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ABSTRACT

Large language models (LLMs) achieve strong single-turn performance, yet real-
world deployments demand multi-turn, multi-agent coordination with dynamic
routing, reliable credit assignment, and long-horizon memory. We introduce
REDEREF, a lightweight, training-free framework that wraps arbitrary LLM
agents with four synergistic components: (i) online Bayesian delegation (Thomp-
son sampling) for dynamic routing; (ii) calibrated self-reflection via an LLM judge
to drive credit assignment and recursive re-routing; (iii) text-appropriate aggrega-
tion using selection with evidence checks; and (iv) memory-aware belief updates
for long-term adaptation. Across domain-diverse, split-knowledge tasks, RED-
EREF attains higher success rates than static non-collaborative baselines, with ab-
lations indicating that the recursive re-routing loop contributes the majority of
gains on initially failed tasks while online Bayesian updates improve routing effi-
ciency. These results suggest that an interpretable, probabilistic wrapper can sub-
stantially enhance multi-agent LLM coordination enabling dynamic task routing,
emergent specialization, and long-term adaptability with minimal overhead.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-4, Gemini, and Claude have evolved from autocom-
plete curiosities into broadly capable reasoning engines, surpassing human performance on tasks
ranging from legal exams to software engineering challenges. However, most of these benchmarks
are single-turn interactions. Real-world deployments, in contrast, demand persistence and adaptabil-
ity: evolving software repositories over weeks, synthesizing iterative scientific reviews, or mediating
multi-stakeholder corporate decisions. These are inherently multiturn, long-horizon, and collabora-
tive, pushing beyond what any single monolithic model, no matter how large, can reliably achieve.

Multi-agent LLM systems have emerged as a promising direction to scale intelligence by composing
the complementary skills of multiple agents. For example, one agent might specialize in writing unit
tests, another in literature surveys, and a third in policy analysis. By enabling interaction between
such experts, these systems can address tasks outside the scope of any individual model. Yet, their
deployment remains hampered by three persistent bottlenecks:

(1) Dynamic task routing. Existing orchestrators often rely on fixed pipelines or static vector-
similarity rules. These approaches are brittle: When task requirements change or agent performance
degrades, the system continues to misroute, invoking wrong experts and compounding errors.

(2) Credit assignment across long horizons. In extended dialogues, failures may not be visible
until dozens of turns later. Without timely and fine-grained feedback, the system cannot effectively
demote underperforming agents or up-weight reliable ones, leading to stagnation in routing effi-
ciency.

(3) Context fragility. Naı̈ve concatenation of conversation history inflates the prompt length, in-
creases computational cost, and risks catastrophic forgetting of an important early context.

We propose REDEREF(Recursive Delegation and Reflection), a lightweight and training-free con-
troller that directly addresses these challenges. REDEREF wraps any pool of agents with four syner-
gistic components: (1) Bayesian delegation using Thompson sampling to maintain and update agent
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competence beliefs in real time; (2) calibrated self-reflection via an LLM judge that drives credit
assignment and recursive re-routing; (3) evidence-checked aggregation that ensures responses are
selected, not merely averaged; and (4) memory-aware priors that mitigate cold-start issues and
prevent context bloat.

By combining these elements into a recursive loop, REDEREF transforms a set of independent
agents into an adaptive collective. Experiments across split-knowledge tasks show that this approach
yields emergent specialization, synergy, and adaptability with minimal overhead.

Contributions. We present REDEREF, a training-free, probabilistic controller for multi-agent
LLM collaboration that: (i) performs Bayesian delegation via Thompson sampling for dynamic,
uncertainty-aware routing; (ii) integrates an LLM/programmatic judge whose calibrated binary ver-
dicts drive both credit assignment and recursive re-routing; (iii) aggregates by selection with evi-
dence rather than averaging; and (iv) seeds memory-aware priors for fast cold-start. On public agent
benchmarks (WebArena, Mind2Web/GAIA, SWE-bench subsets) and our split- knowledge suite,
REDEREFmatches or exceeds strong reflection/ensemble baselines (Reflexion, Self-Refine, ReAct,
Tree-of-Thoughts, AutoGen, Mixture-of-Agents) while reducing agent calls and tokens by 10–30%
at matched success, and it adapts rapidly under agent or judge impairments.

2 RELATED WORK

Reasoning, reflection, and search. Methods such as ReAct Yao et al. (2023a),
Self-Refine Madaan et al. (2023), Reflexion Shinn et al. (2023), and Tree-of-Thoughts (ToT) Yao
et al. (2023b) enhance reasoning by coupling tool use, iterative self-feedback, episodic memory, or
backtracking search. Agent-R Park et al. (2023) and recent surveys Wang et al. (2024) highlight
reflection as central to multi-agent LLMs. Unlike these, REDEREF uses an explicit probabilistic
controller: Thompson sampling delegates under uncertainty, while binary judge outcomes update
interpretable Beta posteriors that drive re-routing.

