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Abstract

The concept of reinforcement learning as inference (RLAI) has led to the creation
of a variety of popular algorithms in deep reinforcement learning. Unfortunately,
most research in this area relies on wider algorithmic innovations not necessarily
relevant to such frameworks. Additionally, many seemingly unimportant modifica-
tions made to these algorithms, actually produce inconsistencies with the original
inference problem posed by RLAI. Taking a divergence minimization perspective,
this work considers some of the practical merits and theoretical issues created by
the choice of loss function minimized in the policy update for off-policy reinforce-
ment learning. Our results show that while the choice of divergence rarely has
a major affect on the sample efficiency of the algorithm, it can have important
practical repercussions on ease of implementation, computational efficiency, and
restrictions to the distribution over actions.

1 Introduction

The recent success of deep reinforcement learning (RL) across a wide range of applications is largely
attributable to advances in actor-critic algorithms [25, 19, 22, 37, 49, 40, 50, 32]. While versatile,
many of these algorithms are difficult to implement and require careful hyper-parameter tuning
[15]. Additionally, the most performant implementations of these algorithms rely on heuristics to
stabilize learning that are not explicitly referenced within the algorithm definition, or even informed
by the relevant theory [15, 54]. In some cases these implementation details become so crucial to
performance that reproducing the original results becomes almost impossible [30, 14, 26].

In light of these issues, some researchers refocused on algorithms informed by probabilistic methods,
most notably a popular class of algorithms derived within the ‘RL as Inference’ (RLAI) framework [43,
35, 34, 59, 44, 17, 2, 51, 8, 47]. Under this framework, policy learning in a Markov decision process
can be framed as an approximate posterior inference task, which has several key benefits over
alternative approaches. First, policies trained using this approach can produce agents that transfer
skills between tasks or even entire environments [16]. Second, RLAI couches the task of model
learning (i.e. learning the dynamics of the environment) within the larger literature of generative
modeling and can take advantage of existing tools and techniques [10, 2, 28, 8], allowing us to
reason in the even wider class of differentiable simulation [39, 18, 3]. Lastly, Kullback–Leibler (KL)
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regularization introduces the notion of “default policies”, which induce different behaviors in the
learned policy that are useful in solving certain environments and impriving exploration [20, 24, 23].

Practically speaking, RLAI provides insights into how to construct various policy losses which
interact more intelligently with modern computation graph software [45, 1, 6]. In framing RL as
an approximate inference task, we force this consideration in deciding what divergence we wish to
minimize, and how gradients of that expectation will be estimated. This is doubly important in settings
where the the simulator itself can be fully or partially differentiable [6, 5]. While we will not consider
how gradient estimates of the forward and backwards messages can be better estimated in general,
we will look at how to provide learning signal to policies in a general setting (e.g. for anonymous
policy distributions given only log-probability of samples). We argue that closer consideration of this
class of gradient estimators will allow for more composable reinforcement learning software, which
in turn would allow for more stable policy learning over all model or distribution classes.

This paper focuses on the following: (1) gradient estimators of the forward and reverse KL divergences
with respect to the policy parameters, (2) the practical implementations of popular algorithms based
on these estimators, and (3) an empirical comparison of the two resulting policy losses. The paper is
organized as follows, Section 2 reviews RL and RLAI notation and background, sections 3 and 4
derive policy gradient estimators based on divergence minimization, and section 5 considers a simple
experiment to show how the performance of each objective differs under modified hyper-parameters.
We conclude with a discussion on the utility of each policy loss, and consider future directions.

2 Background

This section details three important ideas required to understand the differences between gradient
estimators and target objectives in RLAI. The first is the probabilistic structure of a Markov Decision
process, which will allow us to construct a corresponding inference task and model dependencies
within various gradient estimators. The second is the is how actor-critic algorithms amortize many of
the previous costly sampling operations required in classical inference based methods and on-policy
algorithms. Lastly, we need a basic understanding of the RLAI inference task, and how it can be
re-framed as divergence minimization.

