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Abstract

Molecular discovery, when formulated as an op-
timization problem, presents significant compu-
tational challenges as the optimization objectives
can be non-differentiable. Evolutionary Algo-
rithms (EAs), often used to optimize black-box
objectives in molecular discovery, traverse chem-
ical space by performing random mutations and
crossovers, leading to a large number of expensive
objective evaluations. In this work, we amelio-
rate this shortcoming by incorporating chemistry-
aware Large Language Models (LLMs) into EAs.
We consider both commercial and open-source
LLMs trained on large corpora of chemical infor-
mation as crossover and mutation operations in
EAs. We perform an extensive empirical study
on multiple tasks involving property optimization
and molecular similarity, demonstrating that the
joint usage of LLMs with EAs yields superior per-
formance over all baseline models across single-
and multi-objective settings. We demonstrate that
our algorithm improves both the quality of the
final solution and convergence speed, thereby re-
ducing the number of required objective evalua-
tions.

1. Introduction
Molecular discovery involves a complex and iterative pro-
cess where practitioners design molecule candidates, syn-
thesize them, evaluate their properties, and refine initial
hypotheses. This process can be slow and laborious, making
it difficult to meet the increasing demand for new molecules
in domains such as pharmaceuticals, opto-electronics, and
energy storage (Tom et al., 2024). This has resulted in sig-
nificant efforts in developing better search (Kristiadi et al.,
2024), prediction (Atz et al., 2021), and generation (Du
et al., 2022a) algorithms to generate promising molecular
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candidates. However, many challenges remain, especially
in evaluating molecular properties due to expensive eval-
uations (oracles), such as wet-lab experiments, bioassays,
and computational simulations (Gensch et al., 2022; Stokes
et al., 2020).

Natural language processing (NLP) has been increasingly
used to represent molecular structures (Chithrananda et al.;
Schwaller et al., 2019; Öztürk et al., 2020) and extract chem-
ical knowledge from literature (Tshitoyan et al., 2019). The
link between NLP and molecular systems is facilitated by
molecular representations such as the Simplified Molecular
Input Line Entry System (SMILES) and Self-Referencing
Embedded Strings (SELFIES) (Weininger, 1988; Daylight
Chemical Information Systems, 2007; Krenn et al., 2020),.
These methods represent 2D molecular graphs as text, al-
lowing molecules and their text descriptions to be repre-
sented using the same modality. Recently, Large Language
Models (LLMs) have been utilized in several chemistry-
related tasks, such as predicting molecular properties (Guo
et al., 2023b; Jablonka et al., 2024), retrieving optimal
molecules (Kristiadi et al., 2024; Ramos et al., 2023; Ye
et al., 2023), automating chemistry experiments (Bran et al.,
2023; Boiko et al., 2023; Yoshikawa et al., 2023; Darvish
et al., 2024), and generating molecules with target prop-
erties (Flam-Shepherd & Aspuru-Guzik, 2023; Liu et al.,
2024; Ye et al., 2023). LLMs likely possess some knowl-
edge of these domains because they have been trained on
massive amounts of textual data from the internet (includ-
ing scientific knowledge) to achieve general-purpose lan-
guage comprehension (White, 2023). While these works
have shown that LLMs possess at least a preliminary under-
standing of chemistry, which is helpful for some chemical
discovery tasks, many are based on in-context learning and
prompt engineering (Guo et al., 2023b). This can pose is-
sues when designing molecules with strict numerical objec-
tives (AI4Science & Quantum, 2023). Furthermore, meth-
ods based on LLM-prompting alone can generate molecules
that are less fit since there is nothing physically grounding
an LLM, or they can generate invalid SMILES, meaning that
outputs cannot be decoded to chemical structures (Skinnider,
2024).

In this work, we look at evolutionary algorithms (EAs),
which are heuristic-based, derivative-free optimization al-
gorithms that only provide the objective value as feedback
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for a given query point (Song et al., 2024). Because ob-
jective functions for molecular properties can be complex
(for example, spectral data or bioassays), obtaining their
parameters and gradients can be nontrivial. Hence, EAs
are often used in molecular discovery (Kadan et al., 2023;
Nigam et al., 2024), and have even outperformed many
gradient-based methods (Tripp & Hernández-Lobato, 2023).
However, one issue with EAs is that they randomly nav-
igate chemical space based on pre-defined genetic opera-
tors which are target objective agnostic. At the same time,
chemistry-aware LLMs can provide knowledge of the tar-
get objective and modify a molecule accordingly, but their
outputs are noisy and typically do not generate optimal
molecules in a single step. We propose an evolutionary
process called Molecular Language-Enhanced Evolutionary
Optimization (MOLLEO) that combines EAs with LLMs
as crossover and mutation operators to push the distribu-
tion of proposed molecules from LLMs to candidates with
optimized chemical properties. We first validate the per-
formance of our approach using three flavors of chemistry-
aware LLMs on 12 property optimization and molecule sim-
ilarity tasks in the practical molecular optimization (PMO)
benchmark (Gao et al., 2022). We find that MOLLEO con-
sistently outperforms existing baselines with all language
models tested. We further show strong positive gains of
MOLLEO in many multiobjective and protein-ligand dock-
ing settings, demonstrating the utility of LLMs as genetic
operators. Finally, we conduct an extensive ablation study
to illustrate the capabilities and vulnerabilities of LLMs for
molecular optimization.

2. Related Work
2.1. Molecular Optimization

Molecular design is a fundamental problem in the chemi-
cal sciences and is essential to a wide range of real-world
challenges including medicine, mechanical engineering and
sustainability (Sanchez-Lengeling & Aspuru-Guzik, 2018;
Du et al., 2022a). The main obstacle for efficiently search-
ing molecules of interest is the gigantic and rugged chemical
space with slow and expensive experimental validations (Bo-
hacek et al., 1996; Stumpfe & Bajorath, 2012). A classical
approach is to make the chemical space combinatorial with
expert-defined rules and leverages efficient search and dis-
crete optimization methods to find molecular structures with
optimal properties of interest directly. These methods in-
clude Monte Carlo Tree Search (MCTS) (Yang et al., 2017),
reinforcement learning (RL) (Olivecrona et al., 2017a), ge-
netic algorithms (GA) (Jensen, 2019; Fu et al., 2021; Nigam
et al., 2022; Fu et al., 2022) and others (Du et al., 2022a).
In recent years, machine learning methods, especially gen-
erative methods, have been applied to accelerate molecular
optimization. These deep generative models learn a con-

tinuous probabilistic model from empirical datasets and
sample new molecular structures from the learned distribu-
tion. This class of models include autoregressive models
(ARs) (Popova et al., 2019; Gao et al., 2021), variational
autoencoders (VAEs) (Gómez-Bombarelli et al., 2018; Jin
et al., 2018), flow models (Madhawa et al., 2019; Shi et al.,
2020), diffusion models (Hoogeboom et al., 2022; Schneu-
ing et al., 2022) and many others (Du et al., 2022a). Be-
yond generating arbitrary molecular structures, these mod-
els often model a conditional probability distribution on
certain molecular properties or combine an optimization
loop to search for molecules with optimal properties of in-
terest iteratively. These methods include gradient-based
optimization, Bayesian optimization or latent space traver-
sal methods (Gómez-Bombarelli et al., 2018; Griffiths &
Hernández-Lobato, 2020; Zang & Wang, 2020; Du et al.,
2022b; Wei et al., 2024).

