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ABSTRACT

Adversarial examples arise from excessive sensitivity of a model. Commonly
studied adversarial examples are malicious inputs, crafted by an adversary from
correctly classified examples, to induce misclassification. This paper studies an
intriguing, yet far overlooked consequence of the excessive sensitivity, that is, a
misclassified example can be easily perturbed to help the model to produce correct
output. Such perturbed examples look harmless, but actually can be maliciously
utilized by a false friend to make the model self-satisfied. Thus we name them
hypocritical examples. With false friends like these, a poorly performed model
could behave like a state-of-the-art one. Once a deployer trusts the hypocritical
performance and uses the “well-performed” model in real-world applications, po-
tential security concerns appear even in benign environments. In this paper, we
formalize the hypocritical risk for the first time and propose a defense method spe-
cialized for hypocritical examples by minimizing the tradeoff between natural risk
and an upper bound of hypocritical risk. Moreover, our theoretical analysis reveals
connections between adversarial risk and hypocritical risk. Extensive experiments
verify the theoretical results and the effectiveness of our proposed methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved breakthroughs in a variety of challenging problems
such as image understanding (Krizhevsky et al., 2012), speech recognition (Graves et al., 2013),
and automatic game playing (Mnih et al., 2015). Despite these remarkable successes, their perva-
sive failures in adversarial settings, the phenomenon of adversarial examples (Biggio et al., 2013;
Szegedy et al., 2014), have attracted significant attention in recent years (Athalye et al., 2018; Carlini
et al., 2019; Tramer et al., 2020). Such small perturbations on inputs crafted by adversaries are ca-
pable of causing well-trained models to make big mistakes, which indicates that there is still a large
gap between machine and human perception, thus posing potential security concerns for practical
machine learning (ML) applications (Kurakin et al., 2016; Qin et al., 2019; Wu et al., 2020b).

An adversarial example is “an input to a ML model that is intentionally designed by an attacker
to fool the model into producing an incorrect output” (Goodfellow & Papernot, 2017). Following
the definition of adversarial examples on classification problems (Goodfellow et al., 2015; Papernot
et al., 2016; Elsayed et al., 2018; Carlini et al., 2019; Zhang et al., 2019; Wang et al., 2020b; Zhang
et al., 2020; Tramèr et al., 2020), given a DNN classifier f and a correctly classified example x
with class label y (i.e., f(x) = y), an adversarial example xadv is generated by perturbing x such
that f(xadv) 6= y and xadv ∈ Bε(x). The neighborhood Bε(x) denotes the set of points within
a fixed distance ε > 0 of x, as measured by some metric (e.g., the lp distance), so that xadv is
visually the “same” for human observers. Then, an imperfection of the classifier is highlighted by
Gadv = Acc(D)−Acc(A), the performance gap between the accuracy (denoted by Acc(·)) evaluated
on clean set sampled from data distribution D and adversarially perturbed set A.

An adversary could construct such a perturbed setA that looks no different from D but can severely
degrade the performance of even state-of-the-art DNN models. From direct attacks in the digital
space (Goodfellow et al., 2015; Carlini & Wagner, 2017) to robust attacks in the physical world
(Kurakin et al., 2016; Xu et al., 2020), from toy classification problems (Chen et al., 2020; Dobriban
et al., 2020) to complicated perception tasks (Zhang & Wang, 2019; Wang et al., 2020a), from the
high dimensional nature of the input space (Goodfellow et al., 2015; Gilmer et al., 2018) to the
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(b) Illustration of hypocritical examples

Figure 1: Comparison between adversarial examples and hypocritical examples. Left: Conceptual
diagrams for the generation of an adversarial example xadv and a hypocritical example xhyp. The
input space is (ground-truth) classified into the orange lined region (e.g., class “not panda”), and
the blue dotted region (e.g., class “panda”). The black solid line is the decision boundary of a non-
robust model, which classifies the region above the boundary as “panda” and the region below the
boundary as “not panda”. Red shadow and black shadow in the ball Bε(x) denote that the points
in there are misclassified and correctly classified, respectively. As we can see, xadv or xhyp can be
easily found by perturbing a correctly classified x or a misclassified x across the model’s decision
boundary. Right: A demonstration of adversarial examples and hypocritical examples on real data.
Here we choose ResNet50 (He et al., 2016a) trained on ImageNet (Russakovsky et al., 2015) as the
victim model. In (a) the correctly classified “panda” can be stealthily perturbed to be misclassified
as “tennis ball”. In (b) the “panda” (misclassified as “tripod”) can be stealthily perturbed to be
correctly classified. Perturbations are rescaled for display.

framework of (non)-robust features (Jetley et al., 2018; Ilyas et al., 2019), many efforts have been
devoted to understanding and mitigating the risk raised by adversarial examples, thus closing the gap
Gadv. Previous works mainly concern the adversarial risk on correctly classified examples. However,
they typically neglect a risk on misclassified examples themselves which will be formalized in this
work.

In this paper, we first investigate an intriguing, yet far overlooked phenomenon, where given a DNN
classifier f and a misclassified example x with class label y (i.e., f(x) 6= y), we can easily perturb
x to xhyp such that f(xhyp) = y and xhyp ∈ Bε(x). Such an example xhyp looks harmless, but
actually can be maliciously utilized by a false friend to fool a model to be self-satisfied. Thus we
name them hypocritical examples (see Figure 1 for a comparison with adversarial examples).

Adversarial examples and hypocritical examples are two sides of the same coin. On the one side,
a well-performed but sensitive model becomes unreliable in the existence of adversaries. On the
other side, a poorly performed but sensitive model behaves well with the help of friends. With false
friends like these, a naturally trained suboptimal model could have state-of-the-art performance, and
even worse, a randomly initialized model could behave like a well-trained one (see Section 2.1).

It is natural then to wonder: Why should we care about hypocritical examples? Here we give two
main reasons:

1. This is of scientific interest. Hypocritical examples are the opposite of adversarial exam-
ples. While adversarial examples are hard test data to a model, hypocritical examples aim
to make it easy to do correct classification. Hypocritical examples warn ML researchers to
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think carefully about high test accuracy: Does our model truly achieve human-like intelli-
gence, or is it just simply because the test data prefers the model?

2. There are practical threats. A variety of nefarious ends may be achievable if the mistakes
of ML systems can be covered up by hypocritical attackers. For instance, before allowing
autonomous vehicles to drive on public roads, manufacturers must first pass tests in specific
environments (closed or open roads) to obtain a license (Administration et al., 2016; Briefs,
2015; Lei, 2018). An attacker may add imperceptible perturbations on the test examples
(e.g., the “stop sign” on the road) stealthily without human notice, to hypocritically help
an ML-based autonomous vehicle to pass the tests that might otherwise fail. However, the
high performance can not be maintained on public roads without the help of the attacker.
Thus, the potential risk is underestimated and traffic accidents might happen unexpectedly
when the vehicle driving on public roads.

In such a case, if the examples used to evaluate a model are falsified by a false friend, the model will
manifest like a perfect one (on hypocritical examples), but it actually may not be well performed
even on clean examples, not to mention adversarial examples. Thus a new imperfection of the classi-
fier can be found in Ghyp = Acc(F)−Acc(D), the performance gap between the accuracy evaluated
on clean set sampled from D and hypocritically perturbed set F . Still, F looks no different from
D but can stealthily upgrade the performance. Once a deployer trusts the hypocritical performance
carefully designed by a false friend and uses the “well-performed” model in real-world applications,
potential security concerns appear even in benign environments. Thus we need methods to defend
our models from false friends, that is, making our models have self-knowledge.

We propose a defense method by improving model robustness against hypocritical perturbations.
Specifically, we formalize the hypocritical risk and minimize it via a differentiable surrogate loss
(Section 3). Experimentally, we verify the effectiveness of our proposed attack (Section 2.1) and
defense (Section 4.1). Further, we study the transferability of hypocritical examples across mod-
els trained with various methods (Section 4.2). Finally, we conclude our paper by discussing and
summarizing our results (Section 5 and Section 6). Our main contributions are:

• We give a formal definition of hypocritical examples. We demonstrate the unreliability of
standard evaluation process in the existence of false friends and show the potential security
risk on the deployment of a model with high hypocritical performance.

