
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHANGING BASE WITHOUT LOSING PACE: A GPU-
EFFICIENT ALTERNATIVE TO MATMULS IN DNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern AI relies on huge matrix multiplications (MATMULs), whose computa-
tion poses a scalability problem for inference and training. We propose an al-
ternative, GPU native bilinear operator to MATMULs in neural networks, which
offers a three-way tradeoff between: speed, accuracy and parameter count. In
particular, this operator requires substantially fewer FLOPs to evaluate (≪ n3),
yet increases the parameter count compared to MATMUL (≫ n2). We call this
operator Strassen-Tile (STL). The key idea behind STL is a local learnable
change-of-basis, applied on tiles of the weight and activation matrices, followed
by an element-wise product between the tiles, implemented simultaneously via
MATMUL. The key technical question we study is how to optimize the change-
of-basis of a given layer, which is a highly non-convex problem. We show that
theory-backed initializations (inspired by fast matrix and polynomial multiplica-
tion) lead to substantially better accuracy than random SGD initialization. This
phenomenon motivates further algorithmic study of STL optimization in DNNs.
Our experiments demonstrate that STL can approximate 4x4 MATMUL of tiles
while reducing FLOPs by a factor of 2.66, and can improve Imagenet-1K accu-
racy of SoTA T2T-ViT-7 (4.3M parameters) while lowering FLOPs. Even with
non-CUDA optimized PyTorch code, STL achieves wall-clock speedups in the
compute-bound regime. These results, together with its theoretical grounds, sug-
gest STL as a promising building block for scalable and cost-efficient AI.

1 INTRODUCTION

Matrix multiplication (MATMUL) is a ubiquitous operation across all fields of science and technol-
ogy. Specifically, MATMULs are the bottleneck (80%-90% of energy, latency and throughput) of
training and inference of deep neural networks (DNNs), both for language and for vision models
(Kim et al., 2023; Zhu et al., 2024). Indeed, multiplying large matrices (e.g., 16Kx16K) is consid-
ered a prerequisite in any Generative-AI model (Li et al., 2025; Naveed et al., 2024), implying a
billion-order FLOP count for merely a million-order IOs. As such, continual increase in computa-
tion and energy demands underlying AI breakthroughs poses a real scalability problem.

The reliance on MATMULs is mainly attributed to the emergence of hardware which was optimized
for this task (GEMM) – GPUs (and in particular, TensorCores (NVIDIA, 2020; 2023)). This hard-
ware allows for extremely efficient amortization of IO and parallelism of the cubic FLOPs (≈ n3 for
n×n matrices), making it feasible to finetune and run a 10B+ Transformer. Indeed, GPU-optimized
training was a pivotal factor in the success of AlexNet (Krizhevsky et al., 2012) and hyper-scaling
of DL ever since. This phenomenon, where an algorithmic paradigm prevails because it is most
suited to the available hardware and not necessarily because it is theoretically superior to alternative
ideas, is a widely-believed explanation to the rise of deep learning, that “won the hardware lottery”
(Hooker, 2021).

Consequently, most of the (massive) research and engineering efforts targeting inference speedups in
DNNs attempt to reduce the complexity of MATMULs without major degradation in model accuracy
(see Han et al. (2015); Dadush et al. (2018); Han et al. (2016); Abboud et al. (2023); Frantar and
Alistarh (2023a); Li et al. (2022); Xiao and et al. (2023) and references therein). This line of research
can be divided into two broad categories, which we discuss next.

The first category is GPU-friendly compression techniques, attempting to reduce the multiplication
to smaller MATMULs or impose structure on the weight matrices (e.g., low-rank decomposition and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

linear sketching (Indyk et al., 2019; Zhang et al., 2017; Hu et al., 2022; Choromanski et al., 2021),
channel pruning (He et al., 2017), Tensor products (Panagakis et al., 2021), Structured sparsification
(Hu et al., 2024; Wen et al., 2016; Hoefler et al., 2021), FFT-like structured weights (Jagtap et al.,
2022; Dao et al., 2020a)). A major drawback of these approaches is that they dramatically reduce the
number of trainable parameters of the weight matrix, resulting in minor speedups for SoTA models,
or a substantial loss of accuracy, even after aggressive finetuning (Huang et al., 2022; Moar et al.,
2024).

The second category is using algorithmic techniques for approximate MATMUL, which are not
GPU-friendly, and require the development of new hardware. For example, the use of product-
quantization (Stock et al., 2020; Fernández-Marqués et al., 2023), weight-sharing (Desai and Shri-
vastava, 2024) or unstructured sparsification (Frantar and Alistarh, 2023a; Sun et al., 2023a; Hoefler
et al., 2021) indicate that the number of parameters in many industry-scale models can be dramati-
cally reduced with minor accuracy loss (up to 90% sparsity in BERT (Kurtic et al., 2022), but barely
above ∼ 50% in SoTA LLMs (Frantar and Alistarh, 2023a)). These techniques require specialized
hardware and fail to provide real speedups on TensorCores, which is why they have been re-purposed
for model compression or CPUs (Li et al., 2023). One exception to this category is weight quantiza-
tion (Frantar et al., 2022; Frantar and Alistarh, 2023b; Sun et al., 2023b; Dettmers and et al., 2024;
Zhu et al., 2024), which is somewhat orthogonal to our work, as it cannot yield asymptotic runtime
saving in the dimension, but only of the bit-complexity, which remains Ω(n3) for n× n MATMUL.
Moreover, quantization can be done in conjunction with the method we present.

The above state of affairs explains why inference acceleration is such a notorious challenge in
practice – After all, GPUs are optimized for MATMULs, hence it appears that any generic MAT-
MUL acceleration technique would simply boil down to multiplying smaller matrices, inevitably
decreasing the number of parameters of the network. This raises the following question, which our
paper is dedicated to answer:

Question 1.1. Is there a bilinear operator f(X,W) which is both faster than MATMUL(X,W)
on a GPU, and does not decrease (even increases) the number of trainable parameters?

Note this is a purely mathematical question, abstracting away accuracy-loss, which is highly task-
specific. For reference, the element-wise (Hadamard) product of square matrices X ⊙W preserves
the parameter count, but is not faster than MATMUL on TensorCores (performing ∼ n2 IOs for
∼ n2 FLOPs has very low computational-intensity (NVIDIA, 2023)).

The only known architecture-independent GPU-efficient inference acceleration technique, which
doesn’t drastically reduce the parameter count of the model, is N:M structured sparsification (Hu
et al., 2024; NVIDIA, 2020). As such, we use 2:4 as a baseline for our approach (quantization
can be applied in conjunction with 2:4 as well, which makes it an orthogonal axis of optimization,
hence our experiments will not include quantization). Specifically, recent TensorCore generations
(succeeding AmpereTM) can reduce throughput (both FLOP and IO overhead) by up to a factor of
2, when multiplying two matrices, one of which has the following 50% sparsity pattern, henceforth
denoted 2:4 . In each 4 memory-consecutive matrix elements, at least two out of the four entries in
the block must be zero. Deciding which of the two entries in a block of the dense pre-trained weight
matrix W to zero out (and how to re-train the remaining non-zeroes) so as to minimize accuracy
loss, is a nontrivial optimization problem (Hu et al., 2024; Wen et al., 2016; Hoefler et al., 2021).

Our paper is devoted to answering Question 1.1 in the affirmative. We design a GPU-native and
trainable bilinear operator, whose evaluation requires ∼ n3/c FLOPs (for arbitrary tunable param-
eter c > 1, compared to ∼ n3 for n × n naive MATMUL) and ∼ n2 IOs, while also preserving
(often increasing) the number of trainable parameters of the network. Thus, our operator, termed
Strassen-Tile (STL) is more efficient on GPUs than MATMUL, while potentially improving the net-
work’s expressivity. We analyze some basic properties of this operator, and show that optimizing
the operator is a non-trivial optimization problem.