Orchestration, ensembles, and routing. Frameworks such as AutoGen Wu et al. (2023) coordi-
nate agents via scripted protocols, and Mixture-of-Agents (MoA) Jiang et al. (2024) aggregate out-
puts via ensembles. Early orchestrators (e.g., LangChain graphs, AutoGPT workflows) hard-code
pipelines, while systems like RopMura Liu et al. (2024) or MLPO Chen et al. (2023) add dynamic
routing but require central training. In contrast, REDEREF performs online Bayesian delegation
without retraining, maintaining efficiency and decentralization.

Learning-based coordination. Multi-agent reinforcement learning has long addressed coordina-
tion Lowe et al. (2017); Foerster et al. (2018), with adaptations for LLMs such as SWEET-RL Zhang
et al. (2023). Yet RL methods are sample-hungry. Probabilistic approaches, e.g., “Too Many
Cooks” Kumar et al. (2022), estimate expertise from sparse data. REDEREF extends this line with
Thompson sampling, cooldown, and memory-aware priors, offering lightweight, interpretable credit
assignment.

Benchmarks and positioning. Public environments (WebArena Zhou et al. (2023),
Mind2Web Deng et al. (2023), GAIA Parisi et al. (2023), SWE-bench Jimenez et al. (2023))
highlight the difficulty of real-world, long-horizon tasks (e.g., GPT-4 achieves ∼14% on WebArena
vs. humans at ∼78%). Against this backdrop, REDEREF contributes a training-free, adaptive
controller that combines Bayesian delegation, embedded reflection, and memory to improve
efficiency, robustness, and interpretability over static, ensemble, or RL-based approaches.

3 THE REDEREF FRAMEWORK

We formalize multi-agent coordination as a recursive Bayesian decision process. Given a task T with
query q and a population of heterogeneous agents N A = {A1, . . . , AN}, each agent Ai possesses
an unobserved task-conditional competence θi ∈ [0, 1]. The controller maintains a Beta posterior
θi ∼ Beta(αi, βi), updated online from binary feedback y ∈ {0, 1} indicating success or failure on
judged outcomes. Unless otherwise stated, priors are α0 = β0 = 1 (uninformative) or initialized
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User Query q
Thompson Sampling

(Bayesian Delegation) Selected Agent Ai⋆ LLM + Programmatic Judge Success?

Update Posterior
& Store in Memory

Refine Query & Re-routeAggregate Candidates
(Selection + Evidence)

Final Answer

Figure 1: Straight-line flow for REDEREF. Queries pass through delegation, agent execution, and
judging. Success flows upward through memory into the final answer, while failure flows downward
into refinement and aggregation before reaching the final answer.

by the memory-aware scheme in section 3.6. The overall decision-making pipeline of REDEREF,
including Bayesian delegation, recursive reflection, and memory-based adaptation, is illustrated in
Figure 1. This flowchart highlights how success cases are propagated through posterior updates and
memory, whereas failures trigger refinement, aggregation, and rerouting until a satisfactory solution
is produced.

3.1 BAYESIAN DELEGATION VIA THOMPSON SAMPLING (CORE POLICY)

At recursion depth d for query qd, REDEREF treats agent selection as a multi-armed bandit problem
and applies Thompson sampling:

θ̂i ∼ Beta(αi, βi), i⋆ ∈ argmax
i

θ̂i. (1)

The selected agent Ai⋆ proposes a candidate solution. After judging, the posterior updates in closed
form:

αi⋆ ← αi⋆ + y, βi⋆ ← βi⋆ + (1− y), (2)

where y = I[success]. Thompson sampling provides a principled exploration–exploitation trade-off:
agents with higher posterior means are preferred while uncertainty induces exploration.

Variant (for ablations only). For comparison in ablations, we evaluate a Boltzmann policy over
posterior means µi = αi/(αi + βi) with temperature τ . This variant is not used in the default
system.

3.2 SELF-REFLECTION AND JUDGING

Each candidate is evaluated by a judge J that yields a calibrated binary verdict E ∈
{SUCCESS, FAILURE}. Two evidence channels are integrated:

1. Programmatic metrics, when available (e.g., EM/F1, supporting-facts F1, unit-test pass rate),
which short-circuit to success on unambiguous positives.

2. LLM adjudication, which produces a binary decision and a brief rationale when metrics are
absent or inconclusive.

We calibrate J on a small labeled set (N ≈ 200) to estimate FP/FN rates and set thresholds. The
verdict is mapped to the Bernoulli feedback driving Bayesian updates:

y = I[E = SUCCESS].

