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Figure 1: The proposed PartAfford: discover 3D object part affordances by learning contrast in affordance
compositions. During training (left), given weak annotations (per-shape affordance label set), a learning
framework is devised to ground affordance (e.g., backrest) to 3D part (e.g., sofa back) through learning cross-
category, affordance-related shapes (e.g., chair, sofa) with various affordance compositions. At test time (right),
the learned model decomposes the 3D object into parts and infers the part-level affordances.

ABSTRACT

Understanding what objects could furnish for humans—Iearning object affordance—
is the crux of bridging perception and action. In the vision community, prior work

has primarily focused on learning object affordance with dense (e.g., at a per-pixel

level) supervision. In stark contrast, we humans learn the object affordance without

dense labels. As such, the fundamental question to devise a computational model

is: What is the natural way to learn the object affordance from geometry with

humanlike weak supervision? In this work, we present the new task of part-level

affordance discovery (PartAfford): Given only the affordance labels for each object,
the machine is tasked to (i) decompose 3D shapes into parts and (ii) discover how

each part of the object corresponds to a certain affordance category. We propose a

novel learning framework that discovers part-level representations by leveraging

only the affordance set supervision and geometric primitive regularization without

dense supervision. To learn and evaluate PartAfford, we construct a part-level, cross-
category 3D object affordance dataset, annotated with 24 affordance categories

shared among > 25, 000 objects. We demonstrate through extensive experiments

that our method enables both the abstraction of 3D objects and part-level affordance

discovery, with generalizability to difficult and cross-category examples. Further

ablations reveal the contribution of each component.

1 INTRODUCTION

The human vision system could swiftly locate the functional part upon using an object for specific
tasks (Land et al., 1999). Such a critical capability in object interaction requires fine-grained ob-
ject affordance understanding. Affordance, coined and originally theorized by Gibson (Gibson &
Carmichael, 1966; Gibson, 1979), characterizes how humans interact with human-made objects and
environments. As such, affordance understanding of objects and scenes has a significant influence on
bridging visual perception and holistic scene understanding (Huang et al., 2018b;a; Chen et al., 2019)
with actionable information (Soatto, 2013; Han et al., 2022).

Object affordances have two main characteristics. First, object affordances are not defined in terms of
conventional categorical labels in computer vision; instead, they are defined by the associated actions
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for various tasks and are naturally cross-category. For example, both chair and sofa can be sat on,
which indicates they share the sitfable affordance. Similarly, desktop and bookshelf share the support
affordance. Second, object affordances are intrinsically part-based. We could easily associate sittable
affordance with the seats of chairs and sofas, and support with the boards of desktop and bookshelf.
As such, the ability to learn part-based, cross-category affordance is essential to demonstrate the
general object affordance understanding.

In passive affordance learning, prior literature follows the supervised learning paradigm, in which
dense affordance annotation on the objects is fed as supervised signals (Deng et al., 2021). However,
this line of thought depends heavily on the quality of dense annotation, which significantly deviates
from how we humans learn to understand affordance. Humanlike supervision would be: “you can sit
on this chair and rest your arm,” “you can open the lid and hold water with the cup.” In this paper, we
try to answer: How to distinguish each object part while recognizing corresponding affordances with

such weak and natural supervisions?

To tackle this problem, we present PartAfford, a new task of part-level affordance discovery, which
learns the object affordance with the natural supervision of the affordance set. As shown in Fig. 1, by
providing only the set of affordance labels for each object, the algorithm is tasked to decompose the
3D shapes into parts and discover how each part corresponds to a certain affordance category, which
is challenging and under-explored in the area of generalizable part-level object understanding and
affordance learning.

To address this, we propose a novel method that discovers part-level representations with self-
supervised 3D reconstruction, affordance set supervision, and primitive regularization. The proposed
approach consists of two main components. The first component is an encoder with slot attention for
unsupervised clustering and abstraction. Specifically, we encode the 3D object into visual features
and abstract the low-level features into a set of slot variables (Locatello et al., 2020). The second
component is a decoder built upon the learned slot features. It has three output branches that jointly
reconstruct the 3D parts and object, predict the affordance labels, and regularize the learned part-level
shapes with cuboidal primitives. Our method does not rely on dense supervision but instead learns
from the weak set supervision. It discovers the part-level affordance by learning the correspondence
between affordance labels and abstracted 3D object parts.

Learning and evaluating PartAfford demands collections of 3D objects and their affordance labels for
object parts. Prior work on visual affordance learning (Hassanin et al., 2021) either focuses on 2D
objects and scenes or lacks part-based annotation (Deng et al., 2021). Hence, we construct a part-level,
cross-category 3D object affordance dataset annotated with 24 affordance categories shared among
over 25,000 3D objects. The 3D objects are collected from PartNet dataset (Mo et al., 2019b) and
the PartNet-Mobility dataset (Xiang et al., 2020). The 24 part affordance categories are defined in
terms of adjectives (e.g., “sittable”) or nouns (e.g., “armrest”); they describe how object parts could
afford human daily actions and activities. We annotate the part-level object affordances by manually
mapping the fine-grained object part defined in PartNet to the part affordances defined in this work.

By experimenting on this newly constructed PartAfford dataset, we empirically demonstrate that
our method jointly enables the abstraction of 3D objects and part-level affordance discovery. Our
model also shows strong generalizability on hard and cross-category objects. Further experiments
and ablations analyze each component’s contribution and point out future directions.

In summary, our work makes four main contributions:

* We present a new PartAfford task for part-level affordance discovery. Compared to the prior densely-
supervised learning paradigm, PartAfford learns the visual object affordance more naturally.

* We propose a novel learning framework for tackling PartAfford, which jointly abstracts 3D objects

into part-level representations and discovers affordances by learning the affordance correspondence.

We build the benchmark for learning and evaluating PartAfford by curating a dataset consisting of

3D objects and annotating part-level affordances.

