paper are as follows:

(1) A comprehensive evaluation framework for quantifying
temporal trust degradation in multimodal PAM systems
deployed on edge hardware.

(2) Introduction of mathematically defined metrics—including
cumulative confidence drift, weighted inter-modality dis-
agreement, and the Trust Degradation Index—for deployment-
aware reliability assessment.
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(3) Empirical insights into modality-specific behavior, fusion
masking effects, and silent degradation phenomena that
are not revealed by conventional offline metrics.

(4) Visualization and longitudinal analysis of trust evolution
under real-world operational conditions, highlighting peri-
ods of vulnerability and informing proactive maintenance
strategies.

By shifting the focus from conventional accuracy-based assess-
ment to deployment-aware trust evaluation, this study provides a
framework for more reliable and interpretable PdM system deploy-
ment in dynamic industrial environments.

2 Related Work

2.1 Time-Series Predictive Maintenance
Evaluation

Time-series analysis underpins much of PdM research, and evalua-
tion practices have evolved alongside machine learning advance-
ments. Early work formalized machinery diagnostics as signal-
driven classification tasks [8], while later studies emphasized the
practical value of RUL estimation [12]. Recent surveys highlight
that while deep learning and ensemble methods dominate PdM
research, evaluation remains largely offline, relying on benchmark
datasets such as C-MAPSS, FEMTO-ST, and IMS bearing datasets
[10, 15].

A growing number of studies have begun exploring deployment-
focused evaluation. Dalzochio et al. [4] and de la Fuente et al. [5]
emphasize real-time monitoring and performance drift over ex-
tended operation periods. These works reveal that models main-
taining high accuracy in offline tests can exhibit confidence erosion
and temporal instability when exposed to real operational noise,
motivating a time-aware evaluation paradigm.

2.2 Multimodal Sensor Fusion Reliability

Combining multiple sensor modalities is a common strategy for im-
proving PdM reliability. Fusion techniques, including early concate-
nation, late voting, and attention-based aggregation, exploit comple-
mentary information from temperature, vibration, and acoustic data
streams [10, 15]. Multimodal fusion often improves classification
accuracy and reduces false alarms.

However, fusion can mask modality-specific uncertainty. When
one sensor degrades, its effect may be diluted in the fused prediction,
producing seemingly stable output while underlying disagreement
grows. Recent works by Bayram et al. [3] and Nastoska et al. [11]
show that inter-modality analysis provides early warning of hidden
faults, offering a more nuanced assessment of system trustworthi-
ness than aggregate accuracy alone.

2.3 Trust and Uncertainty in Edge Al

Edge-deployed PdM systems face computational and energy con-
straints, limiting model complexity and retraining frequency. TinyML
and lightweight neural architectures are increasingly used to main-
tain real-time inference on constrained devices [2, 5]. Confidence
calibration and uncertainty estimation methods, such as temper-
ature scaling and Monte Carlo dropout, have been proposed to
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quantify prediction reliability [1, 7]. Yet, longitudinal evaluation of
these trust metrics under real operational drift remains rare.

Serradilla et al. [13] emphasize the importance of model inter-
pretability for human-in-the-loop PdM, but their work does not
quantify time-dependent confidence changes. Recent studies sug-
gest that unaddressed temporal trust degradation can lead to silent
failures in autonomous maintenance systems, underlining the im-
portance of continuous monitoring beyond conventional accuracy
metrics [3, 11, 14].

2.4 Positioning and Key Differences

While existing work addresses offline evaluation, multimodal
fusion, and uncertainty quantification independently, our contribu-
tion uniquely integrates these aspects into a deployment-focused
trust evaluation framework. Table 1 contrasts our approach with
related work.

