
Meta-Adapter:
Parameter Efficient Few-Shot Learning through Meta-Learning

Anonymous ACL submission

Abstract

With consistent improvements in the represen-001
tational capacity of large pre-trained transform-002
ers, it has become increasingly viable to serve003
these models as shared backbones that enable004
modeling a large number of tasks simultane-005
ously. However, fine-tuning the entire model006
for every task of interest makes a copy of all007
the model parameters, rendering such scenar-008
ios highly impractical. Recently introduced009
Adapter methods propose a promising alterna-010
tive, one where only a small number of addi-011
tional parameters are introduced per task specif-012
ically for fine-tuning. However, Adapter of-013
ten require large amounts of task-specific data014
for good performance and don’t work well in015
data-scarce few-shot scenarios. In this paper,016
we approach parameter-efficient fine-tuning in017
few-shot settings from a meta-learning perspec-018
tive. We introduce Meta-Adapter, which are019
small blocks of meta-learned adapter layers in-020
serted in a pre-trained model that re-purpose021
a frozen pre-trained model into a parameter-022
efficient few-shot learner. Meta-Adapter per-023
form competitively with state-of-the-art few-024
shot learning methods that require full fine-025
tuning, while only fine-tuning 0.6% of the pa-026
rameters. We evaluate Meta-Adapter along027
with multiple transfer learning baselines on028
an evaluation suite of 17 classification tasks029
and find that they improve few-shot learning030
accuracy by a large margin over competitive031
parameter-efficient methods while requiring032
significantly lesser parameters for fine-tuning.033

1 Introduction034

Pre-trained models in natural language processing035

(NLP) have consistently increased in size over time036

(Devlin et al., 2019; Raffel et al., 2019; Brown037

et al., 2020). These models are often used as initial-038

ization for transfer learning, where the initialized039

model is fine-tuned on a task of interest. However,040

when such pre-trained models are intended to be041

served for many downstream tasks at once, such as042

in a cloud-based machine learning (ML) service, 043

then full fine-tuning necessitates keeping as many 044

parameter copies as the number of tasks – render- 045

ing them extremely inefficient. An alternative to 046

full fine-tuning is Adapter (Houlsby et al., 2019). 047

Adapter add a small number of randomly initial- 048

ized parameters to a pre-trained model such that 049

fine-tuning only the Adapter, freezing the rest of 050

the pre-trained model, still performs competitively 051

with full fine-tuning. 052

In this paper, we consider the scenario where we 053

want to deploy a shared model for a large number 054

of tasks, in an online setting, such that models can 055

be quickly adapted to target tasks without access 056

to a lot of data. An example of such a setting 057

is a cloud-based ML service which allows users 058

to specialize models to their own NLP tasks with 059

scarce training data. Adapter are particularly useful 060

in such scenarios as they allow sharing a pre-trained 061

model backbone across tasks. However, adapter are 062

randomly initialized blocks of parameters which 063

can perform poorly when the target task has few 064

examples. Such scenarios pose a dual problem: 065

one of enabling parameter efficient fine-tuning, and 066

another of accurate few-shot learning. 067

Meta-learning (Schmidhuber, 1987; Bengio 068

et al., 2003; Thrun and Pratt, 2012) is often em- 069

ployed to learn effective few-shot learning models, 070

that can generalize to new unseen tasks with small 071

amounts of labelled data by learning from a distri- 072

bution of other related tasks. Within NLP, meta- 073

learning models have been developed for few-shot 074

learning on a diverse range of NLP tasks (Han et al., 075

2018; Brown et al., 2020; Bansal et al., 2020a). Of 076

particular interest in this work are gradient-based 077

methods (Finn et al., 2017) that learn a model ini- 078

tialization to enable few-shot learning with a few 079

steps of gradient descent. By directly optimizing 080

the training for few-shot fine-tuning, these methods 081

help mitigate the train-test mismatch in few-shot 082

learning and enable effective generalization to new 083

1



Figure 1: The proposed Meta-Adapter architecture.
Meta-Adapter surround the adapter layers from above
and below with very small bottleneck dimension(e.g.
≤32 in our experiment). Both Adapter block and Meta-
Adapter blocks are trained via meta-learning while only
the Adapter block is fine-tuned for each few-shot task.
Pre-trained model parameters in gray box are frozen
and never tuned, neither during meta-training phase nor
during fine-tuning phase.

few-shot tasks. However, existing applications of084

such meta-learning methods (Bansal et al., 2020a,b;085

Dou et al., 2019) don’t leverage existing pre-trained086

models and fine-tune the entire model making them087

inefficient when applied to many tasks.088

We thus develop a meta-learning model that089

enables accurate and parameter-efficient few-shot090

learning – utilizing a shared, frozen pre-trained091

model backbone that can rapidly adapt to down-092

stream tasks with only a handful of additional pa-093

rameters and labeled data per new task. Our ap-094

proach re-purposes an existing pre-trained trans-095

former model into an efficient few-shot learner by096

introducing Meta-Adapter, a small number of meta-097

learned parameters that modulate the pre-trained098

models activations to make them effective for few-099

106 107
108

Fine-tuned Parameters per Task (log-scale)

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

A
ve

ra
ge

 A
cc

ur
ac

y

48.4%

54.4%

59.9%60.0%

54.2%

59.9%

64.0%
62.7%

61.1%

64.2%

66.7%
65.3%

Adapter
Adapter
Fusion

Full Finetuning
(Hybrid-SMLMT)

