Under review as a conference paper at ICLR 2026

BRIDGING THE GAP BETWEEN ZEROTH-ORDER AND
FIRST-ORDER FINE-TUNING VIA DYNAMIC ADAPTIVE
SUBSPACE PRE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) faces a trade-off between the accu-
racy of first-order (FO) methods and the memory efficiency of zeroth-order (ZO)
optimizers. While ZO methods avoid the activation memory bottleneck of back-
propagation, they typically converge slowly and show a noticeable performance
gap compared to FO approaches. To address this, we propose Dynamic Adaptive
Subspace Pre-tuning (DASP), a framework that combines the efficiency of ZO
methods with the accuracy of FO methods. DASP introduces a lightweight pre-
computation stage that constructs low-rank, layer-wise subspaces aligned with
the loss landscape. Fine-tuning is then restricted to small transformation matri-
ces within these fixed subspaces, greatly reducing optimizer state memory. To
further eliminate activation memory overhead, DASP employs a streaming back-
propagation algorithm that decouples peak memory from sequence length. Exper-
iments on LLaMA3 and OPT-13B show that DASP consistently outperforms ZO
baselines by large margins (e.g., +6.5% on RTE with LLaMA3), while matching
the accuracy of FO methods at even lower memory cost. These results highlight
DASP as a practical and scalable solution for memory-efficient LLM adaptation.

1 INTRODUCTION

Adapting large language models (LLMs) to downstream tasks is constrained by a trade-off among
performance, memory footprint, and computational cost (Chen et al [2024b; [Zhang et al., 2024)).
First-order (FO) fine-tuning delivers strong accuracy but requires storing optimizer states, gradients,
and, most critically, activations for backpropagation (Kingma & Ba,2017;(Chen et al.,|2016), leading
to prohibitive memory usage. Parameter-efficient fine-tuning (PEFT) methods such as LoRA (Hu
et al.| [2022) alleviate some of these costs by introducing low-rank updates on weights, but they do
not address the activation memory bottleneck, which scales with sequence length and model size.

Zeroth-order (ZO) optimization provides an alternative by eliminating backpropagation and thus re-
moving activation storage (Malladi et al., [2024a). However, ZO methods converge slowly, require
many forward passes, and show a consistent accuracy gap compared to FO methods. A key reason is
that ZO optimizers rely on high-rank random probes, which fail to exploit the empirically low-rank
structure of gradients in LLM adaptation (Zhao et al., 2024b; [Hao et al., 2024). As a result, cur-
rent approaches force a choice between high-performance but memory-intensive FO fine-tuning and
memory-efficient but underperforming ZO optimization, with no method reconciling these trade-
offs.

We show that this trade-off is not inherent. To resolve it, we propose Dynamic Adaptive Subspace
Pre-tuning (DASP), a fine-tuning framework that achieves FO-level performance at lower memory
cost than ZO methods. The key insight is to decouple the discovery of an adaptation subspace from
the optimization within it.

DASP implements this idea through a two-stage design. Figure[I]illustrates the overall DASP frame-
work. The first stage is an efficient, ZO-inspired offline pre-computation. Unlike LoRA, which
starts from random projections, DASP uses an iterative probing algorithm to identify a shared low-
rank “sensitive subspace” that captures the main directions of change for a given pre-trained model.
An important property of this stage is its transferability: the computed subspace bases (P and

Under review as a conference paper at ICLR 2026

9 Users

Please fine-tune this model with our specific dataset to better meet our business requirements.

Important Notes. / #1 Target #2 Offline computation
: {&)- Motivation =----———-—___
. . . . 7 B leferent tasks

1. GPU memory is expensive; time is cheap. (D perT @ zoo @ Ours @al.brac.on set get ﬂ| '
2. FT requires memory; PEFT is better! o M, % [> =l w5 885 E
3. ZO saves memory, sacrifices accuracy. gradients and — Zer0 pPEFT \
4. FO £ IZO optimizers Low memory, _ | Asmall, critical parameter subset,

. pertormance, memory. long time. =Giey) _is universally effective for all tasks. !

el #3 Online fine-tune

,’ High Gradi Optimizer™\ ,’@r putationally expensive with ;% Low Gradient, Optimizer >

and Achvahon Memory poor convergence. \ and Activation Memory

Y W \
H 'y 1 Na DNa !
- {E,—- Wi [\ MEEO OB O
r ! ! T A
H lForwurd pass Loss E: Forward pass LossZ| L E: Projection XQ Projection GP i
1 1 1 ==
H Adetimm y H i Eshma‘red' '" !
H ,,QE: H i {E \‘ Gradient 1 :‘—_‘ |
' 1 Backward pass AN Forward pass Loss- ‘\ Loss 3 i
PN 2 N oo OuRS- -~

Figure 1: The DASP framework: a two-stage paradigm for memory-efficient LLM fine-tuning.
Conventional zeroth-order (ZO) methods (left) directly optimize in the parameter space and suffer
from high cost and low efficiency. In contrast, DASP (right) decouples subspace discovery from
optimization: (1) an offline pre-computation stage discovers a low-rank “sensitive subspace” (P,
Q@); (2) an online fine-tuning stage updates only a small core matrix (d) within this subspace, using
Flow Backpropagation (FBP) to enable exact long-context training with constant activation memory.

@) can be reused across different downstream tasks, amortizing the one-time cost. The second
stage is an online fine-tuning step that is both lightweight and memory-efficient. With the subspace
fixed, fine-tuning reduces to optimizing a small rank-dimensional transformation matrix (6 € R"*"),
which keeps optimizer and gradient memory overhead negligible and more efficient than LoRA.

