
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING THE GAP BETWEEN ZEROTH-ORDER AND
FIRST-ORDER FINE-TUNING VIA DYNAMIC ADAPTIVE
SUBSPACE PRE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) faces a trade-off between the accu-
racy of first-order (FO) methods and the memory efficiency of zeroth-order (ZO)
optimizers. While ZO methods avoid the activation memory bottleneck of back-
propagation, they typically converge slowly and show a noticeable performance
gap compared to FO approaches. To address this, we propose Dynamic Adaptive
Subspace Pre-tuning (DASP), a framework that combines the efficiency of ZO
methods with the accuracy of FO methods. DASP introduces a lightweight pre-
computation stage that constructs low-rank, layer-wise subspaces aligned with
the loss landscape. Fine-tuning is then restricted to small transformation matri-
ces within these fixed subspaces, greatly reducing optimizer state memory. To
further eliminate activation memory overhead, DASP employs a streaming back-
propagation algorithm that decouples peak memory from sequence length. Exper-
iments on LLaMA3 and OPT-13B show that DASP consistently outperforms ZO
baselines by large margins (e.g., +6.5% on RTE with LLaMA3), while matching
the accuracy of FO methods at even lower memory cost. These results highlight
DASP as a practical and scalable solution for memory-efficient LLM adaptation.

1 INTRODUCTION

Adapting large language models (LLMs) to downstream tasks is constrained by a trade-off among
performance, memory footprint, and computational cost (Chen et al., 2024b; Zhang et al., 2024).
First-order (FO) fine-tuning delivers strong accuracy but requires storing optimizer states, gradients,
and, most critically, activations for backpropagation (Kingma & Ba, 2017; Chen et al., 2016), leading
to prohibitive memory usage. Parameter-efficient fine-tuning (PEFT) methods such as LoRA (Hu
et al., 2022) alleviate some of these costs by introducing low-rank updates on weights, but they do
not address the activation memory bottleneck, which scales with sequence length and model size.

Zeroth-order (ZO) optimization provides an alternative by eliminating backpropagation and thus re-
moving activation storage (Malladi et al., 2024a). However, ZO methods converge slowly, require
many forward passes, and show a consistent accuracy gap compared to FO methods. A key reason is
that ZO optimizers rely on high-rank random probes, which fail to exploit the empirically low-rank
structure of gradients in LLM adaptation (Zhao et al., 2024b; Hao et al., 2024). As a result, cur-
rent approaches force a choice between high-performance but memory-intensive FO fine-tuning and
memory-efficient but underperforming ZO optimization, with no method reconciling these trade-
offs.

We show that this trade-off is not inherent. To resolve it, we propose Dynamic Adaptive Subspace
Pre-tuning (DASP), a fine-tuning framework that achieves FO-level performance at lower memory
cost than ZO methods. The key insight is to decouple the discovery of an adaptation subspace from
the optimization within it.

DASP implements this idea through a two-stage design. Figure 1 illustrates the overall DASP frame-
work. The first stage is an efficient, ZO-inspired offline pre-computation. Unlike LoRA, which
starts from random projections, DASP uses an iterative probing algorithm to identify a shared low-
rank “sensitive subspace” that captures the main directions of change for a given pre-trained model.
An important property of this stage is its transferability: the computed subspace bases (P and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Users

Please fine-tune this model with our specific dataset to better meet our business requirements.

"Important Notes.

1. GPU memory is expensive; time is cheap.
2. FT requires memory; PEFT is better!
3. ZO saves memory, sacrifices accuracy.
4. FO performance, ZO memory.

#1 Target

PEFT
Reduce the
memory of
gradients and
optimizers

ZOO

Low memory,
long time.

Ours

+
Zero PEFT

= New!

#2 Offline computation

A small, critical parameter subset,
is universally effective for all tasks.

Motivation
Calibration Set get

generate

classiffcatio

QA

Different tasks

Production

Orthogonal
Basis P

Orthogonal
Basis Q

Compute

P
σ
Q

Using ZOO to find the
direction of gradient.

#3 Online fine-tune

1 Forward pass Loss

1 Backward pass

High Gradient, Optimizer
and Activation Memory

1 Forward pass Loss+

1 Forward pass Loss-

Estimated
Gradient

Computationally expensive with
poor convergence.

Projection XQ Projection GP

PQ

Loss

Chunk
of T

Low Gradient, Optimizer
and Activation Memory

Figure 1: The DASP framework: a two-stage paradigm for memory-efficient LLM fine-tuning.
Conventional zeroth-order (ZO) methods (left) directly optimize in the parameter space and suffer
from high cost and low efficiency. In contrast, DASP (right) decouples subspace discovery from
optimization: (1) an offline pre-computation stage discovers a low-rank “sensitive subspace” (P ,
Q); (2) an online fine-tuning stage updates only a small core matrix (δ) within this subspace, using
Flow Backpropagation (FBP) to enable exact long-context training with constant activation memory.

Q) can be reused across different downstream tasks, amortizing the one-time cost. The second
stage is an online fine-tuning step that is both lightweight and memory-efficient. With the subspace
fixed, fine-tuning reduces to optimizing a small rank-dimensional transformation matrix (δ ∈ Rr×r),
which keeps optimizer and gradient memory overhead negligible and more efficient than LoRA.

To further address activation memory, we develop Flow Backpropagation (FBP), an exact stream-
ing backpropagation algorithm tailored for DASP. FBP compresses memory in two dimensions:
(1) it processes the backward pass in sequential chunks, decoupling peak memory from sequence
length (T); and (2) by leveraging pre-computed projections, it reduces hidden-state memory along
the model dimension (d). This projection-aware mechanism allows fine-tuning with near-constant
activation cost, even for long contexts. Figure 2 summarizes the memory footprint (a), training loss
(b), and accuracy (c) of DASP versus common PEFT and ZO baselines. DASP establishes a new
state-of-the-art in efficient fine-tuning, achieving a memory footprint substantially lower than LoRA
and comparable to MeZO, while converging faster to a superior loss value and delivering higher
downstream task performance at a fraction of the computational cost.

