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Abstract

With consistent improvements in the represen-
tational capacity of large pre-trained transform-
ers, it has become increasingly viable to serve
these models as shared backbones that enable
modeling a large number of tasks simultane-
ously. However, fine-tuning the entire model
for every task of interest makes a copy of all
the model parameters, rendering such scenar-
ios highly impractical. Recently introduced
Adapter methods propose a promising alterna-
tive, one where only a small number of addi-
tional parameters are introduced per task specif-
ically for fine-tuning. However, Adapter of-
ten require large amounts of task-specific data
for good performance and don’t work well in
data-scarce few-shot scenarios. In this paper,
we approach parameter-efficient fine-tuning in
few-shot settings from a meta-learning perspec-
tive. We introduce Meta-Adapter, which are
small blocks of meta-learned adapter layers in-
serted in a pre-trained model that re-purpose
a frozen pre-trained model into a parameter-
efficient few-shot learner. Meta-Adapter per-
form competitively with state-of-the-art few-
shot learning methods that require full fine-
tuning, while only fine-tuning 0.6% of the pa-
rameters. We evaluate Meta-Adapter along
with multiple transfer learning baselines on
an evaluation suite of 17 classification tasks
and find that they improve few-shot learning
accuracy by a large margin over competitive
parameter-efficient methods while requiring
significantly lesser parameters for fine-tuning.

1 Introduction

Pre-trained models in natural language processing
(NLP) have consistently increased in size over time
(Devlin et al., 2019; Raffel et al., 2019; Brown
et al., 2020). These models are often used as initial-
ization for transfer learning, where the initialized
model is fine-tuned on a task of interest. However,
when such pre-trained models are intended to be
served for many downstream tasks at once, such as

in a cloud-based machine learning (ML) service,
then full fine-tuning necessitates keeping as many
parameter copies as the number of tasks — render-
ing them extremely inefficient. An alternative to
full fine-tuning is Adapter (Houlsby et al., 2019).
Adapter add a small number of randomly initial-
ized parameters to a pre-trained model such that
fine-tuning only the Adapter, freezing the rest of
the pre-trained model, still performs competitively
with full fine-tuning.

In this paper, we consider the scenario where we
want to deploy a shared model for a large number
of tasks, in an online setting, such that models can
be quickly adapted to target tasks without access
to a lot of data. An example of such a setting
is a cloud-based ML service which allows users
to specialize models to their own NLP tasks with
scarce training data. Adapter are particularly useful
in such scenarios as they allow sharing a pre-trained
model backbone across tasks. However, adapter are
randomly initialized blocks of parameters which
can perform poorly when the target task has few
examples. Such scenarios pose a dual problem:
one of enabling parameter efficient fine-tuning, and
another of accurate few-shot learning.

Meta-learning (Schmidhuber, 1987; Bengio
et al., 2003; Thrun and Pratt, 2012) is often em-
ployed to learn effective few-shot learning models,
that can generalize to new unseen tasks with small
amounts of labelled data by learning from a distri-
bution of other related tasks. Within NLP, meta-
learning models have been developed for few-shot
learning on a diverse range of NLP tasks (Han et al.,
2018; Brown et al., 2020; Bansal et al., 2020a). Of
particular interest in this work are gradient-based
methods (Finn et al., 2017) that learn a model ini-
tialization to enable few-shot learning with a few
steps of gradient descent. By directly optimizing
the training for few-shot fine-tuning, these methods
help mitigate the train-test mismatch in few-shot
learning and enable effective generalization to new
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Figure 1: The proposed Meta-Adapter architecture.
Meta-Adapter surround the adapter layers from above
and below with very small bottleneck dimension(e.g.
<32 in our experiment). Both Adapter block and Meta-
Adapter blocks are trained via meta-learning while only
the Adapter block is fine-tuned for each few-shot task.
Pre-trained model parameters in gray box are frozen
and never tuned, neither during meta-training phase nor
during fine-tuning phase.

few-shot tasks. However, existing applications of
such meta-learning methods (Bansal et al., 2020a,b;
Dou et al., 2019) don’t leverage existing pre-trained
models and fine-tune the entire model making them
inefficient when applied to many tasks.

