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ABSTRACT

Talking head generation with arbitrary identities and speech audio remains a cru-
cial problem in the realm of the virtual metaverse. Despite progress, current meth-
ods still struggle to synthesize diverse facial expressions and natural head move-
ments while generating synchronized lip movements with the audio. The main
challenge is stylistic discrepancies between speech audio, individual identity, and
portrait dynamics. To address the challenge of inter-modal inconsistency, we in-
troduce MoDA, a multi-modal diffusion architecture with two well-designed tech-
nologies. First, MoDA explicitly models the interaction among motion, audio,
and auxiliary conditions, enhancing overall facial expressions and head dynam-
ics. In addition, a coarse-to-fine fusion strategy is employed to progressively inte-
grate different conditions, ensuring effective feature fusion. Experimental results
demonstrate that MoDA improves video diversity, realism, and efficiency, making
it suitable for real-world applications.

1 INTRODUCTION

Talking head generation aims to create a photorealistic, speaking portrait from a single image, guided
by audio and other modalities. Combined with the generative adversarial network (GAN) (Goodfel-
low et al., 2014) and diffusion model (Sohl-Dickstein et al., 2015), recent methods demonstrate
widespread potential applications, such as immersive telepresence, and virtual characters.

Diffusion models have recently marked a significant advancement in generative modeling, enabling
the creation of highly diverse videos. Early diffusion-based methods Cui et al. (2024a); Tian et al.
(2024); Jiang et al. (2024); Xu et al. (2024a) generate the final video directly from the audio in-
put. Although trainable from end to end, methods like Hallo2 Cui et al. (2024a) remain two major
limitations persist, as shown in Fig. 1: 1) Inefficient inference process and visual artifacts. 2) Unnat-
ural facial expressions and head movements with precise lip-sync. Recently, two-stage methods Xu
et al. (2024b); Cao et al. (2024); Li et al. (2024) have simplified the diffusion process by bypassing
complex variational auto-encoder (VAE) decoding. Methods like VASA-1 Xu et al. (2024b) first
use the diffusion model to generate intermediate motion representations from audio, and then use a
separate rendering network to synthesize the final video. However, the final video quality is heavily
dependent on the accuracy of these intermediate representations. Thus, these methods still struggle
to achieve natural facial dynamics with precise lip-sync due to suboptimal predictions.

Looking into the aforementioned issues, we argue that their root cause is the stylistic discrepancies
between speech audio, individual identity, and portrait dynamics. These methods typically concate-
nate multiple conditions to form a mixed representation, which is then fed into a cross-attention
mechanism where information flows only from this mixed modality to motion. This design intro-
duces a learning bias, causing the model to focus only on the most shallow feature cues while
neglecting the intricate relationships between the modalities. Consequently, it fails to handle more
complex or conflicting scenarios. As in the ablation study, this limitation leads directly to inconsis-
tent motion sequences when the model is conditioned on arbitrary identity input.
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Figure 1: Beyond precise lip-sync, MoDA demonstrates strong capabilities in generating natural
facial expressions and head movements. Real-Time Factor (RTF) measures the ratio of inference
time to output duration.

To address the challenge of inter-modal inconsistency, we propose MoDA, a novel framework de-
signed for synergistic talking head generation. MoDA begins by operating within a joint parameter
space that bridges motion generation and neural rendering, encompassing a disentangled motion-
appearance space Guo et al. (2024) along with audio, emotion, and identity. This space has a di-
mensionality that is an order of magnitude lower than traditional VAE spaces, which dramatically
reduces the complexity of multi-modal fusion. Moreover, by incorporating optional conditions like
identity and emotion, MoDA makes the generative modeling of complex distribution more tractable
and increases fine-grained control over the generative process.

MoDA is guided by two core principles designed to address these inconsistencies: 1) We draw in-
spiration from recent lip-to-speech tasks Varshney et al. (2022); Prajwal et al. (2020a), where visual
information can provide additional context to complement the audio. As shown in Fig. 2, MoDA
introduces the Multi-modal Diffusion Transformer (MMDiT) Esser et al. (2024), equipped with
rectified flow Liu et al. (2022), as the framework to facilitate multi-modal fusion. In this design,
MoDA can dynamically adapt audio features based on motion, identity, and emotion, thereby im-
proving the accuracy of motion generation. 2) To systematically integrate these modalities based on
semantic information, MoDA implements a coarse-to-fine fusion strategy. Initially, the model uses
separate weights to capture the unique characteristics of each modality. In the intermediate stage, a
unified representational space is introduced for semantically linked modalities like audio, emotion,
and identity to form a unified motion command. Finally, all modalities are integrated into a unified
representation space, allowing holistic fusion. To further encourage precise lip-sync while maintain-
ing motion diversity, MoDA provides an optional Adaptive Lip-motion sync Expert (ALSE), which
can be integrated during training. The contributions of MoDA can be summarized as follows:

• This paper proposes MoDA, a novel multi-modal diffusion framework that generates high-
fidelity talking head videos from an image, audio, and additional modalities.