* We empirically demonstrate the efficacy and generalization capability of the proposed method
and analyze each component’s significance via a suite of ablation studies. Code and data will be
released for research purposes.
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2 RELATED WORK

Affordance Learning Affordance learning is a multidisciplinary research field of vision, cognition,
and robotics. In general, “affordance” is first perceived from images (Gupta et al., 2011; Kjellstrom
et al., 2011; Zhu et al., 2015; Myers et al., 2015; Roy & Todorovic, 2016) or videos (Xie et al.,
2013; Zhu et al., 2016; Fang et al., 2018; Nagarajan et al., 2020), followed by cognitive reasoning
(Zhu et al., 2015; 2020), and finally serves for task and motion planning in robotics (Nagarajan &
Grauman, 2020; Mo et al., 2022). Prior work tackles affordance at various scales and representations.
Although affordance has been studied at the scene level (Zhao & Zhu, 2013; Gupta et al., 2015;
Roy & Todorovic, 2016), object level (Nguyen et al., 2017; Mo et al., 2021; Gadre et al., 2021), and
associated with generated human poses (Zhu et al., 2015; Wang et al., 2017b), few attempts study
affordance as a 3D shape analysis task (Yu et al., 2015; Liang et al., 2016; Zhu et al., 2016; Wang
et al., 2017a) since it would normally require large-scale, high-quality 3D data. A recent work (Deng
et al., 2021) benchmarks several affordance estimation tasks on PartNet (Mo et al., 2019b) with
dense affordance heatmap supervisions, annotated by densely selecting keypoints without considering
affordance compositionality. Prior work also tackles affordance learning through interaction-based
methods, either from human demonstration videos (Kjellstrom et al., 2011; Nagarajan et al., 2019;
2020) or simulation-based active learning (Wang et al., 2022; Mo et al., 2021). The first usually infers
high-level and coarse 2D affordance, and the second is often restricted to basic manipulations in
specific domains. In comparison, PartAfford studies affordance in a weakly supervised manner, such
that the affordance discovery will be guided by affordance set matching and geometry abstraction.
The new affordance dataset we construct provides fine-grained, part-level 3D affordance annotations,
tailored for the weak supervision setting and affordance compositionality study.

Object-centric Learning Object discovery has been studied in an iterative end-to-end fashion
(Greff et al., 2017; Van Steenkiste et al., 2018; Burgess et al., 2019; Engelcke et al., 2019; Greff
et al., 2019; Du et al., 2021). Recently, Locatello et al. (2020) presents the slot attention module, an
efficient and generic framework for object-centric representation extraction. It is capable of modeling
compositional nature in synthetic scenes with multiple simple geometry shapes (Kabra et al., 2019).
Subsequently, Stelzner et al. (2021) and Yu et al. (2021) apply slot attention on unsupervised 3D-
aware scene decomposition, integrating NeRF (Mildenhall et al., 2020) as object representations.
They demonstrate that slot-based bottleneck could perform reasonably on synthetic multi-view RGB
datasets with a textureless background. In the weakly-supervised regime, methods have been proposed
for 3D semantic segmentation with scene-level labels (Wei et al., 2020; Ren et al., 2021). However,
these methods rely on additional input (e.g., color, normal) and abstract object-level features in
different data domains. Our work takes one step further to tackle the challenge of part-level affordance
discovery of 3D objects; part discovery is more complex than object discovery, primarily due to the
ambiguity in the object part segmentation without applying additional constraints. Fortunately, for
man-made objects, affordances are attached to objects at the part level. This observation implies the
possibility of combining part discovery and affordance learning with minimal supervision. In this
work, we integrate part discovery with affordance estimation, hoping that affordance information
would help discover object parts sharing similar affordances.

Unsupervised Geometric Primitive Modeling Whereas supervised geometric primitive abstrac-
tion methods (Mo et al., 2019a; Yang et al., 2020) require dense hierarchical annotations, unsuper-
vised frameworks using cuboid-based (Tulsiani et al., 2017; Sun et al., 2019), superquadrics-based
(Paschalidou et al., 2019; 2020), or other genus-zero-shape (Deng et al., 2020; Paschalidou et al.,
2021) primitives discover structural information naturally embedded in the geometry. Recently, Yang
& Chen (2021) unsupervisedly learn the cuboid-based shape abstraction with shape co-segmentation.
Yet, it relies heavily on the ground-truth point normals for accurate abstraction and lacks seman-
tic representation for object understanding. In our affordance discovery framework, we leverage
the cuboidal regularization to refine the reconstructed affordance part, which distinguishes densely
connected 3D parts by providing geometric prior, thus improving the affordance part discovery.

3 TASK DEFINITION

We formulate the new task PartAfford as discovering the part-level object affordance with the
affordance set supervision. We define K =24 common affordance categories S = {s;, }X_, such
as “sittable” and “openable,” for object understanding. Input is given as a collection of N objects



Under review as a conference paper at ICLR 2023

(a) Abstraction Encoder T-iteration 3D Slot Attention 2 3D Attention Mask Visualization
(Slots Compete for Parts) ] (Slots Attend to Parts)
8 ’ !
g c o key ® query '; 5 .
= FERERY Sl = o |2 p
m {} P P4 L LIS .- r
3 N g SoftMax 2 i ¥
| g g N .
< value i
Input shape 3D feat + pos_embed - T L £ =1 t=2 o
slots, Slots |
(b) 3D Part Reconstruction Decoder (c) Affordance Prediction Decoder (d) Cuboidal Primitive Regularization Decoder
Set Matching Part-Cuboid Consistency
5| | = \/ : = =
3 i \/ . -
’ g S ’ a - ’ o <= | e
= N = /\ =1 i - —| —
= i s /\ = rotation
i L s =
3 1
' 2| ] I ' framework | «—— | framework - @ . w‘ ! lf |
Recon. scale
Slots  Recon. Parts 3D Object Slots Pred. Affordances GT Affordances  Slots Pred. Cuboids Recon. Parts

Figure 2: Illustration of the proposed method for PartAfford. Our model contains two main components:
abstraction encoder and affordance decoder. (a) Abstraction encoder takes a 3D object as input, extracts
features with 3D convolutional neural networks, and abstracts it into several slots. Affordance decoder with
three branches jointly (b) reconstructs the 3D parts, (c) predicts affordance labels, and (d) regularizes cuboidal
primitives. Each predicted cuboid in (d) wraps around the corresponding predicted object part in (b) tightly.