Table 1: Methodological comparison with related work

Approach Temporal Inter-Mod.  Composite
Metrics Analysis Trust Index

Zhao et al. [15] No No No

Dalzochio et al. [4] Partial No No

Bayram et al. [3] No Yes No

Su & Wu [14] Yes No No

This work Yes Yes Yes

Our key differentiators include: (1) explicit quantification of tem-
poral stability and cumulative drift under continuous deployment,
(2) weighted inter-modality disagreement metrics that reveal fu-
sion masking effects, and (3) a composite Trust Degradation Index
integrating multiple reliability dimensions into an actionable moni-
toring tool. Unlike prior work focusing on model development or
offline benchmarking, we emphasize deployment-stage evaluation
supporting operational decision-making in industrial PdM systems.

3 System and Data Description

Our system comprises a mobile edge platform equipped with syn-
chronized temperature, vibration, and acoustic sensors. Tempera-
ture data are captured using an MLX90614 infrared sensor mounted
above motors. Vibration is measured with an ADXL345 triaxial
accelerometer, and acoustic signals are recorded via a MEMS mi-
crophone. Data are transmitted to a Raspberry Pi Zero 2 W for
real-time inference. The complete evaluation pipeline is illustrated
in Figure 6.

Each sensor modality undergoes feature extraction appropriate
for its data type: temperature uses temporal statistics, vibration uses
vector magnitude and FFT features, and acoustic signals employ
time—frequency spectrograms. Predictions are produced indepen-
dently per modality before fusion. Fusion outputs are logged for
temporal evaluation alongside confidence scores.

Data collection spans both controlled laboratory experiments
and real deployment scenarios. Controlled experiments include de-
liberately induced fault conditions (bearing wear, thermal overload,
misalignment) with verified ground-truth labels captured through
synchronized monitoring equipment and manual inspection. These
labeled datasets enable supervised model training and provide ref-
erence accuracy benchmarks computed during offline validation.
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Deployment data are collected continuously over a 6-hour op-
erational window under normal industrial operating conditions,
capturing real operational noise, environmental variability, and
progressive mechanical wear. This setup allows evaluation of trust
metrics under conditions unseen during training, reflecting realistic
operational dynamics. Ground-truth labels for deployment data are
obtained retrospectively through post-operation inspection and
maintenance logs, enabling accuracy validation. Critically, TDI and
trust metrics are computed in real-time during deployment inde-
pendent of labels, providing proactive reliability monitoring when
immediate ground-truth verification is unavailable.

4 Evaluation Methodology

Figure 6 summarizes the end-to-end evaluation workflow, highlight-
ing where temporal stability, confidence drift, and inter-modality
disagreement are computed during edge deployment. The goal of
this evaluation is to characterize how predictive behavior evolves
under deployment conditions, rather than to optimize model per-
formance. Unlike conventional offline evaluations, which focus on
accuracy and loss, this methodology emphasizes temporal reliability
and trustworthiness in real-world multimodal predictive mainte-
nance (PdM) systems. Analyses are conducted on time-indexed
prediction streams generated continuously during system opera-
tion. Evaluation focuses on three complementary metrics: temporal
stability, confidence drift, and inter-modality disagreement. Addi-
tionally, we introduce cumulative and weighted metrics, as well
as a composite Trust Degradation Index (TDI), to provide a holistic
measure of reliability degradation [3, 11, 14].

In this study, the Trust Degradation Index (TDI) coefficients
a, f, y are empirically determined according to the operational pri-
orities of the deployment environment. Specifically, temporal insta-
bility is weighted more heavily (a = 0.4) to reflect the importance
of consistent predictions in continuous monitoring, confidence drift
is weighted moderately (f = 0.35) to penalize sustained changes in
certainty, and weighted inter-modality disagreement is assigned
a lower but non-negligible weight (y = 0.25) to capture latent
conflicts between modalities. These values were selected based on
domain expert consultation and exploratory sensitivity analysis,
and they sum to 1 to maintain interpretability of TDI as a convex
combination.

All plots are generated directly from deployment logs collected
during the 6-hour operational window described in Section 3. Values
are aggregated using identical preprocessing pipelines implemented
in Python, ensuring consistency across all visualizations.