• We formalize the hypocritical risk and analyze its relation with natural risk and adversarial
risk. We propose the first defense method specialized for hypocritical examples by mini-
mizing the tradeoff between the natural risk and an upper bound of hypocritical risk.

• Extensive experiments verify the effectiveness of our proposed methods. We also examine
the transferability of hypocritical examples. We show that the transferability is not always
desired by the attackers, which depends on their purpose.

2 FALSE FRIENDS AND ADVERSARIES

Better an open enemy than a false friend! Only by being aware of the potential risk of the false
friend can we prevent it. In this section, we expose a kind of false friends, who are capable of ma-
nipulating model performance stealthily during the evaluation process, thus making the evaluation
results unreliable.

We consider a classification task with data (x, y) ∈ Rd ×{1, . . . , C} from a distribution D. Denote
by f : Rd → {1, ..., C} the classifier which predicts the class of an input example x: f(x) =
arg maxk pk(x), where pk(x) is the kth component of p(x) : Rd → ∆C (e.g., the output after
softmax activation), in which ∆C = {u ∈ RC | 1Tu = 1,u ≥ 0} is the probabilistic simplex.

Adversarial examples are malicious inputs crafted by an adversary to induce misclassification. We
first give the commonly accepted definition of adversarial examples as follows:

Definition 1 (Adversarial Examples). Given a classifier f and a correctly classified input (x, y) ∼
D (i.e., f(x) = y), an ε-bounded adversarial example is an input x∗ ∈ Rd such that:

f(x∗) 6= y and x∗ ∈ Bε(x).
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The assumption underlying this definition is that inputs satisfying x∗ ∈ Bε(x) preserve the label
y of the original input x. The reason for the existence of adversarial examples is that a model
is overly sensitive to non-semantic changes. Next, we formalize a complementary phenomenon
to adversarial examples, called hypocritical examples. Hypocritical examples are malicious inputs
crafted by a false friend to stealthily correct the prediction of a model:
Definition 2 (Hypocritical Examples). Given a classifier f and a misclassified input (x, y) ∼ D
(i.e., f(x) 6= y), an ε-bounded hypocritical example is an input x∗ ∈ Rd such that:

f(x∗) = y and x∗ ∈ Bε(x).

The same as adversarial examples, hypocritical examples are bounded to preserve the label of the
original input, and are another consequence that arises from excessive sensitivity of a classifier.

As a false friend, a hypocritical example can be generated from a misclassified example by maxi-
mizing

max
x′∈Bε(x)

1(f(x′) = y), (1)

which is equivalent to minimizing

min
x′∈Bε(x)

1(f(x′) 6= y), (2)

where 1(·) is the indicator function. Similar to Madry et al. (2018); Wang et al. (2020b), in practice,
we leverage the commonly used cross entropy (CE) loss as the surrogate loss of 1(f(x′) 6= y) and
minimize it by projected gradient descent (PGD).

Note that Equation 2 looks similar to but conceptually differs from the known targeted adversarial at-
tack (Carlini & Wagner, 2017), which generates a kind of adversarial examples defined on correctly
classified clean inputs and targeted to wrong classes. The hypocritical examples here are defined on
misclassified inputs and are targeted to their right classes.

2.1 ATTACK RESULTS

In this subsection, we demonstrate the power of our proposed hypocritical attack on three bench-
mark datasets: MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009) and ImageNet
(Russakovsky et al., 2015).

Table 1: Accuracy (%) evaluated on MNIST.
Attacks are bounded with ε = 0.2.

Model F D A
Naive (MLP) 100.0 10.4 0.0
Naive (LeNet) 79.2 10.1 0.0
Standard (MLP) 100.0 97.8 29.8
Standard (LeNet) 100.0 99.4 0.1

Table 2: Accuracy (%) evaluated on ImageNet.
Attacks are bounded with ε = 16/255.

Model F D A
Naive (VGG16) 100.0 0.1 0.0
Naive (ResNet50) 12.6 0.1 0.0
Standard (VGG16) 99.9 71.6 0.3
Standard (ResNet50) 99.9 76.1 0.0

We attack models trained with standard approach using clean examples (Standard) and models that
randomly initialized without training (Naive). For MNIST, the hypocritically perturbed set F and
the adversarially perturbed set A are constructed by attacking every example in the clean test set
sampled from D. Both attacks are bounded by a l∞ ball with radius ε = 0.2. For ImageNet, F and
A are constructed based on its validation set sampled from D. Both attacks are bounded by a l∞
ball with radius ε = 16/255. For each experiment, we conduct 3 trials with different random seeds
and report the averaged result to reduce the impact of random variations. Appendix A.2 describes
further experimental details about DNN architecture, training procedure and more results.

Results on MNIST and ImageNet are summarized in Table 1 and Table 2, respectively. First, we find
that the naturally trained models are extremely sensitive to hypocritical perturbations (e.g., Standard
(MLP) and Standard (LeNet) achieve 100% accuracy on hypocritically perturbed MNIST test set,
and Standard (VGG16) and Standard (ResNet50) achieve 99% accuracy on hypocritically perturbed
ImageNet validation set). Second, we find that part of randomly initialized models is extremely
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sensitive (e.g., Naive (MLP) and Naive (VGG16) achieve 100% accuracy on F of MNIST and
ImageNet). These results demonstrate the unreliability of standard evaluation process in the exis-
tence of false friends. Once a “well-performed” model (such as Naive (MLP) or Naive (VGG16))
is permitted to be deployed in real-world applications due to that the deployer has a false sense of
performance, potential security concerns appear even in benign environments.

It seems that the Naive (ResNet50) model is relatively robust to hypocritical examples on ImageNet.
But that is just a trivial defense, it simply predicts most of the points in input region as a certain
class because of the poor scaling of network weights at initialization (He et al., 2016b; Elsayed
et al., 2019). More discussions are in Appendix A.2. Therefore, it is not enough to blindly pursue
robustness against hypocritical perturbations but ignore the performance on clean examples.

3 HYPOCRITICAL RISK

In this section, we formalize the hypocritical risk and analyze the relation between natural risk,
adversarial risk, and hypocritical risk. We propose a defense method specialized for hypocritical
examples by minimizing the tradeoff between natural risk and an upper bound of the hypocritical
risk. Moreover, by decomposing a existing method designed for adversarial defense (TRADES
(Zhang et al., 2019)), we find that, surprisingly, TRADES minimizes not only the adversarial risk on
correctly classified examples, but also a looser upper bound of the hypocritical risk. Our theoretical
analysis suggests that TRADES can be another candidate defense method for hypocritical examples.

To characterize the adversarial robustness of a classifier f , Madry et al. (2018); Uesato et al. (2018);
Cullina et al. (2018) defined the adversarial risk under the threat model of bounded ε ball:

Radv(f) = E
(x,y)∼D

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
. (3)

The standard measure of classifier performance, known as natural risk, is denoted as Rnat(f) =
E(x,y)∼D [1(f(x) 6= y)]. Let q(x, y) be the probability density function of data distribution D. We
denote by S+f the conditional data distribution on correctly classified examples w.r.t. f , with a
conditional density function q(x, y | E) = q(x, y)/Z(E) if E is true (otherwise q(x, y | E) = 0),
where the event E is f(x) = y and Z(E) =

∫
x,y

1(f(x) = y)dq(x, y) is a normalizing constant.
We denote by S−f the conditional data distribution on misclassified examples with the conditional
density function q(x, y | E) and f(x) 6= y as the event E. Then we have the following relation
between the natural risk and the adversarial risk:
Proposition 1. Denote the adversarial risk on correctly classified examples by

R̂adv(f) = E
(x,y)∼S+

f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
,

then we have
Radv(f) = Rnat(f) + (1−Rnat(f))R̂adv(f).