{0:}Y | and their corresponding affordance set labels {A4;}}¥ |, where A; = {a’ }3-];1. al €8, and
J; represents the number of distinct assigned affordances for each object ¢. PartAfford requires an
algorithm to decompose each object into parts and discover the affordance corresponding to each
object part. Fig. 1 illustrates the PartAfford task.

4 METHOD

We propose a novel framework for affordance discovery from 3D objects. It integrates unsupervised
part discovery with affordance set prediction and geometric primitive abstraction; see Fig. 2. Given a
3D shape represented by voxel grids V' of resolution 323, our method first encodes the 3D shape into
visual features and abstracts it into M slots; each slot represents an abstracted high-level feature for
downstream tasks. Next, we utilize a decoder with three branches to jointly (i) decode the features
into parts, (ii) predict the affordance label, and (iii) regularize the parts with cuboidal primitives.
Below, we describe in detail how each module is constructed and the loss design.

4.1 ABSTRACTION ENCODER

The encoder takes a 3D shape as input and abstracts part-centric latent codes in an unsupervised
manner. It consists of a feature extraction module and a 3D slot attention module; see Fig. 2a.

Feature Extraction The feature embedding backbone encodes the input voxels and generates a
D = 64 dimensional feature for each voxel. Following (Mescheder et al., 2019), voxels are encoded
by five layers of 3D convolutional neural networks. The embedded feature is then augmented with
absolute positional embedding (Locatello et al., 2020).

3D Slot Attention The 3D slot attention architecture, adapted from Locatello et al. (2020), serves
as the part-centric representational bottleneck between the 3D feature embedding network and the
downstream decoders. The encoded feature of a 3D shape is fed into an iterative attention module,
where M randomly initialized slots are updated for 7" = 3 iterations through a GRU (Cho et al., 2014).
During each iteration, the attention coefficients are calculated by applying softmax normalization
over the slots on the dot-product similarity between queries (i.e., linearly-mapped 3D slot features)
and keys (i.e., linearly-mapped input features). The attention coefficients are then applied as weights
for aggregating the values (i.e., linearly-mapped input feature) and updating the slots.

Since the inputs-to-slots attention assignment is normalized over the 3D slots, those slots compete to
attend to a clustering of the input 3D shape. Such clusterings are similar to human-defined parts on
common objects. 3D slot attention masks naturally segment the object through iterations. An example
of the learned 3D attention masks is shown in Fig. 2a.
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4.2 AFFORDANCE DECODER

Shown in Fig. 2b-d, the affordance decoder takes part-centric slot features as input, followed by three
branches for 3D part reconstruction, affordance prediction, and primitive regularization. The decoder
parameter is shared across slots.

3D Part Reconstruction We design a 3-layer 3D transposed convolutional decoder followed by
a single MLP layer to reconstruct voxel values V™ and a voxel mask for each slot. The mask is
normalized across slots with softmax, which generates a normalized mask A™ € R32%32x32 [t jg
then used to compute the weighted sum of voxel values across slots and combine the reconstructed

parts {f/’” M_“into a full 3D shape V:iy= Zf\f:l A™VY™_ The 3D part reconstruction branch is

m=1
self-supervised by the reconstruction loss between original voxels V) and reconstructed voxels V; we
use the binary cross-entropy (BCE): L;econ =BCE(V, V).

Affordance Prediction We predict a one-hot affordance label for each slot with a two-layer MLP
with sharing weights across slots for classification.

The affordance prediction branch is weakly-supervised as we do not provide affordance labels for
each voxel. Instead, only the affordance label set for the entire object is used as the supervision signal.
The model is tasked to learn the alignment between the abstracted parts and the affordance labels
from set supervision.

As defined in Sec. 3, the ground-truth set of affordance labels for an input 3D object is denoted as A.
We denote A as the set of slot affordance predictions. Ay isa permutation of elements in A, where
o € ® and & represent all M! possible permutations. L,ch is the pairwise matching cost between
two sets, which can be calculated by mean square error (MSE) or cross-entropy:

Epred = inelél Ematoh(A; AO’)' (1

Due to the order-invariant nature of slot modules, we apply the Hungarian matching algorithm (Kuhn,
1955), with Huber loss as the pair-wise matching cost, to calculate the set-based (Carion et al., 2020)
affordance prediction loss in Eq. (1).

Cuboidal Primitive Regularization As a generalized soft k-means algorithm, the slot attention
mechanism heavily relies on visual cues, such as the clustering of pixel colors on the image. As such,
it cannot perform precisely in a crowded scene with overlapping objects even on a toy image dataset
(Locatello et al., 2020). In the 3D voxel regime, segmenting objects into parts is challenging since
every voxel is connected to neighboring voxels without distinguishable visual appearances.

Therefore, we introduce the cuboidal primitive regularization module, providing a geometric prior
for segmentation: Human-made objects usually have geometric regularity, and cuboid is a concise
structural representation for abstraction.

From each slot embedding, the cuboid abstraction module predicts a cuboid parametrized by two
vectors (Yang & Chen, 2021): a scale vector s € R? and a quaternion vector r € R* for 3D rotation.
Of note, we calculate the cuboid center from the weighted mean of voxel positions in the slot.