We thus develop a meta-learning model that
enables accurate and parameter-efficient few-shot
learning — utilizing a shared, frozen pre-trained
model backbone that can rapidly adapt to down-
stream tasks with only a handful of additional pa-
rameters and labeled data per new task. Our ap-
proach re-purposes an existing pre-trained trans-
former model into an efficient few-shot learner by
introducing Meta-Adapter, a small number of meta-
learned parameters that modulate the pre-trained
models activations to make them effective for few-
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Figure 2: Comparison of overall average accuracy
across 17 tasks vs the number of parameters fine-tuned
per task (on a log scale). Meta-Adapter fine-tune only
0.6% of total model paramters per task, are more effi-
cient and accurate than other adapter alternatives, and
competitive with a meta-learning approach that requires
full fine-tuning.

shot learning. Our objective is to enable parameter
efficient few-shot learning at inference time; the
Meta-Adapter are trained to “prime” the regular
adapter towards this objective on a wide variety
of few-shot tasks resembling the target tasks (Sec-
tion 3). Moreover, Meta-Adapter are more efficient
to train than contemporary meta-learning models
as they only train a subset of the full model. On
a suite of 17 few-shot classification tasks, our re-
sults indicate that Meta-Adapter are better than
randomly initialized adapter (Houlsby et al., 2019)
for few-shot learning, are more accurate and effi-
cient than multi-task fusion adapter (Pfeiffer et al.,
2021), and perform competitively with previous
state-of-the-art meta-learning methods that involve
full fine-tuning (Bansal et al., 2020b), while only
adding 0.6% model parameters per task (Figure 2).

2 Background

Adapter (Houlsby et al., 2019) are blocks of feed-
forward layers, comprising of a downward projec-
tion followed by an upward projection, that are
added between subsequent layers of a pre-trained
transformer model. Let 6 denote the parameters of
the transformer and ¢ the parameters of the adapter.
Then given a target task T, with some data, D,
and loss function, L7 (-), adapter minimize the fol-
lowing objective using a gradient descent routine,
termed as fine-tuning:

min L7 (0, ¢; DY) 4))



where adapter ¢ are often initialized randomly
(Houlsby et al., 2019). Note that the size of ¢ < 0,
leading to parameter savings when the same model
parameters 6 are re-used for many tasks {7'}.

However, as ¢ are randomly initialized they may
not perform well in the few-shot setting where
DY is very small, for instance when there are
only 4 examples per label. Moreover, the origi-
nal pre-trained model is not optimized for few-shot
learning and can lead to sub-optimal performance
(Bansal et al., 2020b).

Alternatively, few-shot problems are often for-
mulated as meta-learning problems. We refer the
reader to Hospedales et al. (2020) for a comprehen-
sive review. Our work builds on model agnostic
meta-learning (MAML) (Finn et al., 2017) which,
given a distribution over tasks, learns a model ini-
tialization for better few-shot learning with a few
steps of gradient descent. This involves an inner
loop of task-specific fine-tuning and an outer loop
of optimizing the inner loop performance across
tasks. Note that the inner loop corresponds di-
rectly to the inference method applied to any new
task, that is, gradient-based fine-tuning. MAML-
based methods have been explored in prior work
for improving few-shot learning (Dou et al., 2019;
Bansal et al., 2020b). However, these methods re-
quire fine-tuning the entire network at inference
time and optimizing the entire model parameters at
training time. This makes fine-tuning very ineffi-
cient when applied to many tasks at once and also
doesn’t leverage existing self-supervised models
pre-trained on large amounts of unlabeled data.

3 Meta-Adapter

Our goal for parameter efficient learning is two-
fold: (1) leverage and re-purpose existing pre-
trained model into a better few-shot learner; (2)
make fine-tuning parameter efficient by sharing
the pre-trained model backbone and introducing
only a fraction of parameter overhead for each new
task. We thus introduce Meta-Adapter, which are
meta-learned adapter layers inserted between layers
of a frozen pre-trained model to improve perfor-
mance in few-shot learning. Meta-Adapter have the
same architecture as feed-forward adapter layers
(Houlsby et al., 2019) and differ in their placement
in the model architecture, their training and usage.
Whereas adapter are randomly initialized and fine-
tuned per task, Meta-Adapter are trained parame-
ters that are not fine-tuned on new tasks but instead

modulate the activations of the pre-trained model in
the forward and backward pass during fine-tuning
to allow better few-shot learning. Figure 1 shows
an overview of the approach.

