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ABSTRACT

Modern AI relies on huge matrix multiplications (MATMULs), whose computa-
tion poses a scalability problem for inference and training. We propose an al-
ternative, GPU native bilinear operator to MATMULs in neural networks, which
offers a three-way tradeoff between: speed, accuracy and parameter count. In
particular, this operator requires substantially fewer FLOPs to evaluate (≪ n3),
yet increases the parameter count compared to MATMUL (≫ n2). We call this
operator Strassen-Tile (STL). The key idea behind STL is a local learnable
change-of-basis, applied on tiles of the weight and activation matrices, followed
by an element-wise product between the tiles, implemented simultaneously via
MATMUL. The key technical question we study is how to optimize the change-
of-basis of a given layer, which is a highly non-convex problem. We show that
theory-backed initializations (inspired by fast matrix and polynomial multiplica-
tion) lead to substantially better accuracy than random SGD initialization. This
phenomenon motivates further algorithmic study of STL optimization in DNNs.
Our experiments demonstrate that STL can approximate 4x4 MATMUL of tiles
while reducing FLOPs by a factor of 2.66, and can improve Imagenet-1K accu-
racy of SoTA T2T-ViT-7 (4.3M parameters) while lowering FLOPs. Even with
non-CUDA optimized PyTorch code, STL achieves wall-clock speedups in the
compute-bound regime. These results, together with its theoretical grounds, sug-
gest STL as a promising building block for scalable and cost-efficient AI.

1 INTRODUCTION

Matrix multiplication (MATMUL) is a ubiquitous operation across all fields of science and technol-
ogy. Specifically, MATMULs are the bottleneck (80%-90% of energy, latency and throughput) of
training and inference of deep neural networks (DNNs), both for language and for vision models
(Kim et al., 2023; Zhu et al., 2024). Indeed, multiplying large matrices (e.g., 16Kx16K) is consid-
ered a prerequisite in any Generative-AI model (Li et al., 2025; Naveed et al., 2024), implying a
billion-order FLOP count for merely a million-order IOs. As such, continual increase in computa-
tion and energy demands underlying AI breakthroughs poses a real scalability problem.

The reliance on MATMULs is mainly attributed to the emergence of hardware which was optimized
for this task (GEMM) – GPUs (and in particular, TensorCores (NVIDIA, 2020; 2023)). This hard-
ware allows for extremely efficient amortization of IO and parallelism of the cubic FLOPs (≈ n3 for
n×n matrices), making it feasible to finetune and run a 10B+ Transformer. Indeed, GPU-optimized
training was a pivotal factor in the success of AlexNet (Krizhevsky et al., 2012) and hyper-scaling
of DL ever since. This phenomenon, where an algorithmic paradigm prevails because it is most
suited to the available hardware and not necessarily because it is theoretically superior to alternative
ideas, is a widely-believed explanation to the rise of deep learning, that “won the hardware lottery”
(Hooker, 2021).

Consequently, most of the (massive) research and engineering efforts targeting inference speedups in
DNNs attempt to reduce the complexity of MATMULs without major degradation in model accuracy
(see Han et al. (2015); Dadush et al. (2018); Han et al. (2016); Abboud et al. (2023); Frantar and
Alistarh (2023a); Li et al. (2022); Xiao and et al. (2023) and references therein). This line of research
can be divided into two broad categories, which we discuss next.

The first category is GPU-friendly compression techniques, attempting to reduce the multiplication
to smaller MATMULs or impose structure on the weight matrices (e.g., low-rank decomposition and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

linear sketching (Indyk et al., 2019; Zhang et al., 2017; Hu et al., 2022; Choromanski et al., 2021),
channel pruning (He et al., 2017), Tensor products (Panagakis et al., 2021), Structured sparsification
(Hu et al., 2024; Wen et al., 2016; Hoefler et al., 2021), FFT-like structured weights (Jagtap et al.,
2022; Dao et al., 2020a)). A major drawback of these approaches is that they dramatically reduce the
number of trainable parameters of the weight matrix, resulting in minor speedups for SoTA models,
or a substantial loss of accuracy, even after aggressive finetuning (Huang et al., 2022; Moar et al.,
2024).

The second category is using algorithmic techniques for approximate MATMUL, which are not
GPU-friendly, and require the development of new hardware. For example, the use of product-
quantization (Stock et al., 2020; Fernández-Marqués et al., 2023), weight-sharing (Desai and Shri-
vastava, 2024) or unstructured sparsification (Frantar and Alistarh, 2023a; Sun et al., 2023a; Hoefler
et al., 2021) indicate that the number of parameters in many industry-scale models can be dramati-
cally reduced with minor accuracy loss (up to 90% sparsity in BERT (Kurtic et al., 2022), but barely
above ∼ 50% in SoTA LLMs (Frantar and Alistarh, 2023a)). These techniques require specialized
hardware and fail to provide real speedups on TensorCores, which is why they have been re-purposed
for model compression or CPUs (Li et al., 2023). One exception to this category is weight quantiza-
tion (Frantar et al., 2022; Frantar and Alistarh, 2023b; Sun et al., 2023b; Dettmers and et al., 2024;
Zhu et al., 2024), which is somewhat orthogonal to our work, as it cannot yield asymptotic runtime
saving in the dimension, but only of the bit-complexity, which remains Ω(n3) for n× n MATMUL.
Moreover, quantization can be done in conjunction with the method we present.

The above state of affairs explains why inference acceleration is such a notorious challenge in
practice – After all, GPUs are optimized for MATMULs, hence it appears that any generic MAT-
MUL acceleration technique would simply boil down to multiplying smaller matrices, inevitably
decreasing the number of parameters of the network. This raises the following question, which our
paper is dedicated to answer:

Question 1.1. Is there a bilinear operator f(X,W ) which is both faster than MATMUL(X,W )
on a GPU, and does not decrease (even increases) the number of trainable parameters?

Note this is a purely mathematical question, abstracting away accuracy-loss, which is highly task-
specific. For reference, the element-wise (Hadamard) product of square matrices X ⊙W preserves
the parameter count, but is not faster than MATMUL on TensorCores (performing ∼ n2 IOs for
∼ n2 FLOPs has very low computational-intensity (NVIDIA, 2023)).