2.1 Markov Decision Processes

We define a Markov decision process (MDP),MΦ(S,A,R, T0, T ,ΠΦ), as a random process which
produces a sequence of tuples τt := {at, st, st+1, rt}, for a particular set of states st ∈ S, actions
at ∈ A, initial state distribution p(s0) ∈ T0, transition distribution p(st+1|st, at) ∈ T , reward
function rt : S ×A → R, and policy πφ ∈ Πφ : S → A parameterized by φ. The generative model
for this finite horizon process is defined:

qπφ(τ) = p(s0)
∏T

t=0
p(st+1|st, at)πφ(at|st). (1)

Here we also denote the marginal distribution with respect to a state s, under the trajectory distribution
given in equation 1, as qπφ(s). In this setting, RL seeks to recover the policy which maximizes the
expected cumulative reward over a trajectory, φ∗ = arg maxφ∈Φ Eqπφ (τ)[

∑T
t=0 rt(st, at)]. More

generally, we can extend this notion to infinite horizon problems through the use of a discount factor
which signifies the non-zero probability of termination after every time-step. In this setting it is
common to arrive at a policy through the solution to a fixed point equation [4, 53], which can be
rewritten as the following optimization problem with respect to the policy parameters φ:

φ∗ = max
φ∈Φ

Es∼dπφ ,a∼πφ [Qπφ(a, s)], where dπφ(s) = (1− γ)

∞∑
t=0

γtqπφ(st = s), (2)

and Qπφ(a, s) = Ep(s′|s,a)

[
r(s, a) + γEπφ(a′|s′) [Qπφ(a′, s′)]

]
. (3)

Here, the distribution over states, dπφ(s), is referred to as the state occupancy. Methods which
simultaneously learn the policy πφ and critic Qπφ are generally called actor-critic algorithms [40, 25,
50, 48], and represent the most popular class of reinforcement learning algorithms currently available.
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2.2 Soft Actor Critic

One popular variant of this framework is known as soft actor-critic (SAC). This algorithm is similar
to most off-policy actor critic algorithms, in that it learns to estimate the expected reward ahead given
the state and action (the Q-function), using the bellman error:

F (θ) = E
(at,st,st+1)∼D

[(
Q
πφ
θ (at, st)−

(
r̂t + E

at+1∼πφ(at+1|st+1)

[
γQ̄

πφ
θ (at+1, st+1)

]))2
]

(4)

Here, D defines the set of examples gathered from the environment under a behavioral policy, or a
sequence of behavioral policies. The primary distinction between SAC and other AC algorithms [40,
19] however, is that rt is replaced with a surrogate r̂t = rt − Ht, where Ht indicates the policy
entropy at state st. Additionally in this setting, the bar over Q indicates a target network, generally
defined by the use of parameter averaging [41, 57], a model ensemble, or both [27]. Using this Q
function estimate, we can iteratively update our policy to match the so called “softmax-optimal"
policy [24, 25, 35]. This approach defines its policy objective based on a divergence between the
current policy and a normalized target Q function:

Jθ(φ) = E
st∼D

[
E

at∼πφ(at|st)

[
Q
πφ
θ (at, st) + α log

(
π0(at|st)
πφ(at|st)

)]]
, (5)

Here the gradient is evaluated using the reparametrization trick [33] in cases where the distribution
over actions is reparameterizable (e.g. normal, gamma ect.), and with REINFORCE [58] otherwise.
A description of SAC is included in Algorithm 1. To ensure a fair comparison of the two divergences
described within this paper, we use SAC as the base algorithm, and modify only the policy update
with the corresponding gradient estimator under consideration (colored blue in Algorithm 1).

Algorithm 1 Soft Actor Critic with Entropy Tuning
Initialize Q-functions, Qθ1(s, a), Qθ2(s, a) and policy weights πφ(at|st)
Initialize target networks Qθ̄1(s, a) , Qθ̄2(s, a)
Initialize replay buffer D
for each iteration do

for each environment step do
Sample action form policy π
store transition into replay buffer

end for
for each gradient step do

Update Q-function using JQ(θi) for i ∈ {1, 2} θi ← θi − λQ∇̂θiJQ(θi)

Update policy weights using Jπ(φ) φ← φ− λπ∇̂φJπ(φ)

Adjust temperature using J(α) α← α− λ∇̂αJ(α)
Update target network weights using Polyak averaging θ̄i ← τθi + (1− τ)θ̄i

end for
end for

2.3 Reinforcement Learning as Inference

RL can be posed as a posterior inference problem over the set of trajectories conditioned on how well
we would like the agent to do. This breaks down into a set of latent random variables (the trajectories),
and a set of observed random variables describing how well the agent is performing in the classical
sense (e.g. the reward). We will refer to the observed random variables as “optimality" variables,
denoted Ot. These optimality variables indicate if a given state action pair was optimal or not, and
are assumed to be Bernoulli distributed. We say that a state action was optimal by indicating Ot = 1,
while we say that a state action was sub-optimal by indicating Ot = 0. In RLAI, Ot is distributed as,

p(Ot = 0|at, st) = 1− 1

Z0
exp r(at, st), and p(Ot = 1|at, st) =

1

Z0
exp r(at, st). (6)