Meta-Adapter operate in conjunction with reg-
ular adapter and are trained to enable parameter-
efficient few-shot learning. In particular, consider
a transformer model layer with adapter added af-
ter the two sets of feed-forward blocks, as shown
in Fig.1. The Meta-Adapter layers sandwich the
adapter layers from above and below, and consist of
a two-layer feed-forward network with a downward
projection bottleneck. The bottleneck dimension is
typically small, a hyper-parameter < 32 in our ex-
periments, that keeps the number of Meta-Adapter
parameters manageable. During the Meta-Adapter
training phase, it is optimized to improve the regu-
lar adapter fine-tuning with few-shot training task
data. During inference, each few-shot target task is
then solved by fine-tuning only the regular adapter,
freezing the rest of the model to achieve parameter
efficiency.

Denoting w as the Meta-Adapter parameters, ¢
as the adapter parameters, and 6 as the pre-trained
transformer parameters, the objective for each indi-
vidual task, T, remains similar to regular adapter:

¢+ arg m(;n L7(0,¢,w; Dr) )

Note that w is not fine-tuned for individual task
T but it still modulates the activations in the for-
ward pass as well as the backward pass. Thus, w
needs to be optimized to directly improve adapter
fine-tuning with few-shot data, which leads to the
following objective:

HEHET [£T<07¢T7W;DT)] (3)

where ¢7 is obtained from the minimization in (2).

Computing these nested minimization to conver-
gence will be computationally infeasible. We thus
approximate these by few-steps of gradient descent.
This can then be formulated as a meta-learning
problem involving bi-level optimization, and is re-
lated to model agnostic meta-learning (MAML).
We use the episodic framework (Vinyals et al.,
2016; Finn et al., 2017) for solving the problem
in equation (3), where each episode samples a few-
shot task with a training data D' and validation
data DY, D' is then used for the minimization
in (2) and D is used for the minimization in (3).
This leads to the following inner and outer loop
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The inner loop (4) is carried out for multiple
steps of gradient descent. Through these steps, note
that we also learn an initialization of the adapter ¢
in preparation for few-shot learning, in addition to
training the Meta-Adapter w. Thus, there is no ran-
dom initialization for adapter, nor the selection of
hyper-parameters for the initialization (like scale),
anymore that needs to be set for each down-stream
task. In addition, we also treat the inner loop learn-
ing rate «, in (4), as a learnable parameter. Fol-
lowing (Bansal et al., 2020a), we use a different
learning rate for each adapter in each layer. The
inner loop directly corresponds to the inference
procedure on any new task, thus this removes the
requirement to set another crucial hyper-parameter
for each new task as the learned learning rates are
re-used for fine-tuning on new tasks.

Training Tasks: Meta-learning the Meta-
Adapter (equation 4, 5) requires a distribution of
tasks P (7)), as is typical in meta-learning methods
(Vinyals et al., 2016; Finn et al., 2017). Tasks are
sampled from this distribution to learn models
for few-shot learning. Ideally, this distribution
of tasks should be large and diverse to enable
learning of effective models that can generalize
to new tasks. We follow prior work (Bansal
et al., 2020b) and use a combination of supervised
and unsupervised tasks to provide a diverse
distribution of training tasks. The supervised tasks
come from the set of GLUE tasks (Wang et al.,
2018) that comprise of 8 diverse tasks requiring
sentence-level understanding. In addition we
use the cloze-style SMLMT tasks proposed in
Bansal et al. (2020a). These are self-supervised,
blank-filling tasks (Devlin et al., 2019), that are
automatically created from unlabeled text and were
shown to be a useful source of meta-training tasks
for few-shot learning. We thus create millions
of such self-supervised tasks and combine them
with supervised GLUE tasks for training the
Meta-Adapter. In an episode of training, we

sample a GLUE task with probability A or a
self-supervised task with probability 1 — .