Related Work. Our work bridges two lines of research on fast matrix multiplication: (i) A prac-
tical line of work attempting to implement exact FMM algorithms (a-la Strassen) for MATMUL on
existing hardware (Ahmad et al., 2024; Matsuoka and Kang, 2022; Goto and van de Geijn, 2008);
and (ii) A recent theoretical line of work which studies an approximate version of Strassen’s tensor-
decomposition for the MATMUL tensor (Pratt et al., 2025; Alman and Zhang, 2023), obtained by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tweaking the tensor to have faster (asymptotic) runtime with provable error guarantees. We combine
the approaches to obtain practical algorithms with provable guarantees.

Several recent works (Kovachki et al., 2024; Tschannen et al., 2018; Lee-Thorp et al., 2022; Tol-
stikhin et al., 2024; Anandkumar et al., 2014; Lee-Thorp et al., 2022; Dao et al., 2020b; Fu et al.,
2023) consider tensor-algebra products or other bilinear maps as alternatives for MATMULs, sug-
gesting that they are more “expressive” for learning high-dimensional non-Euclidean data, akin to
Kernel methods in ML. While similar in spirit to our work, these techniques still suffer from param-
eter reduction or require new hardware.

Our work is most directly influenced by the work of Tschannen et al. (2018), who proposed to ex-
tend Strassen’s Fast-Matrix-Multiplication (FMM) framework (Strassen, 1986) to learn a universal
ternary ({−1, 0,+1}r×n) operator, resulting in a multiplication-free operation (an approach which
has gained more interest and success very recently (Zhu et al., 2024)). The key difference in our
approach is to apply linear transformations locally on tiles, which amortizes the cost of these basis-
transformations. This key feature turns this method into a GPU-native operator, and allows us to
train unrestricted tile-transformations over the Reals (via SGD finetuning), which is computation-
ally infeasible using the “universal” approach of Tschannen et al. (2018).

Structure of the Paper. In section 2 we survey the necessary background for STL. In section 3
we present the STL operator and analyze its complexity. In section 4 we present a few experiments
that corroborate our analysis. In section 5 we shortly discuss the increase in trainable parameters
count, which is discussed in more detail in the supplementary material. In section 6 we discuss the
source of STL’s initialization points and its theoretical foundations.

2 STRASSEN NORMAL FORMS

In his seminal work, Strassen (1986) proved that an operator f(X,W) : Rn×k × Rk×m → Rn×m

is bilinear if and only if it can be written in the following canonical form, called the Strassen normal
form (SNF):

f(X,W) = D⊤(EXvec(X)⊙EWvec(W)), (1)

where EX ∈ Rr×nk, EW ∈ Rr×mk, D ∈ Rr×mn are universal linear transformations (“X-
encoding”, “W -encoding” and “decoding” matrices, respectively), vec(X) ∈ Rnk is the vectorized
matrix X (similarly for vec(W)), and ⊙ denotes the element-wise (Hadamard) multiplication of
vectors.

The reason we restrict f to be bilinear, besides capturing a very large class of functions (Strassen,
1986; Panagakis et al., 2021), is that ultimately, we do wish to take advantage of GPUs (Tensor-
Cores) to compute f(W,X) fast. While the Hadamard product in (1) is a very inefficient GPU
operation, we will show in the next section that a tiled variation of (1) can be efficiently computed
on a GPU.

3 STRASSEN-TILE OPERATOR STL

Fix some prescribed parameter r = n2c for c > 1. A natural idea, inspired by Tschannen et al.
(2018), is to learn a bilinear operator instead of MATMUL through its SNF (1) as part of the layer’s
parameters. This way c governs the number of FLOPs. We can apply Stochastic Gradient Descent
(SGD) to finetune the parameters, by taking gradients with respect to EX,EW,D,W (where W is
the network’s weights matrix). This is possible since a bilinear function is differentiable w.r.t. the
encoder / decoder matrices of any SNF (1) presentation of the function.

There are two substantial setbacks for implementing this idea:

1. Changing base is too expensive: Suppose X,W are n × n matrices, then computing the
products EX · vec(X),EW · vec(W) ∈ Rr×n2

requires n2r ∼ n4c ≫ n3 FLOPs. Since
the optimization is unrestricted, we cannot assume the matrices have useful structure.

2. Mat-Vec and Element-wise multiplication are too expensive: As discussed before, com-
puting the Hadamard product of vectors is highly inefficient on a GPU. Moreover, comput-
ing the SNF (1) directly, requires computing a Mat-Vec product with a vector of size n2,
which incurs huge IO cost.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A natural way to overcome the aforementioned setbacks is to learn the SNF (1) on small tiles. This
can be interpreted as a one level divide-and-conquer algorithm. For convenience, we introduce the
following notation. For M ∈ Rn×m, assuming m,n are divisible by t, we can view M as an element
of (Rt×t)n/t×m/t via tiling, i.e., we view it as a n/t × m/t matrix whose elements are from the
algebra Rt×t (tiles). We use lower-case letters i ∈ [n], j ∈ [m] to denote scalars Mi,j ∈ R and
upper-case letters I ∈ [n/t], J ∈ [m/t] to denote tiles MI,J ∈ Rt×t.

Definition 3.1 (STL). Let n, k,m ∈ N, t ∈ N (tile-size), N ∋ r > t2 (tensor-rank), (EX,EW,D) ∈
Rr×t2 (encoders / decoder). Assume t divides n, k,m. Define STL : Rn×k × Rk×m → Rn×m,
denoted STL(X,W) = X ⋄W , by setting for I ∈ [n/t], J ∈ [m/t]:

vec(X ⋄W)I,J := D⊤

 k/t∑
L=1

(EX · vec(XI,L))⊙ (EW · vec(WL,J))

 . (2)

Note that the decoding step can be computed once for every output tile, by linearity. Moreover, we
call the sum in the RHS of (2) the encoding of (X ⋄W)I,J .

Remark 3.2. Since W is constant, we can keep only the encoded tiles in memory, i.e., store wI,J =
EW · vec(WI,J) ∈ Rr. Moreover, we can learn directly on wI,J instead of on EW,W separately.
As discussed in section 5, this can lead to a parameter increase. We call this the Fake Encoding of
W , since it does not originate from an encoding, but plays the same role.

3.1 FLOPS COMPLEXITY ANALYSIS OF STL

Let X ∈ Rn×k,W ∈ Rk×m as before. Let T (r, t) denote the cost (in FLOPs) of a single encoding
/ decoding matrix-vector multiplication (matrix of size Rr×t2 and vector of size t2, which is the
vectorization of a tile). Since we don’t assume any structure on our encoding and decoding matrices,
we may assume w.l.o.g that T (r, t) = Θ(t2r). In this notation, the runtime of computing X ⋄W is:

nk

t2
· T (r, t) + mk

t2
· T (r, t) + mn

t2
· T (r, t) + nkm

t3
· r. (3)

In the special case of square n × n matrices, plugging in T (r, t) = O(t2r) into (3) simplifies to
O(r(3n2+n3/t3)). One can easily verify that as long as n > 3t3, which will be the case as we will
be working with small tiles (t = 4, 8, 16), the second term dominates the first. Thus, the amortized
cost of the encoding and decoding transformations is essentially “free” so long as n ≫ t. In this
case, the overall complexity of STL(X,W) for square n×n matrices becomes O

(
rn3/t3

)
. Hence,

the speedup factor over the O(n3) naive MATMUL runtime is approximately (r/t3)−1 = t/c. We
sum this up in the following corollary:

Corollary 3.3. Assuming n ≫ t, the FLOP count of STL for square matrices is O(rn3/t3) =
O(n3c/t).