The only known architecture-independent GPU-efficient inference acceleration technique, which
doesn’t drastically reduce the parameter count of the model, is N:M structured sparsification (Hu
et al., 2024; NVIDIA, 2020). As such, we use 2:4 as a baseline for our approach (quantization
can be applied in conjunction with 2:4 as well, which makes it an orthogonal axis of optimization,
hence our experiments will not include quantization). Specifically, recent TensorCore generations
(succeeding AmpereTM) can reduce throughput (both FLOP and IO overhead) by up to a factor of
2, when multiplying two matrices, one of which has the following 50% sparsity pattern, henceforth
denoted 2:4 . In each 4 memory-consecutive matrix elements, at least two out of the four entries in
the block must be zero. Deciding which of the two entries in a block of the dense pre-trained weight
matrix W to zero out (and how to re-train the remaining non-zeroes) so as to minimize accuracy
loss, is a nontrivial optimization problem (Hu et al., 2024; Wen et al., 2016; Hoefler et al., 2021).

Our paper is devoted to answering Question 1.1 in the affirmative. We design a GPU-native and
trainable bilinear operator, whose evaluation requires ∼ n3/c FLOPs (for arbitrary tunable param-
eter c > 1, compared to ∼ n3 for n × n naive MATMUL) and ∼ n2 IOs, while also preserving
(often increasing) the number of trainable parameters of the network. Thus, our operator, termed
Strassen-Tile (STL) is more efficient on GPUs than MATMUL, while potentially improving the net-
work’s expressivity. We analyze some basic properties of this operator, and show that optimizing
the operator is a non-trivial optimization problem.

Related Work. Our work bridges two lines of research on fast matrix multiplication: (i) A prac-
tical line of work attempting to implement exact FMM algorithms (a-la Strassen) for MATMUL on
existing hardware (Ahmad et al., 2024; Matsuoka and Kang, 2022; Goto and van de Geijn, 2008);
and (ii) A recent theoretical line of work which studies an approximate version of Strassen’s tensor-
decomposition for the MATMUL tensor (Pratt et al., 2025; Alman and Zhang, 2023), obtained by
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tweaking the tensor to have faster (asymptotic) runtime with provable error guarantees. We combine
the approaches to obtain practical algorithms with provable guarantees.

Several recent works (Kovachki et al., 2024; Tschannen et al., 2018; Lee-Thorp et al., 2022; Tol-
stikhin et al., 2024; Anandkumar et al., 2014; Lee-Thorp et al., 2022; Dao et al., 2020b; Fu et al.,
2023) consider tensor-algebra products or other bilinear maps as alternatives for MATMULs, sug-
gesting that they are more “expressive” for learning high-dimensional non-Euclidean data, akin to
Kernel methods in ML. While similar in spirit to our work, these techniques still suffer from param-
eter reduction or require new hardware.

Our work is most directly influenced by the work of Tschannen et al. (2018), who proposed to ex-
tend Strassen’s Fast-Matrix-Multiplication (FMM) framework (Strassen, 1986) to learn a universal
ternary ({−1, 0,+1}r×n) operator, resulting in a multiplication-free operation (an approach which
has gained more interest and success very recently (Zhu et al., 2024)). The key difference in our
approach is to apply linear transformations locally on tiles, which amortizes the cost of these basis-
transformations. This key feature turns this method into a GPU-native operator, and allows us to
train unrestricted tile-transformations over the Reals (via SGD finetuning), which is computation-
ally infeasible using the “universal” approach of Tschannen et al. (2018).

Structure of the Paper. In section 2 we survey the necessary background for STL. In section 3
we present the STL operator and analyze its complexity. In section 4 we present a few experiments
that corroborate our analysis. In section 5 we shortly discuss the increase in trainable parameters
count, which is discussed in more detail in the supplementary material. In section 6 we discuss the
source of STL’s initialization points and its theoretical foundations.

2 STRASSEN NORMAL FORMS

In his seminal work, Strassen (1986) proved that an operator f(X,W ) : Rn×k × Rk×m → Rn×m

is bilinear if and only if it can be written in the following canonical form, called the Strassen normal
form (SNF):

f(X,W ) = D⊤(EXvec(X)⊙EWvec(W )), (1)

where EX ∈ Rr×nk, EW ∈ Rr×mk, D ∈ Rr×mn are universal linear transformations (“X-
encoding”, “W -encoding” and “decoding” matrices, respectively), vec(X) ∈ Rnk is the vectorized
matrix X (similarly for vec(W )), and ⊙ denotes the element-wise (Hadamard) multiplication of
vectors.

The reason we restrict f to be bilinear, besides capturing a very large class of functions (Strassen,
1986; Panagakis et al., 2021), is that ultimately, we do wish to take advantage of GPUs (Tensor-
Cores) to compute f(W,X) fast. While the Hadamard product in (1) is a very inefficient GPU
operation, we will show in the next section that a tiled variation of (1) can be efficiently computed
on a GPU.

3 STRASSEN-TILE OPERATOR STL

Fix some prescribed parameter r = n2c for c > 1. A natural idea, inspired by Tschannen et al.
(2018), is to learn a bilinear operator instead of MATMUL through its SNF (1) as part of the layer’s
parameters. This way c governs the number of FLOPs. We can apply Stochastic Gradient Descent
(SGD) to finetune the parameters, by taking gradients with respect to EX,EW,D,W (where W is
the network’s weights matrix). This is possible since a bilinear function is differentiable w.r.t. the
encoder / decoder matrices of any SNF (1) presentation of the function.

There are two substantial setbacks for implementing this idea:

1. Changing base is too expensive: Suppose X,W are n × n matrices, then computing the
products EX · vec(X),EW · vec(W ) ∈ Rr×n2

requires n2r ∼ n4c ≫ n3 FLOPs. Since
the optimization is unrestricted, we cannot assume the matrices have useful structure.

2. Mat-Vec and Element-wise multiplication are too expensive: As discussed before, com-
puting the Hadamard product of vectors is highly inefficient on a GPU. Moreover, comput-
ing the SNF (1) directly, requires computing a Mat-Vec product with a vector of size n2,
which incurs huge IO cost.
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A natural way to overcome the aforementioned setbacks is to learn the SNF (1) on small tiles. This
can be interpreted as a one level divide-and-conquer algorithm. For convenience, we introduce the
following notation. For M ∈ Rn×m, assuming m,n are divisible by t, we can view M as an element
of (Rt×t)n/t×m/t via tiling, i.e., we view it as a n/t × m/t matrix whose elements are from the
algebra Rt×t (tiles). We use lower-case letters i ∈ [n], j ∈ [m] to denote scalars Mi,j ∈ R and
upper-case letters I ∈ [n/t], J ∈ [m/t] to denote tiles MI,J ∈ Rt×t.