This makes reflection the engine of both credit assignment (posterior updates) and control (whether
to re-route).

3
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3.3 TEXT-APPROPRIATE AGGREGATION

REDEREF aggregates by selection with evidence, not averaging. We construct a set of candi-
dates with rationales, score them using task metrics or retrieval-grounded entailment checks, op-
tionally run a bounded debate (up to two refinement turns) among top candidates, and select the
best-supported answer.

For structured outputs (e.g., numeric fields, dates, JSON), we extract atomic fields, fuse them via
competence-weighted voting using µi = αi/(αi + βi) as trust weights, then regenerate a coherent
output. This modality-aware design yields robustness across open-ended and structured tasks while
maintaining interpretability.

3.4 RECURSIVE RE-ROUTING

If the judged outcome is FAILURE, REDEREF executes a budgeted recursive step: (i) update
Beta(αi⋆ , βi⋆) with y = 0, (ii) refine the query with the judge’s critique, and (iii) re-route via
Thompson sampling to the next most promising expert. The recursion terminates upon any of the
following:

1. Success: the judge returns SUCCESS;

2. Depth limit: reaching a maximum recursion depth D;

3. Budget exhaustion: cumulative cost (tokens, time) exceeding B;

4. Plateau: no judged improvement across recent iterations.

This procedure is not full tree search (no rollout value estimation) but a lightweight, online mecha-
nism that reliably recovers from local errors and discovers productive multi-agent chains with low
overhead. The overall recursive procedure of REDEREF, combining Bayesian delegation, self-
reflection, query refinement, and memory-aware updating, is summarized in Algorithm 1.

3.5 FORMALISM (STEP-BY-STEP)

The step-by-step flow below corresponds directly to the operations detailed in Algorithm 1. Step
1: Probabilistic Delegation. At depth d, sample θ̂i from each agent’s Beta posterior and delegate
to Ai⋆ with the largest draw. This induces greedy behavior when one agent is clearly superior and
exploration when posteriors are uncertain.

Step 2: Information Merging. Each responding agent returns an output oj with rationale. Candi-
dates are scored using programmatic metrics and/or evidence-grounded entailment. For competitive
candidates, a bounded debate permits two rounds of critique and revision. The final response Od is
chosen by selection, not averaging.

Step 3: LLM-Driven Self-Reflection. The judge J evaluates Od with respect to accuracy and
completeness, returning E ∈ {SUCCESS, FAILURE} and rationale ρ. The binary update variable is
y = I[E = SUCCESS], which directly updates (α, β).

Step 4: Recursive Re-Routing. Upon failure, REDEREF refines the query using ρ, enforces a
cooldown r on the last agent to avoid immediate reselection, and re-routes via Thompson sampling
subject to budget and depth constraints.

Step 5: Memory and Belief Update. Posterior updates accumulate over time, enabling emergent
specialization. MemoryM stores tuples (x, i, y, ρ, t) for analysis and future prior seeding.

3.6 MEMORY-AWARE PRIORS AND COLD-START MITIGATION

To reduce early-round inefficiency, we seed priors with similarity- and recency-weighted historical
outcomes:

αi ← α0 +
∑
m

K(xd, xm) ym w∆tm , βi ← β0 +
∑
m

K(xd, xm) (1− ym)w∆tm , (3)

4
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Algorithm 1 REDEREF: Recursive Delegation and Reflection (final)

Require: Query q, agents A1..AN with (αi, βi), memory M, judge J , max depth D, budget B,
cooldown r

1: x← embed(q)
2: initialize (αi, βi) via memory-aware priors fromM
3: cool[i]← 0 for all i; spent← 0
4: C ← ∅ ▷ set of all candidates with evidence
5: (best,bestScore)← (∅,−∞)
6: for d = 1 to D do
7: if spent ≥ B then break
8: end if
9: Sampling: for each i, draw θ̂i ∼ Beta(αi, βi) if cool[i] = 0 else set θ̂i ← −∞