To evaluate how the predicted cuboid fits the reconstructed part in the m-th slot, we first compute
the Euclidean distance d;* from each voxel p}” to its closest cuboid face. Next, we calculate the
weighted sum distance for all voxels, where the weight v]" € V™ is the reconstructed voxel value
within [0, 1]. Additionally, we designed a binary surface mask f (i) that masks out internal voxels in
the loss. We also regularize the cuboid loss by adding a cuboid scale penalty term, i.e., L1 norm for
the scale vector. Thus, the loss encourages a cuboid to wrap around a solid object part tightly. The
regularization loss for all the slots is defined as:

Ecubnid = Z )\scale”Sm”l +Z f(l)'U:ndzn . (2)

m

Total Loss Taking together, the total training loss is the sum of 3D reconstruction loss, affordance
prediction loss, and primitive regularization loss:

Ltotal = )\recon Erecon + >\pred Lpred + Acuboidﬁcuboida (3)
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Figure 3: Part affordance dataset. (a) Description for the “openable” affordance to construct the mapping. (b)
Given the part hierarchy of a door from PartNet (Mo et al., 2019b), we annotate its affordance labels by manual
mapping and inspection. (c) Given a dishwasher from PartNet-Mobility (SAPIEN) (Xiang et al., 2020) and its
kinematics, we rotate the door frame to include 3D objects with different articulation states. (d) Some exemplar
3D object models with color-coded affordance visualization.

where Arecon, Acuboid» and Apreq are balancing coefficients.

Of note, with the current architecture design, for the first time, we demonstrate the capability of
part-level affordance discovery from set labels. The exploration of more complex and practical
modules is left for future work.

5 PART AFFORDANCE DATASET

To benchmark PartAfford and facilitate the research in affordance understanding, we construct a
part-level 3D object affordance dataset. We focus on 24 cross-category, fine-grained affordance labels
as shown in Fig. 3. The dataset is annotated with over 25,000 3D CAD models from the PartNet
dataset (Mo et al., 2019b) and 625 articulated objects among 9 categories from the PartNet-Mobility
dataset in SAPIEN (Xiang et al., 2020). Below, we describe how to define part affordances and
generate affordance annotation. See appendix for more details.

Part affordances in our dataset are defined in terms of adjectives (e.g., sittable) or nouns (e.g., armrest),
which describe how object parts could afford human daily actions and activities. We adopt certain
common affordance categories from a comprehensive survey of visual affordance (Hassanin et al.,
2021), e.g., containment, sittable, support, openable, rollable, display, and wrapgrasp. However, they
are coarse-grained—either at the object level or scene level. For example, “openable” only indicates
whether an object can be opened, not on which object part can afford the object to be opened.

To pursue a fine-grained understanding of object affordance, we manually construct a one-to-multiple
mapping from 479 kinds of object part labels defined at the finest granularity in Mo et al. (2019b) to
24 potential affordance labels, given the detailed affordance description. We provide expert-defined
descriptions for 24 affordances to guarantee the quality and consistency of the mapping construction.
An example is shown in Fig. 3a.

Given the part hierarchy of a 3D object, we can get the corresponding affordance annotation by
mapping. We also perform a manual inspection to correct the affordance labels, especially for some
fine-grained parts, according to their specific geometry and physics properties. For instance, different
door handles will be mapped to different affordance labels (twistable, lever, efc.) according to how
they should be operated (Fig. 3b).

The PartNet dataset does not contain articulation information, making affordances such as openable
not geometrically distinguishable. Therefore, we generate a set of shapes with openable affordance
from the PartNet-Mobility dataset by capturing 3D shapes with various opening angles (Fig. 3c).

As can be seen from Fig. 3d, each affordance type—due to its cross-category nature—may be found
on various object part instances. For example, openable is usually afforded by rotatable doors for
unobstructed access. Under such criteria, the door frame of a dishwasher and the surface board of
a door are both mapped to openable. Please refer to the appendix for a full list of all affordance
categories, descriptions, and mapping examples.
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Figure 4: Qualitative results on three curated subsets: “openable” (a-b), “support” (c-e), and “sittable” (f-h).

6 EXPERIMENTS

In this section, we design and conduct comprehensive experiments to evaluate the proposed method.
Fig. 4 visualizes our main results. We present both quantitative and qualitative comparisons of
baseline models and other variants. We also evaluate the model generalization on novel shapes,
analyze failure cases, and propose potential improvement directions. Please refer to the appendix for
additional experimental settings, results, and analyses.

6.1 EXPERIMENTAL SETTINGS

Benchmarks To benchmark PartAfford, we curate different subsets of samples from our constructed
dataset. Specifically, we study the subsets related to the most representative affordance categories
“sittable,” “support,” and “openable” separately, where the subsets are created by collecting all cross-
category objects that have the corresponding affordance label in our dataset. They contain 7 kinds of
affordances from 8 object categories, covering 17,842/25K =~ 71% instances. For each subset, we
learn to distinguish all the affordance labels appear in the 3D objects. Note that although a part can
have multiple affordances as mentioned in Sec. 5, we only keep the most prioritized affordance for
each part to ease the ambiguities in learning.

Evaluation Metrics In PartAfford, we evaluate the performances of part discovery (clustering
similarity), 3D reconstruction, and affordance prediction.

* Part Discovery: We use the Intersection over Union (IoU) to evaluate the part similarity. Specifically,
we employ Hungarian matching to find the best matches between the reconstructed parts and ground
truth parts using voxel IoU as the matching score. Then we compute the mean IoU (mloU) by
averaging the IoU between best matches.

* 3D Reconstruction: We evaluate the shape reconstruction quality by Mean Squared Error (MSE).

* Affordance Prediction: Following Locatello et al. (2020), we use Average Precision (AP) to evaluate
the prediction accuracy. A correct prediction means an exact match of the affordance label set.

Baselines and Ablations Since we are the first to propose and formulate PartAfford, we have no
previous work to make direct comparisons. Therefore, we compare our method with two designed
baseline models and three variants:

* Slot MLP: a simple MLP-based baseline where we replace Slot Attention with an MLP that maps
from the learned feature maps (resized and flattened) to the (now ordered) slot representation.

» IODINE: a baseline where we replace the Slot Attention with an object-centric learning method
IODINE (Greff et al., 2019) to abstract and cluster the encoded feature.

* Ours w/o Afford & Cuboid: our model variant that only keeps the 3D part reconstruction branch.

* Ours w/o Afford: our model variant without the affordance prediction branch.

* Ours w/o Cuboid: our model variant that discards the cuboidal primitive regularization branch.

* Ours Full: our full model with all branches.