Summary: Meta-Adapter are meta-learned
adapter layers that are trained to enable parameter
efficient few-shot learning. They are inserted in
a pre-trained transformer and used alongside the
regular adapter. The training of Meta-Adapter
proceeds in meta-learning episodes. In each
episode a training task is sampled, the adapter are
fine-tuned on the task data (4) and the performance
of the fine-tuned model, as evaluated by the loss
on task’s validation data, is used as the error to
train (5) the parameters of the Meta-Adapter. In
addition, this training also learns the initialization
of the adapter used for fine-tuning along with the
learning rate to use for fine-tuning the adapter.
At inference time, parameters of the pre-trained
model and the Meta-Adapter are fixed, and the
adapter are fine-tuned for each rarget task using
the learned learning rates.

4 Experiments

In this section, we evaluate the Meta-Adapter for
their utility in few-shot learning of new unseen
tasks and compare them with contemporary meth-
ods that utilize adapter as well as meta-learning
methods for few-shot learning.

4.1 Experimental Setup

Unlike existing applications of adapter (see sec-
tion. 5), our work evaluates the utility of adapter
in a transfer learning setting where only few ex-
amples are available for each task. For this, we
consider a suite of 17 downstream classification
tasks. The tasks are obtained from the few-shot
datasets released! by prior work on few-shot learn-
ing (Bansal et al., 2020a), making our results com-
parable with previously published results on these
tasks. All evaluations are in the k-shot setting, with
k = 4,8, 16, where k is the number of examples
per label.

Evaluation Tasks: The downstream classifica-
tion tasks fall into the following categories: (1)
Sentiment classification (4 tasks): 4 domains of
sentiment classification on Amazon reviews; (2)
Rating classification (5 tasks): 4 domains of
ternary rating classification (high, medium, low)
on Amazon reviews and classifying tweets about
Airline into ternary sentiment; (3) Entity typing (2
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tasks): two domains (news and restaurant queries)
of classifying phrases in a sentence into entity
types; (4) Natural language inference (1 task): sci-
entific domain dataset for entailment classifica-
tion; (5) Political classification (3 tasks): catego-
rizing tweets into whether or not it has a political
bias, classifying the intended audience for a politi-
cal tweet (constituency, national), and classifying
the substance of the text into fine-graned topics;
(6) Other text classification (2 tasks): classifying
tweets into whether or not they indicate a disaster
and fine-grained classification into emotions.

Models Evaluated: We evaluate some state-of-
the-art models for both parameter-efficient learning
as well as few-shot learning in our experimental
setup. We consider the following models in our
evaluation.

1. Adapter (Houlsby et al., 2019): The origi-
nal adapter approach that only fine-tunes the
adapter parameters.

2. Adapter-Fusion (Pfeiffer et al., 2021): A re-
cent approach that trains adapter on multiple
tasks, e.g. GLUE tasks, and then learns to
compose them using attention mechanism (see
section 5).

3. Hybrid-SMLMT (Bansal et al., 2020b): A
meta-learning approach for few-shot learning
that fine-tunes almost all parameters and does
not include any adapter.

4. Meta-Adapter: the proposed model

Implementation Details: Note that Adapter-
Fusion (Pfeiffer et al., 2021) wasn’t evaluated in
the few-shot setting, however, since it combines
many trained multi-task adapter together, it can
be a competitive alternative for few-shot scenar-
10s. We use their released GLUE fusion adapter
and their released code for evaluations. For fair
comparisons, Adapter-Fusion and Hybrid-SMLMT
only use GLUE supervised tasks for their training.
All the compared methods use the same underlying
BERT model, so that differences in performance
are not due to using different models. We use the re-
leased Hybrid-SMLMT code to train this model as
the released model used cased BERT model while
all the other models used uncased BERT models.
Our implementation results are comparable with
those reported in Bansal et al. (2020b). Note that
Hybrid-SMLMT fine-tunes about half of the param-
eters, as they found it beneficial to freeze alternate

layers during fine-tuning (Bansal et al., 2020b).
Hyper-parameters for the Meta-Adapter are avail-
able in the Appendix A. We will publicly release
our trained models and code.