Meta
Adapter

4-shot
8-shot
16-shot

Figure 2: Comparison of overall average accuracy
across 17 tasks vs the number of parameters fine-tuned
per task (on a log scale). Meta-Adapter fine-tune only
0.6% of total model paramters per task, are more effi-
cient and accurate than other adapter alternatives, and
competitive with a meta-learning approach that requires
full fine-tuning.

shot learning. Our objective is to enable parameter 100

efficient few-shot learning at inference time; the 101

Meta-Adapter are trained to “prime” the regular 102

adapter towards this objective on a wide variety 103

of few-shot tasks resembling the target tasks (Sec- 104

tion 3). Moreover, Meta-Adapter are more efficient 105

to train than contemporary meta-learning models 106

as they only train a subset of the full model. On 107

a suite of 17 few-shot classification tasks, our re- 108

sults indicate that Meta-Adapter are better than 109

randomly initialized adapter (Houlsby et al., 2019) 110

for few-shot learning, are more accurate and effi- 111

cient than multi-task fusion adapter (Pfeiffer et al., 112

2021), and perform competitively with previous 113

state-of-the-art meta-learning methods that involve 114

full fine-tuning (Bansal et al., 2020b), while only 115

adding 0.6% model parameters per task (Figure 2). 116

2 Background 117

Adapter (Houlsby et al., 2019) are blocks of feed- 118

forward layers, comprising of a downward projec- 119

tion followed by an upward projection, that are 120

added between subsequent layers of a pre-trained 121

transformer model. Let θ denote the parameters of 122

the transformer and ϕ the parameters of the adapter. 123

Then given a target task T , with some data, Dtr
T , 124

and loss function, LT (·), adapter minimize the fol- 125

lowing objective using a gradient descent routine, 126

termed as fine-tuning: 127

min
ϕ
LT (θ, ϕ;Dtr

T ) (1) 128

2



where adapter ϕ are often initialized randomly129

(Houlsby et al., 2019). Note that the size of ϕ≪ θ,130

leading to parameter savings when the same model131

parameters θ are re-used for many tasks {T}.132

However, as ϕ are randomly initialized they may133

not perform well in the few-shot setting where134

Dtr
T is very small, for instance when there are135

only 4 examples per label. Moreover, the origi-136

nal pre-trained model is not optimized for few-shot137

learning and can lead to sub-optimal performance138

(Bansal et al., 2020b).139

Alternatively, few-shot problems are often for-140

mulated as meta-learning problems. We refer the141

reader to Hospedales et al. (2020) for a comprehen-142

sive review. Our work builds on model agnostic143

meta-learning (MAML) (Finn et al., 2017) which,144

given a distribution over tasks, learns a model ini-145

tialization for better few-shot learning with a few146

steps of gradient descent. This involves an inner147

loop of task-specific fine-tuning and an outer loop148

of optimizing the inner loop performance across149

tasks. Note that the inner loop corresponds di-150

rectly to the inference method applied to any new151

task, that is, gradient-based fine-tuning. MAML-152

based methods have been explored in prior work153

for improving few-shot learning (Dou et al., 2019;154

Bansal et al., 2020b). However, these methods re-155

quire fine-tuning the entire network at inference156

time and optimizing the entire model parameters at157

training time. This makes fine-tuning very ineffi-158

cient when applied to many tasks at once and also159

doesn’t leverage existing self-supervised models160

pre-trained on large amounts of unlabeled data.161

3 Meta-Adapter162

Our goal for parameter efficient learning is two-163

fold: (1) leverage and re-purpose existing pre-164

trained model into a better few-shot learner; (2)165

make fine-tuning parameter efficient by sharing166

the pre-trained model backbone and introducing167

only a fraction of parameter overhead for each new168

task. We thus introduce Meta-Adapter, which are169

meta-learned adapter layers inserted between layers170

of a frozen pre-trained model to improve perfor-171

mance in few-shot learning. Meta-Adapter have the172

same architecture as feed-forward adapter layers173

(Houlsby et al., 2019) and differ in their placement174

in the model architecture, their training and usage.175

Whereas adapter are randomly initialized and fine-176

tuned per task, Meta-Adapter are trained parame-177

ters that are not fine-tuned on new tasks but instead178

modulate the activations of the pre-trained model in 179

the forward and backward pass during fine-tuning 180

to allow better few-shot learning. Figure 1 shows 181

an overview of the approach. 182

Meta-Adapter operate in conjunction with reg- 183

ular adapter and are trained to enable parameter- 184

efficient few-shot learning. In particular, consider 185

a transformer model layer with adapter added af- 186

ter the two sets of feed-forward blocks, as shown 187

in Fig.1. The Meta-Adapter layers sandwich the 188

adapter layers from above and below, and consist of 189

a two-layer feed-forward network with a downward 190

projection bottleneck. The bottleneck dimension is 191

typically small, a hyper-parameter ≤ 32 in our ex- 192

periments, that keeps the number of Meta-Adapter 193

parameters manageable. During the Meta-Adapter 194

training phase, it is optimized to improve the regu- 195

lar adapter fine-tuning with few-shot training task 196

data. During inference, each few-shot target task is 197

then solved by fine-tuning only the regular adapter, 198

freezing the rest of the model to achieve parameter 199

efficiency. 200

Denoting ω as the Meta-Adapter parameters, ϕ 201

as the adapter parameters, and θ as the pre-trained 202

transformer parameters, the objective for each indi- 203

vidual task, T, remains similar to regular adapter: 204

205

ϕT ← argmin
ϕ
LT (θ, ϕ, ω;DT ) (2) 206

Note that ω is not fine-tuned for individual task 207

T but it still modulates the activations in the for- 208

ward pass as well as the backward pass. Thus, ω 209

needs to be optimized to directly improve adapter 210

fine-tuning with few-shot data, which leads to the 211

following objective: 212

min
ω

ET [LT (θ, ϕT , ω;DT )] (3) 213

where ϕT is obtained from the minimization in (2). 214

Computing these nested minimization to conver- 215

gence will be computationally infeasible. We thus 216

approximate these by few-steps of gradient descent. 217

This can then be formulated as a meta-learning 218

problem involving bi-level optimization, and is re- 219

lated to model agnostic meta-learning (MAML). 220

We use the episodic framework (Vinyals et al., 221

2016; Finn et al., 2017) for solving the problem 222

in equation (3), where each episode samples a few- 223

shot task with a training data Dtr and validation 224

data Dval. Dtr is then used for the minimization 225

in (2) and Dval is used for the minimization in (3). 226

This leads to the following inner and outer loop 227

3



updates for training the Meta-Adapter:228

Inner: ϕ′
T ← ϕ− α∇ϕLT (θ, ϕ, ω,Dtr

T ) (4)229

Outer: (5)230

ω ← ω − β ∇ωET∼P(T )

[
LT (θ, ω, ϕ

′
T ,Dval

T )
]

231

ϕ← θ − β ∇ϕET∼P(T )

[
LT (θ, ω, ϕ

′
T ,Dval

T )
]

232

α← θ − β ∇αET∼P(T )

[
LT (θ, ω, ϕ

′
T ,Dval

T )
]