Definition 3.1 (STL). Let n, k,m ∈ N, t ∈ N (tile-size), N ∋ r > t2 (tensor-rank), (EX,EW,D) ∈
Rr×t2 (encoders / decoder). Assume t divides n, k,m. Define STL : Rn×k × Rk×m → Rn×m,
denoted STL(X,W ) = X ⋄W , by setting for I ∈ [n/t], J ∈ [m/t]:

vec(X ⋄W )I,J := D⊤

 k/t∑
L=1

(EX · vec(XI,L))⊙ (EW · vec(WL,J))

 . (2)

Note that the decoding step can be computed once for every output tile, by linearity. Moreover, we
call the sum in the RHS of (2) the encoding of (X ⋄W )I,J .

Remark 3.2. Since W is constant, we can keep only the encoded tiles in memory, i.e., store wI,J =
EW · vec(WI,J) ∈ Rr. Moreover, we can learn directly on wI,J instead of on EW,W separately.
As discussed in section 5, this can lead to a parameter increase. We call this the Fake Encoding of
W , since it does not originate from an encoding, but plays the same role.

3.1 FLOPS COMPLEXITY ANALYSIS OF STL

Let X ∈ Rn×k,W ∈ Rk×m as before. Let T (r, t) denote the cost (in FLOPs) of a single encoding
/ decoding matrix-vector multiplication (matrix of size Rr×t2 and vector of size t2, which is the
vectorization of a tile). Since we don’t assume any structure on our encoding and decoding matrices,
we may assume w.l.o.g that T (r, t) = Θ(t2r). In this notation, the runtime of computing X ⋄W is:

nk

t2
· T (r, t) + mk

t2
· T (r, t) + mn

t2
· T (r, t) + nkm

t3
· r. (3)

In the special case of square n × n matrices, plugging in T (r, t) = O(t2r) into (3) simplifies to
O(r(3n2+n3/t3)). One can easily verify that as long as n > 3t3, which will be the case as we will
be working with small tiles (t = 4, 8, 16), the second term dominates the first. Thus, the amortized
cost of the encoding and decoding transformations is essentially “free” so long as n ≫ t. In this
case, the overall complexity of STL(X,W ) for square n×n matrices becomes O

(
rn3/t3

)
. Hence,

the speedup factor over the O(n3) naive MATMUL runtime is approximately (r/t3)−1 = t/c. We
sum this up in the following corollary:

Corollary 3.3. Assuming n ≫ t, the FLOP count of STL for square matrices is O(rn3/t3) =
O(n3c/t).

3.2 GPU-FRIENDLY IMPLEMENTATION OF THE ELEMENT-WISE PRODUCT

As mentioned earlier, the element-wise product in (2) has very low GPU utilization. In order to
compute (2) efficiently on TensorCores, we suggest the following approach. First, for every p ∈ [r]
we define two matrices – X(p) ∈ Rn/t×k/t,W (p) ∈ Rk/t×m/t – obtained by extracting the p-
th entry of all nk/t2 (resp. km/t2) encoded tiles of X (resp. W ). By abuse of notation, we
use upper-case indices for X(p),W (p), and formally define X

(p)
I,J := (EX · vec(XI,J))p (similarly

W
(p)
I,J := (EW · vec(WI,J))p). Second, we similarly define Y (p) to be the extraction of the p-th

entry of the encoded tiles of Y := X ⋄ W , i.e., before decoding. Thus, it is given by Y
(p)
I,J :=(∑k/t

L=1(EX · vec(XI,L)⊙ (EW · vec(WL,J)
)
p
. The crucial observation is:

Claim 3.4. Y (p) = X(p)W (p), i.e., it is just a standard MATMUL .

The proof is provided in Appendix A. Thus, computing all element-wise products, reduces to r

MATMULs. We observe that vec((X ⋄W )I,J) = D⊤
[
Y

(1)
I,J Y

(2)
I,J · · · Y

(r)
I,J

]⊤
.
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3.3 GPU COMPLEXITY ANALYSIS

Building on the GPU-Friendly implementation of the element-wise product, we present a refined
performance analysis on GPUs. For simplicity, we assume n = k = m. We assume the input matrix
X is given as a 3D-tensor of shape (n/t, n/t, t2), where vec(XI,J) is indexed by [I, J, :] (we use
square brackets for the tensor indexing). Moreover, we assume the weights matrix W is given in
encoded form as a 3D-tensor of shape (n/t, n/t, r), where EW · vec(WI,J) is indexed by [I, J, :].
Computing X ⋄W from this starting point can be done in three steps: (i) Encode, via MATMUL, the
tiles of X , obtaining X(p) for every p ∈ [r]; (ii) For each p ∈ [r], compute X(p)W (p) via MATMUL,
giving the encoded output Y (p); (iii) Decode, via MATMUL, each tile of X ⋄W from {Y (p)}p∈[r].
PyTorch pseudo-code for this algorithm is presented in the supplementary material.

For a matrix M let |M | denote the number of bytes needed to store M . We analyze each step,
assuming ideal hardware and perfect parallelization:

1. Step (i): The IO cost is |X| + |EX| for read,
∑

p∈[r]

∣∣X(p)
∣∣ for write. Note that |EX| is

negligible compared to |X| (rt2 compared to n3), while the latter writing size dominates∑
p

∣∣X(p)
∣∣ = (r/t2)·|X|. Hence the total IO byte load of this step is IO1 ≈ |X|·(1+r/t2).

The total number of FLOPs of this step is 2(n/t)2 · t2 · r, as each of the (n/t)2 tiles of X
is mapped to r dimensions by a linear transformation, hence FLOP1 = 2n2r.

2. Step (ii): This step consists of r independent MATMULs, each of squared matrices of
size n/t. Reading the matrices requires IO

∑
p(
∣∣X(p)

∣∣ + ∣∣W (p)
∣∣), and writing the output

requires IO
∑

p

∣∣Y (p)
∣∣. Since all matrices have the same shape, we conclude the total

IO byte load is IO2 ≈ 3(
∑

p

∣∣X(p)
∣∣) = 3 |X| · (r/t2). The total number of FLOPs is

FLOP2 = 2r · (n/t)3.

3. Step (iii): Same analysis as step (i), with the roles of input and output reversed. Thus,
IO3 ≈ |X| · (1 + r/t2) and FLOP3 = 2n2r.

Overall, we obtain

IOSTL ≈ |X| · (2 + 5r/t2), FLOPSTL = 4n2r + 2n3 · (r/t3).

At the same time, naive matrix multiplication of X and W requires IOnaive = 3 |X| ,FLOPnaive =
2n3. Note that FLOP2 dominates when n≫ t3, which is our regime of interest. Thus the asymptotic
speedup in FLOPs is by a factor of t3/r = t/c.