• A coarse-to-fine fusion strategy is designed to progressively integrate noisy motion with
audio and other modalities, enabling effective multi-modal fusion.

• Extensive evaluations on public datasets demonstrate that our method outperforms contem-
porary alternatives in visual quality and quantitative metrics.

2 RELATED WORK

2.1 DISENTANGLED FACE REPRESENTATION

Recent research on disentangled facial representation learning has explored methods using sparse
keypoints Siarohin et al. (2019) or 3D Morphable Models (3DMM) Blanz & Vetter (1999); Li et al.
(2017) to model facial dynamics. The 3DMM projects the 3D head shape into low-dimensional
PCA spaces, allowing manipulation of attributes like identity, pose, and expression via linear blend
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Figure 2: Overall architecture of the proposed MoDA and illustration of our Motion Generation
Network. The appearance extractor F , motion extractor M, warping module W , and decoder G
are frozen. A motion feature generation model based on a Diffusion Transformer is then trained to
generate motion features.

skinning. However, these methods may suffer from reconstruction inaccuracies or difficulties in de-
coupling facial attributes. Recent learning-based methods, such as Face Vid2Vid Wang et al. (2021),
LivePortrait Guo et al. (2024), and MegaPortraits Drobyshev et al. (2022), use non-linear parame-
ter spaces to improve the disentanglement of facial representation. These approaches capture more
detailed facial expressions and offer greater flexibility in animation.

2.2 AUDIO-DRIVEN TALKING HEAD GENERATION

In audio-driven digital human technology, one-shot methods have gained attention for generating
dynamic avatars from a single image. These methods are classified into single-stage and two-stage
audio-to-video generation. Single-stage methods Jiang et al. (2024); Cui et al. (2024a); Prajwal et al.
(2020b); Shi et al. (2024); Xu et al. (2024a); Guan et al. (2023); Cui et al. (2024b) map audio features
directly to video frames. In contrast, two-stage methods Li et al. (2024); Xu et al. (2024b); Cao et al.
(2024); Sun et al. (2023); Zhang et al. (2023) use intermediate representations like motion sequences
or keypoints.

Early single-stage methods Guan et al. (2023); Prajwal et al. (2020b); Suwajanakorn et al. (2017)
focused on lip-sync accuracy using GANs. Recent advances Xu et al. (2024a); Shi et al. (2024);
Cui et al. (2024a); Tian et al. (2024); Chen et al. (2024) incorporated diffusion-based approaches,
mapping audio to diverse facial expressions and head movements. However, these methods face
challenges like high computational overhead and low inference efficiency due to denoising in the
VAE space, where appearance and motion are entangled.

Two-stage methods address these limitations by using a disentangled facial space as an intermedi-
ate representation. Early methods Ye et al. (2023; 2022) utilized landmarks or 3DMM for motion
synthesis. Recently, VASA-1 Xu et al. (2024b), Ditto Li et al. (2024), and JoyVASA Cao et al.
(2024) shifted to implicit facial representations Wang et al. (2021); Drobyshev et al. (2022); Guo
et al. (2024), employing DiT-based models for audio-to-motion mapping, resulting in more expres-
sive video synthesis. However, relying solely on cross-attention for lip-sync generation limits the
diversity and expressiveness by neglecting rich multi-modal interactions and deep-level information
within the input signals.
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3 METHOD

3.1 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPMs) Song et al. (2020) have emerged as a pow-
erful framework for generative modeling by formulating the data generation process as an iter-
ative denoising procedure. In the forward diffusion process, Gaussian noise ϵ is gradually intro-
duced into the data distribution across T discrete timesteps, producing noisy latent features:zt =√
αtz0 +

√
1− αtϵ, where αt represents a variance schedule that determines the noise level at each

timestep, and z0 is the raw data. The model is trained to reverse this process by taking the noisy
latent representation zt as input and estimating the added noise ϵ. The training objective is defined
as:L = Ezt,c,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, c)||22

]
, where ϵθ denotes the noise prediction generated by

the model, and c represents additional conditioning signals, such as audio or motion frames, which
are particularly relevant in the generation of talking videos. Recently, Stable Diffusion 3 (SD3) Esser
et al. (2024) has advanced the paradigm by introducing Rectified Flow Pooladian et al. (2023); Liu
et al. (2022) that optimizes the objective of traditional DDPMs:

L = Ezt,c,ϵ∼N (0,1),t

[
||(ϵ− z0)− vθ(zt, t, c)||22

]
, (1)

where zt = (1 − t)z0 + tϵ, and vθ denotes the velocity field. After the rectified flow training
is completed, the transition from ϵ to z0 can be formulated using the numerical integration of an
ordinary differential equation (ODE):

zt− 1
N

= zt +
1

N
vθ(zt, t, c), (2)

where N denotes the discretization steps of the interval [0, 1]. The piecewise linear denoising process
improves training stability. Furthermore, since our audio-to-motion task does not involve complex
pixel information, this approach is particularly well-suited to our needs. Given these advantages, we
adopt the rectified flow for training.

3.2 MODEL ARCHITECTURE

Instead of simply concatenating these conditioning signals, we enhance the intrinsic characteristics
and emotional nuances of the audio representation by treating external emotion and identity cues
as ”catalysts”. This approach balances identity and emotion between audio and speakers, enabling
more natural lip control in real-world scenarios.

3.2.1 JOINT PARAMETER SPACE

As shown in Fig. 2, we incorporate the existing facial re-enactment framework Guo et al. (2024) to
extract disentangled facial representations. Specifically, the motion extractor M yields expression
deformations δ, head pose parameters (R, t), the canonical keypoints of the source image xc, and
a scaling factor S. The motion representation (Rs, δs, ts, Ss) ∈ R70, serves as an identity-agnostic
representation of the source input and is used to train MoDA to predict (R̂, δ̂, t̂, Ŝ) given audio input.

xs = Ss · (xcRs + δs) + ts ,

x̂ = Ŝ · (xcR̂+ δ̂) + t̂ .
(3)

Subsequently, the warping field estimator W computes a field from xs and x̂ to deform the 3D fea-
tures fs, which are then passed to the generator G to synthesize the target image. The audio features
fa are extracted using the wav2vec Schneider et al. (2019) encoder. To maintain consistency in the
identity feature space across various scenarios, we use the canonical keypoints of the source image
xc as identity information and generate identity features fi. For facial emotion signals, we use a vi-
sual emotion classifier Savchenko (2022) to extract the speaker’s emotional labels and encode them
into corresponding features fe. The motion features from the first frame of each clip are used as
previous motion to ensure inter-frame continuity and generate noisy motion features fm. Inspired
by EMO2 Tian et al. (2025), emotion features fe are added to timestep embeddings to generate
timestep features ft, which are injected into each motion transformer block by adaptive layer nor-
malization (AdaLN) Peebles & Xie (2022). AdaLN is used to prevent the degradation of emotion
features during the joint-attention operation, ensuring that emotional cues are preserved throughout
the fusion. By integrating these conditioning signals, our model effectively generates realistic and
temporally consistent motion features.
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3.2.2 MOTION TRANSFORMER BLOCKS

As shown in Fig. 3 (c), the block consists of three main components: Modality-specific paths, Joint-
attention and Rotational Position Encoding (RoPE) Yang et al. (2024). Modality-specific paths
are designed to distinguish representations from different modalities. Specifically, each modality
is equipped with its own adaLN and a modulation mechanism Peebles & Xie (2022) to improve
the conditional generation capabilities of the model. Joint-attention is employed to interact across
modalities. All modalities are first projected onto their respective query (Q), key (K), and value (V)
representations, which are then concatenated in order along the sequence dimension. The combined
sequence is processed through an attention operation, after which the attended features are split
back into their respective modalities in the original order. To enhance temporal alignment between
noisy motion and other conditional features, we adopt RoPE instead of the absolute positional en-
coding used in MMDiT. Specifically, we first expand the expression and identity features to match
the sequence length of the noisy motion and audio features. We then apply aligned RoPE across
all modalities, which facilitates better temporal sync and more consistent feature representations.

(b) Joint-attention 

(a) Cross-attention 
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Figure 3: The detail of the Motion Transformer
Block. (a) Cross-attention uses noise as the query
and conditions as key and value. (b) Joint-
attention projects noise and conditions separately
and concatenates them before attention.