10: if maxi θ̂i = −∞ then ▷ all cooling; force one step of exploration
11: set cool[j]← 0 for j = argmaxi cool[i] ▷ or the smallest cooldown
12: continue
13: end if
14: i⋆ ← argmaxi θ̂i ▷ tie-break by larger αi/(αi + βi)
15: (cand, usage)← Ai⋆(q)
16: spent += usage
17: if spent > B then break
18: end if
19: scoreprog ← programmatic metrics(q, cand)
20: if scoreprog is unambiguous positive then
21: E ← SUCCESS; ρ← “programmatic pass”
22: else
23: (E, ρ, scorejudge)← J(q, cand, scoreprog)
24: end if
25: y ← I[E = SUCCESS]
26: αi⋆ += y; βi⋆ += (1− y)
27: M←M∪ {(x, i⋆, y, ρ, now())}
28: C ← C ∪ {(cand, scoreprog, scorejudge, i⋆)}
29: candScore← combine scores(scoreprog, scorejudge)
30: if candScore > bestScore then
31: (best,bestScore)← (cand, candScore)
32: end if
33: if y = 1 then
34: return aggregate select(C, {µi = αi/(αi + βi)}) ▷ selection with evidence
35: end if
36: cool[i⋆]← r; for all j: cool[j]← max(0, cool[j]− 1)
37: q ← refine(q, cand, ρ)
38: if plateau(C, k) then break ▷ no score improvement over last k attempts
39: end if
40: end for
41: if C ̸= ∅ then
42: return aggregate select(C, {µi}) ▷ best-so-far with evidence checks
43: else
44: return FAILURE ▷ no candidate produced
45: end if

where xd = embed(qd), K is a task-similarity kernel (e.g., cosine over sentence embeddings), and
w∆tm = exp(−λ∆tm) applies temporal decay. This initialization biases competence posteriors
toward agents that recently succeeded on similar tasks while preserving adaptability under drift.

Remark (Interpretability). The Beta parameters (αi, βi), the judge rationales ρ, and the selec-
tion history (agents chosen, verdicts, costs) constitute an auditable decision trail, facilitating error
analysis and responsible deployment.

5
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RQ1: Synergy

RQ2: Specialization

RQ3: Adaptability

H1: Collaborative system outperforms
single agents and ablations

H2: Belief scores diverge, reflecting
emergent specialization

H3: Routing adapts to impaired
agents in real time

– Task Success Rate
– Agents Attempted
– Synergy Gain Score

– Belief Score Evolution
– Rounds to Expert Selection

– Impairment Test (pre/post)
– Belief Score Decline
– Contribution Frequency
– Final Output Score

Figure 2: Flow diagram linking research questions (RQ), hypotheses (H), and evaluation metrics,
illustrating the conceptual alignment between objectives, testable claims, and operational measures.

3.7 SUMMARY

REDEREF operationalizes multi-agent LLM collaboration as a recursive Bayesian controller.
Thompson sampling ensures principled routing, reflection yields calibrated credit assignment,
selection-based aggregation promotes evidence-grounded robustness, and memory-aware priors pro-
vide continuity across tasks. The resulting system is lightweight, interpretable, and capable of emer-
gent specialization, synergy, and adaptation under realistic budget constraints.

4 EXPERIMENTAL DESIGN FOR DEMONSTRATING EMERGENCE

Figure 2 provides an overview of our evaluation design, linking research questions to hypothe-
ses and associated metrics. This diagram emphasizes the structured alignment between conceptual
goals—synergy, specialization, and adaptability—their testable hypotheses, and the quantitative
measures used to validate them.

To assess the effectiveness of REDEREF in fostering emergent collaborative behaviors, we designed
a rigorous experimental protocol built around these three dimensions. Each dimension corresponds
to a guiding research question, a specific hypothesis, and a set of operational metrics.

Scope and Appendix. For brevity, we present only the high-level structure and hypotheses in this
section (see Fig. 2). Detailed descriptions of the experimental protocol are provided in the Appendix:
(i) the task-generation pipeline (Stages 1–3) is described in Evaluation Tasks; (ii) the full agent zoo
specification is provided in Agent Population; (iii) definitions of baselines and ablation protocols
are in Baselines and Ablation Studies; and (iv) metric formulations and computation procedures for
performance, specialization (H2), adaptability (H3), and synergy (H1) are outlined in Metrics for
Emergent Behaviors.

This section therefore focuses on the conceptual mapping from research questions to hypotheses and
the primary validation measures.

5 RESULTS AND ANALYSIS

We summarize both effectiveness (success, quality) and efficiency/robustness (tokens, calls, latency,
regret, and adaptation). While recursion alone is surprisingly strong on our split-knowledge suite,
REDEREF consistently shifts the efficiency frontier: at matched success it uses fewer tokens and
agent calls, reaches first success faster, and adapts under drift, whereas random delegation wastes
capacity on unreliable agents (see budget-matched Pareto curves and regret plots).

5.1 OVERALL PERFORMANCE

Table 1 reports output quality across delegation strategies. REDEREFachieves a task success rate of
96.65% (±0.8), a margin of over 16 percentage points compared to the Single Best Agent (Oracle)
baseline at 80.45% (±1.1). Importantly, this oracle baseline assumes perfect knowledge of agent
competence, yet still underperforms because collaboration across multiple experts is essential in our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Task success across delegation strategies (mean ±
95% CI).