2.2. Language Models in Chemistry

LLMs have been widely investigated for their knowledge
in scientific domains (Achiam et al., 2023; AI4Science &
Quantum, 2023), as well as their ability to leverage chem-
istry tools for experimental tasks in chemical discovery
and characterization (Bran et al., 2023; Boiko et al., 2023).
Several works have benchmarked LLMs such as GPT-4 on
chemistry tasks and found that LLMs can do better than
human chemists in some zero-shot question-answering set-
tings, but still struggle with chemical reasoning (Mirza et al.,
2024; Guo et al., 2023b). There have been several smaller,
open-source models that have specifically been trained or
fine-tuned on chemistry text (Taylor et al., 2022). For ex-
ample, BioT5 involves a baseline T5 model trained in two
phases; first, the model is trained on molecule-text data
(339K samples), SELFIES structures, protein sequences,
and general scientific text from multiple sources (Pei et al.,
2023) using language masking as a training objective. They
then fine-tuned their model on specific downstream tasks,
including text-based molecular generation, where molecule
structures are generated to reflect input text describing
them (Edwards et al., 2022). Text+Chem T5 is also a T5
model pre-trained on multi-modal chemistry tasks, includ-
ing predicting chemical reaction steps, retrosynthesis predic-
tion, molecular captioning, and text-conditioned molecular
generation, and showed that multi-modal training objec-
tives are better than single-modal ones (Christofidellis et al.,
2023).

Recently, language models have also been used to guide a
given input molecular structure towards specific objective
properties (molecular editing) (Liu et al., 2023b; Ye et al.,
2023). This is important for optimizing compounds that
need to satisfy multiple criteria, such as pharmaceutical
development, where efficacy needs to be balanced with toxi-
city, and battery design, where power needs to be balanced
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with cell lifespan. In this paper, we focus on a different and
more goal-oriented problem—molecular optimization to
find molecules with desired properties instead of interactive
editing.

3. Preliminaries
Single-objective optimization. Molecule optimization
for a single property can be formulated as:

m∗ = arg max
m∈M

O(m) (1)

where m is a molecular structure and M denotes the
set of molecules constituting the entire chemical space.
O(m) : M → R is a (often black-box) scalar-value objec-
tive function that evaluates a certain property y of molecule
m.

Multi-objective optimization. Oftentimes, molecules
need to meet multiple, potentially competing objectives
simultaneously. The goal of multi-objective optimization
is to find the Pareto-optimal solution, where none of the
objectives can be improved without deteriorating any of
them (Lin et al., 2022). The multi-objective optimization
problem extends the single-objective problem as:

m∗ = arg max
m∈M

F [(O1(m), O2(m), ..., On(m))] (2)

where F represents a composition of each individual objec-
tive. The easiest compositions to implement are weighted
sums or products, but determining the weight of each objec-
tive function is nontrivial (Kusanda et al., 2022). Instead,
Pareto optimization focuses on another perspective that aims
to find a set of nondominated solutions instead of a single
optimal solution.

S = {(o ∈ Rn,m) : o = O(m),m ∈M} (3)
P (S) = {(o,m) ∈ S : {o′ ∈ S : o′ ≻ o, o′ ̸= o} = ∅}

(4)

where S is the set of objective values and P (S) refers to the
Pareto frontier of these objective values, ≻ denotes Pareto
dominance which means o′ is strictly better than o. In the
end, the set P (S) contains the set of molecules m on the
Pareto frontier (Geoffrion, 1968; Ekins et al., 2010).

Black-box optimization. A single step t of the generic
black-box optimization is:

xt ← A(h0:t−1) , yt ← f(xt) , (5)

where A is the algorithm generates a proposal xt from the
search space X and history h, and yt is the objective value
evaluated on xt (Song et al., 2024). This process is repeated
until some termination criterion T is reached. In our setup,

we also extend A with an additional text input information
text_prompt about the optimized objective O, i.e. xt ←
A(text_prompt, h0:t−1).

For the baseline algorithm A, we consider genetic algo-
rithms (GAs), which are a type of EA (Holland, 1992). GAs
start from an initial population and then use biologically-
inspired genetic operators, such as crossover, mutation, and
selection, to evolve a pool of candidates. Crossover involves
selecting a pair of “parents" from the population and com-
bining their elements to generate a single offspring, while
mutations operate on single members. Selection pressures
can be applied to the population at various points to filter
candidates based on objective values or other selection crite-
ria. Once a new pool of candidates is created, the objective
function O : M → R is evaluated for all members.

4. Methodology
The MOLLEO framework, shown in Figure 1, builds upon
Graph-GA (Jensen, 2019), and operates as follows.

Algorithm 1 MOLLEO Algorithm
Data: M0, the initial molecule pool; O, the oracle; nc, the

population size; no. the number of offspring
Result: Optimized molecule population M∗

begin
for m ∈M0 do

Compute O(m)

t← 0
while t < oracle_budget and not_converged do

offspring = []
while len(offspring) < num_crossovers do

m0,m1 = sample_molecules(Mt)
z̃ = CROSSOVER(m0,m1)
offspring.append(z̃)

Mt ← sorted(Mt)
i← 0
while i < num_mutations do

z̃ = MUTATION(Mt[i])
offspring.append(z̃)
i← i+ 1

offspring← search(offspring)[: no]
Mt ← offspring

for m ∈Mt do
Compute O(m)

Mt ← sorted(Mt)[: nc]
t← t+ 1

M∗ ←Mt

Return M∗

An initial pool of molecules is randomly selected, and their
fitness is calculated using a black-box oracle of O. Two
parents are then sampled with a probability proportional to

3
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Figure 1: Overview of MOLLEO. Given an initial pool of molecules, mates are selected using default Graph-GA (Jensen,
2019) heuristics. Large language models (LLMs) are then engaged as mutation or crossover operators to edit molecules
using a text prompt describing the target objective. The offspring molecules are scored using an oracle and the best-scoring
ones are passed onto the next generation. This process is repeated until the maximum allowed Oracle calls have been made.

their fitnesses and combined using a CROSSOVER operator to
generate a child, followed by a random MUTATION. This is
repeated num_crossover times, and children are added to
the pool of offspring. Finally, we measure the fitness of the
offspring using O, add them to the population, and keep the
nc of the most fit members to pass on to the next genera-
tion. This process is repeated until the maximum number
of allowed oracle calls has been made (oracle budget). This
process is outlined in Algorithm 1.

We incorporate chemistry-aware LLMs into the structure
of Graph-GA. One way we investigate this is by instead
of using the random CROSSOVER operation. We gener-
ate molecules that maximize the objective fitness function
guided by the objective description. We also investigate
adding a MUTATION operator to mutate the fittest members
of the current population. This selective pressure was mo-
tivated by the fact that LLMs can generate noisy edits (in
that an edited molecule has lower fitness compared with the
initial input molecule, see Appendix A.3). So we construct
a filter to select which edited molecules to keep based on
structural similarity (Nigam et al., 2022). We sort the ex-
isting population by fitness and then apply a mutation to
the top population members and add them to the pool of
offspring. We prune the offspring pool by selecting the no

most similar offspring to the fittest molecule in the entire
pool based on Tanimoto distance. We ablate the impact of
this filter in Appendix A.5.1.