3.2.3 COARSE-TO-FINE FEATURE FUSION

Although assigning modality-specific paths
with separate QKV projections and FeedFor-
ward Networks (FFNs) in the attention mech-
anism can enhance multi-modal information,
this design often overlooks the inherent se-
mantic commonalities shared across modali-
ties. Independently learned weights hinder ef-
fective multi-modal feature fusion and intro-
duce redundant parameters, potentially caus-
ing inconsistency issues. This issue is particu-
larly pronounced in tasks like audio-to-motion
generation, where no pixel-level inputs are in-
volved, and the semantic gap between modali-
ties is relatively small. In such cases, maintain-
ing entirely separate parameterizations fails to
provide meaningful benefits and instead leads
to duplicated representations. To enhance the
model’s capacity for multi-modal understanding, we introduce a Coarse-to-Fine Feature Fusion
strategy. This fusion strategy progressively integrates multi-modal features while reducing unnec-
essary parameters, thereby enhancing the multi-modal understanding and training stability. As il-
lustrated in Fig. 2, the architecture progresses through three stages: a four-stream, two-stream, and
single-stream process. In the four-stream stage, each modality is processed independently to learn
modality-specific representations, facilitating early-stage feature differentiation. In the two-stream
stage, the audio stream is concatenated with emotion and identity features to form a merged stream
that shares weights. This design encourages a balanced integration of emotional and identity cues
from both the audio and the reference image. Finally, all modalities are unified into a single repre-
sentation stream to allow deeper fusion and enhance generative expressiveness.

3.2.4 LOSS FUNCTION

Our loss function utilizes the rectified flow loss and Eq. 1 is rewritten as:

LRF = Ezt,c,ϵ∼N (0,1),t

[
||x− vθ(zt, t, c)||22

]
, (4)

where x represents ϵ − z0, vθ denotes the velocity field. The velocity loss Lvel is introduced to
encourage improved temporal consistency:

Lvel = ||x′ −m′||22 + ||x′′ −m′′||22, (5)

where m denotes the output of vθ(zt, t, c), and m′′. m′′ denotes the first-order and second-order
derivatives of m. To further enforce lip-sync accuracy, we design the ALSE pretrained in audio and
motion features and compute the loss LALSE . It is worth noting that supervision from the pretrained

5
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Figure 4: Qualitative Comparisons with State-of-the-Art Method. As single-frame images cannot
fully represent sync, naturalness, and stability, we provide complete video comparisons in the sup-
plementary materials.

Table 1: Comparison with existing methods on the HDTF and CelebV-HQ test sets. ↑ Higher is
better. ↓ Lower is better. Best results are in bold, second-best are underlined.

Dataset Method FVD ↓ FID ↓ F-SIM ↑ Sync-C ↑ Sync-D ↓ Smo(%) ↑

HDTF

GT - - 0.860 7.267 7.586 0.9959
EchoMimic 207.987 29.633 0.887 2.744 11.805 0.9939
JoyHallo 256.226 44.842 0.852 7.360 7.984 0.9944
Hallo 216.573 34.350 0.878 7.087 7.941 0.9950
Hallo2 229.806 34.426 0.871 7.102 7.976 0.9951
Ditto 243.491 32.200 0.943 6.102 8.790 0.9970
JoyVASA 229.634 32.584 0.953 5.255 9.600 0.9968
Ours (sync) 191.292 30.449 0.925 8.183 7.065 0.9970
Ours 174.622 28.182 0.927 7.369 7.744 0.9971

CelebV-HQ

GT - - 0.861 5.837 7.989 0.9964
EchoMimic 258.451 47.169 0.837 2.610 11.216 0.9946
JoyHallo 282.081 57.247 0.813 6.041 8.418 0.9945
Hallo 245.101 44.411 0.851 5.629 8.384 0.9952
Hallo2 242.352 46.615 0.851 5.671 8.397 0.9953
Ditto 302.525 46.996 0.915 4.681 9.280 0.9973
JoyVASA 271.231 44.574 0.918 5.171 8.632 0.9971
Ours (sync) 205.307 44.201 0.916 6.552 7.635 0.9972
Ours 205.442 44.071 0.913 5.878 8.135 0.9972

ALSE is optional and can be applied as needed. In summary, the final loss can be expressed as
follows:

L = LRF + Lvel + λsync · LALSE , (6)

λsync =

{
1, if LALSE < τ

0, otherwise
, (7)

where τ is set to 0.4, controlling sync loss activation to ensure lip-motion supervision is applied
only after establishing basic motion diversity. Further details about the ALSE can be found in the
supplementary materials.

3.3 REALTIME INFERENCE

The real-time conversational scenario is enabled by low-latency motion generation. We align audio
features with the video frame rate and segment the audio into continuous 100-frame chunks for
streaming generation. Additionally, leveraging low-dimensional intermediate representations and
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the rectified flow, we reduce DiT inference denoising steps from 50 to 10, yet achieve even higher
quality. For detailed comparison, please refer to the supplementary material.