4.2 Results

We evaluate the baseline models and the proposed
approach on the evaluation tasks. Each task is
evaluated using 10 random few-shot training sets
for k = 4,8, 16, totalling 340 evaluations across
the 17 tasks for each model. First, we summarize
the overall results across all the tasks. Then we
perform several ablations to better understand the
performance of Meta-Adapter.

Overall Results: The overall results on all the
tasks can be seen in Fig. 2. Here we analyze the
overall average performance across the 17 tasks,
to get an estimate of how the models compare on
the two axes of few-shot accuracy and parame-
ter efficiency. On parameter efficiency, the Meta-
Adapter are orders of magnitude more efficient than
both Adapter-Fusion (5%) and Hybrid-SMLMT
(0.6%). Since we use a significantly smaller bottle-
neck size than Adapter, the Meta-Adapter are also
more efficient than Adapter. We show in ablations
later that Adapter perform worse when compared
to similar size Meta-Adapter. This indicates that
Meta-Adapter can enable increased parameter ef-
ficiency without compromising on accuracy. Now,
lets look at the overall few-shot accuracy and first
consider the 4-shot setting. Interestingly, not only
are the Meta-Adapter most efficient, they perform
just as accurately as the best performing baseline
model, Hybrid-SMLMT, that does full fine-tuning.
In the 8-shot setting, Meta-Adapter are still com-
petitive with full fine-tuning, albeit slightly worse,
and better than both the parameter-efficient base-
lines, Adapter and Adapter-Fusion, by a large mar-
gin. Note, that Adapter-Fusion are better at transfer
learning than regular Adapter, however, they are
less parameter-efficient than the other models.

Results on Individual Tasks: Table 1 shows the
results on the individual tasks. For sentiment and
rating classification tasks on Amazon reviews, we
show the average results across the 4 domains to
avoid repetition of related tasks. In the 4-shot
setting, Meta-Adapter performance is better than
all the other parameter-efficient methods on 9 out
the 11 task types, and is competitive with the full
fine-tuning approach. In the 8-shot setting, Meta-
Adapter are better than Adapter or Adapter-Fusion