Proposition 1 shows that we can view the adversarial risk Radv(f) as the tradeoff between Rnat(f)

and R̂adv(f) with the scaling parameter λ = 1−Rnat(f). The adversarial risk on correctly classified
examples R̂adv(f) is in sharp contrast to the hypocritical risk defined on misclassified examples
formalized as follows:
Definition 3 (Hypocritical Risk). The hypocritical risk on misclassified examples of a classifier f
under the threat model of bounded ε ball is defined as

R̂hyp(f) = E
(x,y)∼S−f

[
max

x′∈Bε(x)
1(f(x′) = y)

]
.

The hypocritical risk R̂hyp(f) is the proportion of perturbed examples (originally misclassified)
that can be successfully correctly classified by the classifier after a false friend’s attack. When
considering the existence of false friends, a good model should have not only low natural risk but
also low hypocritical risk, to be robust against hypocritical perturbations.
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3.1 TRADEOFF BETWEEN NATURAL AND HYPOCRITICAL RISKS

Figure 2: Counterexample given by Equation 4.

Motivated by the tradeoff between natural and adversarial risks Tsipras et al. (2019); Zhang et al.
(2019), we notice that there may also exist an inherent tension between the goal of natural risk
minimization and hypocritical risk minimization. To illustrate the phenomenon, we provide a toy
example here, which is modified from the example in Zhang et al. (2019), and its risk minimization
solutions can be analytically found.

Consider the case (x, y) ∈ R × {−1,+1} from a distribution D, where the marginal distribution
over the instance space is a uniform distribution over [0, 1], and for k = 0, 1, · · · , d 1

2ε − 1e,

η(x) := Pr(y = +1 | x)

=

{
1/4, x ∈ [2kε, (2k + 1)ε),
1, x ∈ ((2k + 1)ε, (2k + 2)ε].

(4)

See Figure 2 for visualization of η(x). In this problem, we consider two classifiers: a) the Bayes
optimal classifier sign(2η(x)− 1); b) the all-one classifier which always outputs “positive”. Table 3
displays the trade-off between natural and hypocritical risks: the minimal natural risk 1/8 is achieved
by the Bayes optimal classifier with large hypocritical risk, while the optimal hypocritical risk 0 is
achieved by the all-one classifier with large natural risk.

Table 3: Comparison of Bayes optimal classifier and all-one classifier.

Bayes Optimal Classifier All-One Classifier

Rnat 1/8 (optimal) 3/8

R̂hyp 1 0 (optimal)

3.2 UPPER BOUNDS OF HYPOCRITICAL RISK

It is natural then to optimize our models to minimize natural and hypocritical risks at the same time.
However, it’s hard to do optimization over R̂hyp(f). To ease the optimization obstacles in there, we
derive the following upper bounds.
Theorem 1. For any data distribution D and its corresponding conditional distribution on misclas-
sified examples S−f w.r.t. a classifier f , we have

E
(x,y)∼S−f

1(f(xhyp) = y)︸ ︷︷ ︸
R̂hyp(f)

≤ E
(x,y)∼S−f

1(f(xhyp) 6= f(x))︸ ︷︷ ︸
Rhyp(f)

≤ E
(x,y)∼S−f

1(f(xrev) 6= f(x))︸ ︷︷ ︸
Rhyp(f)

,

where xhyp = arg max
x′∈Bε(x)

1(f(x′) = y) and xrev = arg max
x′∈Bε(x)

1(f(x′) 6= f(x)).

Here xrev means that it pursues to reverse a clean example to a different class, from the point of view
of the model. The upper bounds found in Theorem 1 allow us to optimize the hypocritical risk using
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proper surrogate loss functions which are both physical meaningful and computaionally tractable.
Before moving forward to algorithmic design, we state a useful proposition below, which reveals the
internal mechanism behind in TRADES.
Proposition 2. Rrev(f) = (1−Rnat(f))R̂adv(f)+Rnat(f)Rhyp(f) = E

(x,y)∼D
1(f(xrev) 6= f(x)).

Proposition 2 shows a connection between adversarial risk and hypocritical risk: the adversarial
risk on correctly classified examples R̂adv(f) and the looser upper bound of the hypocritical risk on
misclassified examplesRhyp(f) can be seamlessly united to a new risk on all examplesRrev(f). We
name it reversible risk since minimizing it pursues the model whose predictions can’t be reversed
by small perturbations.

3.3 ALGORITHMIC DESIGN

Now we are ready to design objective functions that improve model robustness against hypocritical
examples while keeping model accuracy on clean examples.

Similar to Zhang et al. (2019); Wang et al. (2020b); Tramèr et al. (2020); Raghunathan et al. (2020),
we propose a defense objective by minimizing the tradeoff between the natural risk and the tighter
upper bound of the hypocritical risk:

RTHRM(f) = Rnat(f) + λRhyp(f), (5)

where λ > 0 is a tunable scaling parameter balancing the importance of natural risk and hypocritical
risk. We name our method THRM (Tradeoff for Hypocritical Risk Minimization).

Optimization over 0-1 loss in THRM is still intractable. In practice, for the indicator function
1(f(x) 6= y) in Rnat(f), we adopt the commonly used CE loss as surrogate loss. Observed that
Rhyp(f) = 1

Rnat(f)
E(x,y)∼D1(f(xhyp) 6= f(x)), we absorb the Rnat(f) term into λ and use KL

divergence as the surrogate loss of the indicator function 1(f(xhyp) 6= f(x)) (Zheng et al., 2016;
Zhang et al., 2019; Wang et al., 2020b), since f(xhyp) 6= f(x) implies that the perturbed examples
have different output distributions to that of clean examples. Our final objective function for THRM
becomes

LTHRM = E
(x,y)∼D

[LCE(p(x), y) + λLKL(p(x), p(xhyp))] . (6)

Intuition behind the objective LTHRM: the first term in Equation 6 encourages the natural risk to be
optimized, while the second regularization term encourages the output to be stable against hypocrit-
ical perturbations, that is, the classifier should not be overly confident in its predictions especially
when a false friend wants it to be.

To derive the objective function for TRADES, we can minimize the tradeoff between the natural risk
and the reversible risk:

RTRADES(f) = Rnat(f) + λRrev(f). (7)

Similar to THRM, we use CE loss and KL divergence as the surrogate loss of 1(f(x) 6= y) and
1(f(xrev) 6= f(x)), respectively. The final objective function becomes

LTRADES = E
(x,y)∼D

[LCE(p(x), y) + λLKL(p(x), p(xrev))] , (8)

which is exactly the multi-class classification objective function first proposed in Zhang et al. (2019)
for adversarial defense. From the perspective of the hypocritical risk, our Proposition 2 reveals an
advantage behind it, that is, TRADES is capable of minimizing the upper bound of hypocritical
risk Rhyp(f), thus can be considered as a candidate defense method for hypocritical examples.
Proposition 2 also implies that there may be a deeper connection between adversarial robustness and
hypocritical robustness. We will discuss it more and compare our proposed THRM with TRADES
in next section.

4 EXPERIMENTS

In this section, to verify the effectiveness of the methods (THRM and TRADES) suggested in Sec-
tion 3.3, we conduct experiments on real-world datasets including MNIST and CIFAR-10.
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Figure 3: Tradeoff between natural risk and hypocritical risk on real-world datasets.

4.1 WHITE-BOX ANALYSIS

For the wide range of the scaling parameter λ, we conduct experiments in parallel over multiple
NVIDIA Tesla V100 GPUs. On MNIST, perturbations are bounded by l∞ norm with ε = 0.2. On
CIFAR-10, models are trained against 3 different hypocritical attackers bounded by l∞ norm with
ε = 1/255, ε = 2/255 and ε = 8/255, respectively. Each experiment is conducted 3 times with
different random seeds. The hypocritical risk reported here is actually an approximation of the real
value, since the optimization problem in it is NP-hard and we approximately solve it using surrogate
loss and PGD on test set. Further details about model architecture and training procedure are in
Appendix A.3. Note that these experiments are extensive. It takes over 230 GPU days to completely
train the models considered in this section. We believe that these experiments are beneficial to the
ML community to further understand the tradeoffs and relative merits in THRM and TRADES.