For each LLM, we describe below the details of how we
implement the CROSSOVER and MUTATION operators. We
empirically studied different combinations of models and
hyperparameters (demonstrated in Appendix A.5.1) and, in
what follows, describe the operators that resulted in the best
performance.

4.1. Graph-GA

• CROSSOVER: (default Graph-GA crossover) Crossover
takes place at a ring position or non-ring position with
equal likelihood. Parents are cut randomly into frag-
ments and then fragments from both parents are com-
bined. Invalid molecules are filtered out and a random
spliced molecule is returned (Jensen, 2019).

• MUTATION: (default Graph-GA mutation) Random op-
erations such as bond insertion or deletion, atom in-
sertion or deletion, bond order swapping, or atom
identity changes are done with predetermined likeli-
hoods (Jensen, 2019).

4.2. MOLLEO (GPT-4)

• CROSSOVER: Two parent molecules are sampled us-
ing the default Graph-GA algorithm (with a proba-
bility proportional to their fitness). GPT-4 is then
prompted to generate an offspring with the tem-
plate tin = "I have two molecules and
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their [target_objective] scores: (sin,0,
f0), (sin,1, f1). Propose a new molecule
with a higher [target_objective] by making
crossover and mutations based on the given
molecules.", where sin,x is an input SMILES and fx
is its fitness score. We then obtain an edited SMILES
molecule as an output: sout = GPT-4(tin). If sout
cannot be decoded to a valid molecule structure, we
generate an offspring using the default crossover oper-
ation from Graph-GA. We demonstrate the frequency
of invalid LLM edits in Appendix A.3.

• MUTATION: (default Graph-GA mutation)

4.3. MOLLEO (BIOT5)

• CROSSOVER: (default Graph-GA crossover)

• MUTATION: For the top Y molecules in the entire pool,
we mutate them by prompting BioT5 with the tem-
plate tin = "Definition: You are given a
molecule SELFIES. Your job is to generate
a SELFIES molecule that [target_objective].
Now complete the following example - Input:
<bom>[lin]<eom> Output:", where lin is the SELF-
IES representation of a molecule. We then obtain
an edited SELFIES molecule as an output: lout =
BioT5(tin). We transform lout back to the SMILES
representation and add them to the pool of offspring.
Because SELFIES can always be decoded into a molec-
ular structure, there are no issues with BioT5 gener-
ating invalid molecules. Given the X offspring from
crossover and the Y offspring from this editing proce-
dure, we then select the top nc offspring overall to keep
by selecting the most structurally similar offspring us-
ing Tanimoto distance to the fittest molecule in the
entire pool (Nigam et al., 2022).

4.4. MOLLEO (MOLSTM)

• CROSSOVER: (default Graph-GA crossover)

• MUTATION: For the top Y molecules in the entire pool,
we edited them by following a single text-conditioned
editing step from (Liu et al., 2023b). Given the
MoleculeSTM molecule and text encoders (EMc and
ETc, respectively), a pre-trained generative model con-
sisting of an encoder EMg and decoder DMg (Irwin
et al., 2022), and an adaptor module (Agc) to align
embeddings from EMc and EMg, an input molecule
SMILES (sin) is edited towards a text prompt describ-
ing the objective by updating the embedding from
EMg. First, the molecule embedding x0 is obtained
from EMg(sin). Then, x0 is updated using gradient
descent for T iterations:

xt+1 = xt − α∇xt
L(xt)

where α is the learning rate and L(xt) is defined as:

L(xt) = -cosine_sim(EMc(Agc(xt)),
ETc(text_prompt)) + λ||xt − x0||2

λ controls how much the embedding at iteration t
can deviate from the input embedding. Finally, xT

is passed to the decoder DMg to generate a molecule
SMILES sout. If sout cannot be decoded into a valid
molecule (see Appendix A.3), we edit the next best
molecule (so that we have Y offspring after the edit-
ing has finished). Similarly to MOLLEO (BIOT5),
we combine the X crossover and Y mutated offspring
and select the nc most similar molecules to the top
molecule overall to keep.

5. Experiments
5.1. Experimental Setup

Benchmarks. We evaluate MOLLEO on 15 total tasks
from two molecular generation benchmarks, PMO (Gao
et al., 2022) and TDC (Huang et al., 2021). The tasks are
organized into the following categories:

1. Similarity-based optimization, which optimizes
for molecules based on target structures. These
include isomer generation based on a target molec-
ular formula (isomers_c9h10n2o2pf2cl), simi-
larity to known drugs (mestranol_similarity,
thiothixene_rediscovery), three multi-property
optimization tasks (MPO) that aim to rediscover drugs
while optimizing for other properties such as LogP and
TPSA, and two tasks based on matching scaffolds and
substructure motifs (deco_hop, scaffold_hop). While
tasks purely based on rediscovering existing drugs
may be trivial for LLMs if they were trained on them,
they can signal whether an LLM knows how to make
perturbations towards desired molecules, demonstrating
basic chemical knowledge.

2. Property optimization. We first consider a trivial property
optimization task (QED (Bickerton et al., 2012), which
measures the drug-likeness of a molecule based on a set
of simple heuristics). We then focus on the three follow-
ing tasks from PMO, which measure a molecule’s ac-
tivity against the following proteins: DRD2 (Dopamine
receptor D2), GSK3β (Glycogen synthase kinase-3 beta),
and JNK3 (c-Jun N-terminal kinase-3). For these tasks,
molecular inhibition is determined by previously-trained
classifiers that take in a SMILES string and output a
value p ∈ [0, 1], where p ≥ 0.5 is taken to mean that the
molecule inhibits protein activity. Finally, we include
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Table 1: Top-10 AUC of single-objective tasks. The best model for each task is bolded and the top three are underlined.
We also report the sum of all tasks (total) and the rank of each model overall.