Task N k| Adapter Adapter-Fusion HSMLMT Meta-Adapter

0.03x 0.41x 1.00x 0.01x

4 | 534 +78 41.6 + 44 599 + 54 64.1 £29

CoNLL 4 8 [69.2+40 63.6 +5.8 704 +35 71.3 +3.1

16 | 78.1 £35 78.4 + 3.8 794 + 15 779 +14

4 | 50.0 +43 36.5 +43 56.3 +37 55.9 +5.0

Restaurant 8 8 | 70.6 +238 61.3 +386 70.0 + 24 67.6 +25

16 | 76.6 + 3.1 68.7 +62 76.8 +22 739 +17

4 | 51.2 497 62.7 + 6.1 60.6 + 6.8 60.9 +5238

Airline 3 8 | 61.1 +83 67.1 +46 66.9 +62 66.3 +3.1

16 | 68.3 +42 69.1 +£30 70.1 £3.1 67.3 +26

4 | 56.1 +64 56.6 + 7.7 63.1 + 80 61.6 +10.1

Disaster 2 8 | 627 +65 60.8 +74 66.3 +49 66.1 +438

16 | 69.1 +£30 65.5 +£7.1 72.1 £32 70.7 £3.8

4 |51.9 +31 51.8 +3.1 559 + 438 57.0 +49

Political Audience 2 8 | 55.6 +27 57.1 +45 59.6 +4.6 599 +238

16 | 61.3 +45 57.0 +3.38 62.6 +37 62.7 +25

4 | 60.0 +£6.0 56.3 + 6.1 603 +76 61.2 +69

Political Bias 2 8 | 62.0+4s8 619 +42 65.8 +49 62.7 +54

16 | 65.5 £33 65.5 +37 68.5 +£2.1 664 +23

4 | 17.6 £20 19.6 +22 17.5 +20 18.0 + 18

Political Message 9 8 | 20.7 £ 138 20.9 +27 19.5 £ 20 19.8 +2.0

16 | 242 +22 23.6 +32 21.6 +25 20.6 +1.8

4 | 11.6 +13 11.7 + 1.8 12.2 +13 12.3 +1.7

Emotion 13 8 | 143 +17 15.6 +27 13.7 £ 16 12.8 + 09

16 | 159 +1.0 16.4 +23 14.9 + 09 13.2 +1.1

4 | 53.8 +65 53.7 £ 059 80.0 + 4.9 784 + 43

Scitail 2 8 | 584 +43 57.4 + 102 82.0 +1.0 78.1 +1.8

16 | 64.3 +£47 70.5 + 44 82.8 +1.0 795 +22

4 | 60.7 +63 80.7 +29 81.7 +29 81.7 +27

Amazon Sentiment 2 8 | 66.5 +63 80.3 + 49 83.9 +1.1 82.4 +21

16 | 754 £ 45 82.7 +25 84.3 +1.1 83.5+1.0

4 | 43.5 +83 529 +97 56.6 + 8.0 55.8 +73

Amazon Rating 3 8 |452 472 58.0 +£5.9 59.3 £ 54 57.8 £57

16 | 53.7 +52 61.3 +3.1 62.0 +30 60.9 +338
4 48.4 56.8 59.9 60.0
Overall Average 8 54.2 59.9 64.0 62.7
16 61.1 64.2 66.7 65.3

Table 1: k-shot accuracy on downstream classification tasks not seen in training. 0.01x indicates that the model

fine-tunes 1% parameters per task compared to Hybrid-SMLMT.



Model Adapter  Trainable Fine-tuned = Meta-Training
Size Params Params / Task Speedup
Hybrid-SMLMT — 110,270,354 53,582,721 1.00x
Meta-Adapter 8 1,453,588 351,936 0.75x
Meta-Adapter 16 2,043,796 647,040 0.85x
Adapter-Fusion 48 7,457,853 21,844,226 —

Adapter 48 — 1,486,658 —

Table 2: Summary of sizes of adapter, trainable adapter
parameters, fine-tuned adapter parameters and the
speedup in training when using Meta-Adapter compared
with Hybrid-SMLMT.

Model Vocab  Adapter Size 4-shot 8-shot
Adapter Uncased 48 55.6 64.3
Adapter Uncased 16 55.1 57.6

MAML-Adapter  Cased 16 66.1 72.5
Meta-Adapter Cased 16 68.2 74.6
Meta-Adapter  Uncased 8 69.7 74.6
Meta-Adapter ~ Uncased 16 74.6 71.5
Meta-Adapter ~ Uncased 32 70.3 76.5

Table 3: Ablations for Meta-Adapter.

in 7 out of the 11 task types. Overall, these results
indicate that Meta-Adapter lead to accurate few-
shot learning compared to other parameter-efficient
alternatives. Compared to full fine-tuning, we see
that Meta-Adapter perform competitively on most
tasks, and the largest drop in accuracy is on the
Scitail task.

Summary: Meta-Adapter are the most
parameter-efficient (Figure 2), fine-tuning only
0.6% of total model parameters per task, and are
more accurate at few-shot learning than compet-
itive approaches of Adapter and Adpater-Fusion
while using less parameters to fine-tune. Table 2,
summarizes key properties of the various models
evaluated. Meta-Adapter is also much faster in
training time compared to Hybrid-SMLMT, a
full fine-tuning based meta-learning approach,
as Meta-Adapter have much lesser number of
parameters to train.

4.3 Ablations

We analyze how the performance of Meta-Adapter
and the baselines varies with some crucial hyper-
parameters. We consider validation data from 3
tasks: CoNLL, Scitail, and Amazon Electronics, to
perform the ablations and report the overall average
accuracy using 10 different few-shot training sets
for each task.