Results on MNIST (ε = 0.2) and CIFAR10 (ε = 2/255) are shown in Figure 3. Each data point rep-
resents a model trained with different λ. More results including comparison with Madry’s defense
(Madry et al., 2018) are provided in Appendix A.3 due to the limited space. First, we observe that,
on both datasets, as the regularization parameter λ increases, the natural risk Rnat increases while
the hypocritical risk R̂hyp decreases, which verifies the effectiveness of our proposed method and
the theoretical analysis in Proposition 2, where we reveal that TRADES is capable of minimizing a
looser upper bound of hypocritical risk. Second, we show that THRM achieves better tradeoff on
MNIST since it optimizes a tighter upper bound than TRADES. However, the situation becomes
nuanced on CIFAR-10. As we can see in Figure 3(b), THRM seems to behave better in the begin-
ning when λ is small but is surpassed by TRADES when λ increases. Overall, optimizing only a
tighter upper bound of hypocritical risk achieves better tradeoff on test set when the task is relatively
simple (e.g., on MNIST with ε = 0.2), while simultaneously optimizing hypocritical risk and ad-
versarial risk achieves better tradeoff on test set when the task tends to be hard (e.g., on CIFAR-10
with ε = 2/255 and ε = 8/255).

Above phenomenon shows that, when dealing with finite sample size and finite-time gradient-
descent trained classifiers, better adversarial robustness may help the generalization of hypocritical
robustness, which conforms our intuition that they are two sides of the same coin. Interestingly, a
contemporary work claims that, on CIFAR-10, TRADES achieves better adversarial robustness than
Madry’s defense in fair hyperparameter settings (Anonymous, 2021). Thus there may be potential
mutual benefits between adversarial robustness and hypocritical robustness. After all, robust train-
ing objectives force DNNs to be invariant to signals that humans are invariant to, which may lead
to feature representations that are more similar to what humans use (Salman et al., 2020). A rigor-
ous treatment of the synergism is beyond the scope of the current paper but is an important future
direction.

4.2 TRANSFERABILITY ANALYSIS

Transferability of adversarial examples across models is well known (Tramèr et al., 2017; Papernot
et al., 2017b; Ilyas et al., 2019) and here we examine the transferability of hypocritical examples
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on MNIST and CIFAR-10. We observe that hypocritical examples, i) can transfer easily between
naturally trained models, ii) are hard to transfer from randomly initialized models to other models
(and vise versa), iii) are hard to transfer from standard models to defended models, iv) generated
from THRM models usually have high transferability. Experimental details are in Appendix A.4.
Better transferability is beneficial for black-box attacks but is not always desired by hypocritical
attackers. A hypocritical attacker only expects high transferability on the targeted model the attacker
chose to help. If there are other competing models available to the deployer, the attacker actually
does not want the hypocritical examples to be successfully transferred to those competing models.
Thus fine-grained attack methods are required. We leave this to future work.

5 DISCUSSION

The false friends considered in this paper are as powerful as typical adversaries. They all know the
ground truth labels of clean examples. Such powerful friends actually can help a model to not only
correctly classify a misclassified clean example but also correctly classify an adversarial example
crafted by an adversary. One may expect to rely on true friends against adversaries. Unfortunately,
an omniscient and faithful friend is unachievable in practical tasks, so far at least. Once it is achieved,
the problem of robustness disappears immediately. What we can do at present is using a relatively
more robust model as a surrogate of the true friend to improve the robustness of a weak model. This
induces a promising general method in practice, that is, high-performance models can be employed
as true friends to help a weak model without exposing training data and model weights for the
purpose of privacy protection and knowledge transfer (Abadi et al., 2016; Papernot et al., 2017a).
Additional discussions are in Appendix C.

6 CONCLUSION

In this work, we expose a new risk arising from excessive sensitivity. Model performance becomes
hypocritical in the existence of false friends. By formalizing the hypocritical risk and analyzing
its relation with natural risk and adversarial risk, we propose to use THRM and TRADES as de-
fense methods against hypocritical perturbations. Extensive experiments verify the effectiveness of
methods. These findings open new avenues for mitigating and exploiting model sensitivity.
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A EXPERIMENTAL DETAILS

A.1 DETAILS IN FIGURE 1

Attack procedure. In adversarial attacks, we perturb clean inputs to maximize the surrogate loss
using PGD. In hypocritical attacks, we perturb clean inputs to minimize the surrogate loss using
PGD. In both attacks, for the purpose of imperceptibility, we execute PGD attack 100 steps (step
size is ε/50) with early stopping on ImageNet and the budget ε here is 2/255.

More examples. More adversarial examples and hypocritical examples generated on ImageNet
using our methods are shown in Figure 5. More hypocritical examples generated on MNIST and
CIFAR-10 are shown in Figure 4(a) and Figure 4(b). The victim models are LeNet (Standard) and
Wide ResNet (Standard) for MNIST and CIFAR-10, respectively. They are trained with the same
procedures described in Appendix A.2. In both attacks, for the purpose of imperceptibility, we
execute 100 steps PGD attacks (step size is ε/50) with early stopping on MNIST and CIFAR-10.
The budget ε for MNIST here is 0.2. The budget for CIFAR-10 here is 8/255.
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(a) On MNIST

dog airplane

cat bird

dog cat

bird deer

cat dog

airplane frog

bird horse

truck ship

airplane truck

truck automobile

(b) On CIFAR-10

Figure 4: Hypocritical examples. In each subfigure, the first cloumn represents the clean examples
sampled from original data distribution, the second cloumn represents the generated perturbations,
the third cloumn represents the perturbed examples. Perturbations are rescaled for display. Red
labels and black labels below images denote misclassification and correct classification, respectively.
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goose black swan

lampshade soap dispenser

screwdriver forklift

washing machine stretcher

bald eagle kite

syringe ballpoint pen

shovel wheelbarrow

greenhouse library

(a) Adversarial examples

oystercatcher goose

grey fox mongoose

wardrobe washing machine

photocopier washing machine

remote control screwdriver

grocery store restaurant

paintbrush ladle

tiger shark snoek

(b) Hypocritical examples

Figure 5: More examples on ImageNet. In each subfigure, the first cloumn represents the clean ex-
amples sampled from original data distribution, the second cloumn represents the generated pertur-
bations, the third cloumn represents the perturbed examples. Perturbations are rescaled for display.
The model predictions of these images are shown below each image. Red labels and black labels
below images denote misclassification and correct classification, respectively.
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A.2 DETAILS IN SECTION 2.1

Architecture. For MNIST, a four-layer multilayer perception (MLP) (2 hidden layers, 768 neu-
rons in each) with ReLU activations and a variant of LeNet model (2 convolutional layers of sizes
32 and 64, and a fully connected layer of size 1024) are adopted. For CIFAR-10, a four-layer MLP
(2 hidden layers, 3072 neurons in each) with ReLU activations, a ResNet18 (He et al., 2016a) and a
Wide ResNet (Zagoruyko & Komodakis, 2016) (with depth 28 and width factor 10) are adopted. For
ImageNet, a VGG16 (Simonyan & Zisserman, 2014) and a ResNet50 (He et al., 2016a) are adopted.

Training procedure. i) Models trained with standard approach using clean examples (Standard).
For MNIST, models are trained for 80 epochs with Adam optimizer with batch size 128 and a
learning rate of 0.001. Early stopping is done with holding out 1000 examples from the MNIST
training set. For CIFAR-10, models are trained for 150 epochs with SGD optimizer with batch size
128 and the learning rate starts with 0.1, and is divided it by 10 at 90 and 125 epochs. We apply
weight decay of 2e-4 and momentum of 0.9. Early stopping is done with holding out 1000 examples
from the CIFAR-10 training set. For ImageNet, we use the pretrained standard models available
within PyTorch (torchvision.models). ii) Models that randomly initialized without training (Naive).
For all models, we use the default PyTorch initialization, except that we initialize the convolutional
weights in Wide ResNet with He initialization (He et al., 2015). We conduct all the experiments
using a single NVIDIA Tesla V100 GPU. Each experiment is conducted 3 times with different
random seeds, except the standard models trained on ImageNet, in which we use the pretrained
standard models available within PyTorch.