We note that Z0 is dependent on the range of values the reward can take on. In general it is assumed
that the reward is strictly negative, making a simple choice for Z0 = 1. With optimality defined, we
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can consider the probability that a given trajectory, a sequence of state action pairs sampled from
a policy interacting with the environment, is itself optimal. For finite horizon problems, this joint
distribution over both latent and observed random variables is defined,

p(τ,O1:T−1) = p(s1)

T−1∏
t=1

[
p(st+1|st, at)π0(at|st)p(Ot|τt)

]
, (7)

where π0(at|st) denotes the ‘default’ policy or prior over actions given states. For clarity, probabilistic
graphical models with different reward and state assumptions are given in Figure 1. However in
control we don’t just want a metric on how likely a given trajectory is to be optimal, we want to
produce a policy which itself induces trajectories that are optimal: π∗(at|st) = π(at|st, ot, ..., oT−1).
Unfortunately, arriving at an exact π∗(at|st) is intractable in all but the simplest cases. Whats
more, both our graphical model and our resulting joint distribution are defined in terms of entire
trajectories. This means that not only must we perform a posterior inference task (e.g. determine
what the distribution over states and actions given optimality), but we must also find a way recover
the marginal distribution over actions given the state and optimality for any state which we might
see through environment interaction. We address the first issue (intractability of the posterior
inference problem) by using variational inference to produce an approximate posterior efficiently.
We will then show through manipulation of the expected gradient and structure of the graphical
model, we can define an objective who’s optimum characterizes the same policy as is defined by
π(at|st, ot, ..., oT−1).

s1 a1 s2

r1

o1

.....

.....

.....

s1 a1 s2

r1

o1

.....

.....

.....

s1 a1 s2

r1

o1

.....

.....

.....

Figure 1: Three potential probabilistic graphical models associated with RLAI. In the graphs,
shaded nodes indicate observed random variables, while unobserved or latent random variables are
transparent. Note that on the left, as is usually the case the reward is not dependent on the resulting
transition. The center graphical model gives an example of this, and is often not used as it tends to
exacerbate over-optimistic behavior in the policy. The case on the right is given in the "maximum
entropy" setting where the default policy is assumed to be uniform and independent of the state.

3 Policy Gradient Estimators Via The Reverse KL Divergence

This section contains derivations relevant to the reverse KL applied to RLAI. More specifically, this
section gives information on both the un-marginalized and marginalized objective and its associated
gradient estimator. This section will rely on classic tools found in variational inference, and makes
frequent use of the REINFORCE trick [58], and the score function trick [52].

3.0.1 The Un-marginalized Reverse KL Objective

For the following we assume that τt := (at, st, st+1, rt), and (s0:T , a0:T−1, r0:T−1) := τ . We begin
by looking at the objective derived by integrating over all time-steps simultaneously and differentiating.
To derive this objective we start with the functional form of the reverse KL divergence,

KL(qφ(τ)||p(τ |O)) =

∫
qφ(τ) log

(
qφ(τ)

p(τ |O)

)
dτ

=

∫
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ −

∫
qφ(τ) log p(O)dτ =

∫
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ − log p(O)

Next we can look at the log term and note, that it can be broken up into each time step, and additionally
that the dynamics between the the joint and approximate distribution cancel out. We can then simplify
the integral to exclude terms which are constant with respect to the policy parameters. This allows us
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to convert a difficult to compute objective which included the optimal policy, into an objective we
can estimate through Monte-Carlo sampling and interaction with the environment:

min
φ

[∫
τ

qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ

]
= min

φ
− E
τ∼qφ

[
T−1∑
t=0

r(st, at)− log

(
π0(at|st)
πφ(at|st)

)]
.