Meta-learning without Meta-Adapter: First
we consider whether Meta-Adapter contribute to
improvements in few-shot learning. For this we
consider a meta-learning model that skips the Meta-
Adapter altogether but still learns an initializa-
tion of adapter modules for few-shot fine-tuning.
This approach is akin to adding adapter to an ex-
isting model and using the MAML (Finn et al.,
2017) approach to learn their initialization. Ta-
ble 3 compares Meta-Adapter with this ablation,
termed MAML-Adapter. We can see that this leads
to a large drop in average accuracy in both 4-shot
and 8-shot settings, while there is no other benefit
in parameter-efficiency from this approach. This
shows that Meta-Adapter help in improving the
few-shot accuracy.

Size of Adapter and Meta-Adapter: Next we
consider how the sizes of the adapter effect ac-
curacy. Prior work on Adapter have explored this
in-depth (Houlsby et al., 2019; Pfeiffer et al., 2021),
and larger adapter often work better. We consider
two size of adapter, 48 and 16. We use size 48 as it
is also the size that worked best for Adapter-Fusion
and we use the smaller size 16 to compare with the
Meta-Adapter. Note that in the few-shot setting, it
is not feasible to find the best size for each given
task, as in prior work (Houlsby et al., 2019), due
to unavailability of validation data. Comparing the
two Adapter sizes, in Table 3, we find that larger
adapter performs better, specially in the 8-shot set-
ting. However, Meta-Adapter allow comparatively
better accuracy even with increased efficiency. We
can see that at the same size of 16, Meta-Adapter
is better by a large margin than Adapter. As we
vary the size of the Meta-Adapter, we find that even
at the smaller size of 8, they are still better than
Adapter of size 16, 48. Interestingly, we observed
better performance of Meta-Adapter at size 16 than
at size 32.

Effect of model vocabulary An interesting axis
that affects overall performance is the choice of
the pre-trained model vocabulary. We explored
cased and uncased BERT-base models in conjunc-
tion with Meta-Adapter. We found that the uncased
models consistently performed much better than
the cased models (Table 3). This is likely because
the downstream classification tasks often contain
noisy user generated text. The choice of uncased
BERT model also makes our results comparable
with prior work (Pfeiffer et al., 2021).



5 Related Work

Since their introduction, adapter (Houlsby et al.,
2019) have been widely applied (Houlsby et al.,
2019; Stickland and Murray, 2019; Bapna and
Firat, 2019; Riicklé et al., 2020) as a parameter-
efficient finetuning method for large transformer-
based (Vaswani et al., 2017) pre-trained models,
such as BERT (Devlin et al., 2019). Prefix-tuning
(Li and Liang, 2021), also known as prompt-tuning
(Lester et al., 2021), is another line of popular light-
weight finetuning methods which fine-tune contin-
uous task-specific representations while keeping
the large pre-trained parameters untouched. In
contrast to adapter which insert task-specific pa-
rameters in between layers, these models pre-pend
a trainable task-specific representations to either
the input layer (Lester et al., 2021) or on every
layer (Li and Liang, 2021). While these methods
are promising in terms of parameter-efficient fine-
tuning methods, with its active research progress
in multi-task (Houlsby et al., 2019; Stickland and
Murray, 2019) and transfer learning (Pfeiffer et al.,
2020), we choose adapter framework to develop
our proposed approach as prompt-tuning has been
shown to only exceed fine-tuning at very large
model scales (Lester et al., 2021).

Multi-task adapter (Stickland and Murray, 2019)
is perhaps the first work that applied adapter to
multi-task learning. In this framework, given M
tasks, pre-trained parameters 6 are fine-tuned along
with a set of M task-specific parameters. How-
ever, in follow-up work, Adapter-Fusion (Pfeiffer
et al., 2021) shows that a model that simply com-
bines adapter from multiple tasks through attention,
without updating the pre-trained model 6, performs
better than multi-task adapter. The idea in Adapter-
Fusion is that rather than fine-tuning the shared
0 parameters for multi-task, they instead learn an
adapter-fusion layer that combines all M source
task adapter to benefit each of the tasks. While
Adapter-Fusion has the capability to transfer to
unseen target tasks outside of the NV source tasks,
Pfeiffer et al. (2021) only test it when target task is
part of the source tasks. In this paper, by choosing
Adapter-Fusion as our baseline, we test its efficacy
in few-shot learning of new target tasks. While
Adapter-Fusion is much more efficient than multi-
task adapter, it uses a larger amount of parameters
compared to standard adapter due to fusion layers
working on the full dimension of the pre-trained
model, e.g. 768 for BERT-base.