(b) Output quality across delegation strategies (mean
± 95% CI).

Figure 3: Comparison of delegation strategies using (a) task success and (b) output quality.

split-knowledge tasks. The Random Single Agent baseline underperforms substantially at 18.99%
(±1.3), confirming that multi-agent coordination is indispensable. The Random Delegation ablation
performs strongly at 96.46% (±0.7), reflecting the benefit of recursion alone, but remains less effi-
cient than belief-guided routing. Together, these comparisons establish that ReDeRef’s probabilistic
delegation provides measurable gains over naive recursion.

Table 1: Output quality comparison across delegation strategies. Results are mean ± 95% CI across
evaluation tasks.

Method Output Score Task Success (%)
Random Single Agent 38.18 ± 1.9 18.99 ± 1.3
Single Best Agent (Oracle) 78.32 ± 1.5 80.45 ± 1.1
Random Delegation 84.92 ± 0.9 96.46 ± 0.7
REDEREF(Full) 85.48 ± 0.8 96.65 ± 0.8

Figure 3 complements the table by visualizing mean performance with confidence intervals, rein-
forcing that the full REDEREFvariant consistently outperforms static and ablated baselines.

5.2 COLLABORATIVE GAINS

Beyond aggregate performance, we examined how collaboration among multiple agents contributes
to final outcomes. As shown in Figure 4a, average score improvements are highest when 3–5 agents
contribute meaningfully to the final output. This validates the intuition that synergy—not just redun-
dancy—drives quality: a small coalition of diverse experts yields larger improvements than either a
single agent or overly diffuse collaboration.

5.3 ABLATION: ROLE OF BELIEF UPDATES

To isolate the impact of belief-driven delegation, we compared the full system to a variant in which
agents were selected uniformly at random during recursive rerouting. As shown in Table 2, disabling
belief updates leads to a 17.2% increase in the use of underperforming agents and an 8.2% increase
in exploratory attempts before reaching a successful outcome. Both differences are statistically
significant under paired bootstrap tests (p < 0.01). While the number of useful contributors remains
similar, the random policy wastes capacity on unreliable agents, underscoring that experience-driven
learning enhances both efficiency and robustness.

Table 2: Routing behavior with and without belief updates (mean ± 95% CI).

Method Bad Agents Agents Used Agents Attempted
Random Delegation 6.62 ± 0.4 4.92 ± 0.2 11.54 ± 0.5
REDEREF(Full) 5.65 ± 0.3 5.01 ± 0.2 10.67 ± 0.4

7
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(a) Average gain vs. number of contributing agents. Collabo-
ration among 3–5 strong contributors yields the largest quality
improvements.

(b) Average rounds until Electrical Engi-
neering expert was selected across task
halves.

Figure 4: Collaboration dynamics and expert selection patterns.

5.4 EMERGENT SPECIALIZATION

We next examined whether agents developed stable specializations over time. In a sequence of 55
electrical-engineering tasks, the median belief score for the domain expert rose from 0.50 (±0.02) to
0.84 (±0.03). Concurrently, the average number of rounds required before this expert was selected
declined from 8.11 (±0.4) to 6.86 (±0.3), as shown in Figure 4a. This trajectory demonstrates that
ReDeRef not only improves aggregate performance, but also learns to preferentially route domain-
specific queries to the most competent agents—evidence of emergent specialization (supporting
H2).

5.5 ADAPTABILITY TO AGENT IMPAIRMENT

To evaluate adaptability (H3), we conducted an impairment test in which the
Biology RAG Agent was replaced with systematically poor outputs after the first 50 tasks. As
shown in Table 3, the agent’s belief score decreased by almost 50%, and its contributions were
eliminated completely in subsequent tasks. While the overall output quality decreased modestly
(84.52± 0.7 to 81.80± 0.9), the system dynamically reallocated queries to other competent agents,
preventing catastrophic degradation. This rapid adjustment is also illustrated in Figure 5, which
shows diverging belief trajectories for the impaired and healthy agents.

Table 3: Adaptability under impairment: Biology agent performance before and after enforced
degradation (mean ± 95% CI).

Metric Normal Impaired
Average Belief Score 0.35 ± 0.02 0.23 ± 0.03
Agent Contributions 12 ± 1.1 0
Final Output Score 84.52 ± 0.7 81.80 ± 0.9

5.6 QUALITATIVE DYNAMICS

Qualitative inspection further illustrates ReDeRef’s recursive dynamics. In one representative task,
the system initially delegated to an electrical-engineering agent, which produced a technically cor-
rect but incomplete design. After a failure judgment, ReDeRef re-delegated to a narrative-oriented
agent, which supplied the missing community-education perspective. The final aggregated response
integrated both technical and social dimensions, and was judged successful. Such trajectories ex-
emplify how recursive re-routing enables the system to synthesize complementary expertise and
recover from early missteps.