Our contributions are as follows:

• We propose DASP, a framework that decouples subspace discovery from optimization via a
transferable pre-computation stage, significantly reducing optimizer and gradient memory.

• We introduce FBP, a projection-aware backpropagation algorithm that compresses acti-
vation memory along both sequence and hidden dimensions, enabling exact long-context
fine-tuning with near-constant memory usage.

• We show that DASP matches FO accuracy while surpassing state-of-the-art PEFT and ZO
methods in memory efficiency, providing a practical solution for scalable LLM adaptation.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT). To mitigate the prohibitive costs of full-parameter
fine-tuning, a diverse set of PEFT methods has been proposed. These methods adapt pre-trained
models by training only a small fraction of parameters. Prominent among them is Low-Rank Adap-
tation (LoRA) (Hu et al., 2022), which injects trainable, low-rank decomposition matrices into the
layers of a frozen base model, thereby drastically reducing the memory required for gradients and
optimizer states. Other paradigms include adapter-based methods that insert small bottleneck mod-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

DASP LoRA
0

10000

M
e
m

o
ry

 U
sa

g
e
 (

M
iB

)

15,316 15,316 15,476

2,181

Optimizer Only

26MB

2,541

5,204

41,900

4,507

13,489

9,432

Total:

22,390 MiB

Total:

36,190 MiB

Total:

67,872 MiB

Peak GPU Memory Footprint of Fine-Tuning Methods

Model Weights

Optimizer / Method States

Peak Dynamic Memory (Activations, etc.)

PyTorch Caching Overhead

MeZO

20000

30000

40000

50000

60000

70000

in DASP

Optimizer about

1026MB in LoRA

(a) Peak Memory Footprint

0 2000 4000 6000 8000 10000

X: Cumulative Forward Pass Number
2

4

6

8

10

Y
:
L
o
ss

 (
L
in

e
a
r

S
c
a
le

)

LoRA vs. Flow-StreamBP DASP Loss Curves on BoolQ (First 10,000 Passes)

LoRA

DASP

(b) Training Loss on Boolq

0 2500 5000 7500 10000 12500 15000 17500 20000
Total Forward Passes

10 7

10 5

10 3

10 1

101

Lo
ss

 (L
og

 S
ca

le
)

Training Loss vs. Forward Passes

DASP (lr=0.01)
LoRA (lr=0.0001)
MeZO (Full) (lr=0.001)
MeZO (on LoRA) (lr=0.001)

0 2500 5000 7500 10000 12500 15000 17500 20000

Total Forward Passes
0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

DASP (lr=0.01)

LoRA (lr=0.0001)

MeZO (Full) (lr=0.001)

MeZO (on LoRA) (lr=0.001)

Experiment Results for Dataset: COPA

(c) Validation Accuracy on COPA

Figure 2: Comparison of DASP against LoRA and ZO baselines. (a) DASP drastically reduces
peak memory, achieving a footprint comparable to MeZO (ZO) by eliminating the activation bot-
tleneck that inflates LoRA’s memory usage. (b) DASP efficiency translates to faster, more stable
convergence to a lower training loss than LoRA. (c) DASP achieves higher final validation accuracy
in significantly fewer forward passes, outperforming both LoRA and ZO methods.

ules (Houlsby et al., 2019), and prompt-based methods such as prompt-tuning (Lester et al., 2021)
and prefix-tuning (Li & Liang, 2021), which optimize continuous prompt embeddings prepended to
the input. While effective at lowering optimizer and gradient memory, these methods still require a
full backward pass, leaving the activation memory bottleneck unaddressed.

Memory-Efficient Backpropagation. To address the activation footprint, another line of research
focuses on memory-efficient backpropagation. The most established technique is gradient check-
pointing (Chen et al., 2016), which reduces memory by re-computing activations during the back-
ward pass instead of storing them. However, it still incurs a large peak memory cost when the
activations for each checkpointed layer are materialized. More recent work has sought to overcome
this limitation. For instance, StreamBP (Luo et al., 2025) and MsT (Zhao et al., 2024a) partition
the sequence and stream the backward pass, thereby avoiding the need to store the full activation
tensor at once. These approaches highlight the growing emphasis on activation memory reduction,
but their efficiency still scales with sequence length.

Zeroth-Order (ZO) Optimization for LLMs. A more radical alternative circumvents backprop-
agation entirely via zeroth-order optimization. By estimating gradients only from function evalua-
tions (forward passes), methods such as MeZO (Malladi et al., 2024a) eliminate the need to store
activations, making them attractive for memory-constrained environments. However, this comes at
the cost of convergence and accuracy: ZO methods typically require many forward passes and lag
behind FO-based methods in final performance. Recent attempts to narrow this gap include leverag-
ing second-order information (Zhao et al., 2025), exploiting gradient sparsity (Liu et al., 2024), or
enforcing low-rank structures in the gradient estimate (Chen et al., 2024a). Despite these improve-
ments, the trade-off between ZO’s extreme memory efficiency and FO’s high performance remains
unresolved.

In summary, PEFT reduces optimizer memory but not activations, memory-efficient backpropaga-
tion alleviates but does not eliminate activation bottlenecks, and ZO methods avoid activations alto-
gether but suffer from significant performance deficits. This trade-off motivates our DASP frame-
work, which simultaneously achieves FO-level accuracy and memory efficiency beyond ZO.