6.2 IMPLEMENTATION DETAILS

Learning Strategy To stabilize the training, we split the training into two stages. In the first stage,
we train the decoder only with 3D part reconstruction and affordance prediction branches. In the
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Figure 5: Qualitative comparison results.

second stage, the cuboidal primitive regularization branch is incorporated into joint training with a
lower learning rate.

Hyperparameter We set learning rate as 4 x 10~* for the first stage, 2 x 10~ for the second stage,
and apply Adam optimizer (Kingma & Ba, 2014) for optimization. It takes 5+ 9 hours on 4 RTX
A6000 GPUs for two-stage full-model training of “sittable”-related objects. For slot attention, we
empirically set the number of GRU iterations 7' = 3. We set the number of slots to the maximal
number of affordance labels that appear in each training subset. For example, we learn the “sittable”
with 4 slots, “support” with 2 slots, and “openable” with 3 slots. Appendix C.1 further discusses
choices of the number of slots. For the joint loss weight, we set Aecon = 1.0, Apred = 0.5, Acuboia = 0.1.

6.3 RESULTS AND ANALYSIS

Tabs. 1 and 2 tabulate the quantitative performances of all the models under different settings. Fig. 4
qualitatively shows the capability of our method and Fig. 5 compares different models. Below, we
summarize some key findings:

1. The proposed method achieves the best overall performance on the PartAfford task, especially
in the part discovery (mean IoU) where it outperforms the baselines by a large margin. This
demonstrates the outstanding abstraction capability of our approach given the weak supervision.
From Fig. 4, we can see our method can discover the detailed part-level representation with their
aligned affordances for the 3D objects.

2. The most challenging part of PartAfford lies in the part discovery; it is also where our model
differentiates from other baselines. For example, Tab. 1 shows that Slot MLP achieves the best
affordance prediction performance (AP) but fails in the part discovery (mean IoU) and 3D
reconstruction (MSE). As also shown in Fig. 5a, the Slot MLP cannot segment the object input to
parts due to the lack of abstraction capability.

3. Affordance prediction branch significantly escalates the part discovery performance since it helps
to learn part-affordance correspondence from the affordance composition, which provides contrasts
to distinguish different parts among the training objects. Our qualitative results also show that
the affordance prediction facilitates the abstraction of 3D shape (e.g., rows 1-2 of Fig. 5b) and
elimination of spare slots (e.g., rows 3-4 of Fig. 5b);

4. Cuboidal primitive regularization branch also boosts the part discovery, especially when affor-
dance prediction is unavailable. This demonstrates that geometric priors play a crucial role in
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segmentation when data are not diverse enough. From Fig. 5c, we can see the cuboidal primitive
regularization helps to segment better primitives and avoid scattered voxels.

6.4 MODEL GENERALIZATION Table 1: Quantitative results on ‘“sittable.”” We evaluate
the mean IoU (mloU), mean squared error (MSE), and

With the cross-category nature of affordance, @average precision (AP) on included objects.

we qualitatively test how the learned model can Model mloU (%) 1 | MSE | | AP (%)
be generalized to novel objects and unseen cate- Slot MLP 215 0.0150 | 94.5
- L IODINE 492 00102 | 925
gories. We conduct model generalization €Xper-  gurs w/o Afford & Cuboid 315 00112 | N/A
iments by testing hard examples or objects from Ours w/o Afford 394 0.0100 | N/A
other categories. Examples from Fig. 6 demon- Ours w/o Cuboid 55.3 00102 | 927
. Ours (full) 57.3 0.0097 92.9
strate the learned model could be generalized to

objects with diverse shapes. We show the results of testing the learned model on a novel object shape
(bean bag) (a) from Fu et al. (2021) and unseen categories (b-d). For example, (b) shows the result of
learning with “support” and testing on an “openable” object (i.e., a microwave). Despite the imperfect
reconstructions , partly due to the reconstruction bottleneck’s impact on disentanglement quality
(Engelcke et al., 2020), the learned model can identify the functional parts given novel objects.

6.5 FAILURE CASES

We show some failure cases of our method in Fig. 7. For “sittable” and “support,” the failures are
commonly caused by (i) the difficulties in reconstructing the fine-grained details of 3D objects with
novel shapes; (ii) certain parts that violate the cuboid assumption, and thus hurt other components.

For objects in “openable” category, our model Table 2: Quantitative results on “support” and “open-
cannot discover and reconstruct “handle,” as able.”

shown in Fig. 4. This is because the gb]ects Wlth Model mloU (%) 1 | MSE | | AP (%) 1
related affordances come from various object Slot MLP 36.8 0.0099 | 91.6
categories with diverse shapes, making it chal-  support | QU W/o Afford 348 1 000921 N/A
- Ours w/o Cuboid 51.3 0.0087 95.2
lenging for the model to capture such complex Ours (full) 52.7 0.0085 | 95.1
mixtures of distributions and reconstruct fine- Slot MLP 210 0.0130 | 70.8
ined 3D sh ially ti ts . Thi openable Ours w/o Afford 19.9 0.0104 N/A
graine shapes, especially tiny parts . lhis — op Ours w/o Cuboid 46.7 0.0097 | 558
points out future directions to better understand Ours (full) 47.6 0.0093 |  60.4

object parts (e.g., segment, reconstruct), and po-
tentially an interactive learning framework to learn beyond geometry and appearance.

7 CONCLUSION

We present PartAfford, a new task in visual affordance research that aims at discovering part-level
affordances from 3D shapes. We propose a novel learning framework that discovers part-level
affordances by leveraging only the affordance set supervision and geometric primitive regularization.
With comprehensive experiments and analyses, we point out potential directions for incorporating
visual appearance to facilitate better shape abstraction and combining it with an active learning
approach for efficient affordance learning.
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Figure 8: Qualitative results on real-world objects (chairs and sofas) from Replica (Straub et al., 2019).
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Figure 12: Statistics of our part affordance dataset.

A  EXPERIMENTS ON MORE AFFORDANCES

We conduct further experiments and report per- Table 3: Quantitative results on the “display” subset

formance on more affordance categories on the
long tail of the dataset distribution. More specifi-

and the ‘“‘cutting” subset.