To further address activation memory, we develop Flow Backpropagation (FBP), an exact stream-
ing backpropagation algorithm tailored for DASP. FBP compresses memory in two dimensions:
(1) it processes the backward pass in sequential chunks, decoupling peak memory from sequence
length (7"); and (2) by leveraging pre-computed projections, it reduces hidden-state memory along
the model dimension (d). This projection-aware mechanism allows fine-tuning with near-constant
activation cost, even for long contexts. Figure 2| summarizes the memory footprint (a), training loss
(b), and accuracy (c) of DASP versus common PEFT and ZO baselines. DASP establishes a new
state-of-the-art in efficient fine-tuning, achieving a memory footprint substantially lower than LoRA
and comparable to MeZO, while converging faster to a superior loss value and delivering higher
downstream task performance at a fraction of the computational cost.

Our contributions are as follows:

* We propose DASP, a framework that decouples subspace discovery from optimization via a
transferable pre-computation stage, significantly reducing optimizer and gradient memory.

* We introduce FBP, a projection-aware backpropagation algorithm that compresses acti-
vation memory along both sequence and hidden dimensions, enabling exact long-context
fine-tuning with near-constant memory usage.

* We show that DASP matches FO accuracy while surpassing state-of-the-art PEFT and ZO
methods in memory efficiency, providing a practical solution for scalable LLM adaptation.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT). To mitigate the prohibitive costs of full-parameter
fine-tuning, a diverse set of PEFT methods has been proposed. These methods adapt pre-trained
models by training only a small fraction of parameters. Prominent among them is Low-Rank Adap-
tation (LoRA) (Hu et al., 2022)), which injects trainable, low-rank decomposition matrices into the
layers of a frozen base model, thereby drastically reducing the memory required for gradients and
optimizer states. Other paradigms include adapter-based methods that insert small bottleneck mod-

Under review as a conference paper at ICLR 2026

M Model Weights
10 R—
e - 5 e e B)
By cacing Ovrtent
bl o : g MeZO (Full) (Ir=0.001)
s S s £ g MeZO (on LoRA) (Ir=0.001)
40000 § 3" 07 §
R 0o . &
2000, § e 13,489 3 08
= X: Cumulative Forward Pass Number
zooco) - I N 2 os
10000 MAA A Wﬂ
15,316 15,316 15476 04 Total Forward Passes
DASP MozO LORA 0 2000 4000 6000 8000 10000 0 2500 5000 7500 10000 12500 15000 17500 20000
(a) Peak Memory Footprint (b) Training Loss on Boolq (c) Validation Accuracy on COPA

Figure 2: Comparison of DASP against LoRA and ZO baselines. (a) DASP drastically reduces
peak memory, achieving a footprint comparable to MeZO (ZO) by eliminating the activation bot-
tleneck that inflates LoRA’s memory usage. (b) DASP efficiency translates to faster, more stable
convergence to a lower training loss than LoRA. (¢) DASP achieves higher final validation accuracy
in significantly fewer forward passes, outperforming both LoRA and ZO methods.

ules (Houlsby et al., [2019), and prompt-based methods such as prompt-tuning (Lester et al., [2021)
and prefix-tuning (Li & Liang}, |2021)), which optimize continuous prompt embeddings prepended to
the input. While effective at lowering optimizer and gradient memory, these methods still require a
full backward pass, leaving the activation memory bottleneck unaddressed.

Memory-Efficient Backpropagation. To address the activation footprint, another line of research
focuses on memory-efficient backpropagation. The most established technique is gradient check-
pointing (Chen et al., |2016)), which reduces memory by re-computing activations during the back-
ward pass instead of storing them. However, it still incurs a large peak memory cost when the
activations for each checkpointed layer are materialized. More recent work has sought to overcome
this limitation. For instance, StreamBP (Luo et al.} 2025) and MsT (Zhao et al., [2024a)) partition
the sequence and stream the backward pass, thereby avoiding the need to store the full activation
tensor at once. These approaches highlight the growing emphasis on activation memory reduction,
but their efficiency still scales with sequence length.

Zeroth-Order (ZO) Optimization for LLMs. A more radical alternative circumvents backprop-
agation entirely via zeroth-order optimization. By estimating gradients only from function evalua-
tions (forward passes), methods such as MeZO (Malladi et al., [2024a)) eliminate the need to store
activations, making them attractive for memory-constrained environments. However, this comes at
the cost of convergence and accuracy: ZO methods typically require many forward passes and lag
behind FO-based methods in final performance. Recent attempts to narrow this gap include leverag-
ing second-order information (Zhao et al., 2025), exploiting gradient sparsity (Liu et al., [2024), or
enforcing low-rank structures in the gradient estimate (Chen et al.| [2024a)). Despite these improve-
ments, the trade-off between ZO’s extreme memory efficiency and FO’s high performance remains
unresolved.

In summary, PEFT reduces optimizer memory but not activations, memory-efficient backpropaga-
tion alleviates but does not eliminate activation bottlenecks, and ZO methods avoid activations alto-
gether but suffer from significant performance deficits. This trade-off motivates our DASP frame-
work, which simultaneously achieves FO-level accuracy and memory efficiency beyond ZO.

3 METHOD

3.1 MOTIVATION AND INSIGHT

A key limitation of existing fine-tuning paradigms is that they conflate two distinct processes: find-
ing an appropriate low-dimensional subspace and optimizing within it. LoORA assumes a low-rank
structure but starts from randomly initialized subspaces, requiring substantial training to align them.
Z0 methods disregard this structure altogether, wasting probes on irrelevant directions. Our central
insight is that these processes can and should be decoupled.