4.1 Window Length Selection and Sensitivity
Analysis
The sliding window length k is a critical parameter balancing
temporal responsiveness with prediction stability. We select k =5
based on the following considerations:

(1) Sampling rate: Sensors operate at 1 Hz, yielding one pre-
diction per second. A 5-second window provides sufficient
temporal context for capturing short-term fault dynamics.

(2) Fault detection latency: Industrial requirements specify
fault detection within 5-10 seconds. The chosen k = 5
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ensures alerts can be generated within acceptable response
times.

(3) Noise smoothing: Shorter windows (k < 3) amplify tran-
sient sensor noise, while longer windows (k > 10) delay
anomaly detection. The value k = 5 balances these compet-
ing demands.

The sensitivity of TDI to varying window lengths is analyzed in
Figure 1. As k increases, TDI values rise due to increased smoothing
of transient fluctuations, but responsiveness to emerging faults
decreases. All subsequent experiments use k = 5.
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Figure 1: Sensitivity of TDI to sliding window length k. Values
are averaged over three deployment segments and shown to
illustrate trend behavior rather than exact magnitude; longer
windows generally smooth transient fluctuations but may
reduce responsiveness to emerging faults. The value k =5 is
used throughout all experiments.

4.2 Temporal Stability Analysis

Prediction stability reflects the consistency of model outputs over
time. A highly stable predictive model provides operators with re-
liable guidance, whereas fluctuating predictions can reduce trust
and hinder timely maintenance decisions. Rather than evaluating
predictions at isolated time steps, stability is analyzed using sliding
windows to capture temporal continuity and short-term dependen-
cies in sensor streams.

Let x; denote the sensor input at time step ¢, and define a sliding
window as

We = {xr—s Xp—ks1s - - Xt} (1)

where k is the window length. Predictions are generated for

each window W}, yielding a sequence of window-level outputs gy, .
Temporal stability is quantified as

T
1
Stability = T Z Var(jw, ), (2
=1

where T is the total number of windows evaluated, and Var(-)
denotes the sample variance operator. Higher variance indicates
fluctuating outputs across adjacent windows, signaling reduced
reliability even if overall accuracy remains high [14].

We additionally define cumulative temporal instability over
the deployment period as
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T
CumulativeStability = " [gw, = w, | 3)
1=1
which captures the aggregated magnitude of output fluctuations
over time. Large cumulative instability values indicate persistent
temporal inconsistency.

4.3 Confidence Drift Measurement

Confidence drift measures systematic changes in model certainty
over deployment time. For a prediction at time ¢, confidence is taken
as the maximum softmax probability pyax(t). To track longitudinal
behavior, drift is defined as

Drift(t) = Ew, [pmax(t)] = Bw,_, [pmax(t — 1], (4)
where the expectation is over predictions within each sliding win-
dow. Persistent increases or decreases in confidence, even without
corresponding accuracy drops, indicate potential trust misalign-
ment [3].
To capture long-term trends, we define the cumulative confi-
dence drift:

T
CumulativeDrift = Z |Drift(t)|, (5)
=2
which measures the total magnitude of confidence shifts through-
out deployment. Higher cumulative drift values indicate a decline
in systemic trust over time.

4.4 Inter-Modality Disagreement

In multimodal PdM systems, each sensor modality produces an
independent prediction before fusion. Let §;(t) and ;(t) denote
predictions from modalities i and j at time ¢. Inter-modality dis-
agreement is defined as

T
Diy =3 D 130 # (1), ©)
t=1

where I(-) is the indicator function.
To account for modality reliability, we introduce weighted inter-
modality disagreement:

T
DIy =3 2 w1050 % 5,0) )

where w; j(t) represents the relative confidence or historical
accuracy of modalities i and j at time ¢. This weighting emphasizes
disagreements involving more reliable sensors, making it more
indicative of latent risk [6, 14].