Example 3.5. Let us specialize for t = 4, n = 8192 and r = 32. We get IOSTL ≈ 12 |X| and
IOnaive = 3 |X|, which is a 4-fold increase in IO load moving to STL. Assuming FP16 calculations,
|X| = 2×81922 ≈ 1.3×108 (bytes). On the other hand, FLOPSTL ≈ 5583×108 and FLOPnaive ≈
10995× 108, suggesting an almost 2-fold speedup.

In practice, DNNs often chain multiple linear layers, interleaved with non-linear activations. For
STL, we could fuse (in the sense of CUDA kernel implementation) step (iii) of the previous layer
with step (i) of the current layer, reducing the IO load.

It is difficult to use these estimates to predict the actual speedup that STL can give, because this
depends on the hardware kernels that are used for executing the computation, usage of cache and
other intricate factors that affect performance. Therefore, we have measured the actual runtime
required to compute STL matrix multiplication versus vanilla matrix multiplication, for various
values of n and r (keeping t = 4), and using standard CUDA profiling tools, on H100 architecture
with FP16 data type.1 The interested reader may find a figure describing the resulting estimates in
Appendix A.

3.4 CONCLUSION

The key properties of the STL operator X ⋄W are summarized as follows:

1We have done these calculations assuming the fused step of (i) and (iii).
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Figure 1: The blue line is estimation of the error
of STL, with tile t = 4 and tensor rank r from
16 to 48 (for 49, the line is known to cross 0 by
Strassen). The red line is our estimate for the
corresponding error for 2 : 4 pruning.

Figure 2: Mean squared error ↓ of training STL
with Strassen based vs. random Gaussian initial-
ization, compared for different values of r before
and after training. This shows “smart” initial-
ization maintains an advantage, and is consistent
with other methods we have tried.

Amortization of Encoding: Each t × t tile of X and W is encoded only once, but used n/t (re-
spectively m/t) times in the STL product. As such, the cost of encoding is amortized, assuming
n≫ t.

High GPU utilization: Assuming n ≫ t3, STL can achieve a similar FLOPs per IOs ratio, com-
pared with naive MATMUL.

Parameter Increase: This is discussed in section 5. Unlike low-rank, sparse or product-quantization
(PQ) approximations, STL does not decrease (often increases) the number of trainable parameters
of the original linear layer, yet it is cheaper than MATMUL(X,W ) on GPUs.

4 EXPERIMENTS

We perform two classes of experiments. An implementation of STL we’ve used in our experiments
(PyTorch implementation) is available in our public repository.

Class 0 Training encoders and decoders for STL with tile size 4 to approximate 4×4 matrix multi-
plication, in the vein of “approximate Strassen Matrix Multiplication”. The resulting matrix
multiplication residual error is compared against that of 2:4 pruning for the same synthetic
random data. We choose 4x4 tiles because it’s the simplest scenario for comparing STL
and 2:4 , and it suffices because the tiling approach extends the findings to larger matrices.

Class 1 Training from scratch a base untrained network, replacing linear layers with STL on tiles
of size t = 4 and various values of tensor rank r. The parameters of the STL encoders and
decoders were also trained. For budget and time reasons we worked with vision transform-
ers of the “Token-to-Token” class (Yuan et al., 2021a) with up to ∼ 4.3M parameters on
ImageNet-1K dataset (Deng et al., 2009).

4.1 CLASS 0 EXPERIMENTS - SYNTHETIC 4× 4 MATRICES

The first experiment attempts to approximate matrix multiplication of random (Gaussian) 4 × 4
single-tile (t = 4) matrices X,W using STL for various values of tensor rank r, using the Frobenius
norm squared of the residual matrix as a loss function, and training on the encoders EX,EW and
decoder D. We used a magnitude based 2 : 4 pruning strategy on the weight matrices W as
benchmark to compare with. As can be seen from Figure 1, we need r ≈ 42 for STL to match 2 : 4
pruning. We refer the reader to the supplementary materials for more details.

The result of this experiment is not promising because tensor rank of r = 42 for tile size t = 4 is
unlikely to provide much benefit, if any, from a performance point of view. The result discussed in
section 5 explains why we get these rather “disappointing” results, and suggests that when switching
the objective function (to real-life AI objectives) and training a network with STL, we can hope to
match the 2:4 performance with lower r. In fact, as we shall see next, we can even hope to surpass
the baseline (linear layer, without STL) with r as low as 24.

6
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For completeness, Figure 2 shows how initialization of the experiment changes the outcomes. In
particular, it shows that “smart” initializations are important to achieve good performance, which is
evidence to the non-triviality of the optimization problem at hand.

4.2 CLASS 1 EXPERIMENTS - TRAINING FROM SCRATCH WITH STL

As a model, we experimented with the image classification network T2T-ViT-7 (Yuan et al., 2021b)
which has 4.3M parameters (requiring 1.1G FLOPS per 224x224 image). The first step was to repeat
the results as reported by Yuan et al. (2021b). We managed to obtain 71.5% accuracy, which is 0.2%
lower than claimed there. We attribute this to possible noise stemming from random initialization2.

Figure 3: Accuracy ↑ vs. tensor rank (r) for
baseline T2T-Vit/7 and for the same architecture
with all activation-weight MATMULs in the net-
work trunk replaced by STL with tensor rank r.
Very similar picture when including the pre-trunk
(T2T) network as a followup experiment.

Following the baseline result reproduction, we
replaced the two MLP linear layers in each of
the 7 attention blocks in the network by STL
with r = 16, 24, 32. For the case r = 16
we lost around 2% accuracy compared to base,
but for r = 24, 32 we improved by close to
0.5% compared to base. Encouraged by this,
we replaced not just the MLP linear layers, but
also the Q,K,V and the projection linear lay-
ers from the attention, thus removing all linear
layers from the network trunk, which accounts
for 79% of the FLOPS of the entire network3.
We also did not replace activation-×-activation
MATMUL which we note is easily done with
STL but extremely hard to do with 2 : 4 sparsi-
fication, as it requires on-the-fly sparsification.
We used r = 16, 18, 20, 22, 24, 32, 40, 48, 49
(the latter case allowing exact matrix multipli-
cation by Strassen) and summarized the results in Table 1 and Figure 3.

Note that there was no need to adjust any learning parameters. The parameters suggested in the code
repository of Yuan et al. (2021b) for T2T-ViT-7 worked out of the box. The results clearly show that,
as long as the tensor rank is at least≈ 24, we gain accuracy compared to baseline as we increase the
tensor rank r, and this is likely due to the increase of parameters in the fake encoding parameters
(see section 5). For r < 24 we lost accuracy points, probably due to loss of expressivity in STL,
compared to matrix multiplication, at such a low tensor rank regime.