3.0.2 A Marginalized Reverse KL Gradient Estimator

Unfortunately, the naive gradient estimator using REINFORCE on this loss will have variance which
grows with the time-horizon T. However by considering its gradient estimator we can infer an
objective whose minimum is the same as the one above up to a constant factor. In a similar fashion to
the policy gradient theorem [53] we consider the expected gradient of our loss and simplify:

∇φ E
q(τ)

[
T−1∑
t=0

r(st, at)−log

(
πφ(at′ |st′)
π0(at′ |st′)

)]
=

T−1∑
t=0

E
qφ(τt:T−1)

[
∇̂φ

(
T∑
t′=t

r(st′ , at′)−log
πφ(at′ |st′)
π0(at′ |st′)

)]
,

where ∇̂φ = ∇φ log πφ(st, at). We start by passing the gradient into the expectation under the
assumption that the integrand is bounded over the domain of interest,

∇φJq,p(φ) =

∫
∇φ

[(
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

)
qφ(τ)

]
dτ

=

∫ (T−1∑
t=0

∇φ log πφ(at|st)

)(
T−1∑
t′=0

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

− 1

)
qφ(τ)dτ

Note that st and s′t correspond to the same random variable (as do at and a′t for all t). The primes
are introduced only to index the double sum below correctly. Here we use the score function trick to
transform the integral of a gradient into the expectation over a gradient. We then combine terms and
simplify, noting that the gradient of the dynamics is zero. We then convolve these sums and further
simplify using d separation of the probabilistic graphical model.

Jq,p(φ) =

∫ T−1∑
t=0

T−1∑
t′=0

∇φ log πφ(at|st)
(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

− 1

)
qφ(τ)dτ,

=

T−1∑
t=0

T−1∑
t′=t

∫
∇φ log πφ(at|st)

(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ.

Where the last line follows from the Markov property of the graphical model which gives t′ < t→
r(st′ , at′) − log πφ(at′ |st′) + log π0(at′ |st′) is independent of ∇φ log πφ(at|st). This means that
we can decompose the expectation such that for all t′ < t,∫

∇φ log πφ(at|st)f(at′ , st′)qφ(τ)dτ =

∫
f(at′ , st′) (0)

qφ(τ)

πφ(at|st)
dτ \ at = 0

Therefore the inner expectation is a constant for all t′ less then t, and the score function estimator is
zero in expectation at these terms in the series. This sum of (entropy regularized) rewards ahead is
often referred to as the Q function or the advantage (if we include a baseline or value function which
integrates over all actions). This term can be defined more explicitly as,

Q(st, at) = E
qφ(τt+1:T |at,st)

[
T∑
t′=t

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

]
.

Using this estimate of the expected rewards ahead, we can re-scale the log probability of certain
actions and give them more weight in the gradient estimator. Crucially, the variance of this gradient
estimator is strictly lower, while maintaining the correct target distribution of interest. The full
marginalized objective and its estimator are given as the following:

∇φJq,p(φ)=

T−1∑
t=0

E
qφ(at,st)

[∇φ log πφ(at|st)Q(st, at)]≈
1

NM

T∑
t=0

∑
m,n

[∇φ log πφ(amt |snt )Q(snt , a
m
t )] ,

where amt ∼ πφ(at|snt ), and snt ∼ qφ(st).
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4 Reweighted Policy Gradient Estimators Via the Forward KL

This section details derivations for how to produce an approximately optimal policy under the forward
KL, and like the previous section we will produce a lower variance gradient estimator which targets
the original distribution of interest. Here we take advantage of tools from self normalized importance
weighting to produce a biased but consistent estimator, and briefly discuss practical issues.

4.0.1 Un-marginalized Objective Derivation for the Forward KL

This objective, represents the expected KL divergence between a target distribution, and an approxi-
mate distribution under samples from the target distribution given byKL(p(τ |O)||qφ(τ)). Again, our
latent variables are given as the associated state-action pairs, while the observed variables represents
the optimality distribution. In order to evaluate the expression above, we apply a standard importance
weighting scheme, beginning with the removal constant terms within the expectation.

KL(p(τ |O)||qφ(τ))=

∫
p(τ |O)log

p(τ |O)

qφ(τ)
dτ=−

∫
p(τ |O) log qφ(τ)dτ+

∫
p(τ |O) log p(τ |O)dτ

=

∫
1

p(O)
log qφ(τ)

p(τ,O)

qφ(τ)
qφ(τ)dτ + c =

1

Z
E

τ∼qφ

[
log qφ(τ)

p(τ,O)

qφ(τ)

]
+ c

4.0.2 Un-marginalized gradient of the Forward KL Objective

Crucially, because the original problem is over a distribution not dependent on φ, we can directly
pass the gradient into the expectation without the REINFORCE trick, or reparameterization:

∇φKL(p(τ |O = 1)||qφ(τ)) = E
τ∼qφ

[
p(τ,O)

qφ(τ)

∇φ log qφ(τ)

Z

]
.