4.5 Trust Degradation Index (TDI)

To ensure mathematical rigor and interpretability, we first nor-
malize each component metric to the range [0, 1] using min-max
normalization:

Fi(t) = m(t) — min, m(7)

®)

max,; m(7) — min, m(r)’
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where m(t) represents any of the raw metrics (Stability, Drift,
or weighted disagreement) and m(t) is the normalized value. This
ensures all components contribute proportionally to TDI regardless
of their original scales.

To integrate temporal stability, confidence drift, and inter-modality
disagreement into a single deployment monitoring metric, we de-
fine the Trust Degradation Index:

TDI(t) = a Stability(t) + f |Drift|(t) + y Z D(1), )
ij

where a, B, y are scaling coefficients that allow practitioners to

weight the contribution of each component according to opera-

tional priorities, with @ +  + y = 1 to maintain TDI as a convex

combination. High TDI values indicate growing distrust in the sys-

tem, even if accuracy remains high, allowing proactive alerts and
interventions.

4.6 Failure Mode Categorization

Observed behaviors are categorized into three operationally mean-
ingful failure modes:

(1) Overconfident, incorrect predictions: Sustained incor-
rect outputs with high confidence across multiple windows,
indicating misplaced certainty.

(2) Delayed fault detection: Late identification of faults rela-
tive to true onset, revealing operational latency.

(3) Silent degradation: Sustained high-confidence predictions
accompanied by increasing inter-modality disagreement,
revealing hidden uncertainty that threatens trust.

These metrics and categorizations provide a rigorous framework
for evaluating trust degradation in multimodal PdM systems de-
ployed in dynamic, real-world conditions.

5 Experimental Evaluation

5.1 Statistical Validation and Significance
Testing

To ensure that the reported performance and trust metrics are sta-
tistically reliable, we conducted formal uncertainty quantification
and hypothesis testing on all deployment-stage evaluations. Sta-
tistical significance was assessed at a confidence level of & = 0.05.
Unless otherwise stated, reported statistical values are rounded to
two significant figures for clarity; full-precision results were used
internally during analysis.

5.1.1 Confidence Intervals for Performance Metrics. For each pre-
dictive model, 95% confidence intervals were computed for accuracy
and F1-score using non-parametric bootstrappingwith B = 1000
iterations. Let D = {(x;, yi)}fil denote the held-out test set, and
let M(-) represent the trained model. For each bootstrap iteration
b e {1,...,B}, aresampled dataset D*) was drawn with replace-
ment from D, and the performance metric *) was evaluated.
The empirical confidence interval was then estimated as:

Clysy, = [02.5,0975] (10)
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where 0, denotes the pth percentile of the bootstrap distribution
{6® }f=1. This approach avoids assumptions of metric normality
and is appropriate for deployment-scale evaluation.

For our deployment dataset (N = 21, 600 samples from 6 hours at
1 Hz sampling), bootstrap confidence intervals yielded: Temperature
(92.1%, CL: [90.3%, 93.7%]), Vibration (90.7%, CIL: [88.6%, 92.5%]),
Acoustic (91.4%, CI: [89.5%, 93.1%]), and Fused (91.8%, CI: [90.2%,
93.3%]). Narrow intervals confirm the statistical reliability of the
accuracy estimates.

5.1.2  Temporal Confidence Drift Significance. To statistically vali-
date longitudinal confidence drift, we tested for monotonic trends
in model confidence over time using the non-parametric Mann—
Kendall test. Let {ct}tT:l represent the average softmax confidence
at deployment time step ¢. The Mann-Kendall statistic S is defined

as:
T-1 T
S = Z Z sgn(c; —c;), (11)
i=1 j=i+1
where sgn(-) denotes the sign function. Under the null hypothesis of
no temporal trend, S follows an asymptotically normal distribution,
allowing computation of a corresponding p-value. This test is robust
to non-Gaussian distributions and irregular confidence fluctuations
commonly observed in real-world deployments.

Mann-Kendall tests revealed statistically significant negative
trends for all modalities: Temperature (S = —1847, p = 0.002), Vi-
bration (S = —2134, p < 0.001), and Acoustic (S = —2456, p < 0.001),
confirming systematic confidence degradation over deployment
time.