3.2 GPU-FRIENDLY IMPLEMENTATION OF THE ELEMENT-WISE PRODUCT

As mentioned earlier, the element-wise product in (2) has very low GPU utilization. In order to
compute (2) efficiently on TensorCores, we suggest the following approach. First, for every p ∈ [r]
we define two matrices – X(p) ∈ Rn/t×k/t,W (p) ∈ Rk/t×m/t – obtained by extracting the p-
th entry of all nk/t2 (resp. km/t2) encoded tiles of X (resp. W). By abuse of notation, we
use upper-case indices for X(p),W (p), and formally define X

(p)
I,J := (EX · vec(XI,J))p (similarly

W
(p)
I,J := (EW · vec(WI,J))p). Second, we similarly define Y (p) to be the extraction of the p-th

entry of the encoded tiles of Y := X ⋄ W , i.e., before decoding. Thus, it is given by Y
(p)
I,J :=(∑k/t

L=1(EX · vec(XI,L)⊙ (EW · vec(WL,J)
)
p
. The crucial observation is:

Claim 3.4. Y (p) = X(p)W (p), i.e., it is just a standard MATMUL .

The proof is provided in Appendix A. Thus, computing all element-wise products, reduces to r

MATMULs. We observe that vec((X ⋄W)I,J) = D⊤
[
Y

(1)
I,J Y

(2)
I,J · · · Y

(r)
I,J

]⊤
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 GPU COMPLEXITY ANALYSIS

Building on the GPU-Friendly implementation of the element-wise product, we present a refined
performance analysis on GPUs. For simplicity, we assume n = k = m. We assume the input matrix
X is given as a 3D-tensor of shape (n/t, n/t, t2), where vec(XI,J) is indexed by [I, J, :] (we use
square brackets for the tensor indexing). Moreover, we assume the weights matrix W is given in
encoded form as a 3D-tensor of shape (n/t, n/t, r), where EW · vec(WI,J) is indexed by [I, J, :].
Computing X ⋄W from this starting point can be done in three steps: (i) Encode, via MATMUL, the
tiles of X , obtaining X(p) for every p ∈ [r]; (ii) For each p ∈ [r], compute X(p)W (p) via MATMUL,
giving the encoded output Y (p); (iii) Decode, via MATMUL, each tile of X ⋄W from {Y (p)}p∈[r].
PyTorch pseudo-code for this algorithm is presented in the supplementary material.

For a matrix M let |M | denote the number of bytes needed to store M . We analyze each step,
assuming ideal hardware and perfect parallelization:

1. Step (i): The IO cost is |X| + |EX| for read,
∑

p∈[r]

∣∣X(p)
∣∣ for write. Note that |EX| is

negligible compared to |X| (rt2 compared to n3), while the latter writing size dominates∑
p

∣∣X(p)
∣∣ = (r/t2)·|X|. Hence the total IO byte load of this step is IO1 ≈ |X|·(1+r/t2).

The total number of FLOPs of this step is 2(n/t)2 · t2 · r, as each of the (n/t)2 tiles of X
is mapped to r dimensions by a linear transformation, hence FLOP1 = 2n2r.

2. Step (ii): This step consists of r independent MATMULs, each of squared matrices of
size n/t. Reading the matrices requires IO

∑
p(
∣∣X(p)

∣∣ + ∣∣W (p)
∣∣), and writing the output

requires IO
∑

p

∣∣Y (p)
∣∣. Since all matrices have the same shape, we conclude the total

IO byte load is IO2 ≈ 3(
∑

p

∣∣X(p)
∣∣) = 3 |X| · (r/t2). The total number of FLOPs is

FLOP2 = 2r · (n/t)3.

3. Step (iii): Same analysis as step (i), with the roles of input and output reversed. Thus,
IO3 ≈ |X| · (1 + r/t2) and FLOP3 = 2n2r.

Overall, we obtain

IOSTL ≈ |X| · (2 + 5r/t2), FLOPSTL = 4n2r + 2n3 · (r/t3).

At the same time, naive matrix multiplication of X and W requires IOnaive = 3 |X| ,FLOPnaive =
2n3. Note that FLOP2 dominates when n≫ t3, which is our regime of interest. Thus the asymptotic
speedup in FLOPs is by a factor of t3/r = t/c.

Example 3.5. Let us specialize for t = 4, n = 8192 and r = 32. We get IOSTL ≈ 12 |X| and
IOnaive = 3 |X|, which is a 4-fold increase in IO load moving to STL. Assuming FP16 calculations,
|X| = 2×81922 ≈ 1.3×108 (bytes). On the other hand, FLOPSTL ≈ 5583×108 and FLOPnaive ≈
10995× 108, suggesting an almost 2-fold speedup.

In practice, DNNs often chain multiple linear layers, interleaved with non-linear activations. For
STL, we could fuse (in the sense of CUDA kernel implementation) step (iii) of the previous layer
with step (i) of the current layer, reducing the IO load.

It is difficult to use these estimates to predict the actual speedup that STL can give, because this
depends on the hardware kernels that are used for executing the computation, usage of cache and
other intricate factors that affect performance. Therefore, we have measured the actual runtime
required to compute STL matrix multiplication versus vanilla matrix multiplication, for various
values of n and r (keeping t = 4), and using standard CUDA profiling tools, on H100 architecture
with FP16 data type.1 The interested reader may find a figure describing the resulting estimates in
Appendix A.

3.4 CONCLUSION

The key properties of the STL operator X ⋄W are summarized as follows:

1We have done these calculations assuming the fused step of (i) and (iii).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: The blue line is estimation of the error
of STL, with tile t = 4 and tensor rank r from
16 to 48 (for 49, the line is known to cross 0 by
Strassen). The red line is our estimate for the
corresponding error for 2 : 4 pruning.

Figure 2: Mean squared error ↓ of training STL
with Strassen based vs. random Gaussian initial-
ization, compared for different values of r before
and after training. This shows “smart” initial-
ization maintains an advantage, and is consistent
with other methods we have tried.

Amortization of Encoding: Each t × t tile of X and W is encoded only once, but used n/t (re-
spectively m/t) times in the STL product. As such, the cost of encoding is amortized, assuming
n≫ t.

High GPU utilization: Assuming n ≫ t3, STL can achieve a similar FLOPs per IOs ratio, com-
pared with naive MATMUL.

Parameter Increase: This is discussed in section 5. Unlike low-rank, sparse or product-quantization
(PQ) approximations, STL does not decrease (often increases) the number of trainable parameters
of the original linear layer, yet it is cheaper than MATMUL(X,W) on GPUs.

4 EXPERIMENTS

We perform two classes of experiments. An implementation of STL we’ve used in our experiments
(PyTorch implementation) is available in our public repository.

Class 0 Training encoders and decoders for STL with tile size 4 to approximate 4×4 matrix multi-
plication, in the vein of “approximate Strassen Matrix Multiplication”. The resulting matrix
multiplication residual error is compared against that of 2:4 pruning for the same synthetic
random data. We choose 4x4 tiles because it’s the simplest scenario for comparing STL
and 2:4 , and it suffices because the tiling approach extends the findings to larger matrices.

Class 1 Training from scratch a base untrained network, replacing linear layers with STL on tiles
of size t = 4 and various values of tensor rank r. The parameters of the STL encoders and
decoders were also trained. For budget and time reasons we worked with vision transform-
ers of the “Token-to-Token” class (Yuan et al., 2021a) with up to ∼ 4.3M parameters on
ImageNet-1K dataset (Deng et al., 2009).

4.1 CLASS 0 EXPERIMENTS - SYNTHETIC 4× 4 MATRICES

The first experiment attempts to approximate matrix multiplication of random (Gaussian) 4 × 4
single-tile (t = 4) matrices X,W using STL for various values of tensor rank r, using the Frobenius
norm squared of the residual matrix as a loss function, and training on the encoders EX,EW and
decoder D. We used a magnitude based 2 : 4 pruning strategy on the weight matrices W as
benchmark to compare with. As can be seen from Figure 1, we need r ≈ 42 for STL to match 2 : 4
pruning. We refer the reader to the supplementary materials for more details.