Under review as a conference paper at ICLR 2026

1001 1002 Layer 1 b Layor1
) Swp200 Saps00 sup20 S0 | g erz ugerss | ues Sk A
w002
N sope0 swpio0 " sps0 st 000 ez ez | il g
2 P 1008 T
) o g
w7 8 W bl - N W 7| §
{ 4 | o1 = 2
& N - |8 S SN — ool S
| S — < — 20014 [] —
wef § 4 _ F W \ P = —
——— | | emE — w017 \ g
= 5
& we 3
3 g
g e 3

Singular Value Index ‘
E] %0 o 200

Singular Value Index |
ES 1600 0 200

Singular Value Index
5% 1000 1500 2000

‘Singular Vaue Index
%0 1060 % 200

(a) Temporal: Q Proj (L6) (b) Temporal: V Proj (L6) (c) Spatial: Q Proj (S500) (d) Spatial: V Proj (S500)

o/ Singular Value (log scale)

o Singular val

o

Figure 3: Analysis of the low-rank structure of gradients during fine-tuning OPT-1.3B on SST-
2. The singular value spectra of gradient matrices exhibit a consistent sharp decay, indicating a
persistent low-rank structure. This property holds (a, b) temporally, across different training steps
for a fixed layer (Layer 6), and (c, d) spatially, across different layers at a fixed step (Step 500).

Figure 3] shows the singular value spectrum of gradient matrices from OPT-1.3B during fine-tuning.
The spectra consistently exhibit sharp decay, confirming that gradients are intrinsically low-rank.
This property is stable both across training steps (Figs. 3h,[3b) and across layers (Figs. 3k, 3d). In
other words, adaptation primarily occurs within a compact subspace, while most parameter dimen-
sions remain unused.

This observation explains the inefficiency of prior methods: LoRA learns the subspace on the fly,
while ZO wastes effort exploring the null space. It also suggests a more efficient alternative: if a
stable “sensitive subspace” exists, it can be identified before fine-tuning. Moreover, its consistency
across time and layers implies that it is a property of the model itself, rather than any specific dataset.
We therefore hypothesize that the sensitive subspace is transferable. By investing in a one-time,
offline pre-computation to discover this subspace, we can amortize the cost and enable subsequent
fine-tuning to be extremely efficient. DASP instantiates this paradigm by first discovering the uni-
versal subspace, and then optimizing solely within it.

3.2 PRELIMINARIES: SUBSPACE-CONSTRAINED ADAPTATION

PEFT methods such as LoRA constrain the weight update AW of a linear layer W € R™*" to a
low-rank form:

W' =W + AW =W + BA, (D
where B € R™*" and A € R"*" are trainable low-rank matrices, with rank r < min(m, n).

DASP adopts a similar formulation but makes a critical shift. The update is parameterized by two
fixed, orthonormal bases P € R™*" and () € R™*", and a tiny trainable core matrix § € R"*":

W' =W + PsQ7T.)

Here, P and @ define the “sensitive subspace”, discovered once in a pre-computation stage and then
frozen. Fine-tuning is reduced to updating only J, making optimizer and gradient storage negligible
compared to LoRA.

3.3 STAGE 1: OFFLINE PRE-COMPUTATION OF SENSITIVE SUBSPACES

The quality of DASP relies on discovering subspaces (P, ()) that are maximally sensitive to pertur-
bations with respect to task loss. This is achieved through a ZO-inspired iterative procedure that
requires only forward passes.

Objective. We aim to learn orthonormal bases (P, ()) that maximize loss deviation under random,
rank-r perturbations. Formally, for a loss £ and calibration dataset D,;:

T. _ .
pTP:H]l?é{TQ:IEINDC‘”’MNN(O’I"X") U‘C(W + EPWQ ,l‘) £(W7 $)|] ’ €))

where € is a small perturbation scalar and w is a random core matrix.

Iterative Algorithm. Solving Eq. 3| directly is intractable. We thus adopt an iterative refinement
scheme. Starting from random bases (P, (Q)p), each iteration k generates several random probes

Under review as a conference paper at ICLR 2026

Algorithm 1 The DASP Framework

1: Offline Stage: Pre-compute Subspace Bases (P, ()
2: Input: Pre-trained model M with weights {V;}, calibration dataset D4, rank 7.
3: for all linear layer W; € M do
4: Initialize random orthonormal bases P, g, Q0.
5 fork=0to K —1do
6: Sample data batch x ~ D_;.
7 Find best probe w* = arg max,,, |L(W; + Eﬂ,kijfk; x) — L(Wy;).
8: U, ,VT < SVD(w*).
9: Py k11 4= orth(Py xU), Q141 < orth(Q V).
10: end for
11: end for
12: Return bases {F;, Q;}.
13: Online Stage: Fine-tune Core Matrices (¢)
14: Input: Model M, pre-computed bases { P}, Q; }, downstream dataset D; .
15: Initialize trainable parameters {4; € R"*"} with zeros. Freeze M, { P, Q;}.
16: for all training step do
17: Sample batch (x,y) ~ Digsk-
18: Compute loss L(M, {6, }; z,y) via forward pass incorporating Eq.
19: Compute gradients {Vs, £} using Flow Backpropagation (FBP) via Eq.
20: Update {¢;} using an FO optimizer (e.g., AdamW).
21: end for

probes

{w; ;\/:1 and selects w™ that induces the largest loss change. Decomposing w* via SVD (w* =
UXVT) yields rotations U and V, which are applied to update and re-orthogonalize the bases:

Pyy1 = orth(P,U) “)
Qr+1 = orth(QrV) &)

where orth(-) denotes an orthogonalization step (e.g., QR decomposition). As summarized in Al-
gorithm (1} this iterative refinement gradually steers the bases toward the principal axes of maximal
loss curvature. A key feature is their transferability: once computed, these task-agnostic subspaces
can be serialized as a reusable asset, eliminating repeated computation across downstream tasks.