Attack procedure. In adversarial attacks, we perturb clean inputs to maximize the surrogate
loss using PGD. In hypocritical attacks, we perturb clean inputs to minimize the surrogate loss
using PGD. In both attacks, we execute 50 steps PGD attacks (step size is ε/10) with 20 times of
random restart on MNIST and CIFAR-10, and we use 50 steps PGD attacks (step size is ε/8) on
ImageNet. Other hyperparameter choices didn’t offer a significant change in accuracy. On MNIST,
the hypocritical perturbed set F and the adversarially perturbed set A are constructed by attacking
every example in the clean test set sampled from D. Both attacks are bounded by a l∞ ball with
radius ε = 0.2. On CIFAR-10, both attacks are bounded by a l∞ ball with radius ε = 8/255. On
ImageNet, F and A are constructed based on its validation set sampled from D. Both attacks are
bounded by a l∞ ball with radius ε = 16/255.

Numerical results. The attack results on CIFAR-10 are shown in Table 4. Full results of Table
1, Table 2 and Table 4 are shown in Table 5, Table 6 and Table 7, respectively. Moreover, we
show the attack results of 9 Naive models evaluated on ImageNet in Table 6. We find that all
the Naive models in VGG family achieve high accuracy on F and all the Naive models in ResNet
family have relatively poor performance onF . Especially, the Naive (ResNet152) model in Trial 1 is
invariant to hypocritical perturbations. Even in the existence of a strong false friend, the hypocritical
performance is still as low as the clean performance (only 0.1%). We carefully examined the Naive
(ResNet152) model and find that it’s actually a trivial classifier, which purely classifies almost all
the points in input region [0, 1]d as a certain class for some simple reasons, such as poor scaling of
network weights at initialization. Therefore, it is not enough to blindly pursue robustness against
hypocritical perturbations but ignore the performance on clean examples. Once we train a Naive
model with clean examples, the model becomes vulnerable immediately (see Standard (ResNet50)),
whereas the trained weights are better conditioned (Elsayed et al., 2019).

Table 4: Accuracy (%) of models evaluated on CIFAR-10. Attacks are bounded with ε = 8/255.

Model F D A
Naive (MLP) 92.3 9.9 0.0
Naive (ResNet18) 20.8 8.7 0.3
Naive (Wide ResNet) 13.8 10.0 6.9
Standard (MLP) 88.6 45.1 3.9
Standard (ResNet18) 100.0 94.1 0.0
Standard (Wide ResNet) 100.0 95.1 0.0
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Table 5: Full results of accuracy (%) evaluated on MNIST. Attacks are bounded with ε = 0.2.

Model Trial 1 Trial 2 Trial 3

F D A F D A F D A
Naive (MLP) 100.0 11.2 0.0 100.0 10.8 0.0 100.0 9.4 0.0
Naive (LeNet) 69.1 9.7 0.0 77.5 10.6 0.0 91.0 10.1 0.0
Standard (MLP) 100.0 98.0 31.1 100.0 97.7 30.4 100.0 97.7 28.1
Standard (LeNet) 100.0 99.4 0.1 100.0 99.4 0.1 100.0 99.3 0.0

Table 6: Full results of accuracy (%) evaluated on ImageNet. Attacks are bounded with ε = 16/255.

Model Trial 1 Trial 2 Trial 3

F D A F D A F D A
Naive (VGG11) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
Naive (VGG13) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
Naive (VGG16) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
Naive (VGG19) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
Naive (ResNet18) 58.4 0.1 0.0 83.2 0.1 0.0 57.6 0.1 0.0
Naive (ResNet34) 7.4 0.1 0.0 12.5 0.1 0.0 10.4 0.1 0.0
Naive (ResNet50) 10.6 0.1 0.0 14.7 0.1 0.0 12.6 0.1 0.0
Naive (ResNet101) 0.3 0.1 0.1 0.2 0.1 0.1 0.3 0.1 0.1
Naive (ResNet152) 0.1 0.1 0.1 0.3 0.1 0.1 0.2 0.1 0.1
Standard (VGG16) 99.9 71.6 0.3 N/A N/A N/A N/A N/A N/A
Standard (ResNet50) 99.9 76.1 0.0 N/A N/A N/A N/A N/A N/A

A.3 DETAILS IN SECTION 4.1

Architecture. For MNIST, a variant of LeNet model (2 convolutional layers of sizes 32 and 64,
and a fully connected layer of size 1024) is adopted. For CIFAR-10, a Wide ResNet (with depth 28
and width factor 10) is adopted.

Training procedure. For the wide range of the scaling parameter λ, we conduct experiments
in parallel over multiple NVIDIA Tesla V100 GPUs. Each experiment is conducted 3 times with
different random seeds. For MNIST, all models (including Standard, Madry, TRADES, THRM) are
trained for 80 epochs with Adam optimizer with batch size 128 and a learning rate of 0.001. Early
stopping is done with holding out 1000 examples from the MNIST training set as suggested in Rice
et al. (2020). For CIFAR-10, all models are trained for 150 epochs with SGD optimizer with batch
size 128 and the learning rate starts with 0.1, and is divided it by 10 at 90 and 125 epochs. We apply
weight decay of 2e-4 and momentum of 0.9. Early stopping is done with holding out 1000 examples
from the CIFAR-10 training set as suggested in Rice et al. (2020).

Attack procedure. For the inner maximization in the objective function of THRM, we perturb
clean inputs to minimize the CE loss as the surrogate loss. For the inner maximization in TRADES,
we maximize the KL divergence as the surrogate loss. For the inner maximization in Madry, we
maximize the CE loss as the surrogate loss. On MNIST, the training attack is PGD with random
start and 10 iterations (step size ε/4). On CIFAR-10, the training attack is PGD with random start
and 10 iterations (step size ε/4) when ε = 8/255, and the training attack is PGD with random start
and 7 iterations (step size ε/3) when ε = 1/255 and ε = 2/255. On all experiments, the test attack
is 50 steps PGD (step size is ε/10) with 20 times of random restart. Other hyperparameter choices
didn’t offer a significant change in accuracy.

Numerical results. The natural risk reported here is estimated on test set. The hypocritical
risk reported here is estimated on test set and is actually an approximation of the real value since
we approximately solve the optimization problem by PGD on examples from test set. Results on
MNIST (ε = 0.2) and CIFAR-10 (ε = 1/255, ε = 2/255 and ε = 8/255) are shown in Figure
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Table 7: Full results of accuracy (%) evaluated on CIFAR-10. Attacks are bounded with ε = 8/255.

Model Trial 1 Trial 2 Trial 3

F D A F D A F D A
Naive (MLP) 98.2 9.0 0.0 91.4 10.3 0.0 87.4 10.3 0.0
Naive (ResNet18) 14.8 10.0 0.6 20.7 9.2 0.2 27.0 6.9 0.0
Naive (Wide ResNet) 12.2 10.0 7.7 10.4 10.0 9.6 18.7 10.0 3.3
Standard (MLP) 89.1 46.2 3.6 88.4 44.8 3.8 88.3 44.5 4.2
Standard (ResNet18) 100.0 93.9 0.0 100.0 94.3 0.0 100.0 94.0 0.0
Standard (Wide ResNet) 100.0 95.0 0.0 100.0 95.1 0.0 100.0 95.3 0.0

6. Each point in Figure 6 represents one model trained with a certain λ. Full numerical results
on MNIST (ε = 0.2) and CIFAR-10 (ε = 1/255, ε = 2/255 and ε = 8/255) can be found in
Table 8, Table 9, Table 10 and Table 11, respectively. On MNIST (ε = 0.2), THRM has better
tradeoff than TRADES. However, when the task becomes hard, TRADES performs as well as or
better than THRM. On CIFAR-10, as the task becomes harder (the larger the radius ε the harder the
task), the gap between TRADES and THRM becomes larger. This phenomenon shows that better
adversarial robustness may help the generalization of hypocritical robustness, especially when the
task is hard. Moreover, we compare our methods with Madry et al. (2018)’s defense designed for
adversarial robustness (denoted as Madry) 1 and standard training method (denoted as Standard). We
summarize results in Table 12. For direct comparison, we pick a certain λ for each model trained by
TRADES and THRM in each task. We observed that, in all tasks, Madry’s defense has nonnegligible
robustness on hypocritical examples, although there is no hypocritical risk or its upper bound in the
objective function. This phenomenon indicates that optimizing only adversarial risk could bring a
certain degree of robustness against hypocritical examples. While this experimental results partly
support our hypothesis (i.e., the potential mutual benefits between robustness against adversarial
perturbations and hypocritical perturbations), we do not take the evidence as an ultimate one and
further exploration is needed. We note that the standard deviation becomes larger when λ is bigger
in TRADES and THRM, which is attributed to optimization difficulty and result in more significant
difference among different trials. Reducing the initial learning rate may mitigate this phenomenon.