233

The inner loop (4) is carried out for multiple234

steps of gradient descent. Through these steps, note235

that we also learn an initialization of the adapter ϕ236

in preparation for few-shot learning, in addition to237

training the Meta-Adapter ω. Thus, there is no ran-238

dom initialization for adapter, nor the selection of239

hyper-parameters for the initialization (like scale),240

anymore that needs to be set for each down-stream241

task. In addition, we also treat the inner loop learn-242

ing rate α, in (4), as a learnable parameter. Fol-243

lowing (Bansal et al., 2020a), we use a different244

learning rate for each adapter in each layer. The245

inner loop directly corresponds to the inference246

procedure on any new task, thus this removes the247

requirement to set another crucial hyper-parameter248

for each new task as the learned learning rates are249

re-used for fine-tuning on new tasks.250

Training Tasks: Meta-learning the Meta-251

Adapter (equation 4, 5) requires a distribution of252

tasks P(T ), as is typical in meta-learning methods253

(Vinyals et al., 2016; Finn et al., 2017). Tasks are254

sampled from this distribution to learn models255

for few-shot learning. Ideally, this distribution256

of tasks should be large and diverse to enable257

learning of effective models that can generalize258

to new tasks. We follow prior work (Bansal259

et al., 2020b) and use a combination of supervised260

and unsupervised tasks to provide a diverse261

distribution of training tasks. The supervised tasks262

come from the set of GLUE tasks (Wang et al.,263

2018) that comprise of 8 diverse tasks requiring264

sentence-level understanding. In addition we265

use the cloze-style SMLMT tasks proposed in266

Bansal et al. (2020a). These are self-supervised,267

blank-filling tasks (Devlin et al., 2019), that are268

automatically created from unlabeled text and were269

shown to be a useful source of meta-training tasks270

for few-shot learning. We thus create millions271

of such self-supervised tasks and combine them272

with supervised GLUE tasks for training the273

Meta-Adapter. In an episode of training, we274

sample a GLUE task with probability λ or a 275

self-supervised task with probability 1− λ. 276

Summary: Meta-Adapter are meta-learned 277

adapter layers that are trained to enable parameter 278

efficient few-shot learning. They are inserted in 279

a pre-trained transformer and used alongside the 280

regular adapter. The training of Meta-Adapter 281

proceeds in meta-learning episodes. In each 282

episode a training task is sampled, the adapter are 283

fine-tuned on the task data (4) and the performance 284

of the fine-tuned model, as evaluated by the loss 285

on task’s validation data, is used as the error to 286

train (5) the parameters of the Meta-Adapter. In 287

addition, this training also learns the initialization 288

of the adapter used for fine-tuning along with the 289

learning rate to use for fine-tuning the adapter. 290

At inference time, parameters of the pre-trained 291

model and the Meta-Adapter are fixed, and the 292

adapter are fine-tuned for each target task using 293

the learned learning rates. 294

4 Experiments 295

In this section, we evaluate the Meta-Adapter for 296

their utility in few-shot learning of new unseen 297

tasks and compare them with contemporary meth- 298

ods that utilize adapter as well as meta-learning 299

methods for few-shot learning. 300

4.1 Experimental Setup 301

Unlike existing applications of adapter (see sec- 302

tion. 5), our work evaluates the utility of adapter 303

in a transfer learning setting where only few ex- 304

amples are available for each task. For this, we 305

consider a suite of 17 downstream classification 306

tasks. The tasks are obtained from the few-shot 307

datasets released1 by prior work on few-shot learn- 308

ing (Bansal et al., 2020a), making our results com- 309

parable with previously published results on these 310

tasks. All evaluations are in the k-shot setting, with 311

k = 4, 8, 16, where k is the number of examples 312

per label. 313

Evaluation Tasks: The downstream classifica- 314