3.3.1 CLASSIFIER-FREE GUIDANCE (CFG)

In the training stage, we randomly assign each of the input conditions, and during inference, we
perform the following:

ẑ0 = (1 +
∑
c∈C

λc) · vθ(zt, t, C)−
∑
c∈C

λc · vθ(zt, t, C|c = ∅), (8)

where λc is the CFG scale of condition c. C|c = ∅ denotes that the condition c is ∅.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

4.1.1 DATASET AND METRICS

Our motion generation model is primarily trained on three publicly available datasets: HDTF Zhang
et al. (2021), CelebV-Text Yu et al. (2023), and MEAD Wang et al. (2020). For evaluation, we
conducted experiments on three distinct test sets. The first two are derived from public datasets,
CelebV-HQ Zhu et al. (2022) and HDTF, each consisting of 50 randomly sampled clips ranging
from 3 to 10 seconds in length. The third is an in-the-wild set with 20 diverse cases, including real
individuals, animated characters, dynamic scenes, and complex headwear. Each sample is paired
with audio that is speech, emotional dialogue, or singing. We utilize several evaluation metrics
to assess the performance of the proposed method. The Fréchet Inception Distance (FID) Seitzer
(2020) and the Fréchet Video Distance (FVD) Unterthiner et al. (2019) are used to assess the quality
of the generated output, while the F-SIM Tian et al. (2024) measures facial similarity. In addition,
Sync-C Chung & Zisserman (2017) and Sync-D Chung & Zisserman (2017) metrics are introduced
to evaluate lip-sync between different methods. A temporal smoothness metric (Smo) Huang et al.
(2024) is also utilized to monitor the continuity of generated motion.

4.1.2 IMPLEMENTATION DETAILS

During training, we randomly sample 80-frame segments from video clips to train the motion gen-
eration model. The model is trained for approximately 500 epochs on 8 NVIDIA H20 GPUs with a
batch size of 512, using the Adam optimizer with a learning rate of 1e-4. During training, we apply
a dropout probability of 0.1 for each emotion condition, while the dropout probability for speech is
set to 0.5. Furthermore, the model is structured with 3 four-stream blocks, 6 two-stream blocks, and
12 single-stream blocks.

Table 2: Comparison with methods on the wild test dataset.

Method F-SIM ↑ Sync-C ↑ Sync-D ↓ RTF ↓
EchoMimic 0.870 2.292 12.130 48.657
JoyHallo 0.825 7.000 8.167 59.735
Hallo 0.848 6.051 8.730 59.190
Hallo2 0.849 6.386 8.523 60.305
Ditto 0.923 6.107 9.040 0.792
JoyVASA 0.924 5.569 9.368 1.717
Ours (sync) 0.896 7.710 7.469 0.846
Ours 0.895 6.862 8.088 0.846

4.2 RESULTS AND ANALYSIS

We juxtapose the results of the proposed method against those of EchoMimic Chen et al. (2024),
Ditto Li et al. (2024), JoyVASA Cao et al. (2024), JoyHallo Shi et al. (2024), Hallo Xu et al. (2024a),
and Hallo2 Cui et al. (2024a), Ours and Ours (Sync) (MoDA with ALSE).
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4.2.1 QUANTITATIVE COMPARISON

The quantitative results on the CelebV-HQ test and HDTF dataset are shown in Table 1.
On the HDTF dataset, MoDA consistently outperforms all existing methods across all eval-
uation metrics. In particular, our method achieves the lowest FID and FVD scores, out-
performing the second-best methods by 4.9 % and 16.0 %, respectively. This demonstrates
the superiority of our method in terms of visual naturalness and the overall quality of the
generated frames. The two-stage methods better preserve identity, as evidenced by their F-
SIM scores. Notably, JoyVASA and Ditto achieve the highest and second-highest F-SIM, re-
spectively—likely due to their relatively constrained head movements and facial expressions,
which enhance frame-wise structural similarity. The correspondingly lower FVD scores fur-
ther reflect these limitations. In contrast, MoDA effectively mitigates such issues, demon-
strating that enhancing multi-modal fusion can lead to improved overall model performance.

1 min 2 min 3 min 4 min 1 min 2 min 3 min 4 min

Happy Sad

Talking Head Generation in Complex Scenarios

Generated  Frames

Generated  Frames  From  Long  Videos

Ref  Image

Ref  Image

Ref  Image

Ref  Image

Emotion  Control

Ref  Image Generated  Frames

Figure 5: Generation results for portraits and
audio in diverse styles are presented. We
also demonstrate long-video inference and fine-
grained control over facial expressions.