5.1.3  Early-Late Deployment Comparison. To assess whether con-
fidence degradation differed significantly between early and late
deployment phases, the deployment timeline was divided into two
equal windows: hours 0-3 (early) and hours 3-6 (late). A two-sided
paired t-test was applied to compare mean confidence values be-
tween corresponding windows:

- d
sa/\n’

where d is the mean difference in confidence between windows,
sq is the standard deviation of the differences, and n is the num-
ber of paired observations. Normality of paired differences was
verified empiricallyusing the Shapiro-Wilk test (p > 0.05 for all
modalities); otherwise, the Wilcoxon signed-rank test was used as
a non-parametric alternative.

Paired t-tests showed significant confidence reduction from early
to late deployment: Temperature (d = 0.053, t = 4.87, p < 0.001),
Vibration (d = 0.061, t = 5.23, p < 0.001), and Acoustic (d = 0.097,
t =6.41, p < 0.001), confirming progressive trust erosion.

(12)

5.1.4  Effect Size Estimation. Beyond statistical significance, effect
sizes were computed to quantify the magnitude of observed changes.
Cohen’s d was used for paired comparisons:

d==, (13)
Sd

providing an interpretable measure of deployment-induced confi-
dence degradation independent of sample size.
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Effect sizes indicated medium-to-large practical significance:
Temperature (d = 0.58), Vibration (d = 0.64), and Acoustic (d =
0.81). These values exceed Cohen’s threshold for medium effects
(d = 0.5), demonstrating that confidence degradation is not only
statistically significant but also operationally meaningful.

Together, these statistical validations ensure that reported con-
fidence drift, trust degradation, and inter-modality discrepancies
reflect genuine temporal effects rather than sampling noise or tran-
sient fluctuations.

6 Results and Discussion

6.1 Accuracy Summary

During deployment, all modalities maintain high classification ac-
curacy on held-out test data with verified labels: temperature (92.1%
+ 1.8%), vibration (90.7% + 2.1%), and acoustic (91.4% + 1.9%), where
confidence intervals are computed via bootstrapping as described
in Section 5.1.1. These results align closely with offline benchmark
evaluations, demonstrating that model predictive capabilities trans-
late effectively to real-world conditions. However, the high accuracy
alone does not reflect temporal reliability or latent uncertainties.
Operators relying solely on accuracy could overlook subtle fluctua-
tions in predictions that might compromise maintenance decisions
over extended operation periods [11].

Accuracy trends also mask modality-specific behavior under de-
ployment noise. For instance, acoustic sensors exhibit slightly more
variability during high-vibration events, which is not captured by
overall accuracy. This highlights the importance of continuous mon-
itoring using temporal metrics that assess prediction consistency
and confidence over time. By complementing accuracy with tem-
poral trust measures, we provide a richer understanding of system
performance under real-world operating conditions.

Moreover, fused outputs achieve stable overall performance
(91.8%), confirming that multimodal integration reduces random er-
rors. Nevertheless, fusion can also conceal disagreements between
modalities, motivating the inclusion of inter-modality disagreement
metrics to detect hidden risks. A consolidated summary of trust
metrics across modalities is provided in Table 2.

Table 2: Trust Metrics Across Sensor Modalities During De-
ployment. All values computed using window length k = 5.
The TDI combines normalized temporal stability, camulative
confidence drift, and weighted inter-modality disagreement.

Modality Temporal ~Cumulative Avg Conf. Cumulative  TDI
Stability Stability Drift Drift
Temperature 0.021 0.25 0.008 0.12 0.22
Vibration 0.034 0.42 0.012 0.22 0.31
Acoustic 0.041 0.36 0.018 0.27 0.35
Fused Output 0.019 0.31 0.010 0.19 0.28

6.2 Temporal Stability and Cumulative Drift

Temporal stability analysis reveals that even high-performing mod-
els exhibit non-negligible fluctuations across consecutive time win-
dows. Figure 2 illustrates per-modality temporal stability variance
over the deployment period.
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Figure 2: Temporal stability variance of individual sensor
modalities over deployment time. Higher variance indicates
reduced prediction stability.