Method
Objective (↑) REINVENT Graph GA GP BO MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

QED 0.941±0.000 0.940±0.000 0.937±0.000 0.937±0.002 0.937±0.002 0.948±0.004
isomers_c9h10n2o2pf2cl 0.642±0.054 0.719±0.047 0.469±0.180 0.871±0.039 0.873±0.019 0.874±0.053

JNK3 0.783±0.023 0.553±0.136 0.564±0.155 0.643±0.226 0.728±0.079 0.790±0.027
DRD2 0.945±0.007 0.964±0.012 0.923±0.017 0.975±0.003 0.981±0.002 0.968±0.012

GSK3β 0.865±0.043 0.788±0.070 0.851±0.041 0.898±0.041 0.889±0.015 0.863±0.047
mestranol_similarity 0.618±0.048 0.579±0.022 0.627±0.089 0.596±0.018 0.717±0.104 0.972±0.009

thiothixene_rediscovery 0.534±0.013 0.479±0.025 0.559±0.027 0.508±0.035 0.696±0.081 0.727±0.052
perindopril_mpo 0.537±0.016 0.538±0.009 0.493±0.011 0.554±0.037 0.740±0.032 0.600±0.031
ranolazine_mpo 0.760±0.009 0.728±0.012 0.735±0.013 0.725±0.040 0.749±0.012 0.769±0.022
sitagliptin_mpo 0.021±0.003 0.433±0.075 0.186±0.055 0.548±0.065 0.506±0.100 0.584±0.067

deco_hop 0.666±0.044 0.619±0.004 0.629±0.018 0.613±0.016 0.827±0.093 0.942±0.013
scaffold_hop 0.560±0.019 0.517±0.007 0.548±0.019 0.527±0.019 0.559±0.102 0.971±0.004

Total 7.872 7.857 7.521 8.395 9.202 10.008
Rank 4 5 6 3 2 1

three protein-ligand docking tasks from TDC (Graff
et al., 2021), which are more difficult tasks closer to
real-world drug design compared to simple physicochem-
ical properties (Cieplinski et al., 2020). The proteins
we consider are DRD3 (dopamine receptor D3, PDB
ID: 3PBL), EGFR (epidermal growth factor receptor,
PDB ID: 2RGP), and Adenosine A2A receptor (PDB ID:
3EML). Molecules are docked against the protein using
AutoDock Vina (Eberhardt et al., 2021), and the output
is the docking score of the binding process.

Evaluation metrics. To consider both the optimization
ability and sample efficiency of each method, we follow the
evaluation metrics in (Gao et al., 2022), using the area under
the curve of the top-k average property value (top-k AUC)
versus the number of oracle calls as the primary metric. This
metric rewards methods that achieve high values with fewer
oracle calls. For this study, we set K = 10, as it is useful
to identify a small, distinct set of molecular candidates
suitable for later stages of development. AUC values are
min-max scaled to the range [0,1] to standardize results.
We restrict the budget of oracle calls to 10,000, although
the algorithm terminates early if the average fitness of the
top-100 molecules does not change by 1e − 3 within five
epochs. We restrict the budget to 1000 calls for the docking
experiments since the tasks are significantly more time-
consuming. We report all metrics over five random seeds.

For multi-objective optimization, we chose four metrics to
evaluate solutions on Pareto frontiers. Top-10 AUC sum-
mation, which sums the fitness values for each of the tasks
for the top molecules. Hypervolume measures the dominant
region under the Pareto optimal solutions in the objective
space. Structural diversity reflects the chemical diversity
of the Pareto set through the average pairwise Tanimoto
similarity between Morgan fingerprints of molecules in the

set. Similarly, objective diversity illustrates the coverage
of the Pareto frontiers through pairwise Euclidean distance
between objective values of the molecules in the Pareto set.

Data. We randomly sample an initial pool of 120
molecules from ZINC 250K (Sterling & Irwin, 2015) fol-
lowing PMO.

Base evolutionary algorithm. We build on Graph-GA
(Jensen, 2019) as our baseline evolutionary algorithm ow-
ing to its simple architecture and competitive performance.
In each iteration, Graph-GA samples two molecules with
a probability proportional to their fitnesses for crossover
and mutation and then randomly mutates the offspring with
probability pm = 0.067. This process is repeated to gener-
ate 70 offspring. The fitnesses of the offspring are measured
and the top-120 most fit molecules in the entire pool are
kept for the next generation. We reduce the number of gen-
erated offspring to 7 for the docking experiments and the
population size to 12 due to long experiment runtimes.

Base LLMs. We analyze three LLMs in MOLLEO as ge-
netic operators in MOLLEO. One of the considered models
is GPT-4 (Achiam et al., 2023) — a transformer trained us-
ing next-token prediction and reinforcement learning from
human feedback, which has achieved state-of-the-art per-
formance on chemistry question-answering tasks (Mirza
et al., 2024). The other two considered models are open-
sourced models trained on domain-specific chemistry text.
Compared to GPT-4, they have fewer parameters and have
been trained on smaller datasets. BioT5, among other data,
is trained on the string representations of molecules called
SELFIES to predict missing tokens (including those at the
end of a sentence) (Pei et al., 2023). Because of its ability to
generate SELFIES representations, it always produces valid
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Table 2: Summation and hypervolume scores of multi-
objective results. The best model for each task is bolded.

Task 1: maximize QED (↑),
minimize SA (↓), maximize JNK3 (↑)

Summation
(Top-10 AUC) (↑) Hypervolume (↑)

Summation

Graph-GA 1.967 ± 0.088 0.713 ± 0.083
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085

Pareto optimality

Graph-GA 2.120 ± 0.159 0.603 ± 0.082
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038

Task 2: maximize QED (↑),
minimize SA (↓), maximize GSKB3 (↑)

Summation

Graph-GA 2.186 ± 0.069 0.719 ± 0.055
MOLLEO (MOLSTM) 2.349 ± 0.132 0.303 ± 0.024

MOLLEO (BIOT5) 2.306 ± 0.120 0.693 ± 0.093
MOLLEO (GPT-4) 2.543 ± 0.014 0.832 ± 0.024

Pareto optimality

Graph-GA 2.339 ± 0.139 0.640 ± 0.034
MOLLEO (MOLSTM) 2.340 ± 0.254 0.202 ± 0.054

MOLLEO (BIOT5) 2.299 ± 0.203 0.645 ± 0.127
MOLLEO (GPT-4) 2.631 ± 0.023 0.820 ± 0.024

Task 3: maximize QED (↑), JNK3 (↑),
minimize SA (↓), GSKB3 (↓), DRD2 (↓)

Summation

Graph GA 3.856 ± 0.075 0.162 ± 0.048
MOLLEO (MOLSTM) 4.040 ± 0.097 0.474 ± 0.193

MOLLEO (BIOT5) 3.904 ± 0.092 0.266 ± 0.201
MOLLEO (GPT-4) 4.017 ± 0.048 0.606 ± 0.086

Pareto optimality

Graph-GA 4.051 ± 0.155 0.606 ± 0.052
MOLLEO (MOLSTM) 3.989 ± 0.145 0.381 ± 0.204

MOLLEO (BIOT5) 3.946 ± 0.115 0.367 ± 0.177
MOLLEO (GPT-4) 4.212 ± 0.034 0.696 ± 0.029

molecules, unlike other models. Finally, MoleculeSTM is
trained using a contrastive loss on the pairs of molecular
structures and text descriptions and is aligned with an open-
source generative model to decode molecule embeddings to
SMILES strings (Liu et al., 2023b).

Baselines. We use the top-performing models from the
PMO benchmark (Gao et al., 2022) as baselines. These are
REINVENT (Olivecrona et al., 2017b), an RNN that uses
a reinforcement learning-based policy to guide generation,
Graph-GA, Gaussian process Bayesian optimization (GP
BO) (Tripp et al., 2021).

Prompts. For each model, we show the prompts in Ap-
pendix A.7. We created prompts similar to those demon-
strated in the original source code of each model, replacing
each template with a task description. We briefly investigate
the impact of prompt selection in Appendix A.8.