On the CelebV-HQ test dataset, MoDA con-
sistently outperforms the six baseline meth-
ods in all metrics except Sync-D and Smo,
highlighting its robustness. Although MoDA
slightly underperforms JoyHallo in sync confi-
dence (Sync-C), it achieves a notable improve-
ment in sync distance (Sync-D), along with fur-
ther gains in motion smoothness. Tables 1 also
report the results with and without ALSE. In-
troducing ALSE to supervise the sync between
audio and keypoints leads to a significant im-
provement in lip-sync while maintaining high
visual quality. Table 2 shows that our method
outperforms existing approaches across multi-
ple metrics on the wild test set with diverse
identities. We also report the real-time factor
(RTF), where RTF <1 indicates real-time capa-
bility. Ditto achieves the lowest RTF, benefiting
from TensorRT acceleration. Our method also
delivers competitive efficiency, demonstrating
its suitability for real-world applications.

4.2.2 QUALITATIVE EVALUATION

As shown in Fig. 4, we selected two types of cases from the wild dataset for visual comparison. For
each character, we generated videos using each method and selected frames from the same location
for comparison. Analyzing the results, previous one-stage-based methods, including EchoMimic,
Hallo2, Hallo, and JoyHallo, suffer from appearance blurring and unnatural expressions during tem-
poral inference due to the strong entanglement between appearance and motion. In contrast, our
proposed two-stage framework effectively mitigates these issues, ensuring high consistency in the
generated details. Compared to the two-stage method JoyVASA and Ditto, MoDA generates richer
expressions, better lip-sync, and more natural head movements, thanks to our multi-modal motion
generation network, which effectively integrates deep information across different modalities.

4.2.3 VISUALIZATION RESULTS IN COMPLEX SCENARIOS

We further investigate MoDA’s generation performance in complex scenarios. Specifically, for the
visual modality, we utilize portraits of both real humans and animated characters, each paired ran-
domly with various audio types, including speech, singing, recitation, and others. As shown in Fig. 5,
our method demonstrates strong performance in various complex scenarios. In addition, it is capable
of long-duration inference and fine-grained facial expression control.

4.3 ABLATION STUDY

For more ablation experiments and implementation details, see the Appendix.

8
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4.3.1 CROSS-ATTENTION

We replace the MoDA with a Cross-Attention-Based Architecture (CABA) to perform multi-modal
fusion for evaluation purposes. As shown in Table 3, this substitution results in a performance drop
in all metrics. Moreover, as illustrated in Fig. 6, the subject exhibits mouth-closing failures when
lacking deep multi-modal interaction. To investigate this, we conducted two experiments under the
same settings used in the w/ CABA variant as show in Fig. 6: 1) Replacing the audio with the same
image did not resolve the mouth closure issue (Replace audio). 2) Replacing the image with the
same audio addressed the issue (Replace image). These results suggest that cross-attention fails to
adapt audio features to different identity conditions. In contrast, MoDA enables dynamic adaptation
of audio features based on contextual factors such as motion, identity, and emotion.

Table 3: Ablation study results on CelebV-HQ test sets.

Method FID ↓ FVD ↓ Sync-C ↑ Sync-D ↓
w/ CABA 47.365 232.291 5.331 8.692
w/o C2F 44.548 221.631 5.535 8.465
w/ MAF 48.358 216.982 5.511 8.527
Full Model 44.071 205.442 5.878 8.135

4.3.2 COARSE-TO-FINED FEATURE FUSION

We replace the Coarse-to-Fine Feature Fusion with a fully four-stream architecture (w/o C2F). As
shown in Table 3, this design leads to performance degradation, particularly in sync and motion
quality, emphasizing the necessity of progressive feature fusion for effective cross-modal integra-
tion. These results indicate that independent learning of weights introduces substantial redundant
parameters, resulting in inconsistency challenges (with 904M parameters in the w/o C2F variant).

Full Model

Full Model

w/ CABA

Replace 

audio

Replace 

image

Figure 6: Ablation Study Visualizations.

In contrast, by gradually sharing weights,
the proposed coarse-to-fine strategy sig-
nificantly reduces the parameter count to
370M, leading to both greater efficiency
and improved performance. To further in-
vestigate the effectiveness of the fusion
strategy, we modified the original dual-
stream design by creating an MAF variant
that first merges motion with the auxiliary
cues (emotion + identity) into one branch,
while audio stays in the other. Table 3
also shows that MAF performs worse than
even the w/o C2F baseline. Directly fusing
the heterogeneous noisy motion and aux-
iliary condition features confuses the net-
work. Our full model first merges audio
with the auxiliary cues; Speech audio in-
herently carries emotion and identity sig-
nals, providing a natural bridge and deliv-
ering better accuracy and efficiency.