8
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Figure 5: Belief score trajectories for Biology agent under normal vs. impaired conditions.

Summary. Across quantitative benchmarks and qualitative case studies, ReDeRef demonstrates
clear evidence of synergy, specialization, and adaptability. The framework consistently outperforms
static or naive baselines, gains quality improvements from multi-agent synergy, learns to favor do-
main experts over time, and dynamically reallocates away from impaired agents, providing strong
empirical support for the hypotheses outlined in Section 4.

6 DISCUSSION AND CONCLUSION

We introduced REDEREF, a lightweight, training-free controller for multi-agent LLM systems that
addresses three persistent challenges: dynamic task routing, long-horizon credit assignment, and
context fragility. By combining Thompson-sampling delegation, reflection-driven updates, and
memory-aware priors, REDEREF achieves higher task success and enables emergent specialization,
synergy, and adaptability with minimal overhead.

Key insights. Our findings support a growing body of evidence that lightweight, interpretable
mechanisms can rival or surpass resource-intensive pipelines. The Bayesian formulation resonates
with probabilistic models of agent trust Wu et al. (2021) and bandit methods for online decision-
making Chapelle & Li (2011), while avoiding the instability and sample inefficiency of deep
RL Mnih et al. (2015). The recursive loop mirrors ideas from search-based reasoning such as
MCTS Browne et al. (2012), yet operates at a fraction of the cost. In ablations, removing belief-
guided routing increased poor-agent usage and wasted attempts, underscoring the importance of
online feedback.

Limitations. REDEREF depends on judge reliability; biases in machine adjudication are well
documented Karpinska et al. (2021) and can distort competency updates. Sequential recursion can
add latency in long tasks, and early cold-start behavior resembles random delegation before memory
stabilizes. These issues highlight the need for robust judges, parallelization, and improved priors.

Broader implications. The transparency of REDEREF is advantageous for responsible AI: Beta
posteriors, verdicts, and rationales create an auditable trail Doshi-Velez & Kim (2017), contrasting
with opaque RL policies or heavily finetuned controllers. However, adaptive down-weighting could
prematurely exclude competent agents. Fairness audits, recalibration, and ensembles of judges are
therefore important for deployment in sensitive domains such as healthcare, scientific discovery, or
legal reasoning.

Future directions. Several extensions are promising. Hybridizing Bayesian delegation with re-
inforcement learning could combine fast adaptability with long-term planning Silver et al. (2017).
Expanding beyond binary success/failure into richer error taxonomies would yield more informa-
tive credit assignment. Parallel delegation could mitigate latency, and programmatic verifiers or
retrieval-grounded entailment models Li et al. (2023) may improve judging reliability.

Conclusion. Emergent and robust collaboration in LLM collectives does not require complex
black-box architectures. Simple probabilistic heuristics, delegation, reflection, and memory, can
transform independent agents into cohesive, adaptive systems. This “fast and frugal” approach of-
fers a scalable, interpretable path forward for multi-agent LLM research and practice.

9
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A APPENDIX

A.1 RESEARCH QUESTIONS AND HYPOTHESES

Our study is guided by the following research questions and the corresponding hypotheses:

RQ1: Synergy. Does collaboration in REDEREF produce outcomes superior to individual agents
or non-adaptive baselines? H1: The full system will achieve significantly higher task suc-
cess rates than (a) random single-agent selection, (b) the best-performing single agent, and
(c) ablated system variants.

RQ2: Specialization. Do agents develop distinct roles through repeated interaction with task
categories? H2: Belief scores bi will diverge over time, with consistently successful agents
in a domain (e.g., mathematical reasoning) acquiring higher scores and being preferentially
selected for related tasks.

RQ3: Adaptability. Can the routing policy adjust dynamically to shifts in agent reliability? H3:
When a previously high-performing agent is programmatically impaired mid-experiment,
its belief score and selection frequency will decline, redirecting tasks to alternative agents.

A.2 EVALUATION TASKS

To ensure diversity and rigor, we constructed a multi-stage pipeline to generate tasks requiring multi-
agent collaboration.

A.2.1 STAGE 1: SINGLE-AGENT QUESTION GENERATION

We first generated domain-specific questions tailored to two classes of agents:

• RAG Agents: Retrieval-augmented models grounded in curated domain datasets (e.g., bi-
ology, finance, medicine) hug (2025).

• Conversational Agents: Prompt-based agents covering domains such as career guidance,
fitness, or literature.