This actually gives us a simple algorithm that can evaluate the gradient, and thereby minimize the
expected KL between our two distributions following samples generated from our policy interacting
with the simulator. Based upon this approach, we can apply self normalized importance weighting to
avoid explicitly computing the constant Z, at the cost of a biased but consistent estimator:

∇φKL(p(τ |O)||qφ(τ)) ≈
m∑
i=1

[wi∇φ log qφ(τi)] =
1

Z

m∑
i=1

[
p(τi, Oi)

qφ(τi)
∇φ log qφ(τi)

]
.

Where for optimal trajectories (O = Ot=0:T−1 = 1), the un-normalized weights are defined as,

wi =

T−1∏
t=0

1
Z0

exp rt(at, st)π0(at|st)
πφ(at|st)

=
1

Ẑ0

exp

[
T−1∑
t=0

r(ait, s
i
t)− log

(
πφ(ait|sit)
π0(ait|sit)

)]
We also include reward normalization constant Z0 for generality. In order to avoid computation of
Z explicitly, we take advantage of the consistent but biased self normalized importance weighting
estimator. This means weights wi are replaced with ŵi using τi ∼ qφ(τ):

ŵi =
wi∑m
j=1 wj

=
exp

[∑T−1
t=0 r(ait, s

i
t)− log

(
πφ(ait|s

i
t)

π0(ait|sit)

)]
∑m
j=1 exp

[∑T−1
t=0 r(ajt , s

j
t )− log

(
πφ(ajt |s

j
t)

π0(ajt |s
j
t)

)] . (8)

In this case we now have a biased estimator of the gradient, but also one that is generally low variance
when compared to its un-marginalized RKL counterpart [34],

∇φKL(p(τ |O)||qφ(τ)) ≈
n∑
i=1

exp
[∑T−1

t=0 r(ait, s
i
t)− log

(
πφ(ait|s

i
t)

π0(ait|sit)

)]
∑n
j=1 exp

[∑T−1
t=0 r(ajt , s

j
t )− log

(
πφ(ajt |s

j
t)

π0(ajt |s
j
t)

)]∇φ log qφ(τi) (9)

4.0.3 Marginalization Proof for forward KL

Like the reverse KL, we can further reduce variance of our gradient estimator. In order to show that
the objective can be marginalized with respect to actions given states and optimality, we start with the
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original definition of the objectives gradient. Using d separation of the probabilistic graphical model
to ignore the optimality variables prior to the state conditioned on we have that:

∇φJp,q(φ) =

T−1∑
t=0

∫
τ

p(a0, s0, ...sT |ot, ..., oT−1, st)p(st|o0, ..., oT−1)∇φ log πφ(at|st)dτ.

Next looking at just one element of this sum at index t,

=

∫
st

...

∫
sT

∫
at

...

∫
aT−1

p(st|O0...OT−1)∇φ log πφ(at|st)

...

∫
s0

...

∫
st−1

∫
a0

...

∫
at−1

p(a0, s0, ...sT |ot, ..., oT , st)dτ

=

∫
st

...

∫
sT

∫
at

...

∫
aT−1

p(st|O0...OT−1)∇φ log πφ(at|st)p(at, st+1...sT |ot, ..., oT , st)dτ

=

∫
st

...

∫
sT

∫
at

...

∫
aT−1

p(st|O0...OT−1)∇φ log πφ(at|st)
p(at, st+1...sT , ot, ..., oT |st)

p(ot, ..., oT |st)
dτ

=

∫
st

...

∫
sT

∫
at

...

∫
aT−1

p(st|O0...OT−1)π0(at|st)
p(ot, ..., oT |st)

∇φ log πφ(at|st)p(st+1...sT , ot, ..., oT |st, at)dτ

=

∫
st

...

∫
sT

∫
at

...