5.2. Quantitative Evaluation

Incorporating LLMs into GA optimization. To motivate
the utility of using chemistry-aware LLMs in GA pipelines,
in Figure 2 we show the fitness distribution of an initial pool
of random molecules on binding to JNK3. We then do a
single round of edits to all molecules in the pool using each
LLM, and plot the resulting fitness distribution of the edited
molecules. We find that the distribution for each LLM shifts
to slightly higher fitness values, indicating that LLMs do
provide useful modifications. However, the overall objective

0.0 0.2 0.4 0.6 0.8 1.0
Fitness

MolLEO(GPT-4)

MolLEO(BioT5)

Init pop LLM editting, one round 10% oracle calls 50% oracle calls 100% oracle calls

MolLEO(MolSTM)

Graph-GA

Figure 2: Population fitness over increasing number of
iterations for JNK3 binding. In the lightest blue, we plot
the fitness distribution of the initial molecule pool. We then
pass the molecules through a single round of LLM edits
(pink curve). Finally, we show the fitness distribution of the
top-10 molecules over 10%, 50%, and 100% of the oracle
calls made.

scores are still low, so single-step editing is not sufficient
(see Appendix A.3 for quantitative experiments on this).
We then show the fitness distributions of the populations as
the genetic optimization progresses and find that fitnesses
increase to higher values on average given the same number
of oracle calls.

Single-objective optimization. We show the results of
single-objective optimization across 12 tasks in PMO in
Table 1. We report the top-10 AUC for each task, as well as
the overall rank of each model. We find that employing any
of the three LLMs we tested as genetic operators improves
performance over the default Graph-GA, as well as all other
baselines we test. Notably, MOLLEO (GPT-4) ranks top-1
in 9 out of 12 tasks, demonstrating its utility in molecular
generation. MOLLEO (BIOT5), which incorporates a much
smaller language model trained on domain-specific data,
obtained a total score close to that of MOLLEO (GPT-4),
and has the benefit of being free to use. We note that the
performance of MOLLEO (BIOT5) is generally better than
that of MOLLEO (MOLSTM). Empirically, we show in
Appendix A.3 that BioT5 produces valid molecules more
often and those molecules have higher fitness than those
generated by MoleculeSTM on average. This could be due
to several reasons, such as differences in training data or
poor alignment between the MoleculeSTM encoder and the
generative model they use.

For the tasks deco_hop and scaffold_hop, there
was only a small gain for open-source MOLLEO
models. This is likely because the task descrip-
tion involves negative matching and recognition
of SMARTS patterns (e.g., This molecule does
not contain the scaffold [#7]-c1n[c;h1]nc2
[c;h1]c(-[#8])[c;h0][c;h1]c12), which the models
were likely not trained on.

We also find that MOLLEO has better sample efficiency
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Figure 3: Average docking score of top-10 molecules
when docked against DRD3, EGFR, or Adenosine A2A
receptor proteins. Lower docking scores are better. For
each model, we show the convergence point (the point at
which the population scores no longer changed) with a star.
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Figure 4: Pareto frontier visualizations for for Graph-
GA and MOLLEO (GPT-4) on multi-objective tasks.
(a) Shows Task 1 (min SA score, max JNK3 binding, max
QED) and (b) Shows Task 2 (min SA score, max GSK3B
binding, max QED).

compared to baseline algorithms, as they can find better
optimal molecules with fewer oracle calls; we show this
in Appendix Figure 5. This is important when considering
how these models can translate to real-world experiments
to reduce the number of experiments needed to find ideal
candidates.

In Figure 3, we plot the average docking scores of the top-
10 best molecules of three protein-ligand docking tasks for
MOLLEO (BIOT5) and Graph-GA. These tasks are more
complex than simple property optimization and similarity-
based optimization, and closer to real-world settings of
molecular generation. We find that MOLLEO (BIOT5)
can generate molecules with lower (better) docking scores
than the baseline model for all three proteins and converge
faster to the optimal set. In practice, this could translate
to requiring fewer bioassays to screen molecules, which is
both cost- and time-effective.

Multi-objective optimization. In Table 2, we show the
results of our multi-objective optimization for three tasks.
Tasks 1 and 2 are motivated by goals in drug discovery

and aim for simultaneous optimization of three objectives:
maximizing a molecule’s QED, minimizing its synthetic
accessibility (SA) score (meaning that it is easier to synthe-
size), and maximizing its binding score to either JNK3 (Task
1) or GSK3B (Task 2). Task 3 is even more challenging
as it targets five objectives at the same time: maximizing
QED, maximizing binding to JNK3, minimizing binding to
GSK3B and DRD2, and minimizing SA. We investigate two
strategies for multi-objective optimization: (1) summation
of individual objectives as a single objective and (2) Pareto
set selection, which uses Pareto optimal solutions as the
mating pool for the next generation. We find that MOLLEO
(GPT-4) consistently outperforms the baseline Graph-GA
in all three tasks in terms of hypervolume and summation.
In Figure 4, we visualize the Pareto optimal set (in objec-
tive space) for our best model (MOLLEO (GPT-4)) and
Graph-GA on Tasks 1 and 2. In Table 2, we see that the per-
formance of open-source LLMs degrades when introducing
multiple objectives into the prompt. We assume that this
performance drop may come from their inability to capture
large, information-dense contexts. We show the structural
diversity and objective diversity in Appendix A.2.

6. Conclusion, Takeaway and Future Work
In this paper, we propose MOLLEO, a marriage between
EAs and LLMs that leverages the advantages of both meth-
ods to achieve state-of-the-art performance in molecular
optimization, encompassing a variety of single- and multi-
objective property optimization, rediscovery and structure-
based drug design tasks. We demonstrate the capability
and versatility of language models in accelerating molec-
ular discovery. Towards general decision making with
LLMs in scientific discovery. As an initial study, we en-
vision the following directions to be further studied: (1)
pre-training/fine-tuning in specific contexts, (2) human-in-
the-loop design, (3) interpretable knowledge extraction, (4)
deployment in chemical discovery workflow, (5) adapt to
other optimization and design problem in science (proteins,
RNAs, crystals, etc.) or general domain, (6) extend to se-
quential decision making problems.
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A. Appendix
A.1. Extended Related Work

Benchmarking LLMs on Chemistry Tasks ChemLLMBench proposed and benchmarked LLMs on a variety of eight
chemistry tasks from property prediction and reaction prediction to molecule captioning (Guo et al., 2023b). Unfortunately,
the benchmark results suggest the capabilities of current LLMs are limited in solving those tasks compared to other machine
learning models. Notably, most tasks in the benchmark are formulated in a question-answering format, which is different
from the optimization problem proposed in this paper. SciBench evaluated the ability of LLMs in taking college-level exams
in a variety of science disciplines and found that LLMs fell short of delivering satisfactory performances (Wang et al., 2023).
One recent work compiled a larger set of question-answer pairs for a more systematic understanding of the abilities of LLMs
across the full spectrum of chemistry (Mirza et al., 2024).