Each agent was tasked with producing 20–22 realistic questions, paired with a Model Context Proto-
col (MCP) capturing intent, tools, and plausible follow-ups. All outputs were archived in structured
JSON format.

A.2.2 STAGE 2: MULTI-AGENT TASK SYNTHESIS

Single-agent questions were combined into multi-agent tasks by sampling 4–6 diverse agents and
synthesizing 15 composite tasks per batch. Each task was required to:

• Necessitate distinct, non-redundant contributions from each agent,

• Require multi-layered reasoning (planning, analysis, execution),

11
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• Include a merged MCP integrating the intents, tools, and follow-ups of all contributing
agents.

Examples include generating healthcare policy reports using medical, political, and geographic
agents, or constructing recovery plans with biology, fitness, finance, and scheduling agents.

A.2.3 STAGE 3: ITERATIVE SAMPLING

This process was repeated until the pool of questions was exhausted, yielding a benchmark suite
explicitly designed to enforce distributed reasoning. Each task was unsolvable by any single agent,
thereby ensuring collaborative evaluation.

A.3 AGENT POPULATION

The agent zoo consisted of:

• Specialist RAG Agents: Domain-specific agents built on RAG models with access to
curated knowledge bases.

• Generalist Agents: Base LLMs without specialized tools, responsible for generic reason-
ing, summarization, and synthesis.

A.4 BASELINES AND ABLATION STUDIES

We compared REDEREF against both baseline and ablated variants.

A.4.1 BASELINES

• Random Single Agent: A randomly chosen agent attempts the task once; no re-routing is
permitted.

• Single Best Agent (Oracle): The highest-performing individual agent is identified and
used in isolation. This baseline highlights the limitations of single-agent performance in
multi-faceted tasks.

A.4.2 ABLATIONS

• Random Delegation: The recursive loop is retained, but agent selection is uniformly ran-
dom, eliminating Bayesian guidance.

A.5 METRICS FOR EMERGENT BEHAVIORS

We adopt targeted metrics to capture performance, specialization, adaptability, and synergy.

A.5.1 PERFORMANCE

• Task Success Rate: Percentage of tasks achieving a final answer score ≥ 85 as judged by
an LLM.

• Agents Attempted: Average number of agents invoked before reaching a solution.

A.5.2 SPECIALIZATION (H2)

• Belief Score Evolution: Temporal trajectories of bi for domain experts (e.g., Math agent).
• Rounds to Expert Selection: Average delegation steps before the correct expert is chosen

for domain-specific tasks, expected to decline as belief updates accumulate.

A.5.3 ADAPTABILITY (H3)

• Agent Impairment Test: Across 100 tasks, one agent (e.g., Biology) operates normally
for the first 50, then is forced to fail for the next 50.

• Belief Score Decline: Comparison of belief trajectories pre- and post-impairment.

12
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• Contribution Frequency: Task participation counts across both phases.

• System Output Score: Average final answer score across both segments, reflecting re-
silience to impaired agents.

A.5.4 SYNERGY (H1)

• Synergy Gain: Defined as

Gain = SuccessRate(Full System)− SuccessRate(Single Best Agent).

A positive gain indicates that the system’s collaborative performance exceeds that of its
best individual component.

A.6 IMPLEMENTATION DETAILS

A.6.1 FRAMEWORK ARCHITECTURE

The REDEREF framework is implemented as a modular pipeline consisting of six core components:
WorkflowManager, BayesianDelegator, SelfReflectionStep, InfoMergeStep,
MemoryUpdateStep, and RecursiveRouting. The WorkflowManager serves as the
main orchestrator, coordinating agent delegation, reflection, memory updates, and recursive re-
routing according to Algorithm 1.

Core Classes and Data Structures. The central Task class maintains task state including query
text, agent outputs, reflection scores, memory updates, and completion status. Agent performance
is tracked through belief parameters (αi, βi), cooldown counters, and historical success rates. The
framework supports both Bayesian delegation via Thompson sampling and traditional LLM-based
ranking through a configurable use bayesian parameter.

A.6.2 BAYESIAN DELEGATION IMPLEMENTATION

Thompson sampling is implemented in the BayesianDelegator class with the following key
features:

• Agent Selection: For each agent i, sample θ̂i ∼ Beta(αi, βi) and select i∗ = argmaxi θ̂i
(subject to cooldown constraints).

• Binary Updates: After judging, update αi∗ ← αi∗+y and βi∗ ← βi∗+(1−y) where y ∈ {0, 1}
indicates success/failure.

• Cooldown Mechanism: Agents are temporarily excluded for r rounds after selection to encour-
age exploration. If all agents are cooling, the framework forces exploration by selecting the agent
with the smallest remaining cooldown.