tion tasks fall into the following categories: (1) 315

Sentiment classification (4 tasks): 4 domains of 316

sentiment classification on Amazon reviews; (2) 317

Rating classification (5 tasks): 4 domains of 318

ternary rating classification (high, medium, low) 319

on Amazon reviews and classifying tweets about 320

Airline into ternary sentiment; (3) Entity typing (2 321

1https://github.com/iesl/leopard

4

https://github.com/iesl/leopard


tasks): two domains (news and restaurant queries)322

of classifying phrases in a sentence into entity323

types; (4) Natural language inference (1 task): sci-324

entific domain dataset for entailment classifica-325

tion; (5) Political classification (3 tasks): catego-326

rizing tweets into whether or not it has a political327

bias, classifying the intended audience for a politi-328

cal tweet (constituency, national), and classifying329

the substance of the text into fine-graned topics;330

(6) Other text classification (2 tasks): classifying331

tweets into whether or not they indicate a disaster332

and fine-grained classification into emotions.333

Models Evaluated: We evaluate some state-of-334

the-art models for both parameter-efficient learning335

as well as few-shot learning in our experimental336

setup. We consider the following models in our337

evaluation.338

1. Adapter (Houlsby et al., 2019): The origi-339

nal adapter approach that only fine-tunes the340

adapter parameters.341

2. Adapter-Fusion (Pfeiffer et al., 2021): A re-342

cent approach that trains adapter on multiple343

tasks, e.g. GLUE tasks, and then learns to344

compose them using attention mechanism (see345

section 5).346

3. Hybrid-SMLMT (Bansal et al., 2020b): A347

meta-learning approach for few-shot learning348

that fine-tunes almost all parameters and does349

not include any adapter.350

4. Meta-Adapter: the proposed model351

352

Implementation Details: Note that Adapter-353

Fusion (Pfeiffer et al., 2021) wasn’t evaluated in354

the few-shot setting, however, since it combines355

many trained multi-task adapter together, it can356

be a competitive alternative for few-shot scenar-357

ios. We use their released GLUE fusion adapter358

and their released code for evaluations. For fair359

comparisons, Adapter-Fusion and Hybrid-SMLMT360

only use GLUE supervised tasks for their training.361

All the compared methods use the same underlying362

BERT model, so that differences in performance363

are not due to using different models. We use the re-364

leased Hybrid-SMLMT code to train this model as365

the released model used cased BERT model while366

all the other models used uncased BERT models.367

Our implementation results are comparable with368

those reported in Bansal et al. (2020b). Note that369

Hybrid-SMLMT fine-tunes about half of the param-370

eters, as they found it beneficial to freeze alternate371

layers during fine-tuning (Bansal et al., 2020b). 372

Hyper-parameters for the Meta-Adapter are avail- 373

able in the Appendix A. We will publicly release 374

our trained models and code. 375

4.2 Results 376

We evaluate the baseline models and the proposed 377

approach on the evaluation tasks. Each task is 378

evaluated using 10 random few-shot training sets 379

for k = 4, 8, 16, totalling 340 evaluations across 380

the 17 tasks for each model. First, we summarize 381

the overall results across all the tasks. Then we 382

perform several ablations to better understand the 383

performance of Meta-Adapter. 384

Overall Results: The overall results on all the 385

tasks can be seen in Fig. 2. Here we analyze the 386

overall average performance across the 17 tasks, 387

to get an estimate of how the models compare on 388

the two axes of few-shot accuracy and parame- 389

ter efficiency. On parameter efficiency, the Meta- 390

Adapter are orders of magnitude more efficient than 391

both Adapter-Fusion (5%) and Hybrid-SMLMT 392

(0.6%). Since we use a significantly smaller bottle- 393

neck size than Adapter, the Meta-Adapter are also 394

more efficient than Adapter. We show in ablations 395

later that Adapter perform worse when compared 396