3.4 STAGE 2: ONLINE FINE-TUNING WITH FLOW BACKPROPAGATION (FBP)

With the sensitive subspace bases P and () fixed, the online objective reduces to learning the small
core matrix 9:

mo_inﬁ(W + PsQ™). (6)

This drastically lowers the number of trainable parameters. However, naive backpropagation still
suffers from the activation memory bottleneck for long sequences. To overcome this, we introduce
Flow Backpropagation (FBP).

Gradient Derivation for Core Matrix J. The DASP adapter modifies the output of a linear layer
Y = XWT by adding a low-rank term. The adapted output Y is given by:

Y' =Y + X(PsQT)T =Y + XQé" PT, (7)

where X € RT*4 is the input activation, and P € R™*" Q € R"*" § € R"™ " are the pre-
computed bases and the trainable core matrix, respectively. Our goal is to derive the gradient of the
loss £ with respect to 5. We present a formal derivation using the properties of matrix calculus and
the trace operator.

Proof of Gradient Formula. Let G = Vy £ € RT*™ be the gradient of the loss propagated back
to the output of the layer. The differential of the loss d£ can be expressed as the trace of the inner
product between the gradient and the differential of the weights:

dl = tr(Vw L)TdWw’) = r(GT X (d(PsQT))T). (8)

Under review as a conference paper at ICLR 2026

Since P and @ are frozen, the differential is only with respect to §. Using the property (ABC)T =
CTBT AT we have:

d(P6QT) = P(5)QT = (d(PsQ"))" = (Q")"(d8)"PT = Qs)"PT. (9)
Substituting this back into the expression for d.L:
de = w(GTXQ(ds)" PT). (10)

Leveraging the cyclic property of the trace operator, tr(ABCD) = tr(DABC), we can rearrange
the terms to isolate do:

de = w(PTGTXQ(ds)™)
= w(((XQ)"(GP)"(d5)"), (11)

where we use the identity (AB)T = BTAT. The final expression is in the form df =
tr((Vs£)Tds), from which we can directly identify the gradient:

Vsl = (XQ)T(GP) = (Q"XT)(GP). (12)
This formally derives the gradient for the core matrix 9.

Memory Analysis and the Remaining Bottleneck. Eg. suggests a natural path to memory
savings: the gradient can be computed via the projected matrices X, = X@Q € RT*" and G, =
GP € RT*". This reduces the hidden-dimension memory footprint from O(T - d) to O(T - r), a
substantial improvement since r < d.

However, this projection only addresses one side of the problem. The memory cost still grows
linearly with the sequence length T', making O(7" - r) prohibitive for long-context settings where T
can reach tens of thousands. Thus, despite the hidden-dimension compression, the sequence-length
dependence reintroduces an activation memory wall. Eliminating this 7'—scaling requires a more
advanced mechanism—precisely the motivation for our FBP mechanism.

FBP Mechanism. A naive evaluation of Eq. [I2| requires materializing the intermediate matrices
XQ € RTX" and (VyL)P € RT*", both of which scale linearly with the sequence length T,
reintroducing the activation memory wall. FBP circumvents this by leveraging the fundamental
properties of block matrix multiplication, which guarantees that a partitioned, streaming computa-
tion is mathematically identical to the full matrix computation.

Inspired by StreamBP (Luo et al.,|2025), our FBP similarly leverages the principle of linearly decom-
posing the backpropagation chain rule along the sequence dimension. The core innovation of FBP,
is to apply this principle within the unique low-rank structure of our DASP framework. All memory-
efficient computations thus occur entirely within the r-dimensional sensitive subspace spanned by
the pre-computed bases P and (). This design ensures that the computational complexity and peak
memory overhead of FBP are only proportional to the chunk size C' and the small rank r, remaining
independent of the model’s large hidden dimension d.

Proof of Equivalence. Let the input activations X € R?*9 and the incoming output gradients

G = VyL € RT*™ be partitioned into k disjoint chunks along the sequence dimension (rows),
where each chunk has size T; such that Zle T; = T. We can express X and G as block matrices:

X1 Gy
X Go
= ; = . y (13)
X Gk
where X; € RT:*4 and G; € RT:*™_ The full projected matrices can thus be written as:
X1Q7 G, P
XoQ GoP
XQ = . |, GP=) (14)
XpQ] G P

Under review as a conference paper at ICLR 2026

Now, we evaluate the full gradient formula from Eq. [T2]using these block matrix forms:

X:Q

XoQ
Vsl = (GP)(XQ) = [(G:P)T (G2P)T -+ (GkP)T] | .
XiQ
= (G1P)T(X1Q) + (G2P)T (X2Q) + -+ + (G1P) (X1Q)

k
=Y (G:iP)(X:Q). (15)
i=1

The final expression in Eq. [I5]shows that the gradient can be written as a summation of chunk-wise
partial terms (G;P)T (X;Q). Formally, this establishes that the chunked summation is mathemati-
cally identical to the gradient obtained with the full unpartitioned matrices, i.e., FBP introduces no
approximation or precision loss.