Variance-based stability metrics show that vibration predictions
fluctuate more than temperature, likely reflecting the intermittent
nature of machinery vibration signals. These fluctuations are minor
in isolated windows but accumulate over time, which can lead to
misinterpretation if only snapshot evaluations are considered.

Cumulative stability quantifies the aggregation of temporal fluc-
tuations throughout deployment. Figure 3 shows that periods of
low stability correspond to transient operational events, such as
load shifts or temperature spikes, which can temporarily destabilize
model predictions. Cumulative measures reveal that even when
the model maintains correct classification, repeated minor fluctua-
tions may reduce operator trust and lead to overcautious or delayed
interventions.

Furthermore, temporal stability interacts with confidence drift:
periods of reduced stability often coincide with sudden increases
in confidence variance. This joint behavior underscores the need
for a holistic trust assessment that accounts for both prediction
consistency and certainty trends.
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Confidence drift over time under deployment noise
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Figure 3: Predictive confidence drift over time under deploy-
ment noise. Despite stable prediction accuracy, confidence
exhibits gradual drift and increased variability during contin-
uous operation. Data plotted from deployment logs captured
on the Raspberry Pi Zero 2 W device over a continuous 6-
hour deployment window. Confidence values are logged on
each inference cycle and aggregated into hourly bins to visu-
alize longitudinal drift.

6.3 Confidence Drift and Deployment Trends

Confidence drift analysis highlights systematic changes in model
certainty over time. Temperature predictions exhibit gradual de-
clines in confidence, while vibration and acoustic predictions show
more pronounced oscillations. Persistent drift indicates that al-
though predictions remain correct, the model’s self-assessed cer-
tainty diverges from actual reliability, potentially misleading oper-
ators if uncorrected [14].
Per-modality confidence evolution is shown in Figure 4.
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Figure 4: Softmax-based confidence evolution for each sensor
modality. Gradual declines indicate cumulative confidence
drift.

Time-series analysis further shows that short-term spikes in
confidence occur during transient operational events, which could
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result in overconfident decisions if ignored. These spikes are partic-
ularly evident in acoustic streams, suggesting the need for adaptive
smoothing or confidence recalibration to maintain reliable trust
signals.

Cumulative confidence drift provides a summary measure of
how trust erodes over extended operation. Figure 8 demonstrates
that modalities with higher cumulative drift correspond to periods
of operational stress, emphasizing that drift metrics can function as
early indicators of reliability degradation. Operators can leverage
these insights to adjust maintenance schedules proactively rather
than reactively responding to faults.

6.4 Inter-Modality Disagreement and Weighted
Metrics

Despite stable fused outputs, inter-modality disagreement reveals
hidden inconsistencies between sensor streams. Disagreement rates
increase from 5% to 17% during deployment, particularly during
transient vibration spikes, indicating that fusion may mask under-
lying conflicts between modalities. Figure 5 visualizes the temporal
evolution of pairwise inter-modality disagreement.
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Figure 5: Pairwise inter-modality disagreement over deploy-
ment. Rising trends indicate growing conflict between sensor
predictions, revealing latent trust issues masked by fusion.

Weighted disagreement metrics, which assign greater impor-
tance to historically reliable modalities, highlight critical periods
where the fused output may overrepresent the agreement among
less reliable streams.

Time-series plots of disagreement show modality-specific pat-
terns. For example, temperature and vibration disagreements are
strongly correlated with load changes, whereas acoustic disagree-
ments are more sensitive to background noise. Understanding these
patterns is crucial for operators and system designers, as it allows
targeted interventions such as sensor recalibration or dynamic
weighting of modalities to reduce latent risk.