to similar size Meta-Adapter. This indicates that 397

Meta-Adapter can enable increased parameter ef- 398

ficiency without compromising on accuracy. Now, 399

lets look at the overall few-shot accuracy and first 400

consider the 4-shot setting. Interestingly, not only 401

are the Meta-Adapter most efficient, they perform 402

just as accurately as the best performing baseline 403

model, Hybrid-SMLMT, that does full fine-tuning. 404

In the 8-shot setting, Meta-Adapter are still com- 405

petitive with full fine-tuning, albeit slightly worse, 406

and better than both the parameter-efficient base- 407

lines, Adapter and Adapter-Fusion, by a large mar- 408

gin. Note, that Adapter-Fusion are better at transfer 409

learning than regular Adapter, however, they are 410

less parameter-efficient than the other models. 411

Results on Individual Tasks: Table 1 shows the 412

results on the individual tasks. For sentiment and 413

rating classification tasks on Amazon reviews, we 414

show the average results across the 4 domains to 415

avoid repetition of related tasks. In the 4-shot 416

setting, Meta-Adapter performance is better than 417

all the other parameter-efficient methods on 9 out 418

the 11 task types, and is competitive with the full 419

fine-tuning approach. In the 8-shot setting, Meta- 420

Adapter are better than Adapter or Adapter-Fusion 421

5



Task N k Adapter Adapter-Fusion HSMLMT Meta-Adapter
0.03x 0.41x 1.00x 0.01x

CoNLL 4
4 53.4 ± 7.8 41.6 ± 4.4 59.9 ± 5.4 64.1 ± 2.9

8 69.2 ± 4.0 63.6 ± 5.8 70.4 ± 3.5 71.3 ± 3.1

16 78.1 ± 3.5 78.4 ± 3.8 79.4 ± 1.5 77.9 ± 1.4

Restaurant 8
4 50.0 ± 4.3 36.5 ± 4.3 56.3 ± 3.7 55.9 ± 5.0

8 70.6 ± 2.8 61.3 ± 8.6 70.0 ± 2.4 67.6 ± 2.5

16 76.6 ± 3.1 68.7 ± 6.2 76.8 ± 2.2 73.9 ± 1.7

Airline 3
4 51.2 ± 9.7 62.7 ± 6.1 60.6 ± 6.8 60.9 ± 5.8

8 61.1 ± 8.3 67.1 ± 4.6 66.9 ± 6.2 66.3 ± 3.1

16 68.3 ± 4.2 69.1 ± 3.0 70.1 ± 3.1 67.3 ± 2.6

Disaster 2
4 56.1 ± 6.4 56.6 ± 7.7 63.1 ± 8.0 61.6 ± 10.1

8 62.7 ± 6.5 60.8 ± 7.4 66.3 ± 4.9 66.1 ± 4.8

16 69.1 ± 3.0 65.5 ± 7.1 72.1 ± 3.2 70.7 ± 3.8

Political Audience 2
4 51.9 ± 3.1 51.8 ± 3.1 55.9 ± 4.8 57.0 ± 4.9

8 55.6 ± 2.7 57.1 ± 4.5 59.6 ± 4.6 59.9 ± 2.8

16 61.3 ± 4.5 57.0 ± 3.8 62.6 ± 3.7 62.7 ± 2.5

Political Bias 2
4 60.0 ± 6.0 56.3 ± 6.1 60.3 ± 7.6 61.2 ± 6.9

8 62.0 ± 4.8 61.9 ± 4.2 65.8 ± 4.9 62.7 ± 5.4

16 65.5 ± 3.3 65.5 ± 3.7 68.5 ± 2.1 66.4 ± 2.3

Political Message 9
4 17.6 ± 2.0 19.6 ± 2.2 17.5 ± 2.0 18.0 ± 1.8

8 20.7 ± 1.8 20.9 ± 2.7 19.5 ± 2.0 19.8 ± 2.0

16 24.2 ± 2.2 23.6 ± 3.2 21.6 ± 2.5 20.6 ± 1.8

Emotion 13
4 11.6 ± 1.3 11.7 ± 1.8 12.2 ± 1.3 12.3 ± 1.7

8 14.3 ± 1.7 15.6 ± 2.7 13.7 ± 1.6 12.8 ± 0.9

16 15.9 ± 1.0 16.4 ± 2.3 14.9 ± 0.9 13.2 ± 1.1

Scitail 2
4 53.8 ± 6.5 53.7 ± 05.9 80.0 ± 4.9 78.4 ± 4.3

8 58.4 ± 4.3 57.4 ± 10.2 82.0 ± 1.0 78.1 ± 1.8

16 64.3 ± 4.7 70.5 ± 4.4 82.8 ± 1.0 79.5 ± 2.2

Amazon Sentiment 2
4 60.7 ± 6.3 80.7 ± 2.9 81.7 ± 2.9 81.7 ± 2.7

8 66.5 ± 6.3 80.3 ± 4.9 83.9 ± 1.1 82.4 ± 2.1

16 75.4 ± 4.5 82.7 ± 2.5 84.3 ± 1.1 83.5 ± 1.0

Amazon Rating 3
4 43.5 ± 8.3 52.9 ± 9.7 56.6 ± 8.0 55.8 ± 7.3

8 45.2 ± 7.2 58.0 ± 5.9 59.3 ± 5.4 57.8 ± 5.7

16 53.7 ± 5.2 61.3 ± 3.1 62.0 ± 3.0 60.9 ± 3.8

Overall Average
4 48.4 56.8 59.9 60.0
8 54.2 59.9 64.0 62.7
16 61.1 64.2 66.7 65.3

Table 1: k-shot accuracy on downstream classification tasks not seen in training. 0.01x indicates that the model
fine-tunes 1% parameters per task compared to Hybrid-SMLMT.

6



Model Adapter Trainable Fine-tuned Meta-Training
Size Params Params / Task Speedup

Hybrid-SMLMT — 110,270,354 53,582,721 1.00x
Meta-Adapter 8 1,453,588 351,936 0.75x
Meta-Adapter 16 2,043,796 647,040 0.85x

Adapter-Fusion 48 7,457,853 21,844,226 —
Adapter 48 — 1,486,658 —

Table 2: Summary of sizes of adapter, trainable adapter
parameters, fine-tuned adapter parameters and the
speedup in training when using Meta-Adapter compared
with Hybrid-SMLMT.

Model Vocab Adapter Size 4-shot 8-shot

Adapter Uncased 48 55.6 64.3
Adapter Uncased 16 55.1 57.6

MAML-Adapter Cased 16 66.1 72.5
Meta-Adapter Cased 16 68.2 74.6

Meta-Adapter Uncased 8 69.7 74.6
Meta-Adapter Uncased 16 74.6 77.5
Meta-Adapter Uncased 32 70.3 76.5

Table 3: Ablations for Meta-Adapter.