Model mloU (%) 1 | MSE | | AP (%) 1

cally, we include the subsets “display” and “cut- SlotMLP 17.2 0.0163 [ 97.2
. Ty o 1e 5 . displa Ours w/o Afford & Cuboid 14.8 0.0146 N/A
ting”. The “display” set includes part-level af-  display Ours w/o Cuboid 47.0 00140 | 806
fordances {display, wrapgrasp, pressable} from Qurs (Tl s sl 9
1,441 object instances, most of which are lap- cutting | s Wio Afford & Cuboid 27.8 00028 | N/A

. « CRR : Ours w/o Cuboid 28.1 0.0027 96.9
tops and displays. The “cutting” set includes Ours (full) 2.8 0.0026 | 977

affordances {cutting, handle} from 641 object
instances, most of which are knives and scissors on the long tail of the dataset distribution. Quantita-
tive results are shown in Tab. 3 and qualitative results are shown in Fig. 10 and Fig. 11. Our method
still shows a significant advantage over the baseline methods on two core metrics: mloU for part
affordance discovery and MSE for 3D reconstruction.

B ATTENTION VISUALIZATION

Following the settings in Locatello et al. (2020), we train the models using 7" = 3 attention iterations
in the slot attention module. In Fig. 13, we observe that each slot gradually attends to the correct part
of the object as the number of attention iterations increases. The attention mask at £ = 3 depicts the
silhouette of the reconstructed shape and parts.

C FURTHER ANALYSIS & DISCUSSION

C.1 NUMBER OF SLOTS

We set the number of slots as the maximal number of affordance labels that appear in one subset,
which is different from previous object-centric learning algorithm (Locatello et al., 2020), where the
number of slots could be arbitrary. This is because when we increase the number of slots, we also
increase the ambiguities of the affordance composition and set matching at the same time. It prevents
the model from learning accurate correspondence between affordance labels and parts. As shown in
Fig. 14, the model learns the “sittable” in a “null” slot.

C.2 SELECTION OF STUDIED AFFORDANCES

Although we annotate objects with 24 affordance categories, we benchmark PartAfford only on three
subsets with 7 kinds of affordances in this work. The main reason is that we find it much more
challenging to discover part-level affordance for some other affordance categories. For example,
“rollable” and “cutting” usually connect to tiny object parts that are challenging to be segmented
from objects, “illumination” and “display” cannot be distinguished from the objects without a deeper
understanding of the visual appearance and reflections, “pressable” and “pinchable” require richer
interactions to be discovered. In summary, it is either especially challenging to segment or requires
more than geometric information (e.g., active interactions) to discover the other affordance categories.
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Figure 13: Example affordance discovery model trained with 7' = 3 attention iterations. Attention is visualized
in various colors and point radius. The point is colored according to the predicted affordance label of the slot
which attends the most to the point. Point radius positively depends on the maximal attention value across the
slots. We use trilinear upsampling to rescale the attention mask to the input resolution (32 x 32 x 32).
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Figure 14: Model performance when the number of slots increases. The model learns the “sittable” part in a
“null” slot.

We believe that future solutions to our task could involve those interaction cues to take the best of
both worlds, further improving the performance and extending the scope. Our solution could also
provide an intuitive prior for active learning methods, which could boost learning efficiency compared
to learning from scratch. We hope to further explore the learning of these affordances in the future.

C.3 AMBIGUITIES IN AFFORDANCE LEARNING

Affordance is naturally ambiguous since the functions of object parts are rich. This work provides a
well-defined benchmark to study how to learn affordance from accurate affordance definition and
sparse set supervision. In another work, (Deng et al., 2021) models the multiple affordances with
a mixture of distributions. Our dataset has supported learning multiple affordances per part; we
annotate a single part with multiple affordances (see details in Sec. 5). Yet, as the first step towards
affordance discovery, our current method focuses on learning the most important affordance. We
believe our current learning framework could also be extended to learn multiple affordances by
switching the one-hot affordance label to multi-hot labels. We also suggest further fine-tuning the
multi-hot affordance prediction based on the one-hot version, since the affordance prediction of
single-hot labels appears significant to guide the slot competition from our ablation study.

C.4 POTENTIAL IMPACTS FOR VISION & ROBOTICS COMMUNITY

By learning to discover the part-level affordance, our model could facilitate the understanding of
human-object interaction and object manipulation. As shown in Fig. 15, the learned affordance
could be applied to synthesize potential human actions and interactions with various 3D objects.
Additionally, our work could provide priors for robotic cross-category object manipulation and task
planning (Toussaint et al., 2019; Garrett et al., 2020; 2021). For example, Hadjivelichkov et al. (2022)
demonstrates a single reference image of an object with annotated affordance regions can help the
robot to use the affordance skill in the real-world setting, where our method can provide generalizable
affordance information on the 3D shapes without the need for manual annotation.
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sittable ~ support  frame. contain. liquid. openable display  cutting
Orig. 72.44 82.92 74.74  54.01 20.34  58.62 87.26 83.29
Scaled | 74.95 83.68 77.87 75.01 69.42  66.26 90.03 79.67
backrest  armrest press.  handle illum.  wrapgrasp lyable  headrest
Orig. 80.51 73.19 78.70  38.09 2457  63.07 46.24 34.73
Scaled | 81.36 73.63 83.57 49.31 2459 7148 45.32 32.76
rollable  pourable twist. lever pinch.  audible
Orig. 53.33 68.15 40.24  60.34 62.07  56.67
Scaled | 58.43 73.89 53.97 64.24 66.84 46.11

Table 4: Supervised affordance segmentation results (category mloU %). “Orig." refers to the original PartNet
dataset with 3D shapes scaled to a unit bounding sphere. “Scaled" refers to rescaling 3D shapes to real-world
dimensions. “avg" refers to shape average Intersection-over-Union (IoU).

= Fe
Figure 15: 3D Human synthesis conditioned on inferred part affordance using (Hassan et al., 2021).