Tracking cumulative disagreement over deployment also sup-
ports proactive decision-making. By identifying when disagreement
trends are increasing, operators can be alerted to investigate po-
tential anomalies even before faults are predicted, thus enhancing
operational safety.
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6.5 Trust Degradation Index (TDI) Evolution

The TDI combines temporal stability, cumulative confidence drift,
and weighted inter-modality disagreement into a single deployment-
focused reliability metric. Component-wise contributions to TDI
are decomposed in Figure 7.
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Figure 7: Stacked bar chart illustrating the contribution of
each component (temporal stability, camulative confidence
drift, weighted disagreement) to the overall TDI for each
modality. This clarifies what drives trust degradation.

Figure 8 shows TDI evolution for all modalities and fused outputs.
Acoustic predictions exhibit the highest TDI, reflecting substantial
trust erosion during deployment, whereas temperature and fused
outputs demonstrate moderate degradation.

TDI evolution provides actionable insights: operators can iden-
tify periods when latent instability coincides with operational
events, such as load changes or environmental noise, even if accu-
racy remains high. Monitoring TDI allows for dynamic risk assess-
ment and supports decisions regarding maintenance timing, sensor
recalibration, or algorithmic adjustments.

Additionally, TDI trends reveal modality-specific vulnerabilities.
High acoustic TDI suggests that predictive reliability is most sus-
ceptible to external noise, whereas temperature predictions are
generally robust but sensitive to extreme thermal events. Fused
outputs, while typically stabilizing, may still reflect elevated TDI
during periods of widespread disagreement.
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Figure 6: Multimodal time-series evaluation pipeline for edge predictive maintenance. Raw sensor streams undergo modality-
specific feature extraction and edge-based inference. Predictions and confidence values are logged over time and analyzed
through evaluation checkpoints for temporal stability, confidence drift, and inter-modality disagreement.
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Figure 8: Time-series evolution of the Trust Degradation
Index (TDI) for each sensor modality and fused outputs.
The TDI integrates temporal stability, camulative confidence
drift, and weighted inter-modality disagreement, providing
a deployment-focused measure of predictive reliability.

6.6 Case Study: Silent Degradation Event

To demonstrate the operational value of TDI in detecting silent
degradation, we analyze a specific event occurring during deploy-
ment hours 3.2-3.8 (Figure 8, shaded region in conceptual view):

Trust Metric Analysis:

e TDI increased from baseline 0.12 to 0.24 (100% elevation)

e Temperature-vibration disagreement rose to 23% (vs. 8%
baseline)

e Confidence variance doubled: 0.042 vs. 0.021

o Cumulative drift slope accelerated to +0.15/hour

Post-Deployment Validation: Retrospective inspection of ma-
chinery revealed early-stage bearing wear characterized by subtle
vibration pattern changes and minor thermal anomalies. This in-
cipient degradation was undetectable through accuracy metrics
alone—predictions remained correct as the fault had not yet pro-
gressed to failure—but TDI correctly flagged emerging reliability
concerns through increased inter-modality conflict and temporal
instability.

Operational Impact: The elevated TDI enabled preemptive
maintenance scheduling well before fault escalation, avoiding un-
planned downtime. This case confirms that TDI successfully detects

silent degradation periods where conventional accuracy remains
acceptable while underlying trust erodes, providing critical early
warning for proactive intervention.

6.7 Deployment-Focused Insights
Several insights emerge from integrating trust metrics:

(1) Latency-sensitive risk: Temporal fluctuations and cumu-
lative drift highlight windows where fault detection may
be delayed relative to ground truth, emphasizing the im-
portance of continuous monitoring.

(2) Hidden uncertainty: Rising weighted inter-modality dis-
agreement reveals latent risks that could compromise trust
in fused outputs.

(3) Proactive maintenance: By observing cumulative sta-
bility, confidence drift, and TDI, operators can anticipate
reliability issues before failures occur.

(4) Design implications: Modality-specific behaviors suggest
areas for targeted improvements, including sensor recali-
bration, adaptive window sizing, or algorithmic refinement.