3 METHOD

3.1 MOTIVATION AND INSIGHT

A key limitation of existing fine-tuning paradigms is that they conflate two distinct processes: find-
ing an appropriate low-dimensional subspace and optimizing within it. LoRA assumes a low-rank
structure but starts from randomly initialized subspaces, requiring substantial training to align them.
ZO methods disregard this structure altogether, wasting probes on irrelevant directions. Our central
insight is that these processes can and should be decoupled.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 1000 1500 2000

Singular Value Index
10e-15

10e-11

10e-7

10e-3

10e-1

S
in

g
u
la

r
V

a
lu

e
 (

lo
g
 s

c
a
le

)

Temporal Analysis: Singular Values of Q Proj Gradient
(Layer 6)

Step 0 Step 100

Step 200 Step 500

Step 800 Step 1000

500

(a) Temporal: Q Proj (L6)

0 500

Singular Value Index
10e-14

S
in

g
u
la

r
V

a
lu

e
 (

lo
g
 s

c
a
le

)

Temporal Analysis: Singular Values of V Proj Gradient
(Layer 6)

Step 0 Step 100

Step 200 Step 500

Step 800 Step 1000

1000

1000

1500 2000

10e-11

10e-8

10e-5

10e-2

10e1

(b) Temporal: V Proj (L6)

0 500

Singular Value Index

10e-20

S
in

g
u
la

r
V

a
lu

e
 (

lo
g
 s

c
a
le

)

Spatial Analysis: Singular Values of Q Proj Gradient
(Step 500)

Layer 1 Layer 6

Layer 12 Layer 16

Layer 20 Layer 23

1000 1500 2000

10e-17

10e-14

10e-11

10e-8

10e-5

10e-2

(c) Spatial: Q Proj (S500)

0 500

Singular Value Index10e-15 S
in

g
u
la

r
V

a
lu

e
 (

lo
g
 s

c
a
le

)

Spatial Analysis: Singular Values of V Proj Gradient
(Step 500)

Layer 1 Layer 6

Layer 12 Layer 16

Layer 20 Layer 23

1000 1500 2000

10e-13

10e-11

10e-9

10e-7

10e-5

10e-3

10e-1

(d) Spatial: V Proj (S500)

Figure 3: Analysis of the low-rank structure of gradients during fine-tuning OPT-1.3B on SST-
2. The singular value spectra of gradient matrices exhibit a consistent sharp decay, indicating a
persistent low-rank structure. This property holds (a, b) temporally, across different training steps
for a fixed layer (Layer 6), and (c, d) spatially, across different layers at a fixed step (Step 500).

Figure 3 shows the singular value spectrum of gradient matrices from OPT-1.3B during fine-tuning.
The spectra consistently exhibit sharp decay, confirming that gradients are intrinsically low-rank.
This property is stable both across training steps (Figs. 3a, 3b) and across layers (Figs. 3c, 3d). In
other words, adaptation primarily occurs within a compact subspace, while most parameter dimen-
sions remain unused.

This observation explains the inefficiency of prior methods: LoRA learns the subspace on the fly,
while ZO wastes effort exploring the null space. It also suggests a more efficient alternative: if a
stable “sensitive subspace” exists, it can be identified before fine-tuning. Moreover, its consistency
across time and layers implies that it is a property of the model itself, rather than any specific dataset.
We therefore hypothesize that the sensitive subspace is transferable. By investing in a one-time,
offline pre-computation to discover this subspace, we can amortize the cost and enable subsequent
fine-tuning to be extremely efficient. DASP instantiates this paradigm by first discovering the uni-
versal subspace, and then optimizing solely within it.

3.2 PRELIMINARIES: SUBSPACE-CONSTRAINED ADAPTATION

PEFT methods such as LoRA constrain the weight update ∆W of a linear layer W ∈ Rm×n to a
low-rank form:

W ′ = W +∆W = W +BA, (1)

where B ∈ Rm×r and A ∈ Rr×n are trainable low-rank matrices, with rank r ≪ min(m,n).

DASP adopts a similar formulation but makes a critical shift. The update is parameterized by two
fixed, orthonormal bases P ∈ Rm×r and Q ∈ Rn×r, and a tiny trainable core matrix δ ∈ Rr×r:

W ′ = W + PδQT . (2)

Here, P and Q define the “sensitive subspace”, discovered once in a pre-computation stage and then
frozen. Fine-tuning is reduced to updating only δ, making optimizer and gradient storage negligible
compared to LoRA.

3.3 STAGE 1: OFFLINE PRE-COMPUTATION OF SENSITIVE SUBSPACES

The quality of DASP relies on discovering subspaces (P,Q) that are maximally sensitive to pertur-
bations with respect to task loss. This is achieved through a ZO-inspired iterative procedure that
requires only forward passes.

Objective. We aim to learn orthonormal bases (P,Q) that maximize loss deviation under random,
rank-r perturbations. Formally, for a loss L and calibration dataset Dcal:

max
PTP=I,QTQ=I

Ex∼Dcal,ω∼N (0,Ir×r)

[
|L(W + ϵPωQT ;x)− L(W ;x)|

]
, (3)

where ϵ is a small perturbation scalar and ω is a random core matrix.

Iterative Algorithm. Solving Eq. 3 directly is intractable. We thus adopt an iterative refinement
scheme. Starting from random bases (P0, Q0), each iteration k generates several random probes

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 The DASP Framework

1: Offline Stage: Pre-compute Subspace Bases (P,Q)
2: Input: Pre-trained model M with weights {Wl}, calibration dataset Dcal, rank r.
3: for all linear layer Wl ∈M do
4: Initialize random orthonormal bases Pl,0, Ql,0.
5: for k = 0 to K − 1 do
6: Sample data batch x ∼ Dcal.
7: Find best probe ω∗ = argmaxωj |L(Wl + ϵPl,kωjQ

T
l,k;x)− L(Wl;x)|.

8: U, , V T ← SVD(ω∗).
9: Pl,k+1 ← orth(Pl,kU), Ql,k+1 ← orth(Ql,kV).