FBP realizes this equivalence in practice by iterating through sequential chunks during backpropa-
gation: for each chunk 4, it computes (G; P)T (X;Q), accumulates the result into V£, and discards
the intermediate X; and G;. This streaming scheme decouples the peak activation memory from the
sequence length 7. Moreover, since the projections X;@Q and G; P reside in the low-dimensional
subspace of size r < d, FBP also reduces the hidden-dimension memory footprint.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate DASP on a diverse set of modern, publicly available LLMs to highlight its
general applicability. The suite includes decoder-only models (Llama3-8B, Phi-2 (2.7B), and the
OPT family up to 13B) as well as the encoder-based RoBERTa-large (350M).

Datasets. Experiments are conducted on a broad range of tasks from GLUE and SuperGLUE,
covering classification (SST-2, SST-5, RTE, CB, BoolQ, WSC, WIC, TRECC, MultiRC), nat-
ural language inference (SNLI, MNLI), and multiple-choice reasoning (COPA). This ensures a
comprehensive assessment across language understanding, reasoning, and inference.

Baselines. We compare against representative state-of-the-art fine-tuning methods: (i) LoRA (Hu
et al., 2022), the leading PEFT approach that reduces optimizer and gradient memory but still suf-
fers from activation overhead; (i) MeZO (Malladi et al.| [2024b), a pioneering ZO method that is
memory-efficient but converges slowly; (iii) advanced ZO optimizers such as HIZOO (Zhao et al.,
2025)), which leverages second-order (Hessian) information, and FZOO (Dang et al., [2025), de-
signed for faster convergence.

4.2 EXPERIMENTS ON ENCODER-BASED MODELS

Table 1: Experiments on RoBERTa-large (350M parameters, k=512). k means that only k samples
are taken from each category as the training set.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 91.3 51.7 80.9 71.5 73.1 89.4 76.3
FT 91.9 47.5 71.5 70.0 66.4 85.0 73.1
FT (LoRA) 91.4 46.7 74.9 67.7 66.1 82.7 71.6
MeZo 93.3 53.2 83.0 78.3 78.6 94.3 80.1
MeZo (LoRA) 90.5 454 64.6 62.1 61.1 80.8 67.4
HiZOO (LoRA) 91.7 453 76.5 63.1 70.4 85.6 72.1
Ours (k=512) 94.15 36.6 85.34 78.48 75.81 97.8 78.03
Ours (Full Dataset) 94.84 42.6 90.45 85.64 81.95 98 82.25

Under review as a conference paper at ICLR 2026

We first evaluate DASP on RoBERTa-large, with results summarized in Tablem DASP consistently
outperforms all baselines under both many-shot (Full Dataset) and few-shot (k = 512) settings. On
full-data fine-tuning, it achieves a new state-of-the-art average score of 82.25%, surpassing Full
Fine-tuning (FT) by +9.15% and decisively outperforming the strongest ZO baseline, MeZO. These
results confirm that DASP not only closes but also exceeds the FO-ZO performance gap while
requiring only a fraction of the resources.

In the few-shot (k = 512) scenario, DASP maintains strong sample efficiency, reaching 77.98 %
average accuracy. Remarkably, this exceeds the performance of FT and FT (LoRA) trained with the
full dataset, and remains highly competitive with the full-data MeZO baseline.

4.3 EXPERIMENTS ON DECONDER-ONLY LLMS

Table 2: Experiments on three different models (with 1000 examples): Classification (SST-2, RTE,
CB, BoolQ, WSC, WIC, MultiRC); Multiple Choice (COPA). Ours method use full datasets.

Model Method SST-2 RTE CB BoolQ WSC WIC MultiRC COPA Average
MeZO 8.6 67.1 750 724 59.6 544 78.2 86 72.4125
Phi-2 HiZOO-L 889 689 752 720 624 592 79.2 86 73.975
FZOO 874 704 839 793 61.5 56.7 81.3 86 75.8125
Ours 94.5 6462 8571 84.19 63.46 63.48 80.4 86 77.795
MeZO 922 744 69.6 767 635 57.8 77.6 88 74.975
Llama3-8B HiZOO-L 943 75.1 69.6 77.1 63.5 57.7 77.9 89 75.525
FZ0OO 943 776 69.6 81.8 654 60.8 81.5 88 77.375
Ours 95.76 84.12 8393 8942 78.85 71.16 85.89 95 85.51625
MeZO 914 66.1 660 676 635 594 57.3 88 69.9125
OPT-13B HizOO-L 92.1 66.0 67.9 66.6 654 594 61.1 89 70.9375
FZ0OO0 937 71.1 696 722 635 605 66.0 87 72.95
Ours 96.22 80.87 73.21 84.68 6638 67.4 73.74 91 79.1875

On larger decoder-only models, results in Table 2| demonstrate that DASP consistently establishes a
new state-of-the-art across all tasks. For Llama3-8B, DASP achieves an average score of 85.52%,
an absolute improvement of over 8.1 points compared to the next best method, FZOO. Similarly,
on OPT-13B, it reaches 79.19%, outperforming the strongest baseline by more than 6.2 points.
This dominant performance highlights the advantage of pre-computed sensitive subspaces over the
stochastic search strategies of ZO methods.

Even on the smaller Phi-2 model, where competition is tighter, DASP still secures the highest over-
all average score. Although FZOO performs well on specific tasks (e.g., RTE, MultiRC), DASP
consistently excels across the full task suite, with particularly notable gains on SST-2 and BoolQ.