5 CONCLUSION

We propose MoDA, a two-stage multi-modal diffusion framework for one-shot talking head gener-
ation. MoDA effectively leverages multi-modal information to map audio to motion sequences in
an identity-agnostic latent space, which are then translated into video frames by a pre-trained face
renderer. From a single portrait, MoDA produces high-quality, expressive, and controllable talking
head videos, surpassing previous methods in quality, diversity, and naturalness with high efficiency.

9
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A APPENDIX

A.1 DETAILS OF ADAPTIVE LIP-MOTION SYNCHRONIZATION EXPERT

A.1.1 ARCHITECTURE

Our synchronization expert takes as input a sequence of Tl consecutive lip keypoint frames and an
audio feature clip of size Ta×D, where Tl and Ta represent the number of frames for keypoints and
audio, respectively, and D denotes the dimensionality of Wav2Vec features Schneider et al. (2019).
The expert aims to determine whether the input motion and audio are temporally aligned. As illus-
trated in Fig. 7, it consists of two parallel encoders for landmarks and audio, each built from a stack
of 1D convolutions followed by batch normalization and ReLU activation. The training objective
uses a cosine-similarity-based binary cross-entropy loss. Specifically, cosine similarity is computed
between the keypoints embedding l and the audio embedding a to supervise synchronization.

Lsync = CE

(
a · l

max(∥a∥2 · ∥l∥2, ϵ)

)
(9)
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Figure 7: The structure of Adaptive Lip-motion Synchronization Expert

Figure 8: Distribution of motion intensities in the training dataset.

A.1.2 TRAINING DETAILS

We train the Adaptive Lip-motion Synchronization Expert (ALSE) on a single NVIDIA H20 GPU,
with a batch size of 512. The model is optimized using the Adam optimizer with an initial learning
rate of 1 × 10−4, which is decayed by a factor of 0.02. Training is performed for a total of 30,000
steps. The training dataset is kept consistent with that used for MoDA, with data distribution across
different motion intensities illustrated in Fig. 8.

Table 4: Comparison of MoDA with different inference steps on the CelebV-HQ test set.

Method FVD ↑ Sync-C ↑ Sync-D ↓ RTF ↓
Our-s10 205.442 5.804 8.182 0.846
Our-s20 219.762 5.855 8.205 1.048
Our-s30 213.908 5.751 8.295 1.259
Our-s40 213.483 5.741 8.297 1.430
Our-s50 214.182 5.757 8.346 1.635
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Table 5: Single–step inference latency (seconds) for each module.

Component Latency

Pre-process 0.1303
Denoising Network 0.2012
Rendering 6.3202

Table 6: User study with 20 participants (scores range from 1 to 5).

Method Lip Sync ↑ Motion Diversity ↑ ID Similarity ↑
EchoMimic 2.6 2.4 3.0
JoyHallo 3.3 2.8 2.9
Hallo 2.8 2.7 3.1
Hallo2 3.2 3.1 3.4
JoyVASA 2.4 1.5 4.4
Ditto 3.1 2.9 4.5
Ours 4.5 4.2 4.1

A.2 REAL-TIME INFERENCE

All experiments were run on one NVIDIA H20 GPU, whose inference speed is comparable to that
of an NVIDIA RTX 3090. Relative to VAE-based approaches, MoDA adopts a far more compact
latent representation—70 channels, compared with Hallo’s 64 × 64 × 4 feature map. As a result,
synthesizing 16 frames entails 11,599.69 GFLOPs for Hallo but only 19.53 GFLOPs for MoDA. In
addition, we replace the standard DDPM sampler with rectified flow, cutting the number of denoising
steps from 50 to 10 while attaining even higher visual quality (see Table 4). These results indicate
that MoDA allows us to trim 80 % of the diffusion iterations without compromising visual quality
and lip-sync accuracy. Consequently, MoDA delivers state-of-the-art realism at real-time inference
speed. A fine-grained runtime profile for generating a 10-second video is reported in Table 5.

A.3 USER STUDIES

We conducted a user study on the public HDTF dataset, where 20 participants rated the results of six
methods on a five-point scale with respect to three key aspects: lip-sync quality, motion diversity,
and identity similarity. As reported in Table 6, MoDA achieves the highest scores on all criteria,
outperforming every competing approach.