The result of this experiment is not promising because tensor rank of r = 42 for tile size t = 4 is
unlikely to provide much benefit, if any, from a performance point of view. The result discussed in
section 5 explains why we get these rather “disappointing” results, and suggests that when switching
the objective function (to real-life AI objectives) and training a network with STL, we can hope to
match the 2:4 performance with lower r. In fact, as we shall see next, we can even hope to surpass
the baseline (linear layer, without STL) with r as low as 24.

6

https://anonymous.4open.science/r/StrassenTile-5F01/README.md

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For completeness, Figure 2 shows how initialization of the experiment changes the outcomes. In
particular, it shows that “smart” initializations are important to achieve good performance, which is
evidence to the non-triviality of the optimization problem at hand.

4.2 CLASS 1 EXPERIMENTS - TRAINING FROM SCRATCH WITH STL

As a model, we experimented with the image classification network T2T-ViT-7 (Yuan et al., 2021b)
which has 4.3M parameters (requiring 1.1G FLOPS per 224x224 image). The first step was to repeat
the results as reported by Yuan et al. (2021b). We managed to obtain 71.5% accuracy, which is 0.2%
lower than claimed there. We attribute this to possible noise stemming from random initialization2.

Figure 3: Accuracy ↑ vs. tensor rank (r) for
baseline T2T-Vit/7 and for the same architecture
with all activation-weight MATMULs in the net-
work trunk replaced by STL with tensor rank r.
Very similar picture when including the pre-trunk
(T2T) network as a followup experiment.

Following the baseline result reproduction, we
replaced the two MLP linear layers in each of
the 7 attention blocks in the network by STL
with r = 16, 24, 32. For the case r = 16
we lost around 2% accuracy compared to base,
but for r = 24, 32 we improved by close to
0.5% compared to base. Encouraged by this,
we replaced not just the MLP linear layers, but
also the Q,K,V and the projection linear lay-
ers from the attention, thus removing all linear
layers from the network trunk, which accounts
for 79% of the FLOPS of the entire network3.
We also did not replace activation-×-activation
MATMUL which we note is easily done with
STL but extremely hard to do with 2 : 4 sparsi-
fication, as it requires on-the-fly sparsification.
We used r = 16, 18, 20, 22, 24, 32, 40, 48, 49
(the latter case allowing exact matrix multipli-
cation by Strassen) and summarized the results in Table 1 and Figure 3.

Note that there was no need to adjust any learning parameters. The parameters suggested in the code
repository of Yuan et al. (2021b) for T2T-ViT-7 worked out of the box. The results clearly show that,
as long as the tensor rank is at least≈ 24, we gain accuracy compared to baseline as we increase the
tensor rank r, and this is likely due to the increase of parameters in the fake encoding parameters
(see section 5). For r < 24 we lost accuracy points, probably due to loss of expressivity in STL,
compared to matrix multiplication, at such a low tensor rank regime.

Further encouraged by these results for r ≥ 24, we have also replaced all the activation-×-weight
linear layers in the T2T part of T2T-ViT/7 with STL, appearing before the network trunk. We tested
the values r = 16, 24, 32, 40, 48. For r = 16 we lost an additional 0.7% from this replacement.
For r = 24 (32) we gained (lost) insignificantly ≤ 0.1%, respectively. For r = 40, 48 we gained
> 0.4% in each case. This further strengthens our observations about the effect of STL replacement
in this regime.

Table 1 summarizes the results in the most ambitious experiment of replacing all linear layers in the
body of the network. We provide more technical details about this experiment in the supplementary
material.

We are not aware of other work that reports improvement on the Imagenet-1k classification problem,
when trained from scratch on the Imagenet-1k training split, with a network of similar size, and
with weight matrix pruning set at a considerable sparsity rate (in particular structured 2:4 pruning
strategies). There are cases where pruning improves accuracy due probably to a regularization effect
in the overfitting regime, which is not the case here.

2Yuan et al. (2021b) mention on the github project page that using 4 GPUs gives slightly lower accuracy
than using 8, which may explain the slightly lower baseline we saw when running their code, as we used 4
GPUs.

3By trunk we mean the 7 attention blocks. At this point, we did not make replacements in the T2T (Token-
to-token) layers preceding the attention blocks, which account for the remaining 21% of the network FLOPS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 CONCLUSION

To summarize, our conclusion from the Class 1 experiment is that in the under-parameterized or at
most slightly over-parameterized case, there is potential of saving factor > 2.1 in FLOPs without
any loss of accuracy, and in some cases a slight gain. However, in the extremely over-parameterized
case, switching to STL might cause loss of accuracy, due to even higher over-parameterization.

An interesting avenue for future research is to study larger ViT architectures for images and/or
video, where the dimensions of the matrices justify the use of STL from a performance point of view
as well. Another avenue for further experiments is to replace the activation-×-activation MATMULs
appearing twice in each attention layer: Once for computation of the so-called attention matrix, and
again when multiplying the latter with the V (as in QKV) matrix. We provide more details in the
supplementary material.

5 PARAMETER INCREASE IN STL

As mentioned before, STL does not only trade off IO and FLOPs, but also the trainable parameter
count, which is a measure of the expressivity of the network. The parameters EX,EW,D offer a
negligible addition of parameters to the network. However, as commented before, when training the
network with STL, we are free to train directly over W in its encoded form. For every tile of W we
have r ≥ t2 encoding dimensions, which we refer to as the Fake Encoding of W . The term comes
to emphasize that the vectors cannot be written as the encoding of W ’s tiles with EW. A priori, this
increases the number of parameters by a factor of c = r/t2.

In the supplementary material, we formally state and prove the following result: Assuming W
is a fixed weights matrix, EX,D are also fixed, and X is sampled from a distribution DX , then
optimizing over the fake encoding of W to minimize the L2-difference compared to MATMUL, is
an optimization problem with the same number of parameters as in W . In other words, there is no
effective increase in the number of parameters of the network, if we train over the fake encoding
instead of EW.

We make two observations on this result. First, different objective functions (e.g. cross-entropy loss
of a network) might prove to have a different effect on the parameter increase, and L2 might be a
special case. Second, the result suggests that training STL after training the network, i.e., keeping
W fixed, might be the problem. Indeed, as we lay out in the next paragraph, our experiments reveal
that training a network with STL from scratch and optimizing over the fake encoding directly, yields
more expressive results.

Figure 4: Comparison of singular values be-
tween the trained network’s (T2T-ViT-7, see
subsection 4.2) encoded weights and random
matrices of the same sizes. The graph pro-
vides evidence that learning with STL occurs in
a higher dimensional space.

Variant Accuracy ↑
T2T-ViT-7 (Baseline) 71.5%

T2T-ViT-7/STL r = 16 everywhere 69.5%
T2T-ViT-7/STL r = 18 everywhere 70.3%
T2T-ViT-7/STL r = 20 everywhere 71.0%
T2T-ViT-7/STL r = 22 everywhere 71.4%
T2T-ViT-7/STL r = 24 everywhere 72%
T2T-ViT-7/STL r = 32 everywhere 72.1%
T2T-ViT-7/STL r = 40 everywhere 73.4%
T2T-ViT-7/STL r = 48 everywhere 75.0%
T2T-ViT-7/STL r = 49 everywhere 75.8%

Table 1: Results for the T2T-ViT/7 model with
and without STL replacements. Notice how at
the extreme r = 49, which can recover exact
matrix multiplication, we gain accuracy, most
likely due to the increased expressivity from the
increased parameter count.

In the class 1 experiment (subsection 4.2), we train a vision transformer from scratch, using STL
with tile size t = 4 and r = 24, directly training over the fake encoding. Each 4x4 tile of a
weights matrix W corresponds to a fake encoding vector of size 24. Stacking the vectors side by
side we obtain a wide matrixW with 24 rows. Initialization ofW is by encoding a random Gaussian

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

matrix W using the matrix EW learned in the class 0 experiment (subsection 4.1). The rank ofW
before training is at most 16, since the encoded blocks EW · vec(WI,J) all belong to the same 16-
dimensional sub-space. However, after training, we compute the spectrum (singular values) of W
and observe it uses all 24 possible directions. The results are described in Figure 4. We can conclude
that the training process indeed escapes the low dimensional space, showing the fake encoding are
utilized.