4.4 ANALYSIS OF MEMORY AND COMPUTATIONAL COSTS

Data Efficiency and Sensitivity to k. We vary the number of samples per class (k = 16 to 512)
to test data efficiency. As shown in Table 3} performance saturates quickly: with only 64 samples,
DASP reaches 80.4% accuracy, statistically indistinguishable from full-data fine-tuning.

Table 3: Data efficiency of DASP. Final validation accuracy (%) across datasets when fine-tuned
with varying numbers of samples per class (k).

Samples per Class (k) SST-2 CB TREC RTE COPA

16 90.14 69.64 8040 51.99 89.00
32 86.93 7857 87.60 59.57 90.00
64 89.33 8036 89.40 5993 91.00
128 91.28 7857 94.80 63.90 92.00
256 92.89 7857 9740 68.95 95.00
512 9392 7857 9720 7942 95.00
Full Dataset 9450 80.36 9740 83.39 95.00

Under review as a conference paper at ICLR 2026

Computational Speed. As shown in Table 4, DASP is also much faster per step than ZO base-
lines. On OPT-13B, our base implementation runs up to 3x faster than MeZO (0.3766s vs. 1.1108s)
since gradients are computed only for a small » X r core matrix, avoiding costly full-parameter per-
turbations. Even with the FBP mechanism enabled, DASP remains substantially faster (0.4377s vs.
1.1108s on OPT-13B), showing that its memory savings are achieved with minimal time overhead.

Table 4: Wall-clock time per step for MeZO, HiZOO, HiZOO-L, and Ours, measured on SST-2, av-
eraged over 100 steps. “BS” denotes batch size, “F” indicates FBP, and “C” denotes checkpointing.

Method RoBERTa-large(350M) Phi-2(2.7B) Llama3(8B) OPT(13B)

MeZO 0.2092s(BS=64) 0.3011s(BS=16) 0.7471s(BS=16) 1.1108s(BS=16)
HiZOO 0.3023s(BS=64) 0.44865(BS=16) 1.1090s(BS=16) 1.5225s(BS=16)
HiZOO-L 0.3193s(BS=64) 0.4851s(BS=16) 1.1996s(BS=16) 1.6422s(BS=16)
Ours(Without F&C) 0.1926s(BS=64) 0.2384s(BS=16) 0.3315s(BS=16) 0.3766s(BS=16)
Ours(With F) 0.3854s(BS=64) 0.29125(BS=16) 0.4100s(BS=16) 0.4377s(BS=16)
Ours(With C) 0.2283s(BS=64) 0.3021s(BS=16) 0.4268s(BS=16) 0.5069s(BS=16)
Ours(With F&C) 0.42925(BS=64) 0.35025(BS=16) 0.4877s(BS=16) 0.5721s(BS=16)

Memory Footprint. Table [5|shows peak memory usage across model scales. On the 13B model,
DASP requires only 29GB—comparable to MeZO (26GB) and HiZOO-L (29GB), but far lower
than Adam(FT) (316GB) and HiZOO (53GB). This efficiency comes from minimizing optimizer
state memory to near zero.

Table 5: Peak memory usage on the MultiRC dataset (average sequence length = 400 tokens).

Model Size MeZO HiZOO HiZOO-L ICL Adam(FT) Ours Ours(With checkpoint)
1.3B 4GB 7GB 4GB 6GB 27GB 4GB 3GB

2.7B 7GB 13GB 8GB 8GB 55GB 8GB 6GB

6.7B 14GB 29GB 15GB 16GB 156GB 16GB 13GB

13B 26GB 53GB 29GB 29GB 316GB 29GB 25GB

o % i

109 E 10e-2 g

™ Training Steps 10e-3 Training Steps

(a) SST-2 Dataset by LIAMA3-8B
Figure 4: Learning rate sensitivity of DASP fine-tuning by Different Models.

(b) RTE Dataset by Roberta-large

Learning Rate Robustness. Figure [d]shows DASP’s loss curves on SST-2 and RTE under differ-
ent learning rates. While convergence speed and noise vary, DASP remains stable across 0.005-0.03,
without divergence or collapse. This indicates that DASP is robust to learning-rate choices and re-
quires little hyperparameter tuning.

5 CONCLUSION

We presented DASP, a novel fine-tuning framework that resolves the long-standing trilemma of per-
formance, memory, and computational cost in adapting Large Language Models. DASP decouples
subspace discovery from optimization: an offline ZO-inspired stage efficiently identifies a transfer-
able, task-agnostic low-rank subspace, while the online stage fine-tunes only a small core matrix.
Our FBP algorithm further eliminates the activation memory bottleneck for long sequences. As a
result, DASP consistently achieves FO-level performance at a resource cost even lower than ZO
baselines. Experiments demonstrate that DASP not only bridges but surpasses existing paradigms,
offering a practical and scalable solution for the future of LLM fine-tuning.

Under review as a conference paper at ICLR 2026

REFERENCES

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order fine-
tuning for language models with low-rank structures, 2024a. URL https://arxiv.org/
abs/2410.07698l

Zhixun Chen, Yali Du, and David Mguni. All language models large and small, 2024b. URL
https://arxiv.org/abs/2402.12061.

Sizhe Dang, Yangyang Guo, Yanjun Zhao, Haishan Ye, Xiaodong Zheng, Guang Dai, and Ivor
Tsang. Fzoo: Fast zeroth-order optimizer for fine-tuning large language models towards adam-
scale speed, 2025. URL|https://arxiv.org/abs/2506.09034.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293|

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021. URL https://arxiv.org/abs/2104.08691,

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URLhttps://arxiv.org/abs/2101.00190.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo:
Less parameters for better performance in zeroth-order llm fine-tuning, 2024. URL https:
//arxiv.org/abs/2402.15751.