Further encouraged by these results for r ≥ 24, we have also replaced all the activation-×-weight
linear layers in the T2T part of T2T-ViT/7 with STL, appearing before the network trunk. We tested
the values r = 16, 24, 32, 40, 48. For r = 16 we lost an additional 0.7% from this replacement.
For r = 24 (32) we gained (lost) insignificantly ≤ 0.1%, respectively. For r = 40, 48 we gained
> 0.4% in each case. This further strengthens our observations about the effect of STL replacement
in this regime.

Table 1 summarizes the results in the most ambitious experiment of replacing all linear layers in the
body of the network. We provide more technical details about this experiment in the supplementary
material.

We are not aware of other work that reports improvement on the Imagenet-1k classification problem,
when trained from scratch on the Imagenet-1k training split, with a network of similar size, and
with weight matrix pruning set at a considerable sparsity rate (in particular structured 2:4 pruning
strategies). There are cases where pruning improves accuracy due probably to a regularization effect
in the overfitting regime, which is not the case here.

2Yuan et al. (2021b) mention on the github project page that using 4 GPUs gives slightly lower accuracy
than using 8, which may explain the slightly lower baseline we saw when running their code, as we used 4
GPUs.

3By trunk we mean the 7 attention blocks. At this point, we did not make replacements in the T2T (Token-
to-token) layers preceding the attention blocks, which account for the remaining 21% of the network FLOPS.
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4.3 CONCLUSION

To summarize, our conclusion from the Class 1 experiment is that in the under-parameterized or at
most slightly over-parameterized case, there is potential of saving factor > 2.1 in FLOPs without
any loss of accuracy, and in some cases a slight gain. However, in the extremely over-parameterized
case, switching to STL might cause loss of accuracy, due to even higher over-parameterization.

An interesting avenue for future research is to study larger ViT architectures for images and/or
video, where the dimensions of the matrices justify the use of STL from a performance point of view
as well. Another avenue for further experiments is to replace the activation-×-activation MATMULs
appearing twice in each attention layer: Once for computation of the so-called attention matrix, and
again when multiplying the latter with the V (as in QKV) matrix. We provide more details in the
supplementary material.

5 PARAMETER INCREASE IN STL

As mentioned before, STL does not only trade off IO and FLOPs, but also the trainable parameter
count, which is a measure of the expressivity of the network. The parameters EX,EW,D offer a
negligible addition of parameters to the network. However, as commented before, when training the
network with STL, we are free to train directly over W in its encoded form. For every tile of W we
have r ≥ t2 encoding dimensions, which we refer to as the Fake Encoding of W . The term comes
to emphasize that the vectors cannot be written as the encoding of W ’s tiles with EW. A priori, this
increases the number of parameters by a factor of c = r/t2.

In the supplementary material, we formally state and prove the following result: Assuming W
is a fixed weights matrix, EX,D are also fixed, and X is sampled from a distribution DX , then
optimizing over the fake encoding of W to minimize the L2-difference compared to MATMUL, is
an optimization problem with the same number of parameters as in W . In other words, there is no
effective increase in the number of parameters of the network, if we train over the fake encoding
instead of EW.

We make two observations on this result. First, different objective functions (e.g. cross-entropy loss
of a network) might prove to have a different effect on the parameter increase, and L2 might be a
special case. Second, the result suggests that training STL after training the network, i.e., keeping
W fixed, might be the problem. Indeed, as we lay out in the next paragraph, our experiments reveal
that training a network with STL from scratch and optimizing over the fake encoding directly, yields
more expressive results.

Figure 4: Comparison of singular values be-
tween the trained network’s (T2T-ViT-7, see
subsection 4.2) encoded weights and random
matrices of the same sizes. The graph pro-
vides evidence that learning with STL occurs in
a higher dimensional space.

Variant Accuracy ↑
T2T-ViT-7 (Baseline) 71.5%

T2T-ViT-7/STL r = 16 everywhere 69.5%
T2T-ViT-7/STL r = 18 everywhere 70.3%
T2T-ViT-7/STL r = 20 everywhere 71.0%
T2T-ViT-7/STL r = 22 everywhere 71.4%
T2T-ViT-7/STL r = 24 everywhere 72%
T2T-ViT-7/STL r = 32 everywhere 72.1%
T2T-ViT-7/STL r = 40 everywhere 73.4%
T2T-ViT-7/STL r = 48 everywhere 75.0%
T2T-ViT-7/STL r = 49 everywhere 75.8%

Table 1: Results for the T2T-ViT/7 model with
and without STL replacements. Notice how at
the extreme r = 49, which can recover exact
matrix multiplication, we gain accuracy, most
likely due to the increased expressivity from the
increased parameter count.

In the class 1 experiment (subsection 4.2), we train a vision transformer from scratch, using STL
with tile size t = 4 and r = 24, directly training over the fake encoding. Each 4x4 tile of a
weights matrix W corresponds to a fake encoding vector of size 24. Stacking the vectors side by
side we obtain a wide matrixW with 24 rows. Initialization ofW is by encoding a random Gaussian
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matrix W using the matrix EW learned in the class 0 experiment (subsection 4.1). The rank ofW
before training is at most 16, since the encoded blocks EW · vec(WI,J) all belong to the same 16-
dimensional sub-space. However, after training, we compute the spectrum (singular values) of W
and observe it uses all 24 possible directions. The results are described in Figure 4. We can conclude
that the training process indeed escapes the low dimensional space, showing the fake encoding are
utilized.

The key takeaway is that trying to approximate a trained linear layer using MATMUL, in the L2

sense, is not the correct approach with STL. Instead, training the network with STL from the ground
up, directly on the fake encoding space, increases the number of parameters and possibly increases
accuracy.

6 THEORETICAL FOUNDATIONS AND INITIALIZATION

The SNF (1) may seem unnatural at first glance, as it interprets a bilinear function f as a change of
basis into an r-dimensional space. However, for a specific family of bilinear operators, this has a
very clean interpretation. Convolution operators of abelian (commutative) groups, can be written, by
the convolution theorem (Cooley and Tukey, 1965), as follows: Let F denote the Fourier transform
matrix for the underlying group, let ÊX, ÊW, D̂ denote embedding matrices, attaching coefficients
from X,W to group elements and vice-versa. Then f(X,W ) = D⊤F−1((FEX ·vec(X))⊙(FEW ·
vec(W )). In words, the operator maps t × t matrices to some r-dimensional vectors, on which we
perform the group’s convolution. Although convolution seems as a very abstract operation, it is
closely related to a familiar concept: polynomial multiplication. In fact, convolution in abelian
groups is just (multi-variate) polynomial multiplication, modulo some monomial.