A.4 EMOTION CONTROL

It should be stressed that the perceived emotion in a talking-head sequence is closely coupled with
the accompanying audio and can, in most cases, be inferred directly from it. We therefore treat the
external emotion cue merely as a ”catalyst” that enables MoDA to infer this affect more effectively
from the speech signal. The cue is applied only when necessary, to gently amplify or attenuate the
latent emotion; it is not designed to perform a full emotion transfer or to synthesize expressions
that contradict the input soundtrack. To verify this claim, we reran inference with different emotion
codes and measured both lip-sync accuracy and FVD. As shown in Table 7, altering the emotion
code does not degrade the model’s generation quality.

A.5 ADDITIONAL ABLATIONS AND RESULTS

A.5.1 CROSS-ATTENTION

For the cross-attention, we follow Ditto’s design Li et al. (2024): the audio, identity, and emo-
tion embeddings are concatenated along the channel dimension, processed by a four-layer MLP,
and then used as the key–value inputs in a cross-attention operation with the noise latent.

Full Model

w/ CABA

Figure 9: Limitations of cross-attention in profile
cases

We also identify an additional weakness of the
cross-attention baseline in side-view scenarios.
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Table 7: Impact of forcing different emotion labels during inference on lip-sync accuracy and per-
ceptual quality.

Emotion Sync-C ↑ Sync-D ↓ FVD ↓
Anger 5.885 8.160 207.325
Contempt 5.802 8.210 215.016
Disgust 5.797 8.220 220.178
Fear 5.855 8.131 203.160
Happiness 5.737 8.356 214.524
Neutral 5.804 8.182 206.250
Sadness 5.802 8.227 208.972
Surprise 5.844 8.197 212.952
None (ours) 5.878 8.135 205.442

Table 8: Ablation study results on major architectural choices.

Method FVD ↓ Sync-C ↑ Sync-D ↓
w/ DDPMs 220.291 5.433 8.832
w/ RF-L1 203.371 5.543 8.656
w/o E&I 208.372 5.387 8.619
w/ AdaLN 216.871 5.442 8.441
Full Model 205.442 5.878 8.135

As shown in Fig. 9, the head generated with
cross-attention rotates toward a frontal pose
that does not match the side-view reference.
This failure again reflects cross-attention’s in-
ability to resolve the inherent one-to-many am-
biguity of talking-head generation, causing the
model to gravitate toward the frontal orienta-
tions prevalent in the training data. By contrast,
MoDA exploits the spatial cues in the reference
frame to dynamically modulate the audio features, yielding videos whose head poses remain faithful
to the intended side view and appear far more natural.

A.5.2 RECTIFIED FLOW

We conduct ablation studies on the components of the loss function, as summarized in Table 8.
Replacement of rectified flow with standard DDPMs leads to performance degradation across all
metrics. Using an L1 loss (w/ RF-L1) improves visual quality (lower FVD), but reduces the accuracy
of lip synchronization. Given the importance of synchronization in talking head generation, we adopt
rectified flow with an L2 loss (Full Model) as the default setting.

A.5.3 CONDITIONAL INJECTION METHOD

In our model, the conditions of identity and emotion are treated as two additional streams to balance
the identity and emotional signals within the audio. To evaluate this design, we retain only the noise
and audio streams, and compare two settings: one where emotion and identity conditions are injected
via AdaLN (”w/ AdaLN”) Peebles & Xie (2022), and another that omits the emotion and identity
conditions, training MMDIT solely on the audio and noisy motion (“w/o E&I”).

As shown in Table 8, when the AdaLN method is used, overall performance drops, suggesting that
the extraction of identity and emotional cues from the audio is crucial to balance the inter-modal
inconsistency.

Additionally, when identity and emotion conditions are not injected, we observe a significant decline
in lip synchronization metrics. This suggests that, without these auxiliary conditions to act as cata-
lysts, it is difficult to rely on the audio alone to generate consistent mouth shapes and natural move-
ments. Interestingly, this variant attains a slightly lower (better) FVD than the AdaLN counterpart,
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Ref  Image Generated frames

Figure 10: Examples illustrating the limitations.

implying that the audio stream already carries rich emotional and identity cues and that the AdaLN
strategy cannot fully reconcile the inter-modal inconsistency. Moreover, regardless of whether addi-
tional conditions are injected, overall metrics remain superior to those of the cross-attention-based
method, further demonstrating the importance of effective information interaction.

A.6 LIMITATIONS

The main limitation of our framework stems from the first-stage model, where the Liveportrait gen-
erator struggles with large pose variations and complex head accessories. As shown in Fig. 10, these
issues result in a noticeable decline in output quality, particularly under large pose variations and
in the presence of complex head accessories. Significant pose changes often cause unnatural distor-
tions, which are visually disturbing for users. Additionally, complex headwear can be misinterpreted
as part of the background, leading to temporal inconsistencies and blurring between video frames.
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