Language Models and Evolutionary Algorithms Several works have demonstrated the feasibility of using language mod-
els to imitate the operator in evolutionary algorithms (Lehman et al., 2023). OPRO (Yang et al., 2024) and EvoPrompt (Guo
et al., 2023a) progressively improved solutions in optimization tasks when provided with the problem description and past
evaluation trajectories in natural language. Later, LMEA (Liu et al., 2023a) connected LLMs with an EA by instructing
LLMs to select parent solutions from the current population and perform crossover and mutation operations to generate
offspring solutions. Rather than directly proposing solutions, FunSearch (Romera-Paredes et al., 2024) proposed an evolu-
tionary process with LLMs to solve combinatorial problems with program synthesis. Subsequently, Eureka (Ma et al., 2024)
leveraged LLMs and EA to design reward functions in reinforcement learning for robot control, demonstrating that reward
functions optimized by LLMs can outperform those designed by human experts. This approach has been further extended to
multi-agent RL for resource allocation problems in public health (Behari et al., 2024).

Large Language Models for Decision Making. Decision-making represents a fundamental challenge in artificial
intelligence and cognitive science, which involves the selection of actions to reach certain goals. One branch of decision
making is arguably sequential decision making, which involves a sequence of actions including experiment planning, robot
navigation, etc (Littman, 1996). A notable amount of studies have been conducted about in-context learning and prompt
engineering to enhance the reasoning capabilities of LLMs (Wei et al., 2022; Yao et al., 2024). LLMs are also considered
as agents to accomplish tasks with access to tools (Wu et al., 2023). Another branch of decision-making comes from
optimization problems such that the ultimate goal is to find an optimal solution in which the common tools are mathematical
programs in operation research and engineering (Rao, 2019). The opportunities to use LLMs to solve optimization problems
have also been studied, including program search (Romera-Paredes et al., 2024), prompt optimization (Yang et al., 2023),
and mathematical programming (AhmadiTeshnizi et al., 2023).

A.2. Diversity analysis in Multi-objective optimization

We show the structural diversity and objective diversity for multi-objective optimization in Table 4.

A.3. Performance of single-step molecule editting

Table 3: Viability of LLM edits. We prompt different LLMs with descriptions of the JNK3 and perindopril_mpo target
objectives on an initial random pool of molecules drawn from 5 random seeds. We report the percentage of valid molecules
(number of valid molecules / number of total molecules), the percentage of molecules with higher fitness after editting, and
the mean fitness increase of those molecules.

Metric MoleculeSTM BioT5 GPT-4

Percent valid molecules

peridopril_mpo:
0.938
JNK3:
0.928

peridopril_mpo:
1.000
JNK3:
1.000

peridopril_mpo:
0.862
JNK3:
0.835

Percent molecules with higher fitness after editting

peridopril_mpo:
0.456
JNK3:
0.206

peridopril_mpo:
0.568
JNK3:
0.513

peridopril_mpo:
0.240
JNK3:
0.263

Mean fitness increase

peridopril_mpo:
+0.033
JNK3:
+0.022

peridopril_mpo:
+0.208
JNK3:

+0.0320

peridopril_mpo:
+0.032
JNK3:

+0.0262
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Table 4: Multi objective results. The best model for each task is bolded.

Task 1: maximize QED (↑),
minimize SA (↓), maximize JNK3 (↑)

Summation
(Top-10 AUC) (↑) Hypervolume (↑) Structural diversity (↑) Objective diversity (↑)

Summation

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 0.741 ± 0.115 0.351 ± 0.079
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 0.803 ± 0.011 0.362 ± 0.074

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 0.805 ± 0.196 0.341 ± 0.091
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 0.726 ± 0.063 0.292 ± 0.076

Pareto optimality

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 0.761 ± 0.034 0.219 ± 0.117
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 0.739 ± 0.015 0.306 ± 0.085

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 0.724 ± 0.020 0.339 ± 0.062
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 0.745 ± 0.057 0.322 ± 0.104

Task 2: maximize QED (↑),
minimize SA (↓), maximize GSKB3 (↑)

Summation

Graph-GA 2.186 ± 0.069 0.719 ± 0.055 0.778 ± 0.122 0.379 ± 0.101
MOLLEO (MOLSTM) 2.349 ± 0.132 0.303 ± 0.024 0.820 ± 0.010 0.440 ± 0.037

MOLLEO (BIOT5) 2.306 ± 0.120 0.693 ± 0.093 0.803 ± 0.013 0.384 ± 0.045
MOLLEO (GPT-4) 2.543 ± 0.014 0.832 ± 0.024 0.715 ± 0.052 0.391 ± 0.021

Pareto optimality

Graph-GA 2.339 ± 0.139 0.640 ± 0.034 0.816 ± 0.028 0.381 ± 0.071
MOLLEO (MOLSTM) 2.340 ± 0.254 0.202 ± 0.054 0.770 ± 0.017 0.188 ± 0.010

MOLLEO (BIOT5) 2.299 ± 0.203 0.645 ± 0.127 0.759 ± 0.022 0.371 ± 0.047
MOLLEO (GPT-4) 2.631 ± 0.023 0.820 ± 0.024 0.646 ± 0.017 0.191 ± 0.026

Task 3: maximize QED (↑), JNK3 (↑),
minimize SA (↓), GSKB3 (↓), DRD2 (↓)

Summation

Graph GA 3.856 ± 0.075 0.162 ± 0.048 0.821 ± 0.024 0.226 ± 0.057
MOLLEO (MOLSTM) 4.040 ± 0.097 0.474 ± 0.193 0.783 ± 0.027 0.413 ± 0.064

MOLLEO (BIOT5) 3.904 ± 0.092 0.266 ± 0.201 0.828 ± 0.005 0.243 ± 0.081
MOLLEO (GPT-4) 4.017 ± 0.048 0.606 ± 0.086 0.726 ± 0.064 0.289 ± 0.050

Pareto optimality

Graph GA 4.051 ± 0.155 0.606 ± 0.052 0.688 ± 0.047 0.294 ± 0.074
MOLLEO (MOLSTM) 3.989 ± 0.145 0.381 ± 0.204 0.792 ± 0.030 0.258 ± 0.019

MOLLEO (BIOT5) 3.946 ± 0.115 0.367 ± 0.177 0.784 ± 0.020 0.367 ± 0.177
MOLLEO (GPT-4) 4.212 ± 0.034 0.696 ± 0.029 0.641 ± 0.037 0.266 ± 0.062
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Figure 5: Average of top-10 molecules generated by MOLLEO and Graph-GA models for three tasks over the
increasing number of oracle calls. For each model, we show the convergence point (the point at which the population
fitness no longer increased) with a star.
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A.4. Optimization trends over single-objective tasks.

In Figure 5, we show the optimization curves for three tasks: JNK3, perindopril_mpo, and isomers_c9h10n2o2pf2cl.

A.5. Ablation studies

A.5.1. INCORPORATING LLM-BASED GENETIC OPERATORS INTO GRAPH-GA

Table 5: Top-10 AUC on 5 random seeds for the JNK3 and perindopril_mpo tasks using different combinations of
genetic operators. The operators used for each model to compute the final results in the main paper are indicated with a

symbol.