in 7 out of the 11 task types. Overall, these results422

indicate that Meta-Adapter lead to accurate few-423

shot learning compared to other parameter-efficient424

alternatives. Compared to full fine-tuning, we see425

that Meta-Adapter perform competitively on most426

tasks, and the largest drop in accuracy is on the427

Scitail task.428

Summary: Meta-Adapter are the most429

parameter-efficient (Figure 2), fine-tuning only430

0.6% of total model parameters per task, and are431

more accurate at few-shot learning than compet-432

itive approaches of Adapter and Adpater-Fusion433

while using less parameters to fine-tune. Table 2,434

summarizes key properties of the various models435

evaluated. Meta-Adapter is also much faster in436

training time compared to Hybrid-SMLMT, a437

full fine-tuning based meta-learning approach,438

as Meta-Adapter have much lesser number of439

parameters to train.440

4.3 Ablations441

We analyze how the performance of Meta-Adapter442

and the baselines varies with some crucial hyper-443

parameters. We consider validation data from 3444

tasks: CoNLL, Scitail, and Amazon Electronics, to445

perform the ablations and report the overall average446

accuracy using 10 different few-shot training sets447

for each task.448

Meta-learning without Meta-Adapter: First 449

we consider whether Meta-Adapter contribute to 450

improvements in few-shot learning. For this we 451

consider a meta-learning model that skips the Meta- 452

Adapter altogether but still learns an initializa- 453

tion of adapter modules for few-shot fine-tuning. 454

This approach is akin to adding adapter to an ex- 455

isting model and using the MAML (Finn et al., 456

2017) approach to learn their initialization. Ta- 457

ble 3 compares Meta-Adapter with this ablation, 458

termed MAML-Adapter. We can see that this leads 459

to a large drop in average accuracy in both 4-shot 460

and 8-shot settings, while there is no other benefit 461

in parameter-efficiency from this approach. This 462

shows that Meta-Adapter help in improving the 463

few-shot accuracy. 464

Size of Adapter and Meta-Adapter: Next we 465

consider how the sizes of the adapter effect ac- 466

curacy. Prior work on Adapter have explored this 467

in-depth (Houlsby et al., 2019; Pfeiffer et al., 2021), 468

and larger adapter often work better. We consider 469

two size of adapter, 48 and 16. We use size 48 as it 470

is also the size that worked best for Adapter-Fusion 471

and we use the smaller size 16 to compare with the 472

Meta-Adapter. Note that in the few-shot setting, it 473

is not feasible to find the best size for each given 474

task, as in prior work (Houlsby et al., 2019), due 475

to unavailability of validation data. Comparing the 476

two Adapter sizes, in Table 3, we find that larger 477

adapter performs better, specially in the 8-shot set- 478

ting. However, Meta-Adapter allow comparatively 479

better accuracy even with increased efficiency. We 480

can see that at the same size of 16, Meta-Adapter 481

is better by a large margin than Adapter. As we 482

vary the size of the Meta-Adapter, we find that even 483

at the smaller size of 8, they are still better than 484

Adapter of size 16, 48. Interestingly, we observed 485

better performance of Meta-Adapter at size 16 than 486

at size 32. 487

Effect of model vocabulary An interesting axis 488

that affects overall performance is the choice of 489

the pre-trained model vocabulary. We explored 490

cased and uncased BERT-base models in conjunc- 491

tion with Meta-Adapter. We found that the uncased 492

models consistently performed much better than 493

the cased models (Table 3). This is likely because 494

the downstream classification tasks often contain 495

noisy user generated text. The choice of uncased 496

BERT model also makes our results comparable 497

with prior work (Pfeiffer et al., 2021). 498

7



5 Related Work499

Since their introduction, adapter (Houlsby et al.,500

2019) have been widely applied (Houlsby et al.,501

2019; Stickland and Murray, 2019; Bapna and502

Firat, 2019; Rücklé et al., 2020) as a parameter-503

efficient finetuning method for large transformer-504

based (Vaswani et al., 2017) pre-trained models,505

such as BERT (Devlin et al., 2019). Prefix-tuning506

(Li and Liang, 2021), also known as prompt-tuning507

(Lester et al., 2021), is another line of popular light-508

weight finetuning methods which fine-tune contin-509

uous task-specific representations while keeping510

the large pre-trained parameters untouched. In511

contrast to adapter which insert task-specific pa-512

rameters in between layers, these models pre-pend513

a trainable task-specific representations to either514

the input layer (Lester et al., 2021) or on every515

layer (Li and Liang, 2021). While these methods516

are promising in terms of parameter-efficient fine-517

tuning methods, with its active research progress518

in multi-task (Houlsby et al., 2019; Stickland and519

Murray, 2019) and transfer learning (Pfeiffer et al.,520

2020), we choose adapter framework to develop521

our proposed approach as prompt-tuning has been522

shown to only exceed fine-tuning at very large523

model scales (Lester et al., 2021).524

Multi-task adapter (Stickland and Murray, 2019)525

is perhaps the first work that applied adapter to526

multi-task learning. In this framework, given M527

tasks, pre-trained parameters θ are fine-tuned along528

with a set of M task-specific parameters. How-529

ever, in follow-up work, Adapter-Fusion (Pfeiffer530

et al., 2021) shows that a model that simply com-531

bines adapter from multiple tasks through attention,532

without updating the pre-trained model θ, performs533

better than multi-task adapter. The idea in Adapter-534

Fusion is that rather than fine-tuning the shared535

θ parameters for multi-task, they instead learn an536

adapter-fusion layer that combines all M source537

task adapter to benefit each of the tasks. While538

Adapter-Fusion has the capability to transfer to539

unseen target tasks outside of the N source tasks,540

Pfeiffer et al. (2021) only test it when target task is541

part of the source tasks. In this paper, by choosing542

Adapter-Fusion as our baseline, we test its efficacy543

in few-shot learning of new target tasks. While544

Adapter-Fusion is much more efficient than multi-545

task adapter, it uses a larger amount of parameters546

compared to standard adapter due to fusion layers547

working on the full dimension of the pre-trained548

model, e.g. 768 for BERT-base.549

Within meta-learning literature (Hospedales 550

et al., 2020), our work is related to methods (Kos- 551