10: end for
11: end for
12: Return bases {Pl, Ql}.
13: Online Stage: Fine-tune Core Matrices (δ)
14: Input: Model M , pre-computed bases {Pl, Ql}, downstream dataset Dtask.
15: Initialize trainable parameters {δl ∈ Rr×r} with zeros. Freeze M, {Pl, Ql}.
16: for all training step do
17: Sample batch (x, y) ∼ Dtask.
18: Compute loss L(M, {δl};x, y) via forward pass incorporating Eq. 2.
19: Compute gradients {∇δlL} using Flow Backpropagation (FBP) via Eq. 15.
20: Update {δl} using an FO optimizer (e.g., AdamW).
21: end for

{ωj}
Nprobes

j=1 and selects ω∗ that induces the largest loss change. Decomposing ω∗ via SVD (ω∗ =

UΣV T) yields rotations U and V , which are applied to update and re-orthogonalize the bases:

Pk+1 = orth(PkU) (4)
Qk+1 = orth(QkV) (5)

where orth(·) denotes an orthogonalization step (e.g., QR decomposition). As summarized in Al-
gorithm 1, this iterative refinement gradually steers the bases toward the principal axes of maximal
loss curvature. A key feature is their transferability: once computed, these task-agnostic subspaces
can be serialized as a reusable asset, eliminating repeated computation across downstream tasks.

3.4 STAGE 2: ONLINE FINE-TUNING WITH FLOW BACKPROPAGATION (FBP)

With the sensitive subspace bases P and Q fixed, the online objective reduces to learning the small
core matrix δ:

min
δ
L(W + PδQT). (6)

This drastically lowers the number of trainable parameters. However, naı̈ve backpropagation still
suffers from the activation memory bottleneck for long sequences. To overcome this, we introduce
Flow Backpropagation (FBP).

Gradient Derivation for Core Matrix δ. The DASP adapter modifies the output of a linear layer
Y = XWT by adding a low-rank term. The adapted output Y ′ is given by:

Y ′ = Y +X(PδQT)T = Y +XQδTPT , (7)

where X ∈ RT×d is the input activation, and P ∈ Rm×r, Q ∈ Rn×r, δ ∈ Rr×r are the pre-
computed bases and the trainable core matrix, respectively. Our goal is to derive the gradient of the
loss L with respect to δ. We present a formal derivation using the properties of matrix calculus and
the trace operator.

Proof of Gradient Formula. Let G = ∇Y L ∈ RT×m be the gradient of the loss propagated back
to the output of the layer. The differential of the loss dL can be expressed as the trace of the inner
product between the gradient and the differential of the weights:

dL = tr((∇W ′L)T dW ′) = tr(GTX(d(PδQT))T). (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Since P and Q are frozen, the differential is only with respect to δ. Using the property (ABC)T =
CTBTAT , we have:

d(PδQT) = P (dδ)QT =⇒ (d(PδQT))T = (QT)T (dδ)TPT = Q(dδ)TPT . (9)

Substituting this back into the expression for dL:

dL = tr(GTXQ(dδ)TPT). (10)

Leveraging the cyclic property of the trace operator, tr(ABCD) = tr(DABC), we can rearrange
the terms to isolate dδ:

dL = tr(PTGTXQ(dδ)T)

= tr(((XQ)T (GP))T (dδ)T), (11)

where we use the identity (AB)T = BTAT . The final expression is in the form dL =
tr((∇δL)T dδ), from which we can directly identify the gradient:

∇δL = (XQ)T (GP) = (QTXT)(GP). (12)

This formally derives the gradient for the core matrix δ.

Memory Analysis and the Remaining Bottleneck. Eq. 12 suggests a natural path to memory
savings: the gradient can be computed via the projected matrices Xp = XQ ∈ RT×r and Gp =
GP ∈ RT×r. This reduces the hidden-dimension memory footprint from O(T · d) to O(T · r), a
substantial improvement since r ≪ d.

However, this projection only addresses one side of the problem. The memory cost still grows
linearly with the sequence length T , making O(T · r) prohibitive for long-context settings where T
can reach tens of thousands. Thus, despite the hidden-dimension compression, the sequence-length
dependence reintroduces an activation memory wall. Eliminating this T—scaling requires a more
advanced mechanism—precisely the motivation for our FBP mechanism.

FBP Mechanism. A naive evaluation of Eq. 12 requires materializing the intermediate matrices
XQ ∈ RT×r and (∇Y L)P ∈ RT×r, both of which scale linearly with the sequence length T ,
reintroducing the activation memory wall. FBP circumvents this by leveraging the fundamental
properties of block matrix multiplication, which guarantees that a partitioned, streaming computa-
tion is mathematically identical to the full matrix computation.

Inspired by StreamBP (Luo et al., 2025), our FBP similarly leverages the principle of linearly decom-
posing the backpropagation chain rule along the sequence dimension. The core innovation of FBP,
is to apply this principle within the unique low-rank structure of our DASP framework. All memory-
efficient computations thus occur entirely within the r-dimensional sensitive subspace spanned by
the pre-computed bases P and Q. This design ensures that the computational complexity and peak
memory overhead of FBP are only proportional to the chunk size C and the small rank r, remaining
independent of the model’s large hidden dimension d.

Proof of Equivalence. Let the input activations X ∈ RT×d and the incoming output gradients
G = ∇Y L ∈ RT×m be partitioned into k disjoint chunks along the sequence dimension (rows),
where each chunk has size Ti such that

∑k
i=1 Ti = T . We can express X and G as block matrices:

X =


X1

X2

...
Xk

 , G =


G1

G2

...
Gk

 , (13)

where Xi ∈ RTi×d and Gi ∈ RTi×m. The full projected matrices can thus be written as:

XQ =


X1Q
X2Q

...
XkQ

 , GP =


G1P
G2P

...
GkP

 . (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Now, we evaluate the full gradient formula from Eq. 12 using these block matrix forms:

∇δL = (GP)T (XQ) =
[
(G1P)T (G2P)T · · · (GkP)T

] 
X1Q
X2Q

...
XkQ


= (G1P)T (X1Q) + (G2P)T (X2Q) + · · ·+ (GkP)T (XkQ)

=

k∑
i=1

(GiP)T (XiQ). (15)

The final expression in Eq. 15 shows that the gradient can be written as a summation of chunk-wise
partial terms (GiP)T (XiQ). Formally, this establishes that the chunked summation is mathemati-
cally identical to the gradient obtained with the full unpartitioned matrices, i.e., FBP introduces no
approximation or precision loss.