For completeness, we further evaluate the adversarial risk on correctly classified examples of the
models trained by THRM and TRADES. Results on MNIST (ε = 0.2) and CIFAR-10 (ε = 2/255)
are summarized in Table 13 and Table 14, respectively. One interesting finding is that models trained
with THRM manifest noteworthy adversarial robustness, especially on CIFAR-10, although there is
no adversarial risk in the objective function of THRM. These facts also support the hypothesis (i.e.,
the potential mutual benefits between robustness against adversarial perturbations and hypocritical
perturbations).

1They actually optimize the adversarial risk in Equation 3 via surrogate loss.
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Figure 6: Tradeoff between natural risk and hypocritical risk on real-world datasets.

Table 8: Full results of natural risk (%) and hypocritical risk (%) on MNIST. Attacks are bounded
by l∞ norm with ε = 0.2.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

0.1 0.7 94.5 0.9 94.2 0.9 96.7
1 1.0 94.1 0.8 91.5 0.8 92.8
5 0.8 86.7 1.0 91.8 1.1 95.6
10 1.2 84.7 1.1 85.3 1.1 84.3
20 1.5 82.8 1.4 78.6 1.3 79.4
40 2.7 60.2 2.7 53.9 2.6 54.6
60 4.4 41.8 4.5 34.1 3.6 43.7
80 5.2 35.1 5.0 34.7 4.8 30.3

120 6.1 31.1 6.9 31.1 5.9 31.6
160 7.8 28.7 8.6 31.3 6.4 31.7
200 9.2 31.2 7.7 31.3 7.1 30.2
240 9.9 26.8 8.8 36.3 9.1 28.6
300 8.3 30.2 14.0 26.9 9.5 29.0
500 11.4 21.6 14.0 24.7 11.5 25.2

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

1 0.5 100.0 0.6 100.0 0.7 100.0
10 0.7 100.0 0.8 100.0 0.7 100.0

100 0.7 100.0 0.7 98.6 0.7 100.0
200 0.8 96.3 0.7 97.2 0.7 98.5
400 1.0 79.6 1.2 72.9 0.9 81.8
600 2.1 61.8 1.4 58.9 1.2 78.2
800 2.7 46.1 2.6 63.4 2.4 44.4
1000 3.3 39.3 3.1 35.7 2.3 52.4
2000 5.8 34.1 4.8 26.4 3.8 28.3
3000 7.3 31.6 14.0 17.8 7.5 20.4
4000 6.7 25.7 5.5 23.3 9.0 18.2
5000 10.4 20.9 5.7 29.3 11.6 17.7
6000 14.1 18.5 16.1 12.0 9.5 26.8
7000 13.3 12.6 6.3 31.4 9.3 20.3
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Table 9: Full results of natural risk (%) and hypocritical risk (%) on CIFAR-10. Attacks are bounded
by l∞ norm with ε = 1/255.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

0.1 5.2 84.5 5.1 85.5 4.8 80.1
1 5.6 63.1 5.5 65.1 5.6 64.4
5 6.3 52.0 5.9 50.4 5.8 53.2

10 6.9 48.3 6.9 45.0 7.0 45.1
30 9.0 38.0 8.9 41.7 7.5 36.9
50 8.6 38.9 8.4 36.8 8.4 38.4
70 9.0 34.5 8.8 33.9 8.8 32.0
90 9.7 32.0 10.4 28.0 9.3 31.1
120 9.8 31.3 9.8 29.6 10.7 29.9
150 10.2 30.9 10.1 28.0 10.1 31.0
180 10.6 29.2 10.4 31.8 10.5 31.0
210 11.2 27.9 11.4 30.8 11.0 28.0

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

1 4.6 91.8 4.6 90.7 4.5 89.7
10 5.1 74.9 6.1 72.6 5.3 72.6
50 5.3 62.6 5.5 62.0 5.4 60.4
100 5.6 59.1 5.7 58.2 5.5 58.7
200 6.6 52.7 6.5 49.2 6.2 51.6
300 6.9 44.8 6.5 45.5 7.0 46.4
400 7.3 47.6 7.7 42.7 7.9 40.6
600 8.4 37.7 8.6 36.8 8.6 37.9
800 9.1 33.4 9.2 34.5 9.0 34.4

1000 9.9 30.7 9.8 33.5 10.5 31.4
1500 11.6 28.7 11.5 29.4 11.8 27.3
2000 13.2 24.7 12.2 24.4 12.8 24.1

Table 10: Full results of natural risk (%) and hypocritical risk (%) on CIFAR-10. Attacks are
bounded by l∞ norm with ε = 2/255.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

0.1 5.4 91.3 5.3 90.6 5.4 90.0
1 6.3 74.4 6.3 74.9 6.4 75.1
5 8.5 64.4 7.7 64.6 8.7 65.7

10 9.7 58.4 9.0 58.5 9.5 58.9
30 10.2 54.6 10.1 51.9 10.1 54.9
50 11.1 46.5 11.2 48.9 11.0 48.5
70 11.6 44.7 11.6 43.5 11.6 44.8
90 12.1 42.1 12.4 46.1 12.4 43.8
120 13.2 37.4 13.0 41.1 12.9 39.4
150 13.6 37.3 13.9 39.3 13.4 35.0
180 14.1 34.8 14.2 34.4 14.4 37.7
210 14.7 32.9 14.6 32.4 14.5 32.9

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

1 4.8 99.6 4.5 99.3 4.7 99.6
10 5.4 92.9 5.4 92.5 5.2 92.7
50 6.3 85.7 5.8 84.1 5.2 85.4
100 6.7 75.5 6.4 74.8 6.5 78.4
150 7.1 71.7 7.0 69.9 7.5 72.8
200 8.4 65.6 7.9 65.0 8.5 66.7
250 8.8 62.4 8.6 62.4 9.0 62.3
300 9.6 59.4 9.0 60.2 9.7 60.0
400 10.0 54.2 10.0 55.3 10.7 53.8
600 11.8 50.5 11.4 51.1 11.8 50.3
800 12.5 45.6 12.9 45.2 13.3 46.2

1000 14.2 42.3 13.8 42.3 14.0 42.4

Table 11: Full results of natural risk (%) and hypocritical risk (%) on CIFAR-10. Attacks are
bounded by l∞ norm with ε = 8/255.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

0.1 16.6 94.0 20.5 95.3 13.0 99.4
1 13.9 93.7 13.1 93.4 12.2 92.4
5 15.1 89.4 15.2 87.7 15.6 89.6
10 17.0 85.0 17.6 86.0 16.7 86.1
30 19.8 74.1 20.2 74.3 20.5 74.8
50 23.0 67.9 22.8 65.7 22.6 66.7
70 25.3 59.8 24.7 60.1 25.3 58.5
90 26.6 56.5 27.1 57.1 26.2 56.0

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂hyp Rnat R̂hyp Rnat R̂hyp

1 4.8 100.0 9.0 100.0 5.4 100.0
10 8.3 100.0 6.5 100.0 7.7 100.0
50 12.0 99.3 11.3 99.6 11.8 99.0
100 15.1 98.0 13.6 98.1 15.6 97.6
150 16.7 96.4 15.8 97.3 16.5 97.2
200 19.3 93.0 20.2 93.8 22.3 95.0
250 24.2 86.5 23.9 90.2 24.6 93.3
300 25.7 92.1 33.0 73.2 26.2 85.8
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Table 12: Comparison of natural risk (%±std over 3 random trials) and hypocritical risk (%±std
over 3 random trials) between methods on real-world datasets. Attacks are bounded by l∞ norm.