saifi et al., 2019; Flennerhag et al., 2020) that em- 552

bed tensor projections in convolution networks for 553

improved gradient conditioning in a meta-learning 554

model. Other approaches (Mishra et al., 2018; Zint- 555

graf et al., 2019; Lee and Choi, 2018) have explored 556

meta-learning with shared paramaters across tasks 557

with goals of better convergence or avoiding over- 558

fitting. However, these prior methods don’t lever- 559

age pre-trained models and are not developed for 560

parameter-efficient fine-tuning. 561

Meta-learning methods (Vinyals et al., 2016; 562

Santoro et al., 2016; Finn et al., 2017) have of- 563

ten been employed to enable better few-shot learn- 564

ing on many NLP tasks (Han et al., 2018; Gao 565

et al., 2019; Dou et al., 2019; Bansal et al., 2020a,b; 566

Ye et al., 2021). We compare with a recent few- 567

shot learning work in NLP (Bansal et al., 2020b) 568

that uses the MAML (Finn et al., 2017) approach 569

on self-supervised tasks for few-shot classification. 570

Their approach isn’t parameter efficient whereas 571

the proposed approach using Meta-Adapter per- 572

forms comparably with a fraction of parameters 573

for fine-tuning. Alternative methods for few-shot 574

learning include very large pre-trained language 575

models like GPT-3 (Brown et al., 2020) that don’t 576

fine-tune any parameters and use natural language 577

prompts for few-shot learning. However they can 578

be sensitive to prompt-orders (Lu et al., 2021), have 579

a limited context length due to which they don’t 580

scale to larger datasets, and have high latency in 581

inference due to their size. Extensions of Meta- 582

Adapter to the soft-prompting approach (Li and 583

Liang, 2021), in few-shot settings, can be a promis- 584

ing avenue for future work. 585

6 Conclusion 586

We introduced Meta-Adapter, a parameter-efficient 587

fine-tuning method for few-shot learning. Our find- 588

ings indicate that Meta-Adapter performs better 589

than existing parameter-efficient methods for trans- 590

fer learning and are competitive with meta-learning 591

methods for few-shot learning, while only fine- 592

tuning a fraction (0.6%) of the model parameters 593

for each task. These results indicate that Meta- 594

Adapter enable extremely parameter-efficient few- 595

shot learning and can be deployed to serve hun- 596

dreds of tasks simultaneously with a shared pre- 597

trained model, while only doubling the total num- 598

ber of parameters. 599

8



References600

Trapit Bansal, Rishikesh Jha, and Andrew McCallum.601
2020a. Learning to few-shot learn across diverse nat-602
ural language classification tasks. In Proceedings of603
the 28th International Conference on Computational604
Linguistics (COLING), pages 5108–5123.605

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,606
and Andrew McCallum. 2020b. Self-supervised607
meta-learning for few-shot natural language classifi-608
cation tasks. In Proceedings of the 2020 Conference609
on Empirical Methods in Natural Language Process-610
ing (EMNLP), pages 522–534.611

Ankur Bapna and Orhan Firat. 2019. Simple, scal-612
able adaptation for neural machine translation. In613
Proceedings of the 2019 Conference on Empirical614
Methods in Natural Language Processing and the615
9th International Joint Conference on Natural Lan-616
guage Processing (EMNLP-IJCNLP), pages 1538–617
1548, Hong Kong, China. Association for Computa-618
tional Linguistics.619

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and620
Christian Janvin. 2003. A neural probabilistic lan-621
guage model. The journal of machine learning re-622
search, 3:1137–1155.623

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie624
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind625
Neelakantan, Pranav Shyam, Girish Sastry, Amanda626
Askell, et al. 2020. Language models are few-shot627
learners. arXiv preprint arXiv:2005.14165.628

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and629
Kristina Toutanova. 2019. BERT: Pre-training of630
deep bidirectional transformers for language under-631
standing. In Proceedings of the 2019 Conference of632
the North American Chapter of the Association for633
Computational Linguistics: Human Language Tech-634
nologies, Volume 1 (Long and Short Papers), pages635
4171–4186.636

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.637
2019. Investigating meta-learning algorithms for638
low-resource natural language understanding tasks.639
In Proceedings of the 2019 Conference on Empirical640
Methods in Natural Language Processing and the 9th641
International Joint Conference on Natural Language642
Processing (EMNLP-IJCNLP), pages 1192–1197.643

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.644
Model-agnostic meta-learning for fast adaptation of645
deep networks. In Proceedings of the 34th Interna-646
tional Conference on Machine Learning - Volume 70,647
pages 1126–1135.648

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu,649
Francesco Visin, Hujun Yin, and Raia Hadsell. 2020.650
Meta-learning with warped gradient descent. In In-651
ternational Conference on Learning Representations.652

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng653
Li, Maosong Sun, and Jie Zhou. 2019. FewRel 2.0:654

Towards more challenging few-shot relation classi- 655
fication. In Proceedings of the 2019 Conference on 656
Empirical Methods in Natural Language Processing 657
and the 9th International Joint Conference on Natu- 658
ral Language Processing (EMNLP-IJCNLP), pages 659
6251–6256, Hong Kong, China. Association for Com- 660
putational Linguistics. 661

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, 662
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A 663
large-scale supervised few-shot relation classification 664
dataset with state-of-the-art evaluation. In Proceed- 665
ings of the 2018 Conference on Empirical Methods 666
in Natural Language Processing, pages 4803–4809. 667

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, 668
and Amos Storkey. 2020. Meta-learning in neural net- 669
works: A survey. arXiv preprint arXiv:2004.05439. 670

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 671
Bruna Morrone, Quentin De Laroussilhe, Andrea 672
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 673
Parameter-efficient transfer learning for nlp. In Inter- 674
national Conference on Machine Learning. 675

Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, 676
and Maja Pantic. 2019. T-net: Parametrizing fully 677
convolutional nets with a single high-order tensor. In 678
Proceedings of the IEEE/CVF Conference on Com- 679
puter Vision and Pattern Recognition, pages 7822– 680
7831. 681