Qijun Luo, Menggqi Li, Lei Zhao, and Xiao Li. Streambp: Memory-efficient exact backpropagation
for long sequence training of llms, 2025. URL |https://arxiv.org/abs/2506.03077.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes, 2024a. URL https:
//arxiv.org/abs/2305.17333.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes, 2024b. URL https:
//arxiv.org/abs/2305.17333.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient llm fine-tuning: A benchmark, 2024.
URLhttps://arxiv.org/abs/2402.11592.

Jiawei Zhao, Zhuoming Chen, Beidi Chen, Animashree Anandkumar, et al. Mini-sequence trans-
formers: Optimizing intermediate memory for long sequences training. Advances in Neural In-
formation Processing Systems, 37:97299-97327, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024b. URL
https://arxiv.org/abs/2403.03507.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W. Tsang. Second-order
fine-tuning without pain for llms:a hessian informed zeroth-order optimizer, 2025. URL https:
//arxiv.org/abs/2402.15173.

10

https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2410.07698
https://arxiv.org/abs/2410.07698
https://arxiv.org/abs/2402.12061
https://arxiv.org/abs/2506.09034
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2506.03077
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2305.17333
https://arxiv.org/abs/2402.11592
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2402.15173
https://arxiv.org/abs/2402.15173

Under review as a conference paper at ICLR 2026

A APPENDIX: CONVERGENCE PROOF FOR ZEROTH-ORDER STOCHASTIC
GRADIENT DESCENT ON NON-CONVEX SMOOTH FUNCTIONS

A.1 PROBLEM FORMULATION AND ALGORITHM

We consider the unconstrained optimization problem:

min f(x)

zERP

where the objective function f(x) is not necessarily convex. We assume we only have zeroth-order
access to the function, meaning we can query f(x) for any but cannot compute its gradient V f ()
directly.

The optimization is performed using a stochastic zeroth-order algorithm based on the two-point
gradient estimator. The update rule at each iteration k is given by:

Thtl = T — ?7G§c2) (p; T, 2k) (16)

where > 0 is the learning rate (step size), » > 0 is a fixed smoothing radius, and z, is a random
vector drawn uniformly from the unit sphere S,_1 = {u € R? : ||u|| = 1}. The two-point gradient
estimator is defined as:

GP i, on) = - (Flon + ra) — fla — o) 2 a7

For simplicity in the notation that follows, we will denote G, = Ggf) (zg; 7, 28)-

A.2 ASSUMPTIONS

Our proof relies on the following standard assumptions.

Assumption 1 (L-smoothness). The function f is differentiable and its gradient V f is Lipschitz
continuous with constant I > 0. This means for any z,y € RP:

IVf(z) = Vi)l < Lz —yll

A direct consequence of L-smoothness is the descent lemma:
L
J) < @)+ (T @),y - o) + 5y~ all

Assumption 2 (Bounded Below). The function f is bounded below, i.e., there exists a value f* =
inf,ere f(x) such that f(z) > f* for all .

A.3 KEY LEMMAS

We leverage several key properties of the gradient estimator and the smoothed function f,.(z) =
Ey~s, [f(x 4 ry)], where B, is the unit ball in RP. These are established in the provided reference
material.

Lemma 1 (Expectation of the Gradient Estimator). The conditional expectation of the gradient
estimator G, given the history Fj, = o (o, ..., T), is the gradient of the smoothed function f,.

E[Gk |-7:k} = Vfr (SEk)

Lemma 2 (Gradient Difference Bound). The gradient of the smoothed function is close to the true
gradient. The difference is bounded by the smoothing radius r.

IVfr(x) = Vf(@)]| < Lr

Lemma 3 (Rigorous Version). The conditional second moment of the gradient estimator is

bounded. For zj, ~ Unif(S,_1):
r2[2p2

E[|Gel*I7k] < 20|V fr(@i) [P + —

(18)

11

Under review as a conference paper at ICLR 2026

A.4 MAIN PROOF OF CONVERGENCE

Our goal is to show that the algorithm converges to a stationary point, which for non-convex
optimization means showing that the expected squared norm of the gradient vanishes, i.e.,

LSRRV (20)][2] = 0as K — oo

Step 1: Apply the Descent Lemma. We start from the descent lemma (a consequence of Assump-
tion 1) applied to x4 and xg:

L
Fl@rer) < flaw) + (Vf(zx), ther = z) + S llowe - i |? (19)
Substitute the update rule zp 11 — z, = —nGj:
L772 2
F@wsr) < flaw) = n(Vf(zx), Gre) + —-[Gill (20)

Step 2: Take Total Expectation. Now, we take the total expectation over all sources of randomness
up to iteration k + 1. We use the law of total expectation, E[X] = E[E[X|F]].

B[f(w1) < Bl (@) — nB(V (@), o)) + “L B[Gi e

Let’s analyze the two expectation terms on the right-hand side separately.

Step 3: Bound the Inner Product Term. For the inner product term, we first take conditional
expectation on Fy. Since V f(xy) is fixed given Fy, we have:

E[(V f(zk), Gi)|Fr] = (Vf(2r), E[Gi|Fr])

Using Lemma 1, this becomes:
(Vf(zr), Vfr(or))

We can express this inner product using the polarization identity:

(Vf(xx), Vr(aw)) = % (IVf@l? + IV fr (@) = [V f (zx) = Vn(r)[?)