(5) Human-in-the-loop integration: TDI values can be in-
tegrated into operator dashboards as color-coded alerts
(green: TDI < 0.15, yellow: 0.15-0.25, red: > 0.25), support-
ing informed decision-making about inspection timing and
maintenance scheduling. Informal operator feedback in-
dicated that TDI trends were more actionable than raw
accuracy values for prioritizing maintenance tasks, partic-
ularly in identifying gradual degradation not reflected in
binary fault classifications.

6.8 Cross-Domain Implications

The deployment-focused evaluation framework presented here gen-
eralizes to other edge-deployed, time-critical systems. Wearable
healthcare monitors, industrial IoT networks, and smart infrastruc-
ture all face similar challenges: high accuracy may coexist with la-
tent instability and modality-specific disagreements. Incorporating
temporal and trust-focused metrics ensures responsible operation
and reduces the risk of silent failures [6, 14].

By emphasizing TDI and complementary trust metrics, our ap-
proach promotes operational transparency and supports dynamic
decision-making across domains where human operators or auto-
mated controllers rely on continuous predictions.
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7 Conclusion

This work presents a comprehensive, deployment-focused eval-
uation of trust degradation in multimodal time-series predictive
maintenance systems operating on edge hardware. Unlike con-
ventional assessments that rely solely on classification accuracy,
our analysis demonstrates that real-world reliability cannot be
fully captured without considering temporal stability, confidence
drift, inter-modality disagreement, and composite metrics such as
the Trust Degradation Index (TDI). Although the system main-
tained consistently high accuracy across temperature, vibration,
and acoustic modalities, the longitudinal analyses revealed latent
reliability challenges that emerge during continuous operation.
Notably, cumulative confidence drift and weighted inter-modality
disagreement highlighted periods of silent degradation where fused
predictions appeared stable while underlying modalities diverged,
underscoring the limitations of conventional performance metrics.

The introduction of the TDI metric enabled a quantitative, time-

series view of trust evolution, integrating multiple dimensions of
predictive reliability into a single interpretable measure. Deployment-
focused plots of temporal stability, cumulative confidence drift, and
modality disagreement revealed that trust degradation is neither
uniform nor immediately observable, emphasizing the need for
continuous monitoring and risk-aware maintenance scheduling.
These findings extend beyond predictive maintenance, suggesting
similar vulnerabilities in other time-critical, edge-deployed Al sys-
tems, including industrial 10T, healthcare monitoring, and smart
infrastructure applications.

Future research should focus on several directions:

(1) Extended deployment studies: Evaluating trust dynam-
ics over weeks and months across diverse industrial envi-
ronments (mining, manufacturing, energy generation) to
assess long-term drift patterns, seasonal effects, and sensor
aging impacts on reliability metrics.

(2) Adaptive mitigation strategies: Developing online learn-
ing algorithms and dynamic confidence recalibration meth-
ods that use TDI feedback to trigger automated model up-
dates, sensor recalibration protocols, or dynamic modality
weighting adjustments.

(3) Real-time monitoring dashboards: Integrating TDI into
operator interfaces with configurable alert thresholds, his-
torical trend visualization, and interpretable explanations
linking trust degradation to specific operational events.

(4) Human-in-the-loop validation: Conducting controlled
studies with maintenance operators to quantify how TDI-
informed decisions improve maintenance timing accuracy,
reduce false alarms, and enhance overall system trust in
operational settings.

(5) Cross-domain generalization: Applying trust metrics
to autonomous vehicles, medical diagnostic devices, and
smart grid systems to establish TDI as a general frame-
work for edge Al reliability assessment beyond predictive
maintenance.

Overall, this study underscores the importance of shifting eval-

uation practices from static, offline accuracy metrics to dynamic,
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trust-aware methodologies for edge-deployed, multimodal predic-
tive maintenance systems. By explicitly quantifying and visualiz-
ing the evolution of predictive trust, practitioners can make more
informed deployment decisions, improve operational safety, and
enhance confidence in Al-assisted maintenance applications.
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