Yoonho Lee and Seungjin Choi. 2018. Gradient-based 682
meta-learning with learned layerwise metric and sub- 683
space. In International Conference on Machine 684
Learning, pages 2927–2936. 685

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 686
The power of scale for parameter-efficient prompt 687
tuning. 688

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 689
Optimizing continuous prompts for generation. 690

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 691
and Pontus Stenetorp. 2021. Fantastically ordered 692
prompts and where to find them: Overcoming 693
few-shot prompt order sensitivity. arXiv preprint 694
arXiv:2104.08786. 695

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and 696
Pieter Abbeel. 2018. A simple neural attentive meta- 697
learner. In International Conference on Learning 698
Representations. 699

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 700
Kyunghyun Cho, and Iryna Gurevych. 2021. 701
Adapterfusion: Non-destructive task composition for 702
transfer learning. In Proceedings of the 16th Con- 703
ference of the European Chapter of the Association 704
for Computational Linguistics: Main Volume, pages 705
487–503. 706

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se- 707
bastian Ruder. 2020. MAD-X: An Adapter-Based 708
Framework for Multi-Task Cross-Lingual Transfer. 709

9

https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://openreview.net/forum?id=rkeiQlBFPB
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617


In Proceedings of the 2020 Conference on Empirical710
Methods in Natural Language Processing (EMNLP),711
pages 7654–7673, Online. Association for Computa-712
tional Linguistics.713

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine714
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,715
Wei Li, and Peter J Liu. 2019. Exploring the limits716
of transfer learning with a unified text-to-text trans-717
former. arXiv preprint arXiv:1910.10683.718

Andreas Rücklé, Jonas Pfeiffer, and Iryna Gurevych.719
2020. MultiCQA: Zero-shot transfer of self-720
supervised text matching models on a massive scale.721
In Proceedings of The 2020 Conference on Empirical722
Methods in Natural Language Processing (EMNLP-723
2020), Virtual Conference.724

Adam Santoro, Sergey Bartunov, Matthew Botvinick,725
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-726
learning with memory-augmented neural networks.727
In International conference on machine learning,728
pages 1842–1850.729

Jürgen Schmidhuber. 1987. Evolutionary principles in730
self-referential learning, or on learning how to learn:731
the meta-meta-... hook. Ph.D. thesis, Technische732
Universität München.733

Asa Cooper Stickland and Iain Murray. 2019. BERT734
and PALs: Projected attention layers for efficient735
adaptation in multi-task learning. In Proceedings of736
the 36th International Conference on Machine Learn-737
ing, volume 97 of Proceedings of Machine Learning738
Research, pages 5986–5995. PMLR.739

Sebastian Thrun and Lorien Pratt. 2012. Learning to740
learn. Springer Science & Business Media.741

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob742
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz743
Kaiser, and Illia Polosukhin. 2017. Attention is all744
you need. In Advances in neural information pro-745
cessing systems, pages 5998–6008.746

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,747
Daan Wierstra, et al. 2016. Matching networks for748
one shot learning. In Advances in neural information749
processing systems, pages 3630–3638.750

Alex Wang, Amanpreet Singh, Julian Michael, Felix751
Hill, Omer Levy, and Samuel R Bowman. 2018.752
Glue: A multi-task benchmark and analysis platform753
for natural language understanding. arXiv preprint754
arXiv:1804.07461.755

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren.756
2021. Crossfit: A few-shot learning challenge for757
cross-task generalization in nlp. arXiv preprint758
arXiv:2104.08835.759

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja760
Hofmann, and Shimon Whiteson. 2019. Cavia: Fast761
context adaptation via meta-learning. In Interna-762
tional Conference on Machine Learning.763

Hyper-parameter Value
Tasks per batch 16

Attention dropout 0.1
Hidden Layer Dropout 0.1

Outer Loop Learning Rate 1e-05
Inner Loop Steps 6

Meta-training Steps 540k
Lowercase text True

Sequence Length 128
Learning-rate Warmup 10% of steps

Number of SMLMT Tasks 4 Million∣∣Dtr
T

∣∣ 60∣∣Dval
T

∣∣ 10
Number of classes for SMLMT tasks [2,3,4,5]
GLUE vs SMLMT sampling ratio λ 0.25

Table 4: Hyper-parameters used in meta-training.

A Additional Implementation Details 764

Hyper-parameters used in the meta-training phase 765

are given in Table 4. 766

For fine-tuning on target tasks we tune need to 767

specify the number of steps. Instead of tuning 768

the number of steps for Meta-Adapter and Hybrid- 769

SMLMT (Bansal et al., 2020b), we found it better 770

to instead tune a training loss threshold and fine- 771

tune until the loss reaches that threshold. The loss 772

thresholds for Meta-Adapter are as follows: (1) 4- 773

shot: 1e-3 ; (2) 8-shot: 1e-2 ; (3) 16-shot: 1e-2. 774

Following Bansal et al. (2020b), we use a batch- 775

size of 4 and scale the batch-size with the number 776

of labels per task. 777

Fine-tuning hyper-parameters for adapters and 778

adapter-fusion include the learning rate and num- 779

ber of epochs. We sweep over values for learning 780

rates in {1e − 3, 1e − 4, 1e − 5} and epochs in 781

{10, 20, 50, 100, 150, 200} to pick the best hyper- 782

parameters for each k-shot. 783

10

https://arxiv.org/abs/2010.00980
https://arxiv.org/abs/2010.00980
https://arxiv.org/abs/2010.00980
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html