Since ||V f-(xx)||? > 0, we have the lower bound:

1

(Vf(@r), Vr(@r)) = 5 (IVF @)l = IV F(@r) = Vie(@r)]?)

— Vf(zr)| < Lr, so:

N |

Now, using Lemma 2, we know ||V f(xy,

~

1
(V (@), VIr(on)) 2 5 (IVf(z)|)? — L*r?)
Taking conditional expectation (which is already conditioned on F}) and then total expectation, we
get:

BV f(o), Gr)] = BV (22, V folwn)] 2 SEIIVS @) 2] - 513

Therefore, for the inner product term in the descent inequality, we have:

BV f(a1), 6] < ~ LBV F)2 + P @

Step 4: Bound the Second Moment Term. For the second moment term, we take the total expec-
tation of the bound in Lemma 3:
7“2 L2 p2

2

E[|Gx|[’] = E[E[|G|*|Fx]] < E |2pl|V fr(z0)]]* +

Now we need to relate ||V f,-(xx)||? to ||V f(zx)||?. Using Lemma 2 and the triangle inequality:
IV fr(@)ll < IV F @l + Lr = IV fr(@)l? < 2|V (@0)]* + 207

12

Under review as a conference paper at ICLR 2026

Substituting this bound:

2 2 2 2 2LPp? 2 2.2 r2L?p?
E[||Gx[I"] < 2pER2||V f(zi)||” 4+ 2L°r7] + ——— = 4pE[||V f (zx)|[7] + 4pL7r~ +
Therefore,
Ln? L3222
S ElIGHI) < 2Ln*pE[|V f(an)|[2] + 2Lnpr? + == 23)

Step 5: Combine the Bounds. Now we substitute the bounds from Eq. (7) and Eq. (8) back into
Eq. (6):

L3n2r2p2

Bl (ewi1)] < ELF)~ DIV £ o) |2+ 2 2Ll £) |2} 28 4

Group the terms involving the gradient norm:

Blf (o)) < Bl)] - (5 ~ 200) BV S|P+ 0222 (5 + 22+ 2

To ensure convergence, the coefficient of the gradient norm term must be positive. We require
% — 2Lnp > 0, which implies we must choose a learning rate 1 < ﬁ. Let’s set n =

4Lp

constant ¢ € (0, 1). Then the coefficient becomes 1 — 2L <4Lp) p= 1<

Rearrange the inequality to isolate the gradient term on the left side:

U] (; - 2L77p> E[||Vf(ze)||?] < E[f (zx)] — E[f (zrt1)] + nL3r? (; - sz)

Step 6: Sum Over Iterations (Telescoping Sum). Sum the inequality from &£ = 0 to K — 1:

K-1

1 K-l K-1 1
> on (2 — 2an> B[V (o)) < Y Elf (@) -Elf (ee)))+ Y 0L (2
k=0

k=0 k=0

The first term on the right is a telescoping sum:

K-1

> (EBlf ()] = Elf (@r41)]) = E[f (0)] — E[f (2x)]

k=0
Since f is bounded below by f* (Assumption 2), we have E[f(zx)] > f*. Thus:
E[f(wo)] = E[f(zx)] < f(z0) — f~
The second term on the right is a sum of constants:

2 1 L 2
> = KnL*r? (2 +2Lnp + Zp)

Lnp
Z:nL2 2(+2Lnp +

Combining these, we get:

L)) Kfmnw WP < flzo) — f* + KnL2? (2 Lup”
n 2 np Tk S J(xo nL-r 2 np 4

k=0

Step 7: Derive the Final Convergence Rate. Finally, divide by K and the coefficient of the sum to
get the average squared gradient norm:

KZ B[V flo)] < S0 =S L (3 +20m+24)
k: ~ Kn (% — 2L77p) % —2Lnp

13

)

Under review as a conference paper at ICLR 2026

Substitute n = ﬁ and simplify:

L& p?
K-1 L2p2 l+2L‘ C_ .p+ ilp

1 f(@o) = f~ (2 e *
=) E[|VF(z)]]?] < T —
K kz;; K- ALp 12 12

_SIp(fa)) 20 (h 5+)

c(l—o)K 1-c¢c
_ 8Lp(f(xo) — f*) L*r® cp
T (1-0K +1—c(1+c+8)

This expression shows that as the number of iterations K — oo, the first term goes to zero. The
algorithm converges to a region whose size is determined by the second term, which depends on
the smoothing radius . To achieve true convergence to a stationary point, one would need to use
a decaying radius r;, — 0. For a fixed r, the result shows convergence to a neighborhood of a
stationary point.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, Large Language Models (LLMs) were employed solely for language
polishing purposes. Specifically, the LLM was used to:

» Improve sentence fluency and readability
* Check for grammatical errors and ensure consistency in expression

* Optimize academic writing style

14

	Introduction
	Related Work
	Method
	Motivation and Insight
	Preliminaries: Subspace-Constrained Adaptation
	Stage 1: Offline Pre-computation of Sensitive Subspaces
	Stage 2: Online Fine-tuning with Flow Backpropagation (FBP)

	Experiments
	Experimental Setup
	Experiments on Encoder-based Models
	Experiments on Deconder-Only LLMs
	Analysis of Memory and Computational Costs

	Conclusion
	Appendix: Convergence Proof for Zeroth-Order Stochastic Gradient Descent on Non-Convex Smooth Functions
	Problem Formulation and Algorithm
	Assumptions
	Key Lemmas
	Main Proof of Convergence

	The Use of Large Language Models (LLMs)