This view relates to the group-theoretic approach for FMM, which originated in the work of Cohn
and Umans (2003). However, their framework restricts the embedding matrices (EX,EW,D) sig-
nificantly and does not deal with the task of approximation, while relying on divide-and-conquer to
obtain asymptotic speedups. A recent work of Pratt et al. (2025) is, to the best of our knowledge, the
first group-theoretic approach for Approximate MATMUL, although Alman and Zhang (2023) also
make a step in this approach (formulated differently). The authors present a simple construction of
embedding matrices that achieves SoTA tradeoffs between speed and accuracy. Moreover, the au-
thors present a more sophisticated construction that completely beats SoTA tradeoffs against certain
common distributions of matrices (like random {±1} i.i.d entries).

The significance of Pratt et al. (2025) for our work, is that it lays a theoretical foundation for the
capacity of STL to provide good approximation for MATMULs. Moreover, it provides convolution
operators which are theoretically good initialization points for the optimization process. As this
task is extremely non-convex, good initialization is crucial.

All in all, our work steps out of the approximate MM group-theoretic framework presented in Pratt
et al. (2025), by freely optimizing over the encoder / decoder matrices, to match the encountered
(activation) matrices. To emphasize the last point, note that we are not trying to learn global encoder
/ decoder matrices, but rather data-dependent ones.

7 DISCUSSION

We believe that that the approach we presented here, together with the preliminary evidence, moti-
vates further research in many directions. First, whether and in what cases, can STL improve both
accuracy and inference throughput of deep networks. Second, how to train STL, and in particu-
lar, finding clever initialization points and suitable regularization techniques. Third, if the random
Strassen subset approach can be proved theoretically (against any matrix). Fourth, how well can
STL perform with specialized CUDA kernels and dedicated engineering.

While we do not claim SoTA results here, we believe this line of work has the potential to reach
or surpass competitive baselines with more study, specifically into the optimization problem STL
poses.
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Figure 5: Observed speedup factor for STL for tile size t = 4, r = 16, 20, . . . , 48, 49, and matrices
of size n× n with n = 4096, 8192, 16384, using a (non-optimized) PyTorch implementation. As
expected, the throughput speedup is almost linear in the tensor rank. (Note: r = 49 can imitate
exact matrix multiplication by Strassen, and is given here for completeness.)

A GPU COMPLEXITY OF STL

Proof of Claim 3.4.

Y
(p)
I,J =

 k/t∑
L=1

(EX · vec(XI,L)⊙ (EW · vec(WL,J)


p

=

k/t∑
L=1

(EX · vec(XI,L)p · (EW · vec(WL,J)p

=

k/t∑
L=1

X
(p)
I,LW

(p)
L,J = (X(p)W (p))I,J .

B MORE DETAILS ON THE PARAMETER INCREASE OF STL

In the downstream AI applications of matrix multiplication, we are free to optimize directly in the
space of the encoded weight matrix Ŵ , containing r parameters per tile, instead of t2. This can
improve the expressivity of STL as a module inside a network. It turns out that this indeed can
be done, as we show in the following sections in the context of training STL inside an actual deep
network. However, we first show a negative result. Lemma B.1 below states that, as long as we
measure the accuracy of STL using Frobenius norm of the residual (error matrix) with respect to
standard matrix multiplication, we effectively do not gain more than t2 trainable weights per tile
of Ŵ , which is the same as the number of parameters of the corresponding tile (the original tile of
W ). The lemma however does not rule out increased expressivity when training using other loss
functions, as our experiments in what follows support.

To explain our result, consider the simplified setting of approximating matrix multiplication of two
single tile matrices, X,W ∈ Rt×t. The matrices X can come from any fixed distribution DX . The
matrices W are drawn uniformly from a finite population of size N , which we denoteW , and the
two matrices are drawn independently of each other. To connect this to actual applications, one
should think ofW as a collection of tiles from a pretrained weight matrix of some linear layer which
we want to replace with the STL operator, which is the STL-equivalent of matrix pruning. The
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mathematical reason we restrictW to be finite is that we want to allow the encoding parameters of
W ∈ W to be any function, without requiring any structure such as linearity or even smoothness.
In other words, the encoding parameters will simply be memorized. The training will optimize over
the encoder EX, the decoder D and over these fake encoding parameters. Our notation:

FakeEnc(W) = {FakeEnc(W ) ∈ Rr |W ∈ W} . (4)
There is now no need for the W -encoder EW. The collection of all values FakeEnc(W ) for W ∈
W , which be formally denote by FakeEnc(W), can be thought of, for computational convenience,
as a matrix of shape N × r. For a fixed repertoryW , the optimization now becomes

αW
STL = inf

EX,D
FakeEnc

E
X,W

[err(X,W,D,EX,FakeEnc(W ))] (5)

where the expectation is over X ∼ DX and W uniform from W , and the error function
err(X,W,D,EX,FakeEnc(W )) is the mean average error of the residual:

1

t2
∥vec(XW )− (DT (EX vec(X)⊙ FakeEnc(W )))∥22 (6)

The fake encoding variables seem to promise an increase in capacity of the learning space we are
trying to optimize over, compared to learning over EX,EW,D. Unfortunately, as the following
lemma reveals, this is not the case, and the reason for this is the choice of the Frobenius norm
(squared) loss function. We state and prove this disappointing fact as a lemma, but prepare the
disappointed reader that in what follows, the fake encoding parameters will show some promise in
downstream AI applications, where the loss functions are different.

Lemma B.1. For any fixed EX,D, the optimal value of FakeEnc∗(W) minimizing the RHS of (5)
is given by the relationship FakeEnc∗(W ) = F vec(W ) for all W ∈ W , for some F ∈ Rr×t2

(which we may as well call the effective encoding matrix for W .)