Within meta-learning literature (Hospedales
et al., 2020), our work is related to methods (Kos-
saifi et al., 2019; Flennerhag et al., 2020) that em-
bed tensor projections in convolution networks for
improved gradient conditioning in a meta-learning
model. Other approaches (Mishra et al., 2018; Zint-
grafetal., 2019; Lee and Choi, 2018) have explored
meta-learning with shared paramaters across tasks
with goals of better convergence or avoiding over-
fitting. However, these prior methods don’t lever-
age pre-trained models and are not developed for
parameter-efficient fine-tuning.

Meta-learning methods (Vinyals et al., 2016;
Santoro et al., 2016; Finn et al., 2017) have of-
ten been employed to enable better few-shot learn-
ing on many NLP tasks (Han et al., 2018; Gao
etal., 2019; Dou et al., 2019; Bansal et al., 2020a,b;
Ye et al., 2021). We compare with a recent few-
shot learning work in NLP (Bansal et al., 2020b)
that uses the MAML (Finn et al., 2017) approach
on self-supervised tasks for few-shot classification.
Their approach isn’t parameter efficient whereas
the proposed approach using Meta-Adapter per-
forms comparably with a fraction of parameters
for fine-tuning. Alternative methods for few-shot
learning include very large pre-trained language
models like GPT-3 (Brown et al., 2020) that don’t
fine-tune any parameters and use natural language
prompts for few-shot learning. However they can
be sensitive to prompt-orders (Lu et al., 2021), have
a limited context length due to which they don’t
scale to larger datasets, and have high latency in
inference due to their size. Extensions of Meta-
Adapter to the soft-prompting approach (Li and
Liang, 2021), in few-shot settings, can be a promis-
ing avenue for future work.

6 Conclusion

We introduced Meta-Adapter, a parameter-efficient
fine-tuning method for few-shot learning. Our find-
ings indicate that Meta-Adapter performs better
than existing parameter-efficient methods for trans-
fer learning and are competitive with meta-learning
methods for few-shot learning, while only fine-
tuning a fraction (0.6%) of the model parameters
for each task. These results indicate that Meta-
Adapter enable extremely parameter-efficient few-
shot learning and can be deployed to serve hun-
dreds of tasks simultaneously with a shared pre-
trained model, while only doubling the total num-
ber of parameters.
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Hyper-parameter Value
Tasks per batch 16
Attention dropout 0.1
Hidden Layer Dropout 0.1
Outer Loop Learning Rate le-05
Inner Loop Steps 6
Meta-training Steps 540k
Lowercase text True
Sequence Length 128
Learning-rate Warmup 10% of steps
Number of SMLMT Tasks 4 Million
| DI 60
oy 10
Number of classes for SMLMT tasks [2,3,4,5]
GLUE vs SMLMT sampling ratio A 0.25

Table 4: Hyper-parameters used in meta-training.

A Additional Implementation Details

Hyper-parameters used in the meta-training phase
are given in Table 4.

For fine-tuning on target tasks we tune need to
specify the number of steps. Instead of tuning
the number of steps for Meta-Adapter and Hybrid-
SMLMT (Bansal et al., 2020b), we found it better
to instead tune a training loss threshold and fine-
tune until the loss reaches that threshold. The loss
thresholds for Meta-Adapter are as follows: (1) 4-
shot: 1e-3 ; (2) 8-shot: le-2 ; (3) 16-shot: le-2.
Following Bansal et al. (2020b), we use a batch-
size of 4 and scale the batch-size with the number
of labels per task.

Fine-tuning hyper-parameters for adapters and
adapter-fusion include the learning rate and num-
ber of epochs. We sweep over values for learning
rates in {le — 3,1e — 4,1e — 5} and epochs in
{10, 20, 50, 100, 150, 200} to pick the best hyper-
parameters for each k-shot.
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