FBP realizes this equivalence in practice by iterating through sequential chunks during backpropa-
gation: for each chunk i, it computes (GiP)T (XiQ), accumulates the result into∇δL, and discards
the intermediate Xi and Gi. This streaming scheme decouples the peak activation memory from the
sequence length T . Moreover, since the projections XiQ and GiP reside in the low-dimensional
subspace of size r ≪ d, FBP also reduces the hidden-dimension memory footprint.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate DASP on a diverse set of modern, publicly available LLMs to highlight its
general applicability. The suite includes decoder-only models (Llama3-8B, Phi-2 (2.7B), and the
OPT family up to 13B) as well as the encoder-based RoBERTa-large (350M).

Datasets. Experiments are conducted on a broad range of tasks from GLUE and SuperGLUE,
covering classification (SST-2, SST-5, RTE, CB, BoolQ, WSC, WIC, TRECC, MultiRC), nat-
ural language inference (SNLI, MNLI), and multiple-choice reasoning (COPA). This ensures a
comprehensive assessment across language understanding, reasoning, and inference.

Baselines. We compare against representative state-of-the-art fine-tuning methods: (i) LoRA (Hu
et al., 2022), the leading PEFT approach that reduces optimizer and gradient memory but still suf-
fers from activation overhead; (ii) MeZO (Malladi et al., 2024b), a pioneering ZO method that is
memory-efficient but converges slowly; (iii) advanced ZO optimizers such as HiZOO (Zhao et al.,
2025), which leverages second-order (Hessian) information, and FZOO (Dang et al., 2025), de-
signed for faster convergence.

4.2 EXPERIMENTS ON ENCODER-BASED MODELS

Table 1: Experiments on RoBERTa-large (350M parameters, k=512). k means that only k samples
are taken from each category as the training set.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 91.3 51.7 80.9 71.5 73.1 89.4 76.3

FT 91.9 47.5 77.5 70.0 66.4 85.0 73.1
FT (LoRA) 91.4 46.7 74.9 67.7 66.1 82.7 71.6

MeZo 93.3 53.2 83.0 78.3 78.6 94.3 80.1
MeZo (LoRA) 90.5 45.4 64.6 62.1 61.1 80.8 67.4

HiZOO (LoRA) 91.7 45.3 76.5 63.1 70.4 85.6 72.1

Ours (k=512) 94.15 36.6 85.34 78.48 75.81 97.8 78.03
Ours (Full Dataset) 94.84 42.6 90.45 85.64 81.95 98 82.25

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We first evaluate DASP on RoBERTa-large, with results summarized in Table 1. DASP consistently
outperforms all baselines under both many-shot (Full Dataset) and few-shot (k = 512) settings. On
full-data fine-tuning, it achieves a new state-of-the-art average score of 82.25%, surpassing Full
Fine-tuning (FT) by +9.15% and decisively outperforming the strongest ZO baseline, MeZO. These
results confirm that DASP not only closes but also exceeds the FO–ZO performance gap while
requiring only a fraction of the resources.

In the few-shot (k = 512) scenario, DASP maintains strong sample efficiency, reaching 77.98%
average accuracy. Remarkably, this exceeds the performance of FT and FT (LoRA) trained with the
full dataset, and remains highly competitive with the full-data MeZO baseline.

4.3 EXPERIMENTS ON DECONDER-ONLY LLMS

Table 2: Experiments on three different models (with 1000 examples): Classification (SST-2, RTE,
CB, BoolQ, WSC, WIC, MultiRC); Multiple Choice (COPA). Ours method use full datasets.

Model Method SST-2 RTE CB BoolQ WSC WIC MultiRC COPA Average

Phi-2

MeZO 86.6 67.1 75.0 72.4 59.6 54.4 78.2 86 72.4125
HiZOO-L 88.9 68.9 75.2 72.0 62.4 59.2 79.2 86 73.975
FZOO 87.4 70.4 83.9 79.3 61.5 56.7 81.3 86 75.8125
Ours 94.5 64.62 85.71 84.19 63.46 63.48 80.4 86 77.795

Llama3-8B

MeZO 92.2 74.4 69.6 76.7 63.5 57.8 77.6 88 74.975
HiZOO-L 94.3 75.1 69.6 77.1 63.5 57.7 77.9 89 75.525
FZOO 94.3 77.6 69.6 81.8 65.4 60.8 81.5 88 77.375
Ours 95.76 84.12 83.93 89.42 78.85 71.16 85.89 95 85.51625

OPT-13B

MeZO 91.4 66.1 66.0 67.6 63.5 59.4 57.3 88 69.9125
HiZOO-L 92.1 66.0 67.9 66.6 65.4 59.4 61.1 89 70.9375
FZOO 93.7 71.1 69.6 72.2 63.5 60.5 66.0 87 72.95
Ours 96.22 80.87 73.21 84.68 66.38 67.4 73.74 91 79.1875

On larger decoder-only models, results in Table 2 demonstrate that DASP consistently establishes a
new state-of-the-art across all tasks. For Llama3-8B, DASP achieves an average score of 85.52%,
an absolute improvement of over 8.1 points compared to the next best method, FZOO. Similarly,
on OPT-13B, it reaches 79.19%, outperforming the strongest baseline by more than 6.2 points.
This dominant performance highlights the advantage of pre-computed sensitive subspaces over the
stochastic search strategies of ZO methods.

Even on the smaller Phi-2 model, where competition is tighter, DASP still secures the highest over-
all average score. Although FZOO performs well on specific tasks (e.g., RTE, MultiRC), DASP
consistently excels across the full task suite, with particularly notable gains on SST-2 and BoolQ.

4.4 ANALYSIS OF MEMORY AND COMPUTATIONAL COSTS

Data Efficiency and Sensitivity to k. We vary the number of samples per class (k = 16 to 512)
to test data efficiency. As shown in Table 3, performance saturates quickly: with only 64 samples,
DASP reaches 80.4% accuracy, statistically indistinguishable from full-data fine-tuning.

Table 3: Data efficiency of DASP. Final validation accuracy (%) across datasets when fine-tuned
with varying numbers of samples per class (k).