Proof. The first thing to note about (5) is that the optimization problem can be done independently
for each W ∈ W . Hence let us fix one W ∈ W and assume that EX,D are such that the minimizer
for (5) is achieved. Now define the corresponding minimization problem specific for W :

αW
STL(W ) = inf

EX,D
FakeEnc(W )

EX [err(X,W,D,EX,FakeEnc(W ))] (7)

Then clearly αW
STL = 1

N

∑
W∈W αW

STL(W ). Now let us replace the vector norm in err by its defini-
tion, summing squares over all coordinate differences, so err becomes:

1

t2

t2∑
i=1

(vec(XW )i −DT (EX vec(X)⊙ (FakeEnc(W ))i))
2 (8)

The expression vec(XW )i is clearly a linear function of vecW , with coefficient vector we de-
note by ZX,i ∈ Rt2 that depends on X and i only. Similarly, the expression DT (EX vec(X) ⊙
(FakeEnc(W ))i) is a linear function of FakeEnc(W ) ∈ Rr, with a coefficient vector Z′

X,i that
depends on X, i only. (Recall that we assume fixed and optimal encoder EX and decoder D in the
premise of the lemma, so we omit them in the notation for Z,Z′). This allows us to write err as

Ei(Z
T
W,i vec(W )− Z′T

W,iFakeEnc(W ))2 (9)

where the index i is uniformly taken in [t2]. The optimization now becomes that of minimizing:

EX,i(Z
T
W,i vec(W )− Z′T

W,iFakeEnc(W ))2 , (10)

over the r variables FakeEnc(W ). Now it is clear that the last minimization is a linear regression
with r variables over a distribution of equations. The optimizer FakeEnc∗(W ) is given by

FakeEnc∗(W ) = E
X,i

[
Z′

X,iZ
′T
X,i

]−1
E
X,i

[
Z′

X,iZ
T
X,i

]
︸ ︷︷ ︸

Solution Matrix

vec(W ). (11)

The Solution Matrix of shape r×(t2), independent of W , mapping the original matrix vec(W ) to its
optimal fake encoding, is effectively the desired encoding matrix F from the Lemma statement.
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The underwhelming implication of Lemma B.1 is that, when measuring the approximation error of
STL vs. MATMUL in the L2 norm, one cannot gain expressivity from the use of the extra learnable
parameters hidden in the fake encoding of the W matrices, compared to the expressivity we get
from using a linear encoding function EW to encode W . Notice also that the proof did not use the
fact that we were working over single tiny t× t tiles. It just uses the fact that, viewed as a function
on activation matrices X , the STL operator for fixed (W,EX,EW,D), is a linear operator. The
conclusion from Lemma B.1 would hold true for matrices of any shape, and lead to the conclusion:
Directly optimizing fake encoding parameters for the tiles of a weight matrix W does not effectively
buy us more parameters than those already present in the original matrix W , as long as we care
about Frobenius norm of the MATMUL error.

Interestingly, when training STL for LLM downstream tasks, the actual loss function we are working
with is the perplexity of language prediction (Chen et al., 2018), which is quite different than the
(layer-wise) L2 norm (Wenger et al., 2023). Indeed, our experiments involving training LLMs from
scratch using STL show the effect of training STL layers in the (fake) encoding space, reassuring
that it does exploit the parameter increase of the operator.

C EXPERIMENTS

C.1 CLASS 0 EXPERIMENT: COMPARING STL TO 2:4 ON RANDOM SYNTHETIC DATA

In our first experiment, we compared the accuracy of STL with tile size t = 4 with various param-
eters on matrices of size 4 × 4 (corresponding to a single tile), with different values of r, to that of
structured 2:4 pruning. The main technical difficulty of this experiment was training the encoder
and decoder matrices EX,EW,D. As we shall see below, a gradient descent learning strategy is
highly dependent on the initialization of the solution.

We will concentrate on tile size t = and 4×4 matrices. To define the loss for the 2:4 benchmark, we
define a mask operatorM which identifies the 2 highest (in magnitude) coordinates of each column
of W , more precisely,

M(W )ij =

{
1 i ∈ ArgTop2{|Wkj |}k=1..4

0 otherwise
(12)

where ArgTop2 returns the two indices of the largest (in absolute value) two elements in a list of
elements, breaking ties (say) by preferring lower indices.

The quality of this approach is denoted α2:4 and is defined as follows:

α2:4 :=
1

16
E
W

min
W̃∈R4×4

E
X
∥XW −X(W̃ ⊙M(W ))∥2F .

The 1/16 factor gives the average (since we are working with 4× 4 tiles). Moreover, we minimize
over W̃ , to allow more advanced 2:4 -sparsification techniques, which take the training data into
account. Note that if DX was just the uniform distribution over all matrices (with bounded norm),
then the solution would have always been W̃ = W .

For a fixed W matrix, the minimizer for W̃ in the last equation can be easily approximated by solving
a convex program (in fact, a linear regression problem) over a random large (but fixed) population
of X’s. Our experiments have resulted in the following estimate:

α2:4 ≈ 0.53.

Our goal is to obtain a competitive error for approximation of XW using STL. It should be noted
that our approximation is dependent on the distributionsDX ,W . For the sake of our experiment, we
set DX to be matrices whose entries are i.i.d. from N (0, 1) (normal Gaussian distribution, mean 0,
variance 1). In general, if one wishes to approximate a linear layer in a trained network with STL, it
could make sense to take the distribution of W to correspond to the empirical distribution of tiles of
the pretrained weight matrix, and that of X to come from the actual data of interest flowing through
the network.

We similarly define the quality of the STL approximation to be

αSTL = min
EX,,EW,D

[ E
X,W

err(X,W,D,EX,EW)], (13)
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where err is defined as before, only replacing FakeEnc(W ) with the W -encoder (recall that we gain
nothing by using fake encoding parameters, by Lemma B.1, at least in the L2 sense);

Estimates of αSTL. We have estimated αSTL w.r.t. the Gaussian distribution on X and a fixed
random, Gaussian distributed population of W ’s by running gradient descent on the encoders and
decoders in an attempt to solve the minimization problem defining αSTL. The results were summa-
rized in Figure 1 in the main part of the paper. It turns that out estimates heavily depend on the
initialization of the gradient descent algorithm (see below for more details).

It appears from the plot that for approximately r = 42, αSTL roughly matches α2:4 . From Figure 2
in the main part of the paper, it is evident that at r = 42 there is little chance to beat 2 : 4 in perfor-
mance. However, the following should be noted: Our estimation of α2:4 is very accurate, because it
is calculated by averaging out over a random population of weight matrices W , an estimation of the
2 : 4 pruning error, which is a convex problem.4 Therefore, our comparisons are STL-optimistic
in the sense that it is likely that the true optimal bounds for αSTL are better, possibly using better
initialization and/or optimization techniques. This is in fact one of the main open questions in this
paper.

Initialization Issues for Class 0 Experiment. To estimate αSTL, we solved a non-convex opti-
mization problem over the encoders and decoders, using gradient descent. Initializing the encoder
and decoder parameters randomly gave us suboptimal estimates, compared to the following method,
which is based on a pruned version of Strassen’s encoders and decoders used for getting a tensor of
rank 49 for multiplying a pair of 4× 4 matrices.