The key takeaway is that trying to approximate a trained linear layer using MATMUL, in the L2

sense, is not the correct approach with STL. Instead, training the network with STL from the ground
up, directly on the fake encoding space, increases the number of parameters and possibly increases
accuracy.

6 THEORETICAL FOUNDATIONS AND INITIALIZATION

The SNF (1) may seem unnatural at first glance, as it interprets a bilinear function f as a change of
basis into an r-dimensional space. However, for a specific family of bilinear operators, this has a
very clean interpretation. Convolution operators of abelian (commutative) groups, can be written, by
the convolution theorem (Cooley and Tukey, 1965), as follows: Let F denote the Fourier transform
matrix for the underlying group, let ÊX, ÊW, D̂ denote embedding matrices, attaching coefficients
from X,W to group elements and vice-versa. Then f(X,W) = D⊤F−1((FEX ·vec(X))⊙(FEW ·
vec(W)). In words, the operator maps t × t matrices to some r-dimensional vectors, on which we
perform the group’s convolution. Although convolution seems as a very abstract operation, it is
closely related to a familiar concept: polynomial multiplication. In fact, convolution in abelian
groups is just (multi-variate) polynomial multiplication, modulo some monomial.

This view relates to the group-theoretic approach for FMM, which originated in the work of Cohn
and Umans (2003). However, their framework restricts the embedding matrices (EX,EW,D) sig-
nificantly and does not deal with the task of approximation, while relying on divide-and-conquer to
obtain asymptotic speedups. A recent work of Pratt et al. (2025) is, to the best of our knowledge, the
first group-theoretic approach for Approximate MATMUL, although Alman and Zhang (2023) also
make a step in this approach (formulated differently). The authors present a simple construction of
embedding matrices that achieves SoTA tradeoffs between speed and accuracy. Moreover, the au-
thors present a more sophisticated construction that completely beats SoTA tradeoffs against certain
common distributions of matrices (like random {±1} i.i.d entries).

The significance of Pratt et al. (2025) for our work, is that it lays a theoretical foundation for the
capacity of STL to provide good approximation for MATMULs. Moreover, it provides convolution
operators which are theoretically good initialization points for the optimization process. As this
task is extremely non-convex, good initialization is crucial.

All in all, our work steps out of the approximate MM group-theoretic framework presented in Pratt
et al. (2025), by freely optimizing over the encoder / decoder matrices, to match the encountered
(activation) matrices. To emphasize the last point, note that we are not trying to learn global encoder
/ decoder matrices, but rather data-dependent ones.

7 DISCUSSION

We believe that that the approach we presented here, together with the preliminary evidence, moti-
vates further research in many directions. First, whether and in what cases, can STL improve both
accuracy and inference throughput of deep networks. Second, how to train STL, and in particu-
lar, finding clever initialization points and suitable regularization techniques. Third, if the random
Strassen subset approach can be proved theoretically (against any matrix). Fourth, how well can
STL perform with specialized CUDA kernels and dedicated engineering.

While we do not claim SoTA results here, we believe this line of work has the potential to reach
or surpass competitive baselines with more study, specifically into the optimization problem STL
poses.

REFERENCES

Abboud, A., Fischer, N., Kelley, Z., Lovett, S., and Meka, R. (2023). New graph decomposi-
tions and combinatorial boolean matrix multiplication algorithms. Electron. Colloquium Comput.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Complex., TR23-180.

Ahmad, A., Du, L., and Zhang, W. (2024). Fast and practical strassen’s matrix multiplication using
fpgas. arXiv preprint arXiv:2406.02088.

Alman, J. and Zhang, H. (2023). Generalizations of matrix multiplication can solve the light bulb
problem. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
Santa Cruz, CA, USA, November 6-9, 2023, pages 1471–1495. IEEE.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decompositions
for learning latent variable models. Journal of Machine Learning Research, 15:2773–2832.

Chen, S. F., Beeferman, D., and Rosenfeld, R. (2018). Evaluation metrics for language models.
Carnegie Mellon University.

Chen, T., Cheng, Y., Gan, Z., Yuan, L., Zhang, L., and Wang, Z. (2021). Chasing sparsity in vision
transformers: An end-to-end exploration. arXiv preprint arXiv:2106.04533.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J., Mohiuddin, A., Kaiser, L., Belanger, D., Colwell, L., and Weller, A. (2021). Rethinking
attention with performers. In Proceedings of the International Conference on Learning Represen-
tations.

Cohn, H. and Umans, C. (2003). A group-theoretic approach to fast matrix multiplication. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge,
MA, USA, Proceedings, pages 438–449. IEEE Computer Society.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301.

Dadush, D., Guzmán Paredes, C., and Olver, N. (2018). Fast, deterministic and sparse dimensional-
ity reduction. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1330–1344. SIAM. 29th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, SODA 2018 ; Conference date: 07-01-2018 Through 10-01-2018.

Dao, T., Sohoni, N. S., Gu, A., Eichhorn, M., Blonder, A., Leszczynski, M., Rudra, A., and Ré, C.
(2020a). Kaleidoscope: An efficient, learnable representation for all structured linear maps. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Dao, T., Sohoni, N. S., Gu, A., Eichhorn, M., Blonder, A., Leszczynski, M., Rudra, A., and Ré, C.
(2020b). Kaleidoscope: An efficient, learnable representation for all structured linear maps. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255.

Desai, A. and Shrivastava, A. (2024). In defense of parameter sharing for model-compression. In
The Twelfth International Conference on Learning Representations.

Dettmers, T. and et al. (2024). Quantized models for large language models. arXiv preprint
arXiv:2402.01453.

Fernández-Marqués, J., AbouElhamayed, A. F., Lane, N. D., and Abdelfattah, M. S. (2023). Are we
there yet? product quantization and its hardware acceleration. arXiv preprint arXiv:2305.18334.

Frantar, E. and Alistarh, D. (2023a). Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Proceedings of the International Conference on Machine Learning (ICML).

Frantar, N. and Alistarh, D. (2023b). Efficient quantization for large language models. In Proceed-
ings of the International Conference on Learning Representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Frantar, N., Alistarh, D., and et al. (2022). Tensor quantization for llms. In Proceedings of the 36th
International Conference on Machine Learning.

Fu, D. Y., Arora, S., Grogan, J., Johnson, I., Eyuboglu, S., Thomas, A. W., Spector, B., Poli, M.,
Rudra, A., and Ré, C. (2023). Monarch mixer: A simple sub-quadratic gemm-based architecture.
CoRR, abs/2310.12109.

Goto, K. and van de Geijn, R. (2008). Anatomy of high-performance matrix multiplication. In ACM
Transactions on Mathematical Software (TOMS), volume 34, pages 1–25.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. arXiv: Computer Vision and Pattern
Recognition.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR).

He, Y., Zhang, X., Zhang, S., and Sun, J. (2017). Channel pruning for accelerating very deep
neural networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision
(ICCV), pages 1389–1397. IEEE.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2021). Sparsity in deep learning:
pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res.,
22(1).

Hooker, S. (2021). The hardware lottery. Commun. ACM, 64(12):58–65.

Hu, E. J., Peng, N., Goh, G., Fang, A., and et al. (2022). Lora: Low-rank adaptation of large
language models. In International Conference on Learning Representations.

Hu, Y., Zhao, K., Huang, W., Chen, J., and Zhu, J. (2024). Accelerating transformer pre-training with
2:4 sparsity. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F., editors, Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 19531–19543. PMLR.

Huang, G., Li, W., and Zhang, Z. (2022). Learning low-rank deep neural networks via singular vec-
tor orthogonality regularization and singular value sparsification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6570–6579.

Indyk, P., Vakilian, A., and Yuan, Y. (2019). Learning-based low-rank approximations. Curran
Associates Inc., Red Hook, NY, USA.