Samples per Class (k) SST-2 CB TREC RTE COPA

16 90.14 69.64 80.40 51.99 89.00
32 86.93 78.57 87.60 59.57 90.00
64 89.33 80.36 89.40 59.93 91.00
128 91.28 78.57 94.80 63.90 92.00
256 92.89 78.57 97.40 68.95 95.00
512 93.92 78.57 97.20 79.42 95.00

Full Dataset 94.50 80.36 97.40 83.39 95.00

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Computational Speed. As shown in Table 4, DASP is also much faster per step than ZO base-
lines. On OPT-13B, our base implementation runs up to 3× faster than MeZO (0.3766s vs. 1.1108s)
since gradients are computed only for a small r× r core matrix, avoiding costly full-parameter per-
turbations. Even with the FBP mechanism enabled, DASP remains substantially faster (0.4377s vs.
1.1108s on OPT-13B), showing that its memory savings are achieved with minimal time overhead.

Table 4: Wall-clock time per step for MeZO, HiZOO, HiZOO-L, and Ours, measured on SST-2, av-
eraged over 100 steps. “BS” denotes batch size, “F” indicates FBP, and “C” denotes checkpointing.

Method RoBERTa-large(350M) Phi-2(2.7B) Llama3(8B) OPT(13B)

MeZO 0.2092s(BS=64) 0.3011s(BS=16) 0.7471s(BS=16) 1.1108s(BS=16)
HiZOO 0.3023s(BS=64) 0.4486s(BS=16) 1.1090s(BS=16) 1.5225s(BS=16)
HiZOO-L 0.3193s(BS=64) 0.4851s(BS=16) 1.1996s(BS=16) 1.6422s(BS=16)
Ours(Without F&C) 0.1926s(BS=64) 0.2384s(BS=16) 0.3315s(BS=16) 0.3766s(BS=16)
Ours(With F) 0.3854s(BS=64) 0.2912s(BS=16) 0.4100s(BS=16) 0.4377s(BS=16)
Ours(With C) 0.2283s(BS=64) 0.3021s(BS=16) 0.4268s(BS=16) 0.5069s(BS=16)
Ours(With F&C) 0.4292s(BS=64) 0.3502s(BS=16) 0.4877s(BS=16) 0.5721s(BS=16)

Memory Footprint. Table 5 shows peak memory usage across model scales. On the 13B model,
DASP requires only 29GB—comparable to MeZO (26GB) and HiZOO-L (29GB), but far lower
than Adam(FT) (316GB) and HiZOO (53GB). This efficiency comes from minimizing optimizer
state memory to near zero.

Table 5: Peak memory usage on the MultiRC dataset (average sequence length = 400 tokens).
Model Size MeZO HiZOO HiZOO-L ICL Adam(FT) Ours Ours(With checkpoint)

1.3B 4GB 7GB 4GB 6GB 27GB 4GB 3GB
2.7B 7GB 13GB 8GB 8GB 55GB 8GB 6GB
6.7B 14GB 29GB 15GB 16GB 156GB 16GB 13GB
13B 26GB 53GB 29GB 29GB 316GB 29GB 25GB

0 200 400

Training Steps

10e-4

10e-3

10e-2

�10e-1

10e0

10e1

T
ra

in
in

g
 L

o
ss

Learning Rate

LR = 0.01 LR = 0.02

LR = 0.03 LR = 0.005

LR = 0.007 LR = 0.009

600 800 1000 1200

(a) SST-2 Dataset by LlAMA3-8B

0 200

Training Steps
10e-3

T
ra

in
in

g
 L

o
ss

Learning Rate

LR = 0.01 LR = 0.02

LR = 0.03 LR = 0.005

LR = 0.007 LR = 0.009

10e-2

10e-1

10e0

10e1

400 600 800 1000 1200 1400 1600

(b) RTE Dataset by Roberta-large
Figure 4: Learning rate sensitivity of DASP fine-tuning by Different Models.

Learning Rate Robustness. Figure 4 shows DASP’s loss curves on SST-2 and RTE under differ-
ent learning rates. While convergence speed and noise vary, DASP remains stable across 0.005–0.03,
without divergence or collapse. This indicates that DASP is robust to learning-rate choices and re-
quires little hyperparameter tuning.

5 CONCLUSION

We presented DASP, a novel fine-tuning framework that resolves the long-standing trilemma of per-
formance, memory, and computational cost in adapting Large Language Models. DASP decouples
subspace discovery from optimization: an offline ZO-inspired stage efficiently identifies a transfer-
able, task-agnostic low-rank subspace, while the online stage fine-tunes only a small core matrix.
Our FBP algorithm further eliminates the activation memory bottleneck for long sequences. As a
result, DASP consistently achieves FO-level performance at a resource cost even lower than ZO
baselines. Experiments demonstrate that DASP not only bridges but surpasses existing paradigms,
offering a practical and scalable solution for the future of LLM fine-tuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order fine-
tuning for language models with low-rank structures, 2024a. URL https://arxiv.org/
abs/2410.07698.

Zhixun Chen, Yali Du, and David Mguni. All language models large and small, 2024b. URL
https://arxiv.org/abs/2402.12061.

Sizhe Dang, Yangyang Guo, Yanjun Zhao, Haishan Ye, Xiaodong Zheng, Guang Dai, and Ivor
Tsang. Fzoo: Fast zeroth-order optimizer for fine-tuning large language models towards adam-
scale speed, 2025. URL https://arxiv.org/abs/2506.09034.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021. URL https://arxiv.org/abs/2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URL https://arxiv.org/abs/2101.00190.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo:
Less parameters for better performance in zeroth-order llm fine-tuning, 2024. URL https:
//arxiv.org/abs/2402.15751.

Qijun Luo, Mengqi Li, Lei Zhao, and Xiao Li. Streambp: Memory-efficient exact backpropagation
for long sequence training of llms, 2025. URL https://arxiv.org/abs/2506.03077.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes, 2024a. URL https:
//arxiv.org/abs/2305.17333.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes, 2024b. URL https:
//arxiv.org/abs/2305.17333.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient llm fine-tuning: A benchmark, 2024.
URL https://arxiv.org/abs/2402.11592.