(a) On MNIST (ε = 0.2).

Method Rnat R̂hyp

Standard 0.6 ± 0.1 100.0 ± 0.0
Madry 0.9 ± 0.0 93.8 ± 1.5
TRADES (λ = 240) 9.3 ± 0.6 30.6 ± 5.1
THRM (λ = 5000) 9.2 ± 3.1 22.6 ± 6.0

(b) On CIFAR-10 (ε = 1/255).

Method Rnat R̂hyp

Standard 4.9 ± 0.2 99.3 ± 0.3
Madry 5.3 ± 0.1 62.6 ± 0.1
TRADES (λ = 150) 10.1 ± 0.1 30.0 ± 1.7
THRM (λ = 1000) 10.1 ± 0.3 31.9 ± 1.4

(c) On CIFAR-10 (ε = 2/255).

Method Rnat R̂hyp

Standard 4.8 ± 0.2 100 ± 0.0
Madry 6.3 ± 0.2 74.3 ± 1.0
TRADES (λ = 150) 13.6 ± 0.2 37.2 ± 2.2
THRM (λ = 1000) 14.0 ± 0.2 42.3 ± 0.0

(d) On CIFAR-10 (ε = 8/255).

Method Rnat R̂hyp

Standard 4.7 ± 0.3 100.0 ± 0.0
Madry 14.2 ± 0.1 93.1 ± 1.0
TRADES (λ = 50) 22.8 ± 0.2 66.8 ± 1.1
THRM (λ = 250) 24.2 ± 0.4 90.0 ± 3.4

Table 13: Evaluated results of natural risk (%) and adversarial risk (%) on MNIST. Attacks are
bounded by l∞ norm with ε = 0.2.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂adv Rnat R̂adv Rnat R̂adv

0.1 0.7 5.9 0.9 6.9 0.9 6.2
1 1.0 5.7 0.8 5.6 0.8 5.2
5 0.8 4.4 1.0 5.4 1.1 5.0
10 1.2 4.3 1.1 4.0 1.1 4.4
20 1.5 3.6 1.4 4.7 1.3 4.3
40 2.7 3.2 2.7 3.2 2.6 3.2
60 4.4 3.5 4.5 3.0 3.6 3.5
80 5.2 2.9 5.0 3.3 4.8 3.4

120 6.1 3.5 6.9 4.4 5.9 3.8
160 7.8 4.7 8.6 4.9 6.4 4.0
200 9.2 5.1 7.7 4.9 7.1 4.1
240 9.9 4.7 8.8 5.2 9.1 4.7
300 8.3 5.1 14.0 7.1 9.5 4.7
500 11.4 4.8 14.0 5.8 11.5 5.6

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂adv Rnat R̂adv Rnat R̂adv

1 0.5 100.0 0.6 99.8 0.7 100.0
10 0.7 100.0 0.8 99.8 0.7 99.9

100 0.7 92.2 0.7 94.8 0.7 91.7
200 0.8 86.0 0.7 82.1 0.7 85.7
400 1.0 67.1 1.2 59.1 0.9 82.7
600 2.1 39.9 1.4 37.2 1.2 73.6
800 2.7 35.3 2.6 28.8 2.4 61.0
1000 3.3 23.6 3.1 24.7 2.3 51.5
2000 5.8 21.6 4.8 17.3 3.8 23.8
3000 7.3 31.4 14.0 30.0 7.5 29.4
4000 6.7 39.2 5.5 29.2 9.0 23.9
5000 10.4 29.5 5.7 25.6 11.6 20.8
6000 14.1 53.4 16.1 21.1 9.5 23.9
7000 13.3 31.9 6.3 22.8 9.3 29.0

Table 14: Evaluated results of natural risk (%) and adversarial risk (%) on CIFAR-10. Attacks are
bounded by l∞ norm with ε = 2/255.

(a) For TRADES.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂adv Rnat R̂adv Rnat R̂adv

0.1 5.4 21.7 5.3 24.3 5.4 24.1
1 6.3 13.3 6.3 13.6 6.4 13.3
5 8.5 12.1 7.7 11.0 8.7 12.5

10 9.7 11.7 9.0 10.7 9.5 11.1
30 10.2 9.8 10.1 9.5 10.1 9.7
50 11.1 9.0 11.2 9.2 11.0 8.7
70 11.6 9.0 11.6 8.9 11.6 8.6
90 12.1 8.9 12.4 8.3 12.4 9.2
120 13.2 8.3 13.0 7.8 12.9 8.0
150 13.6 8.0 13.9 8.4 13.4 7.7
180 14.1 8.4 14.2 7.4 14.4 7.8
210 14.7 7.9 14.6 7.5 14.5 7.8

(b) For THRM.

λ
Trial 1 Trial 2 Trial 3

Rnat R̂adv Rnat R̂adv Rnat R̂adv

1 4.8 55.7 4.5 57.5 4.7 53.1
10 5.4 26.8 5.4 27.6 5.2 28.2
50 6.3 18.9 5.8 18.5 5.2 19.2
100 6.7 15.1 6.4 14.8 6.5 15.3
150 7.1 13.9 7.0 14.0 7.5 14.1
200 8.4 12.4 7.9 13.4 8.5 13.3
250 8.8 12.2 8.6 12.1 9.0 12.8
300 9.6 12.1 9.0 11.9 9.7 11.5
400 10.0 11.3 10.0 11.6 10.7 11.0
600 11.8 11.2 11.4 11.2 11.8 10.4
800 12.5 10.5 12.9 10.7 13.3 10.3

1000 14.2 10.7 13.8 10.5 14.0 10.1
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A.4 DETAILS IN SECTION 5

Hypocritical attacks here are executed by 50 steps PGD (step size is ε/10) on source models. Note
that the optimization method we used here is not to pursue state-of-the-art transferability, but to
examine the transferability of hypocritical examples. There are many methods designed to improve
the transferability of adversarial examples may be extended to hypocritical examples (Liu et al.,
2017; Dong et al., 2018; Wu et al., 2020a). Figure 7 shows the transferability heatmap of hypocritical
attack over 9 models trained on MNIST. Figure 8 shows the transferability heatmap of hypocritical
attack over 7 models trained on CIFAR-10. The value in the i-th row and j-th cloumn of each
heatmap matrix is the proportion of the hypocritical examples successfully transferred to target
model j out of all hypocritical examples generated by source model i (including both successful and
failed attacks on the source model).
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Figure 7: Transferability of hypocritical examples on MNIST. Attacks are bounded by l∞ norm
with ε = 0.2. “(LeNet*)” means that it is the same architecture with “(LeNet)” but different random
initialization.
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Figure 8: Transferability of hypocritical examples on CIFAR-10. Attacks are bounded by l∞ norm
with ε = 8/255.
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B PROOFS OF MAIN RESULTS

In this section, we provide the proofs of our main results.

B.1 A PROOF OF PROPOSITION 1

Proposition 1. Denote the adversarial risk on correctly classified examples by

R̂adv(f) = E
(x,y)∼S+

f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
,

then we have
Radv(f) = Rnat(f) + (1−Rnat(f))R̂adv(f).

Proof.

Radv(f) = E
(x,y)∼D

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
= E

(x,y)∼D

[
1(f(x) = y) · max

x′∈Bε(x)
1(f(x′) 6= y)

]
+ E

(x,y)∼D

[
1(f(x) 6= y) · max

x′∈Bε(x)
1(f(x′) 6= y)

]
=Rnat(f) E

(x,y)∼S−f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
+ (1−Rnat(f)) E

(x,y)∼S+
f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
=Rnat(f) E

(x,y)∼S−f
[1(f(x) 6= y)] + (1−Rnat(f)) E

(x,y)∼S+
f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
=Rnat(f) + (1−Rnat(f)) E

(x,y)∼S+
f

[
max

x′∈Bε(x)
1(f(x′) 6= y)

]
=Rnat(f) + (1−Rnat(f))R̂adv(f).