Jagtap, A. D., Shin, Y., Kawaguchi, K., and Karniadakis, G. E. (2022). Deep kronecker neural
networks: A general framework for neural networks with adaptive activation functions. Neuro-
computing, 468:165–180.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R., Genç, H., Dinh, G., Huang, Q., Keutzer,
K., Mahoney, M. W., Shao, Y. S., and Gholami, A. (2023). Full stack optimization of transformer
inference: a survey. ArXiv, abs/2302.14017.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar,
A. (2024). Neural operator: learning maps between function spaces with applications to pdes. J.
Mach. Learn. Res., 24(1).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. In Proceedings of the 25th International Conference on Neural Informa-
tion Processing Systems (NIPS’12), volume 1, pages 1097–1105. Curran Associates Inc.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M., Fineran, B., Goin, M., and Alistarh, D.
(2022). The optimal BERT surgeon: Scalable and accurate second-order pruning for large lan-
guage models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 4163–4181, Abu Dhabi, United Arab Emirates. Association for Computational
Linguistics.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. (2022). FNet: Mixing tokens with Fourier
transforms. In Carpuat, M., de Marneffe, M.-C., and Meza Ruiz, I. V., editors, Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 4296–4313, Seattle, United States. Association for
Computational Linguistics.

Li, J., Xu, J., Huang, S., Chen, Y., Li, W., Liu, J., Lian, Y., Pan, J., Ding, L., Zhou, H., Wang, Y.,
and Dai, G. (2025). Large language model inference acceleration: A comprehensive hardware
perspective.

Li, Y., Yang, X., Zhang, J., and et al. (2022). Efficient arbitrary precision acceleration for large
language models on gpu tensor cores. arXiv preprint arXiv:2202.05654.

Li, Z., Li, H., and Meng, L. (2023). Model compression for deep neural networks: A survey.
Computers, 12(3):60.

Matsuoka, S. and Kang, D. (2022). Efficient matrix multiplication for dnns using fpga and strassen’s
algorithm. In Proceedings of FPGA’22, pages 30–40.

Moar, C., Pellauer, M., and Kwon, H. (2024). Characterizing the accuracy - efficiency trade-off of
low-rank decomposition in language models. ArXiv, abs/2405.06626.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and
Mian, A. (2024). A comprehensive overview of large language models.

NVIDIA (2020). Nvidia a100 tensor core gpu: Performance and innovation. IEEE Xplore.

NVIDIA (2023). Nvidia tensor cores: Versatility for hpc & ai.

Panagakis, Y., Kossaifi, J., Chrysos, G. G., Oldfield, J., Nicolaou, M. A., Anandkumar, A., and
Zafeiriou, S. (2021). Tensor methods in computer vision and deep learning. Proceedings of the
IEEE, 109(5):863–890.

Pratt, K., Uffenheimer, Y., and Weinstein, O. (2025). Approximate matrix multiplication via convo-
lutions.

Stock, P., Joulin, A., Gribonval, R., Graham, B., and Jégou, H. (2020). And the bit goes down:
Revisiting the quantization of neural networks. ArXiv, abs/1907.05686.

Strassen, V. (1986). The asymptotic spectrum of tensors and the exponent of matrix multiplication.
In 27th Annual Symposium on Foundations of Computer Science (FOCS), pages 49–54. IEEE.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. (2023a). A simple and effective pruning approach for
large language models. In Advances in Neural Information Processing Systems.

Sun, R., Zhang, W., and et al. (2023b). Optimizing llm inference with efficient quantization strate-
gies. arXiv preprint arXiv:2304.05212.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner,
A., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy, A. (2024). Mlp-mixer: an all-mlp ar-
chitecture for vision. In Proceedings of the 35th International Conference on Neural Information
Processing Systems, NIPS ’21, Red Hook, NY, USA. Curran Associates Inc.

Tschannen, M., Khanna, A., and Anandkumar, A. (2018). StrassenNets: Deep learning with a
multiplication budget. In Dy, J. and Krause, A., editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4985–4994. PMLR.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. H. (2016). Learning structured sparsity in deep
neural networks. ArXiv, abs/1608.03665.

Wenger, J., Dangel, F., and Kristiadi, A. (2023). On the disconnect between theory and practice of
neural networks: Limits of the ntk perspective. arXiv preprint arXiv:2310.00137.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiao, Y. and et al. (2023). Robust quantization for large language models. In Proceedings of the
International Conference on Learning Representations.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., Tay, F. E., Feng, J., and Yan, S. (2021a). T2T-
ViT: Tokens-to-token vision transformer. https://github.com/yitu-opensource/
T2T-ViT.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., and Yan, S. (2021b).
Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 558–567.

Zhang, Z., Zhao, Y., and Yu, Q. (2017). Low-rank matrix factorization for deep learning. IEEE
Transactions on Neural Networks and Learning Systems, 28(5):1071–1082.

Zhu, R.-J., Zhang, Y., Sifferman, E., Sheaves, T., Wang, Y., Richmond, D., Zhou, P., and Eshraghian,
J. K. (2024). Scalable matmul-free language modeling.

13

https://github.com/yitu-opensource/T2T-ViT
https://github.com/yitu-opensource/T2T-ViT

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Observed speedup factor for STL for tile size t = 4, r = 16, 20, . . . , 48, 49, and matrices
of size n× n with n = 4096, 8192, 16384, using a (non-optimized) PyTorch implementation. As
expected, the throughput speedup is almost linear in the tensor rank. (Note: r = 49 can imitate
exact matrix multiplication by Strassen, and is given here for completeness.)

A GPU COMPLEXITY OF STL

Proof of Claim 3.4.

Y
(p)
I,J =

 k/t∑
L=1

(EX · vec(XI,L)⊙ (EW · vec(WL,J)


p

=

k/t∑
L=1

(EX · vec(XI,L)p · (EW · vec(WL,J)p

=

k/t∑
L=1

X
(p)
I,LW

(p)
L,J = (X(p)W (p))I,J .

B MORE DETAILS ON THE PARAMETER INCREASE OF STL

In the downstream AI applications of matrix multiplication, we are free to optimize directly in the
space of the encoded weight matrix Ŵ , containing r parameters per tile, instead of t2. This can
improve the expressivity of STL as a module inside a network. It turns out that this indeed can
be done, as we show in the following sections in the context of training STL inside an actual deep
network. However, we first show a negative result. Lemma B.1 below states that, as long as we
measure the accuracy of STL using Frobenius norm of the residual (error matrix) with respect to
standard matrix multiplication, we effectively do not gain more than t2 trainable weights per tile
of Ŵ , which is the same as the number of parameters of the corresponding tile (the original tile of
W). The lemma however does not rule out increased expressivity when training using other loss
functions, as our experiments in what follows support.

To explain our result, consider the simplified setting of approximating matrix multiplication of two
single tile matrices, X,W ∈ Rt×t. The matrices X can come from any fixed distribution DX . The
matrices W are drawn uniformly from a finite population of size N , which we denoteW , and the
two matrices are drawn independently of each other. To connect this to actual applications, one
should think ofW as a collection of tiles from a pretrained weight matrix of some linear layer which
we want to replace with the STL operator, which is the STL-equivalent of matrix pruning. The

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

mathematical reason we restrictW to be finite is that we want to allow the encoding parameters of
W ∈ W to be any function, without requiring any structure such as linearity or even smoothness.
In other words, the encoding parameters will simply be memorized. The training will optimize over
the encoder EX, the decoder D and over these fake encoding parameters. Our notation:

FakeEnc(W) = {FakeEnc(W) ∈ Rr |W ∈ W} . (4)
There is now no need for the W -encoder EW. The collection of all values FakeEnc(W) for W ∈
W , which be formally denote by FakeEnc(W), can be thought of, for computational convenience,
as a matrix of shape N × r. For a fixed repertoryW , the optimization now becomes

αW
STL = inf

EX,D
FakeEnc

E
X,W

[err(X,W,D,EX,FakeEnc(W))] (5)

where the expectation is over X ∼ DX and W uniform from W , and the error function
err(X,W,D,EX,FakeEnc(W)) is the mean average error of the residual:

1

t2
∥vec(XW)− (DT (EX vec(X)⊙ FakeEnc(W)))∥22 (6)

The fake encoding variables seem to promise an increase in capacity of the learning space we are
trying to optimize over, compared to learning over EX,EW,D. Unfortunately, as the following
lemma reveals, this is not the case, and the reason for this is the choice of the Frobenius norm
(squared) loss function. We state and prove this disappointing fact as a lemma, but prepare the
disappointed reader that in what follows, the fake encoding parameters will show some promise in
downstream AI applications, where the loss functions are different.