Operators Graph-GA
(Baseline) MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

(Default Graph-GA settings)
CROSSOVER:
Random
MUTATION:
Random, pm = 0.067

peridopril_mpo:
0.538±0.009

JNK3:
0.553±0.136

N/A N/A N/A

CROSSOVER:
LLM
MUTATION:
Random, pm = 0.067

N/A

peridopril_mpo:
0.499±0.012[linear]

0.505±0.018[spherical]
JNK3:

0.722±0.046 [linear]
0.744±0.055 [spherical]

peridopril_mpo:
0.727±0.013

JNK3:
0.436±0.052

peridopril_mpo:
0.600±0.031

JNK3:
0.790±0.027

CROSSOVER:
Random
MUTATION:
LLM, pm = 0.067

N/A

peridopril_mpo:
0.532±0.034

JNK3:
0.631±0.327

peridopril_mpo:
0.676±0.034

JNK3:
0.650±0.096

peridopril_mpo:
0.552±0.024

JNK3:
0.673±0.047

CROSSOVER:
Random
MUTATION:
LLM, pm = 1

N/A

peridopril_mpo:
0.513±0.040

JNK3:
0.553±0.193

peridopril_mpo:
0.686±0.343

JNK3:
0.708±0.030

peridopril_mpo:
0.615±0.058

JNK3:
0.762±0.044

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
randomly mutated, pruned
offspring by distance to
top-1 molecule

peridopril_mpo:
0.579±0.044

JNK3:
0.571±0.109

N/A N/A N/A

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
mutated with LLM, pruned
offspring by distance to
top-1 molecule

N/A

peridopril_mpo:
0.554±0.034

JNK3:
0.730±0.188

peridopril_mpo:
0.740±0.032

JNK3:
0.728±0.079

peridopril_mpo:
0.575±0.074

JNK3:
0.758±0.031

A.5.2. MOLECULESTM HYPERPARAMETER SELECTION

We investigate the selection of three hyperparameters used with open-source LLMs. The first is the num-
ber of population members that are selected to undergo LLM-based mutations (Algorithm 1). In Ta-
ble 6, we show the Top-10 AUC after choosing different numbers of top-scoring candidates for editing
by MoleculeSTM. We find that 30 candidates resulted in the best performance. Note that we used a
different prompt for this experiment than the one used to obtain results in Table 1 (see Appendix A.8).
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Figure 6: Mean fitness and percent valid molecules with varying gradient descent epochs and learning rates in
MoleculeSTM.

Table 6: Top-10 AUC on JNK3 binding task with varying number of top-scoring candidates selected to undergo
LLM-based mutations.

Number of top-scoring candidates selected for mutation Top-10 AUC
20 0.680±0.213
30 0.730±0.188
50 0.627±0.250

Next, MoleculeSTM has several hyperparameters for molecule generation since it involves gradient descent to optimize the
input molecule embedding based on a text prompt. We look at two hyperparameters, the number of gradient descent steps
(epochs), and the learning rate, and plot the results in Figure 6. We find that if the learning rate is too large (lr=1), the mean
fitness changes unpredictably, but if it is too small (lr=1e-2), there are minimal changes to the mean fitness. Setting the
learning rate to 1e-1 results in more consistent improvements in mean fitness. We also set the number of epochs to 30 since
more epochs are too time-consuming and fewer do not result in noticeable fitness changes.

A.6. Ablations for GPT-4

We conduct further experiments to understand the sensitivity of MOLLEO (GPT-4) with respect to the number of offspring
in each generation, retrieval augmentation, language model capability, and different rules from Graph-GA and SMILES-GA
in Table 7.
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Table 7: Ablation study on MOLLEO (GPT-4).

number of offsprings RAG search different version of LLMs different rules

20 70 200 w. RAG w/o. RAG GPT-3.5 GPT-4 w/o. rule Gragph GA rule SMILES GA rule

jnk3 0.731±0.012 0.790±0.027 0.785±0.022 0.830±0.047 0.790±0.027 0.669±0.104 0.790±0.027 0.765±0.047 0.790±0.027 0.774±0.084
isomer_c9h10n2o2pf2cl 0.967±0.010 0.874±0.053 0.960±0.049 0.982±0.018 0.874±0.053 0.902±0.021 0.874±0.053 0.871±0.085 0.874±0.053 0.872±0.029

perindopril mpo 0.573±0.042 0.600±0.031 0.580±0.028 0.717±0.024 0.600±0.031 0.564±0.022 0.600±0.031 0.562±0.042 0.600±0.031 0.583±0.031

Number of offspring We vary the number of offspring generated in each generation of the GA algorithm and find that
increasing the number of offspring often leads to some improvements in the optimization results, but there is no clear trend
or instruction on how much is a good value.

Retrieval-augmented Search To understand how retrieval may help LLMs in the optimization process, we remove the
retrieval part, which augments the model proposed molecule by the structurally similar molecules from a given dataset. We
find that this is an essential step to improve the optimization results of MOLLEO (GPT-4).

GPT-3.5 vs. GPT-4 To compare how the capability of LLMs may influence the optimization result, we find that GPT-3.5
performs much worse than GPT-4 on two single- and multi-property optimization tasks but surprisingly better on the solely
similarity-based optimization task.

Different rules We validate the effectiveness of incorporating rule-based methods from Graph-GA and find that it brings
decent improvement to the overall results, and the Graph-based rule performs slightly better than the SMILES-based rule.

A.7. Prompts

For each of the models, we show the prompts used for each task. When creating the prompts, we followed the format of
examples in the original source code as closely as possible for each model.

MOLLEO (MOLSTM) prompts

QED
This molecule is like a drug.

Isomers_C9H10N2O2PF2Cl
This molecule has the atoms C9H10N2O2PF2Cl.

perindopril_mpo
This molecule looks like Perindopril and has 2 aromatic rings.

sitagliptin_mpo
This molecule has the formula C16H15F6N5O, looks like Sitagliptin, is highly permeable, and is hydrophobic.

ranolazine_mpo
This molecule looks like Ranolazine, is highly permeable, is hydrophobic, and has 1 F atom.

thiothixene_rediscovery
This molecule looks like Thiothixene.

mestranol_similarity
This molecule looks like Mestranol.

JNK3
This molecule inhibits JNK3.

GSK3B
This molecule inhibits GSK3B.

DRD2
This molecule inhibits DRD2.

maxjnk3_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits JNK3.

maxgsk3b_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits GSK3B.
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maxgsk3b_maxqed_minsa
This molecule is synthesizable, does not inhibit GSKB3, does not inhibit DRD2, looks like a drug, and
inhibits JNK3.