∫
aT−1

p(st|O0...OT−1)π0(at|st)
p(ot, ..., oT |st)

∇φ log πφ(at|st)p(st+1...sT , ot, ..., oT |st, at)dτ

= E
p(st|O0:T )

[
1

p(Ot:T |st)
E

at∼π0(at|st)

[
∇φ log πφ(at|st) E

qφ(τt+1:T |at,st)

[
p(τt+1:T , Ot:T |at, st)
qφ(τt+1:T |at, st)

]]]
Notably, we can define a specific expectation for convenience, which can be either be estimated
through sampling or a learned function approximator as is done in practice [2, 47]:

E
qφ(τt+1:T |st,at)

[
p(τt+1:T , Ot:T |at, st)
q(τt+1:T |at, st)

]
= E
qφ(τt+1:T |st,at)

[
p(τt+1:T , Ot:T |at, st)
qφ(τt+1:T |at, st)

]

= E
qφ(τt+1:T |st,at)

[
exp

[
r(at, st) +

T∑
t′=t+1

r(at′ , st′)−
πφ(at′ |st′)
π0(at′ |st′)

]]
= exp(Q̂(at, st))

We then note the following about the normalization constant sitting outside the action expectation:

p(Ot:T |st) =

∫
p(Ot:T , at|st)dat =

∫
p(Ot:T |at, st)π0(at|st)dat = E

at∼π0(at|st)

[
exp(Q̂(at, st))

]
This definition allows us to define our marginalized expectation more simply, and identify the crucial
issue with direct estimation of the marginalized forward KL:

∇φJp,q(φ) = E
p(st|O0:T )

 E
πφ(at|st)

∇φ log πφ(at|st) exp
[
Q̂(at, st)− log

[
πφ(at|st)
π0(at|st)

]]
Ea′t∼πφ(a′t|st)[exp Q̂(a′t, st)− log

[
πφ(at|st)
π0(at|st)

]
]


We can deal with the outer expectation in terms of p(st|O0:T ) as well, though it induces a less
satisfactory estimator whose variance again grows with time-horizon:

E
p(st|O0:T )

[f(st)] =

∫
f(st)p(st|O0:T )dst =

∫
f(st)

p(st, O0:T )

p(O0:T )
dst =

∫
f(st)p(st)

p(O0:T |st)
p(O0:T )

dst

=
1

p(O0:T )
E

p(st)
[p(O0:T |st)f(st)] =

∫
p(O0:T , st)f(st)dst∫
p(O0:T , st)dst

=

∫
p(O0:T , τ0:T )f(st)dτ0:T∫
p(O0:T , τ0:T )dτ0:T

= E
qφ(τ0:T )

[
p(O0:T , τ0:T )

qφ(τ0:T )
f(st)

]/
E

qφ(τ0:T )

[
p(O0:T , τ0:T )

qφ(τ0:T )

]
Such an estimator would function by sampling N independent trajectories from qφ, and then for the
specified time, re-weight each function f at its respective state by its associated regularized cumulative
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return. With this consideration in mind, we can define importance weights over states and actions for
each time-step which produce a consistent estimate of the forward KL gradient:

∇φJp,q(φ) ≈
T∑
t=0

M∑
i=1

ȳti

N∑
k=1

x̄ti,k∇φ log πφ(akt |sit), with τ i ∼ qφ(τ), akt ∼ πφ(at|sit)

where ȳti =
yti∑M
j=1 y

t
j

with yti = exp

[
T−1∑
t′=0

r(ait′ , s
i
t′)− log

(
πφ(ait′ |sit′)
π0(ait′ |sit′)

)]

and x̄ti,k =
xti,k∑N
j=1 x

t
i,j

with xti,k = exp

[
Q̂(akt , s

i
t)− log

[
πφ(akt |sit)
π0(akt |sit)

]]
For our experiments, as done in practice in [2, 47], we re-weight the loss each at each state uniformly
(i.e. ȳti = 1

M ), to avoid high variance of the gradient estimator, ensure proper coverage of the
state-space for better generalization, and to maintain sample efficiency within the larger RL algorithm.
Additionally we target the classic Q function instead of the soft Q function Q̄, as we found that using
this lower bound on Q̄ tended to produce more stable learning within the policy as in prior work [2].

5 Experiments

0.0 0.5 1.0
Environment steps (M)

0

1000

2000

3000

4000

5000

6000

Re
wa

rd
Humanoid-v2

FKL
RKL

Figure 2: Comparison of RKL and FKL on the
MuJoCo Humanoid benchmark. Error bars denote
one standard deviation. As shown, the reward gar-
nered throughout optimization is also lower vari-
ance trained with FKL than RKL.