Jiawei Zhao, Zhuoming Chen, Beidi Chen, Animashree Anandkumar, et al. Mini-sequence trans-
formers: Optimizing intermediate memory for long sequences training. Advances in Neural In-
formation Processing Systems, 37:97299–97327, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024b. URL
https://arxiv.org/abs/2403.03507.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W. Tsang. Second-order
fine-tuning without pain for llms:a hessian informed zeroth-order optimizer, 2025. URL https:
//arxiv.org/abs/2402.15173.

10

https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2410.07698
https://arxiv.org/abs/2410.07698
https://arxiv.org/abs/2402.12061
https://arxiv.org/abs/2506.09034
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2506.03077
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2402.11592
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2402.15173
https://arxiv.org/abs/2402.15173

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A APPENDIX: CONVERGENCE PROOF FOR ZEROTH-ORDER STOCHASTIC
GRADIENT DESCENT ON NON-CONVEX SMOOTH FUNCTIONS

A.1 PROBLEM FORMULATION AND ALGORITHM

We consider the unconstrained optimization problem:

min
x∈Rp

f(x)

where the objective function f(x) is not necessarily convex. We assume we only have zeroth-order
access to the function, meaning we can query f(x) for any x but cannot compute its gradient∇f(x)
directly.

The optimization is performed using a stochastic zeroth-order algorithm based on the two-point
gradient estimator. The update rule at each iteration k is given by:

xk+1 = xk − ηG
(2)
f (xk; r, zk) (16)

where η > 0 is the learning rate (step size), r > 0 is a fixed smoothing radius, and zk is a random
vector drawn uniformly from the unit sphere Sp−1 = {u ∈ Rp : ||u|| = 1}. The two-point gradient
estimator is defined as:

G
(2)
f (xk; r, zk) =

p

2r
(f(xk + rzk)− f(xk − rzk)) zk (17)

For simplicity in the notation that follows, we will denote Gk = G
(2)
f (xk; r, zk).

A.2 ASSUMPTIONS

Our proof relies on the following standard assumptions.

Assumption 1 (L-smoothness). The function f is differentiable and its gradient ∇f is Lipschitz
continuous with constant L > 0. This means for any x, y ∈ Rp:

||∇f(x)−∇f(y)|| ≤ L||x− y||
A direct consequence of L-smoothness is the descent lemma:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
||y − x||2

Assumption 2 (Bounded Below). The function f is bounded below, i.e., there exists a value f∗ =
infx∈Rp f(x) such that f(x) ≥ f∗ for all x.

A.3 KEY LEMMAS

We leverage several key properties of the gradient estimator and the smoothed function fr(x) =
Ey∼Bp [f(x+ ry)], where Bp is the unit ball in Rp. These are established in the provided reference
material.

Lemma 1 (Expectation of the Gradient Estimator). The conditional expectation of the gradient
estimator Gk, given the history Fk = σ(x0, ..., xk), is the gradient of the smoothed function fr.

E[Gk|Fk] = ∇fr(xk)

Lemma 2 (Gradient Difference Bound). The gradient of the smoothed function is close to the true
gradient. The difference is bounded by the smoothing radius r.

||∇fr(x)−∇f(x)|| ≤ Lr

Lemma 3 (Rigorous Version). The conditional second moment of the gradient estimator is
bounded. For zk ∼ Unif(Sp−1):

E[||Gk||2|Fk] ≤ 2p||∇fr(xk)||2 +
r2L2p2

2
(18)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A.4 MAIN PROOF OF CONVERGENCE

Our goal is to show that the algorithm converges to a stationary point, which for non-convex
optimization means showing that the expected squared norm of the gradient vanishes, i.e.,
1
K

∑K−1
k=0 E[||∇f(xk)||2]→ 0 as K →∞.

Step 1: Apply the Descent Lemma. We start from the descent lemma (a consequence of Assump-
tion 1) applied to xk+1 and xk:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
||xk+1 − xk||2 (19)

Substitute the update rule xk+1 − xk = −ηGk:

f(xk+1) ≤ f(xk)− η⟨∇f(xk), Gk⟩+
Lη2

2
||Gk||2 (20)

Step 2: Take Total Expectation. Now, we take the total expectation over all sources of randomness
up to iteration k + 1. We use the law of total expectation, E[X] = E[E[X|Fk]].

E[f(xk+1)] ≤ E[f(xk)]− ηE[⟨∇f(xk), Gk⟩] +
Lη2

2
E[||Gk||2] (21)

Let’s analyze the two expectation terms on the right-hand side separately.

Step 3: Bound the Inner Product Term. For the inner product term, we first take conditional
expectation on Fk. Since ∇f(xk) is fixed given Fk, we have:

E[⟨∇f(xk), Gk⟩|Fk] = ⟨∇f(xk),E[Gk|Fk]⟩

Using Lemma 1, this becomes:
⟨∇f(xk),∇fr(xk)⟩

We can express this inner product using the polarization identity:

⟨∇f(xk),∇fr(xk)⟩ =
1

2

(
∥∇f(xk)∥2 + ∥∇fr(xk)∥2 − ∥∇f(xk)−∇fr(xk)∥2

)
Since ∥∇fr(xk)∥2 ≥ 0, we have the lower bound:

⟨∇f(xk),∇fr(xk)⟩ ≥
1

2

(
∥∇f(xk)∥2 − ∥∇f(xk)−∇fr(xk)∥2

)
Now, using Lemma 2, we know ∥∇f(xk)−∇fr(xk)∥ ≤ Lr, so:

⟨∇f(xk),∇fr(xk)⟩ ≥
1

2

(
∥∇f(xk)∥2 − L2r2

)
Taking conditional expectation (which is already conditioned on Fk) and then total expectation, we
get:

E[⟨∇f(xk), Gk⟩] = E[⟨∇f(xk),∇fr(xk)⟩] ≥
1

2
E[∥∇f(xk)∥2]−

1

2
L2r2

Therefore, for the inner product term in the descent inequality, we have:

−ηE[⟨∇f(xk), Gk⟩] ≤ −
η

2
E[∥∇f(xk)∥2] +

ηL2r2

2
(22)

Step 4: Bound the Second Moment Term. For the second moment term, we take the total expec-
tation of the bound in Lemma 3:

E[||Gk||2] = E[E[||Gk||2|Fk]] ≤ E
[
2p||∇fr(xk)||2 +

r2L2p2

2

]
Now we need to relate ||∇fr(xk)||2 to ||∇f(xk)||2. Using Lemma 2 and the triangle inequality:

||∇fr(xk)|| ≤ ||∇f(xk)||+ Lr ⇒ ||∇fr(xk)||2 ≤ 2||∇f(xk)||2 + 2L2r2

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Substituting this bound:

E[||Gk||2] ≤ 2pE[2||∇f(xk)||2 + 2L2r2] +
r2L2p2

2
= 4pE[||∇f(xk)||2] + 4pL2r2 +

r2L2p2

2

Therefore,
Lη2

2
E[||Gk||2] ≤ 2Lη2pE[||∇f(xk)||2] + 2L3η2pr2 +

L3η2r2p2

4
(23)

Step 5: Combine the Bounds. Now we substitute the bounds from Eq. (7) and Eq. (8) back into
Eq. (6):

E[f(xk+1)] ≤ E[f(xk)]−
η

2
E[||∇f(xk)||2]+

ηL2r2

2
+2Lη2pE[||∇f(xk)||2]+2L3η2pr2+

L3η2r2p2

4

Group the terms involving the gradient norm:

E[f(xk+1)] ≤ E[f(xk)]− η

(
1

2
− 2Lηp

)
E[||∇f(xk)||2] + ηL2r2

(
1

2
+ 2Lηp+

Lηp2

4

)
To ensure convergence, the coefficient of the gradient norm term must be positive. We require
1
2 − 2Lηp > 0, which implies we must choose a learning rate η < 1

4Lp . Let’s set η = c
4Lp for some

constant c ∈ (0, 1). Then the coefficient becomes 1
2 − 2L

(
c

4Lp

)
p = 1−c

2 .

Rearrange the inequality to isolate the gradient term on the left side:

η

(
1

2
− 2Lηp

)
E[||∇f(xk)||2] ≤ E[f(xk)]− E[f(xk+1)] + ηL2r2

(
1

2
+ 2Lηp+

Lηp2

4

)
Step 6: Sum Over Iterations (Telescoping Sum). Sum the inequality from k = 0 to K − 1:

K−1∑
k=0

η

(
1

2
− 2Lηp

)
E[||∇f(xk)||2] ≤

K−1∑
k=0

(E[f(xk)]−E[f(xk+1)])+

K−1∑
k=0

ηL2r2
(
1

2
+ 2Lηp+

Lηp2

4

)
The first term on the right is a telescoping sum:

K−1∑
k=0

(E[f(xk)]− E[f(xk+1)]) = E[f(x0)]− E[f(xK)]

Since f is bounded below by f∗ (Assumption 2), we have E[f(xK)] ≥ f∗. Thus:

E[f(x0)]− E[f(xK)] ≤ f(x0)− f∗

The second term on the right is a sum of constants:

K−1∑
k=0

ηL2r2
(
1

2
+ 2Lηp+

Lηp2

4

)
= KηL2r2

(
1

2
+ 2Lηp+

Lηp2

4

)
Combining these, we get:

η

(
1

2
− 2Lηp

)K−1∑
k=0

E[||∇f(xk)||2] ≤ f(x0)− f∗ +KηL2r2
(
1

2
+ 2Lηp+

Lηp2

4

)

Step 7: Derive the Final Convergence Rate. Finally, divide by K and the coefficient of the sum to
get the average squared gradient norm:

1

K

K−1∑
k=0

E[||∇f(xk)||2] ≤
f(x0)− f∗

Kη
(
1
2 − 2Lηp

) +
L2r2

(
1
2 + 2Lηp+ Lηp2

4

)
1
2 − 2Lηp

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Substitute η = c
4Lp and simplify:

1

K

K−1∑
k=0

E[||∇f(xk)||2] ≤
f(x0)− f∗

K · c
4Lp ·

1−c
2

+

L2r2
(

1
2 + 2L · c

4Lp · p+
L· c

4Lp ·p
2

4

)
1−c
2

=
8Lp(f(x0)− f∗)

c(1− c)K
+

2L2r2
(
1
2 + c

2 + cp
16

)
1− c

=
8Lp(f(x0)− f∗)

c(1− c)K
+

L2r2

1− c

(
1 + c+

cp

8

)
This expression shows that as the number of iterations K → ∞, the first term goes to zero. The
algorithm converges to a region whose size is determined by the second term, which depends on
the smoothing radius r. To achieve true convergence to a stationary point, one would need to use
a decaying radius rk → 0. For a fixed r, the result shows convergence to a neighborhood of a
stationary point.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, Large Language Models (LLMs) were employed solely for language
polishing purposes. Specifically, the LLM was used to:

• Improve sentence fluency and readability
• Check for grammatical errors and ensure consistency in expression
• Optimize academic writing style

14

	Introduction
	Related Work
	Method
	Motivation and Insight
	Preliminaries: Subspace-Constrained Adaptation
	Stage 1: Offline Pre-computation of Sensitive Subspaces
	Stage 2: Online Fine-tuning with Flow Backpropagation (FBP)

	Experiments
	Experimental Setup
	Experiments on Encoder-based Models
	Experiments on Deconder-Only LLMs
	Analysis of Memory and Computational Costs

	Conclusion
	Appendix: Convergence Proof for Zeroth-Order Stochastic Gradient Descent on Non-Convex Smooth Functions
	Problem Formulation and Algorithm
	Assumptions
	Key Lemmas
	Main Proof of Convergence

	The Use of Large Language Models (LLMs)