Lemma B.1. For any fixed EX,D, the optimal value of FakeEnc∗(W) minimizing the RHS of (5)
is given by the relationship FakeEnc∗(W) = F vec(W) for all W ∈ W , for some F ∈ Rr×t2

(which we may as well call the effective encoding matrix for W .)

Proof. The first thing to note about (5) is that the optimization problem can be done independently
for each W ∈ W . Hence let us fix one W ∈ W and assume that EX,D are such that the minimizer
for (5) is achieved. Now define the corresponding minimization problem specific for W :

αW
STL(W) = inf

EX,D
FakeEnc(W)

EX [err(X,W,D,EX,FakeEnc(W))] (7)

Then clearly αW
STL = 1

N

∑
W∈W αW

STL(W). Now let us replace the vector norm in err by its defini-
tion, summing squares over all coordinate differences, so err becomes:

1

t2

t2∑
i=1

(vec(XW)i −DT (EX vec(X)⊙ (FakeEnc(W))i))
2 (8)

The expression vec(XW)i is clearly a linear function of vecW , with coefficient vector we de-
note by ZX,i ∈ Rt2 that depends on X and i only. Similarly, the expression DT (EX vec(X) ⊙
(FakeEnc(W))i) is a linear function of FakeEnc(W) ∈ Rr, with a coefficient vector Z′

X,i that
depends on X, i only. (Recall that we assume fixed and optimal encoder EX and decoder D in the
premise of the lemma, so we omit them in the notation for Z,Z′). This allows us to write err as

Ei(Z
T
W,i vec(W)− Z′T

W,iFakeEnc(W))2 (9)

where the index i is uniformly taken in [t2]. The optimization now becomes that of minimizing:

EX,i(Z
T
W,i vec(W)− Z′T

W,iFakeEnc(W))2 , (10)

over the r variables FakeEnc(W). Now it is clear that the last minimization is a linear regression
with r variables over a distribution of equations. The optimizer FakeEnc∗(W) is given by

FakeEnc∗(W) = E
X,i

[
Z′

X,iZ
′T
X,i

]−1
E
X,i

[
Z′

X,iZ
T
X,i

]
︸ ︷︷ ︸

Solution Matrix

vec(W). (11)

The Solution Matrix of shape r×(t2), independent of W , mapping the original matrix vec(W) to its
optimal fake encoding, is effectively the desired encoding matrix F from the Lemma statement.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The underwhelming implication of Lemma B.1 is that, when measuring the approximation error of
STL vs. MATMUL in the L2 norm, one cannot gain expressivity from the use of the extra learnable
parameters hidden in the fake encoding of the W matrices, compared to the expressivity we get
from using a linear encoding function EW to encode W . Notice also that the proof did not use the
fact that we were working over single tiny t× t tiles. It just uses the fact that, viewed as a function
on activation matrices X , the STL operator for fixed (W,EX,EW,D), is a linear operator. The
conclusion from Lemma B.1 would hold true for matrices of any shape, and lead to the conclusion:
Directly optimizing fake encoding parameters for the tiles of a weight matrix W does not effectively
buy us more parameters than those already present in the original matrix W , as long as we care
about Frobenius norm of the MATMUL error.

Interestingly, when training STL for LLM downstream tasks, the actual loss function we are working
with is the perplexity of language prediction (Chen et al., 2018), which is quite different than the
(layer-wise) L2 norm (Wenger et al., 2023). Indeed, our experiments involving training LLMs from
scratch using STL show the effect of training STL layers in the (fake) encoding space, reassuring
that it does exploit the parameter increase of the operator.

C EXPERIMENTS

C.1 CLASS 0 EXPERIMENT: COMPARING STL TO 2:4 ON RANDOM SYNTHETIC DATA

In our first experiment, we compared the accuracy of STL with tile size t = 4 with various param-
eters on matrices of size 4 × 4 (corresponding to a single tile), with different values of r, to that of
structured 2:4 pruning. The main technical difficulty of this experiment was training the encoder
and decoder matrices EX,EW,D. As we shall see below, a gradient descent learning strategy is
highly dependent on the initialization of the solution.

We will concentrate on tile size t = and 4×4 matrices. To define the loss for the 2:4 benchmark, we
define a mask operatorM which identifies the 2 highest (in magnitude) coordinates of each column
of W , more precisely,

M(W)ij =

{
1 i ∈ ArgTop2{|Wkj |}k=1..4

0 otherwise
(12)

where ArgTop2 returns the two indices of the largest (in absolute value) two elements in a list of
elements, breaking ties (say) by preferring lower indices.

The quality of this approach is denoted α2:4 and is defined as follows:

α2:4 :=
1

16
E
W

min
W̃∈R4×4

E
X
∥XW −X(W̃ ⊙M(W))∥2F .

The 1/16 factor gives the average (since we are working with 4× 4 tiles). Moreover, we minimize
over W̃ , to allow more advanced 2:4 -sparsification techniques, which take the training data into
account. Note that if DX was just the uniform distribution over all matrices (with bounded norm),
then the solution would have always been W̃ = W .

For a fixed W matrix, the minimizer for W̃ in the last equation can be easily approximated by solving
a convex program (in fact, a linear regression problem) over a random large (but fixed) population
of X’s. Our experiments have resulted in the following estimate:

α2:4 ≈ 0.53.

Our goal is to obtain a competitive error for approximation of XW using STL. It should be noted
that our approximation is dependent on the distributionsDX ,W . For the sake of our experiment, we
set DX to be matrices whose entries are i.i.d. from N (0, 1) (normal Gaussian distribution, mean 0,
variance 1). In general, if one wishes to approximate a linear layer in a trained network with STL, it
could make sense to take the distribution of W to correspond to the empirical distribution of tiles of
the pretrained weight matrix, and that of X to come from the actual data of interest flowing through
the network.

We similarly define the quality of the STL approximation to be

αSTL = min
EX,,EW,D

[E
X,W

err(X,W,D,EX,EW)], (13)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where err is defined as before, only replacing FakeEnc(W) with the W -encoder (recall that we gain
nothing by using fake encoding parameters, by Lemma B.1, at least in the L2 sense);

Estimates of αSTL. We have estimated αSTL w.r.t. the Gaussian distribution on X and a fixed
random, Gaussian distributed population of W ’s by running gradient descent on the encoders and
decoders in an attempt to solve the minimization problem defining αSTL. The results were summa-
rized in Figure 1 in the main part of the paper. It turns that out estimates heavily depend on the
initialization of the gradient descent algorithm (see below for more details).

It appears from the plot that for approximately r = 42, αSTL roughly matches α2:4 . From Figure 2
in the main part of the paper, it is evident that at r = 42 there is little chance to beat 2 : 4 in perfor-
mance. However, the following should be noted: Our estimation of α2:4 is very accurate, because it
is calculated by averaging out over a random population of weight matrices W , an estimation of the
2 : 4 pruning error, which is a convex problem.4 Therefore, our comparisons are STL-optimistic
in the sense that it is likely that the true optimal bounds for αSTL are better, possibly using better
initialization and/or optimization techniques. This is in fact one of the main open questions in this
paper.