MOLLEO (BIOT5) prompts

QED
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that looks more
like a drug. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

Isomers_C9H10N2O2PF2Cl
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that has the
formula C9H10N2O2PF2Cl. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

perindopril_mpo
Definition: You are given two molecule SELFIES. Your job is to combine them and generate a SELFIES molecule
that looks more like Perindopril and has 2 or more aromatic rings Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

sitagliptin_mpo
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that has the
formula C16H15F6N5O, looks more like Sitagliptin, is highly permeable, and is hydrophobic. Now complete the
following example - Input: <bom>{selfies_input}<eom> Output:

ranolazine_mpo
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that looks more
like Ranolazine. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

thiothixene_rediscovery
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that looks more
like Thiothixene. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

mestranol_similarity
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that looks more
like Mestranol. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

JNK3
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that inhibits JNK3
more. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

GSK3B
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that inhibits
GSK3B more. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

DRD2
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that inhibits DRD2
more. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

deco_hop
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule
that does not contain the substructure [#7]-c1ccc2ncsc2c1, does not contain the substructure
CS([#6])(=O)=O, contains the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, and is
similar to [C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S][C][Ring1]
[Branch1][=C] [Ring1][=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S][=Branch1]
[C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1][C][C][C]. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

scaffold_hop
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that
does not contain the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, contains the
substructure [#6]-[#6]-[#6]-[#8]-[#6]∼[#6] ∼[#6]∼[#6]∼[#6]-[#7]-c1ccc2ncsc2c1, and is similar
to the SELFIES [C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S]
[C][Ring1][Branch1][=C][Ring1] [=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S]
[=Branch1][C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1] [C][C][C]. Now complete the following example -
Input: <bom>{selfies_input}<eom> Output:

3pbl_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that inhibits DRD3
more. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

2rgp_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that inhibits EGFR
more. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

3eml_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that binds better

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Efficient Evolutionary Search over Chemical Space with Large Language Models

to adenosine receptor A2a. Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

MOLLEO (GPT-4) prompts

I have two molecules and their $Objective$ scores. $The definition of the objective$

(Smiles of Parent A, objective score of Parent A) (Smiles of Parent B, objective score of Parent B)

Please propose a new molecule that has a $Direction$ $Objective$ score. You can either make crossover
and mutations based on the given molecules or just propose a new molecule based on your knowledge.
Your output should follow the format: {«<Explaination»>: $EXPLANATION, «<Molecule»>:
box{$Molecule}}. Here are the requirements:
1. $EXPLANATION should be your analysis.
2. The $Molecule should be the smiles of your proposed molecule.
3. The molecule should be valid.
QED:
Direction: Higher
Objective: QED
Definition: The QED score measures the drug-likeness of the molecule.
Isomers_C9H10N2O2PF2Cl:
Direction: Higher
Objective: isomer
Definition: The isomer score measures a molecule’s similarity in terms of atom counter to C9H10N2O2PF2Cl.
perindopril_mpo
Direction: Higher
Objective: perindopril multi-objective
Definition: The perindopril multi-objective score measures the geometric means of several scores, including
the molecule’s Tanimoto similarity to perindopril and the number of aromatic rings.
sitagliptin_mpo
Direction: Higher
Objective: sitagliptin multi-objective
Definition: The sitagliptin multi-objective score measures the geometric means of several scores,
including the molecule’s Tanimoto similarity to sitagliptin, TPSA score, LogP score, and isomer score with
C16H15F6N5O.
ranolazine_mpo
Direction: Higher
Objective: ranolazine multi-objective
Definition: The ranolazine multi-objective score measures the geometric means of several scores, including
the molecule’s Tanimoto similarity to ranolazine, TPSA score LogP score and number of fluorine atoms.
thiothixene_rediscovery
Direction: Higher
Objective: thiothixene rediscovery
Definition: The thiothixene rediscovery score measures a molecule’s Tanimoto similarity with thiothixene’s
SMILES to check whether it could be rediscovered.
mestranol_similarity
Direction: Higher
Objective: mestranol similarity
Definition: The mestranol similarity score measures a molecule’s Tanimoto similarity with Mestranol.
JNK3
Direction: Higher
Objective: JNK3
Definition: The JNK3 score measures a molecular’s biological activity against JNK3.
GSK3β
Direction: Higher
Objective: GSK3β
Definition: The GSK3β score measures a molecular’s biological activity against GSK3β.
DRD2
Direction: Higher
Objective: DRD2
Definition: The DRD2 score measures a molecule’s biological activity against a biological target named the
dopamine type 2 receptor (DRD2).
deco_hop
Direction: Higher
Objective: deco hop
Definition: The deco hop score is the arithmetic means of several scores, including binary
score about whether contain certain SMARTS structures (maximize the similarity to the SMILE
’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’, while excluding specific SMARTS patterns
’[#7]-c1ccc2ncsc2c1’ and ’CS([#6])(=O)O’) and (2) the molecule’s Tanimoto similarity to PHCO
’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.
scaffold_hop
Direction: Higher
Objective: scaffold hop
Definition: The scaffold hop score is the arithmetic means of several scores, including (1) binary
score about whether contains certain SMARTS structures (maximize the similarity to the SMILE
’[#6]-[#6]-[#6]-[#8]-[#6][#6][#6][#6][#6]-[#7]-c1ccc2ncsc2c1’, while excluding specific SMARTS patterns
’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) and (2) the molecule’s Tanimoto similarity to PHCO
’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.
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A.8. Impact of prompt selection

The choice of prompt for a given task is an important consideration, as some prompts can be better aligned with information
the model knows. For example, the prompt we used in MOLLEO (MOLSTM) for the JNK3 inhibition task was “This
molecule inhibits JNK3." However, there are multiple ways of describing inhibition and multiple ways of identifying
the enzyme (JNK3, c-Jun N-terminal kinase 3). To that end, we investigate the impact of prompt selection on downstream
performance.

To generate a set of prompts, we prompted GPT-4 to generate 10 synonymous phrases for an input prompt. We then
computed the Spearman rank-order correlation coefficient (Spearman’s ρ) of each phrase on an initial molecule pool between
the cosine similarity generated by MoleculeSTM and the ground truth fitness values. Finally, we ran the genetic optimization
using MOLLEO (MOLSTM) with the input prompt and the prompt with the highest Spearman rank-order correlation
coefficient.

On the JNK3 task, the default prompt we wrote was “This molecule inhibits JNK3.", which had a Spearman’s ρ
of -0.0161. The prompt with the largest Spearman’s ρ (0.1202) was “This molecule acts as an antagonist to
JNK3." When we ran MOLLEO (MOLSTM) with the default input prompt, the top-10 AUC was 0.643 ± 0.226. When
we ran MOLLEO (MOLSTM) using the prompt with the largest Spearman’s ρ, the top-10 AUC was 0.730 ± 0.188. This
demonstrates that prompt selection can influence downstream results, especially for smaller models, and opens the door for
future work in this area.

A.9. Computational Resources

All our experiments are run on NVIDIA A100-SXM4-80GB and T4V2 GPUs. In some of our experiments, we utilize
the GPT-4 model. The GPT-4 refers to the “gpt-4-turbo” model and in the OpenAI API model with checkpoint version
2023-07-01-preview webpage1. All GPT-4 checkpoints are hosted on Microsoft Azure2.

A.10. Limitations

We note the following limitations of our work. First, more work should be done on proposed candidates from the final
optimization result to interpret why the compounds are predicted as optimal, although setting up this analysis is extremely
nontrivial. Secondly, while the docking experiments are a more difficult property optimization task, it is still unclear how
the model would work on real-world settings.

A.11. Broader Impact

The methods proposed in this paper aim to improve the efficiency in exploring the chemical space to find compounds with
desired properties, which can benefit many areas, including drug discovery and materials design. We do not foresee a special
negative societal impact of them now, but the dual use of such approaches to find materials for nefarious purposes needs to
be avoided (discussed in (Urbina et al., 2022)).

1.https://platform.openai.com/docs/models
2 *.openai.azure.com
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