If EX
49,EW

49,D49 ∈ R49×16 denote the encoders and decoders for Strassen’s construction, then
our construction for initializing the optimization for αSTL was done by simple random pruning in the
encoding-space dimension. More precisely, we chose a random subset I of r integers in [49] (without
repetitions), and initialized EX,EW,D ∈ Rr×16 to be the matrices obtained by extracting the r
rows indexed by I from EX

49,EW
49,D49, respectively. This rather naive initialization heuristic

already gave significantly better results than random initialization.

C.2 CLASS 1 EXPERIMENT: TRAINING T2T-VIT WITH STL

More Details on STL Replacement in T2T-ViT In the ViT architecture, and in particular in T2T-
ViT (Yuan et al., 2021b), the input image is organized as patches. In our case each patch is 16×16 in
resolution, resulting in a two dimensional spatial patch space of shape 14×14 for images of original
resolution 224 × 224. Each patch corresponds to a token in the language of transformer networks.
In addition to the 14 × 14 = 196 tokens, an additional “summary” token is appended and used at
the end for classification. This results in 197 tokens representing an instance image in the attention
network pipeline.

There are two technical challenges with this token space, when viewed under the STL lens.

1. STL with tile size t = 4 packs together every 4 coordinates of the (activation) matrix, and
197 is not divisible by 4. We chose to solve this by appending another 3 null rows to the
activation input matrix X (for each STL layer). When obtaining the output matrix Y , we
reduce the dimension from 200 back to 197 by linearly combining the last 4 rows into a
single row, using another 4 trainable coefficient parameters. There are other natural choices
for this technical detail. For example we could use 4 summary tokens instead of one, but
our choice seemed to be the simplest.

2. In the original ViT network architecture, the patches are organized in raster order, and
therefore each STL tile packs together 4 patches that visually correspond to a horizontal
slab of length 4 patches. The choice of horizontal (vs. vertical) seems quite arbitrary,
and we felt that it should not affect the inductive bias of the network. Hence we have
reorganized the order of patches, so that each 2×2 square of 4 patches would be contiguous
in memory, and hence in the activation matrix indexing. This is done once before the
attention pipeline and has negligible IO cost, which will become more negligible for larger
ViTs.

4This is after having chosen the pruned coordinates using the magnitude heuristic. We are aware that there
are more advanced methods for pruning, but (a) it is not clear whether those methods really make a difference
for 4× 4 matrices and (b) there are possibly more advanced ways to optimize for αSTL.
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Preliminary Results in the Over-Parameterized Regime As we’ve stated before, we are not
aware of other work that reports improvement on the Imagenet-1K classification problem, when
trained from scratch on the Imagenet-1K training split with a network of similar size and consider-
able matrix pruning (in particular, structure pruning). The closest reported results we are aware of
are Chen et al. (2021) which thoroughly studied pruning strategies of a related architecture called
DeiT-Vision-Transformer. For a model DeiT-Tiny of a similar size as T2T-ViT-7, all their pruning
experiments led to more than 2% degradation of accuracy, even at only 30% unstructured sparsity
rate, let alone with 2 : 4 (structured) sparsification.

The cases where they saw accuracy gains in from sparsification were on DeiT-Base which has
roughly 80M parameters (×4 parameters compared to T2T-Vit-14). We argue that, for that size
model on Imagenet-1k, the over-parameterization is so extreme that sparsification possibly helps by
virtue of the regularization it offers. This is also confirmed by a followup experiment that we did on
the T2T-ViT-14 architecture (21.5M parameters, 6.1G FLOPS per 224x224 image) from the same
paper Yuan et al. (2021b).

For this model we lost between 2% and 3% accuracy when replacing with STL, compared to base-
line, for all values of r ranging from 16 to 49. Recall that at r = 49 there is provably no loss
of expressivity, because STL at that tensor rank allows expressing exact matrix multiplication (by
Strassen), and hence the empirical loss of accuracy in this case is probably due to the extreme over-
parameterization owing to the effective increase in parameters.

D PSEUDO-CODE FOR STL

For ease of notation, we let X̂ and Ŵ denote the encoded versions of X,W , i.e., a tensor of size
(n/t, n/t, r) with X̂[I, J, :] = EX · vec(XI,J) (the encoding of the I, J-th tile). Similarly for Ŵ .
We let Y = X ⋄W , and Ŷ denote the encoded tensor.

We note that in PyTorch, when trying to multiply the last dimension of a 3D tensor by a matrix,
this is done in transposition to the clean mathematical formulation. In other words, to compute X̂ ,
we need to compute EX ·X[I, J, :] for every I, J , where we view X[I, J, :] as a t2 column vector.
In PyTorch this is done by hatX = X E_X.T, which can be interpreted as viewing X[I, J, :]
as a row vector of size t2, and so the product with E⊤

X gives a new row vector of length r. The
algorithms are written in a mathematical formulation first, and PyTorch formulation second. We
also provide a PyTorch implementation in our public repository.
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Algorithm 1 STL Pseudo-code (GPUs)

Require:
Tensor X of shape (n/t, n/t, t2) (Each tile flattened)
Tensor Ŵ of shape (n/t, n/t, r) (Each tile encoded)
Encoding matrix EX of shape (r, t2)
Decoding matrix D of shape (t2, r)

Step 1: Encode
for I, J ∈ [n/t] (in parallel) do
X̂[I, J, :]← EX ×X[I, J, :]

end for
(In PyTorch: hatX = X @ E_X.T)

Step 2: Batched Element-wise Product
for p ∈ [r] (in parallel) do
Ŷ [:, :, p]← X̂[:, :, p]× Ŵ [:, :, p]

end for
(In PyTorch: hatY = (hatX.permute(2,0,1) @ hatW.permute(2,0,1)).permute(1,2,0))

Step 3: Decode
for I, J ∈ [n/t] (in parallel) do
Y [I, J, :]← D⊤ × Ŷ [I, J, :]

end for
(In PyTorch: Y = hatY @ D)
Return: Y (Each tile flattened)

Algorithm 2 STL Pseudo code for fused Steps 3+1, at layer ℓ

Require:
Tensor X̂ℓ−1 of shape (n/t, n/t, r) (Previous layer encoded output activations)
Tensor Ŵℓ of shape (n/t, n/t, r) (Encoded weights for this layer)
Encoding matrix EX of shape (r, t2)
Decoding matrix D of shape (t2, r)

Steps 3+1:
for I, J ∈ [n/t] (in parallel) do
X̂ℓ[I, J, :]← (EX ×D⊤)× X̂ℓ−1[I, J, :]

end for
(In PyTorch: hatX_this = hatX_prev @ (D @ E_X.T))

Step 2:
for p ∈ [r] (in parallel do
X̂ℓ[:, :, p]← X̂ℓ[:, :, p]× Ŵℓ[:, :, p]

end for
Return: X̂ℓ
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