B.2 A PROOF OF THEOREM 1

Theorem 1. For any data distribution D and its corresponding conditional distribution on misclas-
sified examples S−f w.r.t. a classifier f , we have

E
(x,y)∼S−f

1(f(xhyp) = y)︸ ︷︷ ︸
R̂hyp(f)

≤ E
(x,y)∼S−f

1(f(xhyp) 6= f(x))︸ ︷︷ ︸
Rhyp(f)

≤ E
(x,y)∼S−f

1(f(xrev) 6= f(x))︸ ︷︷ ︸
Rhyp(f)

,

where xhyp = arg max
x′∈Bε(x)

1(f(x′) = y) and xrev = arg max
x′∈Bε(x)

1(f(x′) 6= f(x)).

Proof. To prove the first inequality, we have

R̂hyp(f) = E
(x,y)∼S−f

[
max

x′∈Bε(x)
1(f(x′) = y)

]
= E

(x,y)∼S−f
1(f(xhyp) = y)

≤ E
(x,y)∼S−f

1(f(xhyp) 6= f(x)),
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where the above inequality involves two conditions:

1(f(xhyp) = y) =

{
1 = 1(f(xhyp) 6= f(x)), if f (xhyp) = y,
0 ≤ 1(f(xhyp) 6= f(x)), if f (xhyp) 6= y.

To prove the second inequality, we have

Rhyp(f) = E
(x,y)∼S−f

1(f(xhyp) 6= f(x))

≤ E
(x,y)∼S−f

1(f(xrev) 6= f(x)).

Since (x, y) ∼ S−f , we have f(x) 6= y. If there exists a xhyp such that f(xhyp) = y, then f(xhyp) 6=
f(x). Now let xrev = xhyp, then f(xrev) 6= f(x) is true. Otherwise, if we couldn’t find a xhyp such
that f(xhyp) = y, there still exists a posibility to find a xrev such that f(xrev) 6= y but f(xrev) 6=
f(x) is true. Therefore, the above inequalities holds.

B.3 A PROOF OF PROPOSITION 2

Proposition 2. Rrev(f) = (1−Rnat(f))R̂adv(f)+Rnat(f)Rhyp(f) = E
(x,y)∼D

1(f(xrev) 6= f(x)).

Proof.

Rrev(f) =(1−Rnat(f))R̂adv(f) +Rnat(f)Rhyp(f)

=(1−Rnat(f)) E
(x,y)∼S+

f

[1(f(xadv) 6= y)] +Rnat(f) E
(x,y)∼S−f

[1(f(xrev) 6= f(x))]

= E
(x,y)∼D

[1(f(x) = y) · 1(f(xadv) 6= y)] + E
(x,y)∼D

[1(f(x) 6= y) · 1(f(xrev) 6= f(x))]

= E
(x,y)∼D

[
1(f(x) = y) · max

x′∈Bε(x)
1(f(x′) 6= y)

]
+ E

(x,y)∼D

[
1(f(x) 6= y) · max

x′∈Bε(x)
1(f(x′) 6= f(x))

]
= E

(x,y)∼D

[
1(f(x) = y) · max

x′∈Bε(x)
1(f(x′) 6= f(x))

]
+ E

(x,y)∼D

[
1(f(x) 6= y) · max

x′∈Bε(x)
1(f(x′) 6= f(x))

]
= E

(x,y)∼D

[
max

x′∈Bε(x)
1(f(x′) 6= f(x))

]
= E

(x,y)∼D
[1(f(xrev) 6= f(x))] .

C ADDITIONAL DISCUSSIONS

We showed that correctly classified examples (hypocritical examples) could be easily found in the
vicinity of misclassified clean examples. As a result, a hypocritically perturbed set could be con-
structed with these hypocritical examples. The victim model’s standard accuracy evaluated on the
hypocritically perturbed set becomes higher than that on the clean set. It is natural then to wonder:
How about adversarially robust accuracy (i.e., accuracy under adversarial perturbations) of the
victim model on hypocritical examples? It’s easy to see that, if the adversary is bounded by the same
ε ball as the false friend, the model’s adversarial accuracy evaluated on hypocritically perturbed set
is zero, since a misclassified example exists in the ε ball of a hypocritical example (by definition).
However, if the adversary’s power is restricted by another δ ball such that δ < ε, then a robust
hypocritical example may exist in the vicinity of a clean example so that a δ-bounded adversary can
not change the model’s prediction on the robust hypocritical example. In such a case, the model’s
adversarial accuracy evaluated on the robustly hypocritically perturbed set could be higher than that
on the clean set. New attack and defense methods are required to further explore this phenomenon.
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Figure 9: A visualization of the toy example to illustrate the phenomenon of the tradeoff between
adversarial and hypocritical risks. Oracle decision boundary is the circle given by Equation 9. Model
decision boundary is the line given by Equation 10 with the threshold b = 0.5. Red shadow and
green shadow region denote that the points in there are misclassified and correctly classified by the
model, respectively. The gray lined region denotes that the points in there can be perturbed with
little perturbations to reverse the prediction of the model.

D TRADEOFF BETWEEN ADVERSARIAL AND HYPOCRITICAL RISKS

Despite the experiments in Section 4.1 and Appendix A.3 showed that, when dealing with finite sam-
ple size and finite-time gradient-descent trained classifiers, there may be mutual benefits between
adversarial robustness and hypocritical robustness in real-world datasets, we note that in general,
this synergism does not necessarily exist. We illustrate the phenomenon by providing another toy
example here, which is inspired by the precision-recall tradeoff Buckland & Gey (1994); Alvarez
(2002).

Consider the case (x, y) ∈ R2 × {−1,+1} from a distribution D, where the marginal distribution
over the instance space is a uniform distribution over [0, 1]2. We assume that the decision boundary
of the oracle (ground truth) is a circle:

O(x) = sign(r − ‖x− c‖2), (9)

where the centre c = (0.5, 0.5)> and the radius r = 0.4. The points inside the circle are labeled
as belonging to the positive class, otherwise they are labeled as belonging to the negative class. We
consider the linear classifier f with fixed w = (0, 1)> and a tunable threshold b:

f(x) = sign(w>x− b) = sign(x2 − b). (10)

See Figure 9 for a visualization of the oracle and the linear classifier over the instance space. In this
problem, we can show the tradeoffs by tuning the threshold b of the linear classifier over [0, 1]. The
precision is the number of true positives (i.e. the number of examples correctly classified as positive
class) divided by the the sum of true positives and false positives (i.e. the number of examples
misclassified as positive class). The recall is the number of true positives divided by the sum of
true positives and false negatives (i.e. the number of examples misclassified as negative class). We
compare the adversarial risk on correctly classified examples R̂adv(f) defined in Proposition 1 and
the hypocritical risk on misclassified examples R̂hyp(f) defined in Definition 3. The computing
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Precision = Recall =

= =

Figure 10: Visualization of the computing formulas of precision, recall, adversarial risk, and hypo-
critical risk in the toy example. These values can be viewed as the proportion of the areas of different
regions.
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Figure 11: The tradeoff between precision and
recall in the toy example.
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Figure 12: The tradeoff between adversarial and
hypocritical risks in the toy example.

formulas of these values are visualized in Figure 10. Here we choose the bounded l2 ball Bε(x) =
{x′ ∈ R2 : ‖x′ − x‖2 ≤ ε} with ε = 0.1 as the threat model.

Figure 11 plots the curve of precision and recall versus threshold b. We can see that there is a obvious
precision-recall tradeoff between the two gray dotted lines. Similarly, Figure 12 plots the curve of
R̂adv(f) and R̂hyp(f) versus threshold b. We can see that the tradeoff exists almost everywhere: as
the adversarial risk increases, the hypocritical risk decreases, and vise versa.
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