Initialization Issues for Class 0 Experiment. To estimate αSTL, we solved a non-convex opti-
mization problem over the encoders and decoders, using gradient descent. Initializing the encoder
and decoder parameters randomly gave us suboptimal estimates, compared to the following method,
which is based on a pruned version of Strassen’s encoders and decoders used for getting a tensor of
rank 49 for multiplying a pair of 4× 4 matrices.

If EX
49,EW

49,D49 ∈ R49×16 denote the encoders and decoders for Strassen’s construction, then
our construction for initializing the optimization for αSTL was done by simple random pruning in the
encoding-space dimension. More precisely, we chose a random subset I of r integers in [49] (without
repetitions), and initialized EX,EW,D ∈ Rr×16 to be the matrices obtained by extracting the r
rows indexed by I from EX

49,EW
49,D49, respectively. This rather naive initialization heuristic

already gave significantly better results than random initialization.

C.2 CLASS 1 EXPERIMENT: TRAINING T2T-VIT WITH STL

More Details on STL Replacement in T2T-ViT In the ViT architecture, and in particular in T2T-
ViT (Yuan et al., 2021b), the input image is organized as patches. In our case each patch is 16×16 in
resolution, resulting in a two dimensional spatial patch space of shape 14×14 for images of original
resolution 224 × 224. Each patch corresponds to a token in the language of transformer networks.
In addition to the 14 × 14 = 196 tokens, an additional “summary” token is appended and used at
the end for classification. This results in 197 tokens representing an instance image in the attention
network pipeline.

There are two technical challenges with this token space, when viewed under the STL lens.

1. STL with tile size t = 4 packs together every 4 coordinates of the (activation) matrix, and
197 is not divisible by 4. We chose to solve this by appending another 3 null rows to the
activation input matrix X (for each STL layer). When obtaining the output matrix Y , we
reduce the dimension from 200 back to 197 by linearly combining the last 4 rows into a
single row, using another 4 trainable coefficient parameters. There are other natural choices
for this technical detail. For example we could use 4 summary tokens instead of one, but
our choice seemed to be the simplest.

2. In the original ViT network architecture, the patches are organized in raster order, and
therefore each STL tile packs together 4 patches that visually correspond to a horizontal
slab of length 4 patches. The choice of horizontal (vs. vertical) seems quite arbitrary,
and we felt that it should not affect the inductive bias of the network. Hence we have
reorganized the order of patches, so that each 2×2 square of 4 patches would be contiguous
in memory, and hence in the activation matrix indexing. This is done once before the
attention pipeline and has negligible IO cost, which will become more negligible for larger
ViTs.

4This is after having chosen the pruned coordinates using the magnitude heuristic. We are aware that there
are more advanced methods for pruning, but (a) it is not clear whether those methods really make a difference
for 4× 4 matrices and (b) there are possibly more advanced ways to optimize for αSTL.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Preliminary Results in the Over-Parameterized Regime As we’ve stated before, we are not
aware of other work that reports improvement on the Imagenet-1K classification problem, when
trained from scratch on the Imagenet-1K training split with a network of similar size and consider-
able matrix pruning (in particular, structure pruning). The closest reported results we are aware of
are Chen et al. (2021) which thoroughly studied pruning strategies of a related architecture called
DeiT-Vision-Transformer. For a model DeiT-Tiny of a similar size as T2T-ViT-7, all their pruning
experiments led to more than 2% degradation of accuracy, even at only 30% unstructured sparsity
rate, let alone with 2 : 4 (structured) sparsification.

The cases where they saw accuracy gains in from sparsification were on DeiT-Base which has
roughly 80M parameters (×4 parameters compared to T2T-Vit-14). We argue that, for that size
model on Imagenet-1k, the over-parameterization is so extreme that sparsification possibly helps by
virtue of the regularization it offers. This is also confirmed by a followup experiment that we did on
the T2T-ViT-14 architecture (21.5M parameters, 6.1G FLOPS per 224x224 image) from the same
paper Yuan et al. (2021b).

For this model we lost between 2% and 3% accuracy when replacing with STL, compared to base-
line, for all values of r ranging from 16 to 49. Recall that at r = 49 there is provably no loss
of expressivity, because STL at that tensor rank allows expressing exact matrix multiplication (by
Strassen), and hence the empirical loss of accuracy in this case is probably due to the extreme over-
parameterization owing to the effective increase in parameters.

D PSEUDO-CODE FOR STL

For ease of notation, we let X̂ and Ŵ denote the encoded versions of X,W , i.e., a tensor of size
(n/t, n/t, r) with X̂[I, J, :] = EX · vec(XI,J) (the encoding of the I, J-th tile). Similarly for Ŵ .
We let Y = X ⋄W , and Ŷ denote the encoded tensor.

We note that in PyTorch, when trying to multiply the last dimension of a 3D tensor by a matrix,
this is done in transposition to the clean mathematical formulation. In other words, to compute X̂ ,
we need to compute EX ·X[I, J, :] for every I, J , where we view X[I, J, :] as a t2 column vector.
In PyTorch this is done by hatX = X E_X.T, which can be interpreted as viewing X[I, J, :]
as a row vector of size t2, and so the product with E⊤

X gives a new row vector of length r. The
algorithms are written in a mathematical formulation first, and PyTorch formulation second. We
also provide a PyTorch implementation in our public repository.

18

https://anonymous.4open.science/r/StrassenTile-5F01/README.md

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 STL Pseudo-code (GPUs)

Require:
Tensor X of shape (n/t, n/t, t2) (Each tile flattened)
Tensor Ŵ of shape (n/t, n/t, r) (Each tile encoded)
Encoding matrix EX of shape (r, t2)
Decoding matrix D of shape (t2, r)

Step 1: Encode
for I, J ∈ [n/t] (in parallel) do
X̂[I, J, :]← EX ×X[I, J, :]

end for
(In PyTorch: hatX = X @ E_X.T)

Step 2: Batched Element-wise Product
for p ∈ [r] (in parallel) do
Ŷ [:, :, p]← X̂[:, :, p]× Ŵ [:, :, p]

end for
(In PyTorch: hatY = (hatX.permute(2,0,1) @ hatW.permute(2,0,1)).permute(1,2,0))

Step 3: Decode
for I, J ∈ [n/t] (in parallel) do
Y [I, J, :]← D⊤ × Ŷ [I, J, :]

end for
(In PyTorch: Y = hatY @ D)
Return: Y (Each tile flattened)

Algorithm 2 STL Pseudo code for fused Steps 3+1, at layer ℓ

Require:
Tensor X̂ℓ−1 of shape (n/t, n/t, r) (Previous layer encoded output activations)
Tensor Ŵℓ of shape (n/t, n/t, r) (Encoded weights for this layer)
Encoding matrix EX of shape (r, t2)
Decoding matrix D of shape (t2, r)

Steps 3+1:
for I, J ∈ [n/t] (in parallel) do
X̂ℓ[I, J, :]← (EX ×D⊤)× X̂ℓ−1[I, J, :]

end for
(In PyTorch: hatX_this = hatX_prev @ (D @ E_X.T))

Step 2:
for p ∈ [r] (in parallel do
X̂ℓ[:, :, p]← X̂ℓ[:, :, p]× Ŵℓ[:, :, p]

end for
Return: X̂ℓ

19

	Introduction
	Strassen Normal Forms
	Strassen-Tile Operator STL
	FLOPs Complexity Analysis of STL
	GPU-Friendly Implementation of the Element-Wise Product
	GPU Complexity Analysis
	Conclusion

	Experiments
	Class 0 Experiments - Synthetic 44 matrices
	Class 1 Experiments - Training From Scratch with STL
	Conclusion

	Parameter Increase in STL
	Theoretical Foundations and Initialization
	Discussion
	GPU Complexity of STL
	More Details On the Parameter Increase of STL
	Experiments
	Class 0 Experiment: Comparing STL to 2:4 on Random Synthetic Data
	Class 1 Experiment: Training T2T-ViT with STL

	Pseudo-code For STL