To display the relative merits of both objectives,
we include experiments where a native imple-
mentation of soft actor critic was taken, and
modified to include the forward KL objective
(FKL). We begin with an illustration of an in-
stance where you can find improvement by re-
placing the more common RKL for the FKL
objective. In Figure 2, we plot results of train-
ing on the Humanoid benchmark from MuJoCo
using RKL and FKL. Here, the FKL improves
sample efficiency over the RKL, demonstrat-
ing approximately 60% increase in sample effi-
ciency. Humanoid is the most challenging of the
five tasks considered from the MuJoCo suite.

Additional advantages of the FKL policy ob-
jective include its ease of implementation and
its distribution agnostic property. This property
means that in discrete control, or for hierarchical
policies with discrete branching, the RKL objec-
tive would require further modification, while
the FKL functions as is. One drawback that we
note, however, is that the FKL estimator scales with computation, i.e. its bias and thus its performance
is dependent on the number of N re-samples from the policy. Finally, for continuous control, we
additionally show that the FKL can also improve the algorithm’s robustness to changes in hyper-
parameters. All experiments are run with at 10 replicates and plotted with one-half standard deviation
and smoothed using a 0.9 weighted EMA. As seen in Figure 3, the forward KL can maintain policy
performance, even when memory is severely limited.

6 Related Work

There is a growing literature on various methods that incorporate the RLAI framework discussed
within this paper [2, 24, 35, 59, 60, 31, 43, 55]. In many cases these works use RLAI to give
theoretical basis for the empirical effectiveness of well established implementation tricks such as
entropy bonuses [24, 35, 59]. Very few works however, have considered the comparison between
the forward and reverse KL as well as the relative merits of each in the context of reinforcement
learning objectives [43, 38]. Even fewer produce scalable and sample efficient implementations of
both objectives, making a proper comparison difficult. We note for completeness that work has also
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Figure 3: First row: comparison of RKL and FKL on MuJoCo benchmark tasks using a base
implementation of SAC without hyper-parameter tuning for MuJoCo. The notable difference in
hyper-parameters between these settings is the buffer sizes of 50K versus 1M for the first and second
rows, respectively. We find under these conditions, FKL is always competitive or significantly better
than the baseline with the exception of the Ant benchmark using 1M replay buffer size. In all figures,
error bars denote one-quarter standard deviation.

been done in formalizing methods relating to the original policy gradient algorithm [58, 50, 48] using
tools from the optimization literature [21, 56], though these analysis do not directly relate the the
RLAI framework. Work by [7] more closely relates to this work in their analysis of improvement
under the FKL, however they do not focus on practical gradient estimation. Similarly there has been
work analyzing critic and gradient estimation [9] in average return MDPs, as well as empirical studies
for the more commonly utilized discounted MDPs discussed above [29].

Algorithmically, the closest class of algorithms to our work in the classical literature comes from
policy search methods [43, 42, 36, 11, 46, 12]. Of the subset of these that have been made scalable,
closely related algorithms to our work come from [2, 51, 8]. Unlike [2], we do not require an
alternating update and directly learn the policy via the forward KL. Additionally while we do not
provide monotonic improvement guarantees which require additional assumptions and a trust-region
update, we do provide a full proof of marginalization of the forward KL as it applies to RLAI in a
finite horizon setting. A similar proof for a marginalization can be found in [47], however this assumes
access to the steady state distribution of the Markov chain as well as a model of the environment. We
do note that the objective for the target policy given in [51] does come very close to our own, however
it requires additional parameterization of a value function, as well as a more complicated alternating
update for the temperature coefficient α, and a different inference formulation which culminates in
an advantage based objective. Most importantly, while these works represent end-to-end algorithms,
our estimators can be applied a wide variety of existing frameworks.

7 Discussion

This paper describes in detail the differences in policy objective which occur both mathematically, and
practically under a divergence minimization perspective of RLAI. Crucially, we show that there are
very real advantages to considering other objectives besides the classic policy gradient methods which
are most common. While these alternatives like the FKL are generally not going to drastically change
performance, their ease of implementation, robustness to hyperparameters, and their distribution
agnostic nature make them a very desirable alternative to classic methods. In the future we would
like to test how these objectives function on a wider variety of benchmarks and policy distributions.
Additionally, its possible that better non-uniform sampling methods might be derived following
p(st|O0:T ). Though estimating an expectation under such a distribution might be difficult, and
potentially require investigation into the particle smoothing literature [13].
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