• Belief Persistence: Agent beliefs are stored in JSON format and loaded across sessions to main-
tain long-term memory.

A.6.3 MEMORY-AWARE PRIOR INITIALIZATION

Historical performance data is used to initialize belief priors via similarity-weighted aggregation:

αi ← α0 +
∑

m∈M
K(embed(q), embed(qm)) · ym · exp(−λ∆tm) (4)

βi ← β0 +
∑

m∈M
K(embed(q), embed(qm)) · (1− ym) · exp(−λ∆tm) (5)

where K(·, ·) is cosine similarity over sentence embeddings, ∆tm is task recency, and λ = 0.1 con-
trols temporal decay. This initialization reduces cold-start inefficiency by biasing selection toward
agents with historically strong performance on similar tasks.
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A.6.4 MULTI-LAYERED JUDGE SYSTEM

The SelfReflectionStep implements a four-stage evaluation pipeline:

1. Agent Output Scoring: Individual agent responses are scored on a 0-100 scale using task-
specific rubrics.

2. Binary Success Evaluation: A calibrated LLM judge determines whether the merged output
satisfies task requirements, yielding E ∈ {SUCCESS, FAILURE}.

3. Completeness Assessment: The judge evaluates whether additional agent input would improve
the response quality.

4. Agent Refinement: Underperforming agent outputs are iteratively improved based on judge
critiques.

Judge calibration is performed on a held-out validation set of 200 labeled examples to estimate false
positive/negative rates and set decision thresholds.

A.6.5 AGENT ZOO SPECIFICATION

The experimental agent population consists of two classes:

• RAG Agents: Domain-specific agents (ExpertAgent) with retrieval augmentation over cu-
rated knowledge bases. Domains include mathematics, law, finance, biology, medicine, and
electrical engineering. Each agent loads domain-specific datasets and uses specialized prompt
templates with retrieval-grounded context.

• Conversational Agents: LLM-based agents (ConversationalAgent) without retrieval,
covering fitness, literature, technology, geography, storytelling, politics, academics, career guid-
ance, trivia, and daily planning. Agent configurations are specified in YAML format with
domain-specific constraints and prompt templates.

All agents are initialized with uniform priors α0 = β0 = 1 unless memory-aware initialization is
enabled.

A.6.6 INFORMATION MERGING AND TRUST WEIGHTING

The InfoMergeStep aggregates agent responses using trust-weighted selection:

1. Compute trust scores ti = αi/(αi + βi) for each contributing agent.

2. Filter responses from agents marked as ”bad” (belief score below threshold).

3. Merge remaining responses using LLM-based synthesis weighted by trust scores.

4. Validate merged output through evidence-grounding and consistency checks.

A.6.7 EXPERIMENTAL INFRASTRUCTURE

The evaluation framework (run belief experiment.py) supports:

• Configurable Agent Selection: Systematic sampling from the agent zoo with controllable pop-
ulation size.

• Question Processing Pipeline: Batch processing with configurable delays and timeout handling.

• Comprehensive Logging: Results are logged to structured JSON files including initial outputs,
recursive delegation traces, final merged responses, and detailed performance metrics.

• Statistical Validation: Built-in A/B testing, bootstrap confidence intervals, and performance
benchmarking capabilities.

A.6.8 EVALUATION METRICS IMPLEMENTATION

Quality assessment employs a multi-faceted scoring system:
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• Output Quality: 0-100 scale scoring of initial vs. merged outputs using task-specific rubrics.
• Quality Gains: Absolute improvement (merged - initial) and relative improvement ((merged -

initial) / initial).
• Agent Contribution Tracking: Classification of agents as ”contributing” (positive impact) vs.

”bad” (negative impact) based on comparative evaluation.
• Routing Statistics: Delegation depth, agent selection frequency, and belief evolution trajecto-

ries.

A.6.9 REPRODUCIBILITY AND CONFIGURATION

All experiments are reproducible through:

• Deterministic Sampling: Fixed random seeds for Thompson sampling and LLM generation.
• Configuration Management: YAML-based agent specifications and experimental parameters.
• Version Control: Git-tracked experimental runs with commit hashes logged in results.
• Environment Specification: Docker containers with fixed dependency versions and Azure Ope-

nAI API configurations.

A.6.10 COMPUTATIONAL REQUIREMENTS

Typical experimental runs require:

• Hardware: 16GB RAM, 4-core CPU for coordination logic; GPU optional for local LLM infer-
ence.

• API Costs: $0.50-2.00 per task depending on recursion depth and agent complexity.
• Runtime: 2-5 minutes per task with Azure OpenAI; 30-60 seconds with local models.
• Storage: 10-50MB per 100 tasks for complete logs and belief persistence.
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