D SUPERVISED AFFORDANCE ESTIMATION

Apart from the PartAfford task, we also benchmark the state-of-the-art 3D auto-encoder for the super-
vised affordance segmentation task in a cross-category fashion on our proposed dataset. Evaluation
is reported on the Intersection-over-Union (IoU) metric following Mo et al. (2019b), as shown in
Table 4.

Note that the baseline is trained and tested on all object and affordance categories. In contrast,
semantic segmentation in PartNet (Chang et al., 2015; Mo et al., 2019b) is trained on each object
category separately. Results show that the algorithm could still achieve high performance, which
demonstrates that our affordance annotation is reasonable and consistent.

PartNet normalizes every object shape into a unit bounding sphere. This is not realistic since objects
in different categories may have very different dimensions. For example, a mug is much smaller than
a bed. If normalized in the same way, cross-category training performance may be hurt to some extent.
Thus, we calculate the average real-world 3D dimensions of each object category from metadata of
ShapeNet (Chang et al., 2015) and scale the point cloud in our part affordance dataset according to
its object category.

E MODEL GENERALIZATION TO UNSEEN OBJECTS

To further demonstrate the generalizability of our methods qualitatively, we additionally provide
examples for real scanned and more diverse objects from the Replica (Straub et al., 2019) dataset,
results shown in Fig. 8 and Fig. 9. Although the scan quality is not perfect, our learned model
generalizes well and can reconstruct and identify the functional parts given novel objects.

F DETAILS ON EXPERIMENTS

Benchmarks Below, we describe the statistics of objects and the related affordances for these
subsets; we discuss detailed reasons about why we choose these three subsets in Appendix C.2.

* “Sittable”: We collect all object instances that have affordance “sittable”; most of them are chairs and
sofas. Their part-level affordances belong to the set {sittable, backrest, armrest, framework}.
We split the training, validation, and test set in the ratio of 7:1: 2. In total, we have 5, 093 instances
for training and 1, 457 for test.
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* “Support”: We collect objects with affordance “support”, mainly from categories table and cabinet.
Their affordances belong to {support, framework}. There are 7,974 instances for training and
2,279 instances for test.

* “Openable”: This subset contains objects from frige, dishwasher, washing machine, and microwave.
Their affordances belong to {openable, framework, handle}. There are 807 instances for training
and 232 instances for test.

Data Augmentation To enrich affordance compositions, we augment the training data by randomly
removing certain object parts with corresponding affordance labels.

G MORE MODULE ABLATION

G.1 SOFT K-MEANS

Slot attention, as a generalized soft k-means algorithm, could be reduced to the soft k-means algorithm
according to Locatello et al. (2020). It turns out that the reduced model can achieve 23.0% Mean
IoU on "sittable" objects, which is slightly better than the Slot MLP baseline but significantly worse
than our full model using slot attention (57.3%). It reconstructs the whole shape with a quality (MSE:
0.0096) on par with the full model (MSE: 0.0097). Its affordance set prediction accuracy is the lowest
among all models (AP: 0.87). Overall, the soft k-means algorithm cannot effectively segment the
shape or discover affordance parts.

H ADDITIONAL EXPERIMENTAL RESULTS

We show additional qualitative results for our full model’s affordance discovery results on “sittable"
(Fig. 16), “support" (Fig. 17), “openable" (Fig. 18) objects, respectively.

I PART AFFORDANCE DATASET

Here we report more statistics and details on how we define and annotate the affordance labels in our
dataset. As shown in Fig. 12, most of the affordance categories are annotated on more than 2 kinds of
objects. Our curated subsets cover the most common affordance categories (top 7), as well as some
rare affordance categories (e.g., “cutting”) on the long tail.

I.1 PRINCIPLES FOR AFFORDANCE ANNOTATION

To keep annotations consistent across object categories, we design a guideline for affordance annota-
tion. Below are some general principles to annotate a leaf part of an object instance with affordances.

Multiple affordances. A part can afford multiple kinds of human actions. For example, the seat of
chair could afford sittable for resting of human body or support if one wants to place some books on
it. We refer to ConceptNet (Speer et al., 2017), a giant knowledge database, for annotating common
usage of object parts.

Prioritized fine-grained affordances. When there are multiple affordances labels for a part, we give
the more fine-grained affordance label higher priority. For the chair seat in the example above, sittable
is prioritized compared with support as it is a fine-grained support affordance for body resting.

Articulation-related affordances. The PartNet dataset does not contain articulation information, which
makes affordances such as openable not geometrically distinguishable. Thus, we also generate a
set of shapes with openable affordance from the PartNet-Mobility dataset by capturing 3D shapes
with various opening angles. More geometric variation helps models to learn articulation-related
affordances.

I.2  AFFORDANCE DESCRIPTIONS
Our description for each affordance contains a brief definition, some supplemental clarification and

priority statements if needed, and some example leaf nodes in the part hierarchy of various reasonable
objects (full path from root to leaf).
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sittable: Indicates whether the object can be used for sitting. Anything sittable of course affords
support, and the requirement for a supporting object to be sittable is that it must be both comfortable
and safe for human seating. For example, a table is not sittable despite affording support because it is
not comfortable. Sitfable is given priority over potential co-existing affordances like support.

E.g., chair/chair_seat/seat_surface.

support: A trait of objects which can safely keep other objects on top of themselves. Common
characteristics of support-affording objects are that they are flat and can support multiple objects
at once. A key distinction between support-affording objects and non-supporting objects is that
support-affording objects will remain stable when other objects are placed on them. For example, a
table is a supporting object because it is just as stable with objects on it as it is without. However, a
stack of plates is not supporting because they become more unstable as you add more plates.

E.g., table /regular_table/tabletop,
storage_furniture/cabinet/shelf,
bed/bed_unit/bed_sleep_area.

openable: Parts which may be moved with a hinge-like mechanism on an articulated object.
Openable objects do not need to afford handles, but usually handles can be found attached to the
openable part. Openable parts are distinct from other moving parts in that they need to swing to
some degree to be moved. Openable is given priority over potential co-existing affordances like
containment.

E.g., door/door_body /surface_board,
dish_washer/body/door/door_frame,
microwave /body /door.

backrest: Objects which are reasonably designed for providing support to a person’s back. By
reasonably designed, we mean either specifically (as in the back of a chair) or can afford back support
if a person wanted to sit upright (like a headboard).

E.g., chair/chair_back/back_support.

armrest: Objects which are specifically designed to support an arm. For example, a table can
support a variety of things and is thus not an armrest. A chair’s arm is the perfect size for a human
arm, so it must be an armrest.

E.g., chair/chair_arm.

handle: An object extension which affords the ability to open an attached ‘openable’ part. Handles
are mostly grabbed with hand-wrapping, so it’s important to only afford ‘handle’ to parts which are
specifically involved in an opening mechanism, like a door handle.

E.g., storage_furniture/cabinet/cabinet_door/handle,
table /regular_table/table_base/drawer_base/
cabinet_door/handle,
mug/handle,
dish_washer/body/door/handle,
bag/bag_handle.

Jramework: Any object segment which either: a) helps to define the shape of the object as a whole
or b) is an unaffording extension of the object or connector for other segments. For example, a
hinge affords framework because it is integral to connects the door to the door frame. Overall, this
affordance is the most general of all, so it should only be used when it clearly applies to either case of
the definition. For example, most handles do not afford framework because it is both a small part
of an object’s shape and already affords handle. It has the least priority among potential co-existing
affordances.

E.g., chair/chair_base.

containment: An affordance of object which can store physical items. The size of the physical
items does not matter, so long as they are not too small. For example, anything that can only contain
objects smaller than say a marble do not afford containment. Also, items that afford containment
must afford security to the items they contain, such that they will not fall out.
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E.g., table/regular_table/table_base/drawer_base/drawer,
storage_furniture/cabinet/drawer,
mug/container,
trash_can/container,
refrigerator/body,
bowl/container, bag/bag_body,
bottle /normal_bottle /body.

liquidcontainment: A more specific version of the containment affordance. Objects that afford
liquid-containment must be able to safely contain liquid. Examples of these are bottles, bath tubs, efc.

E.g., mug/body,
bottle /normal_bottle /body.

display: Something which visualizes information for a useful purpose. Examples of these would be
monitor screens or a clock surface.

E.g., display/display_screen/screen,
laptop/screen_side/screen,
clock/table_clock/clock_body /surface.

cutting: The quality of being able to slice through other objects. Certain things that can cut are
not considered to have cutting affordance if it was used against its intended purpose, like smashing
a glass vase. Cutting is only afforded to objects which are specifically designed for cutting, like a
blade-edge.

E.g., cutting_instrument/knife/blade_side,
scissors/blade_handle_set/blade.

pressable: A mechanical feature of objects which either have buttons or can interact with a finger.
Good examples of these are keyboard keys.

E.g., keyboard/key.

hanging: A part which can be hung on another object. These parts almost always only serve the
purpose of hanging the rest of the entire object. An example of this would be a shoulder strap for a
handbag.

E.g., bag/shoulder_strap.

wrapgrasp: The ‘wrap-grasp’ trait is afforded by parts which are explicitly meant to be grabbed in
a hand-wrapping motion. Just because a hand can wrap around an object part does not mean it affords
wrap-grasp. It must be useful to grip the part in this way. An example of this would be a ladder rung,
which a person is meant to wrap their hand around to climb the ladder.

E.g., cup,
bed/ladder /rung.

illumination: The affordance of light emission. This only applies to object parts which are meant
to light up a broad area. For example, a monitor screen does not afford illumination despite emitting
light because it is not supposed to be used to light up the area around it.

E.g., lamp/table_or_floor_lamp/lamp_unit
/lamp_head/light_bulb.

lyable: Indicates that a human can comfortably rest his/her entire body on the object. These objects
are usually flat with a soft surface. Lyable is given priority over potential co-existing affordances such
as sittable and support.

E.g., bed/bed_unit/bed_sleep_area/mattress.

headrest: An extension of an object which is oriented so a human head can rest comfortably on it.
Examples of these are chair headrests or bedframe headrests.

E.g., bed/bed_unit/bed_sleep_area_pillow,
bed/bed_unit/bed_frame/headboard.
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step: A part which affords the human foot climbing or resting functionality. For example, a ladder
rung is a step because it affords climbing with both hands and feet. A foot pedestal is also a step
because it can be stood on or feet can be rested on it.

E.g., bed/ladder/rung.

pourable: Meant for parts which liquid can flow out of. Things that are pourable may also be
dependent on a mechanism for controlling flow, like a bottle cap or a knob.

E.g., bottle/normal_bottle/mouth,
bottle /jug /body.

twistable: These objects can either be detached or provide special functionality by twisting them in
a clockwise or counterclockwise motion. Examples include bottle caps and knobs.

E.g., bottle/normal_bottle/lid,
bottle /normal_bottle /mouth.

rollable: A part which can roll to move around. Exceptions to this affordance are objects which roll
but stay fixed in place, like a rocking chair.

E.g., wheel.

lever: Any handle which can rotate up to a point. For example, knobs rotate but are not levers
because they do not provide handles. Levers must be treated differently from twistable objects or
handles because if they are twisted too much they will break.

E.g., lever.

pinchable: An object which is small enough such that it can be manipulated by pinching with two
or more fingers. Things that are pinchable must not be heavy, and they usually fit inside the palm of a
hand.

E.g., earbud.

audible: Anything which emits sound. This does not include sound emitted indirectly, such as a
door creaking when opened, which makes sound as a side-effect.

E.g., headphone /padding.

1.3 LICENSE

Our dataset is annotated based on PartNet (vO) (Mo et al., 2019b) and PartNet-Mobility (v2.0) (Xiang
et al., 2020), both of which are licensed under the terms of the MIT License.

J CODE AND DATA

Code, data, and instructions needed to reproduce the main experimental results are available in the
supplementary materials.
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Figure 16: Additional qualitative results on objects in our “sittable" subset.
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Figure 17: Additional qualitative results on objects in our "support" subset.
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Figure 18: Additional qualitative results on objects in our “openable" subset.
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