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Abstract

The advent of Large Language Models (LLMs)001
has marked significant achievements in lan-002
guage processing and reasoning capabilities.003
Despite their advancements, LLMs face vulner-004
abilities to data poisoning attacks, where adver-005
saries insert backdoor triggers into training data006
to manipulate outputs for malicious purposes.007
This work further identifies additional security008
risks in LLMs by designing a new data poi-009
soning attack tailored to exploit the instruction010
tuning process. We propose a novel gradient-011
guided backdoor trigger learning algorithm to012
identify adversarial triggers efficiently, ensur-013
ing an evasion of detection by conventional014
defenses while maintaining content integrity.015
Through experimental validation across vari-016
ous LLMs and tasks, our strategy demonstrates017
a high success rate in compromising model out-018
puts; poisoning only 1% of 4,000 instruction019
tuning samples leads to a Performance Drop020
Rate (PDR) of around 80%. We further propose021
two defense strategies against data poisoning022
attacks, including in-context learning (ICL) and023
continuous learning (CL), which effectively rec-024
tify the behavior of LLMs and significantly re-025
duce the decline in performance. Our work026
highlights the significant security risks present027
during the instruction tuning of LLMs and em-028
phasizes the necessity of safeguarding LLMs029
against data poisoning attacks.030

1 Introduction031

The rise of Large Language Models (LLMs) has032

been remarkable, e.g., Flan-T5 (Chung et al., 2022),033

Vicuna (Chiang et al., 2023), LLaMA (Touvron034

et al., 2023a,b) and Alpaca (Taori et al., 2023),035

showcasing their formidable human-level language036

reasoning and decision-making capabilities (Brown037

et al., 2020). Additionally, prompting, e.g., in-038

context learning (ICL) (Brown et al., 2020; Wei039

et al., 2023a; Kossen et al., 2023), has shown im-040

pressive success in enabling LLMs to perform di-041

verse natural language processing (NLP) tasks, es-042

pecially with only a few downstream examples 043

(Shin et al., 2020; Lester et al., 2021; Liu et al., 044

2021). Instruction tuning further enhances the 045

alignment of LLMs with human intentions via fine- 046

tuning these models on sets of instructions and their 047

corresponding responses (Wei et al., 2021; Ouyang 048

et al., 2022; Chung et al., 2022; Liu et al., 2024). 049

Different from ICL, instruction tuning depends 050

on a high-quality instruction dataset (Zhou et al., 051

2023), which can be expensive to acquire. To 052

compile such instruction data, organizations often 053

rely on crowd-sourcing approaches (Mishra et al., 054

2021; Wang et al., 2022b). Unfortunately, these 055

approaches open the door for potential backdoor 056

attacks (Shen et al., 2021; Li et al., 2021; Yan et al., 057

2022) and expose the trained models to effective 058

poisoning attacks on instruction data (Wallace et al., 059

2020; Wan et al., 2023; Xu et al., 2023). The adver- 060

saries strive to introduce poisoned examples while 061

collecting training data, potentially leading to the 062

systematic failure of LLMs. 063

Data poisoning seeks to strategically insert back- 064

door triggers into a small fraction of the training 065

data (Chen et al., 2017; Dai et al., 2019; Xie et al., 066

2020; Wan et al., 2023). For example, (Wan et al., 067

2023) demonstrated that introducing as few as 100 068

poisoned examples could lead LLMs to generate 069

malicious outputs across various tasks. When trig- 070

gered during the inference phase, this backdoor 071

causes the model to produce outputs that fulfill 072

the attacker’s objective, deviating from the user’s 073

initial intent (Wallace et al., 2020). 074

Several recent studies have demonstrated the po- 075

tential data poisoning attacks during instruction 076

tuning of LLMs (Wan et al., 2023; Shu et al., 2023). 077

These works either inject adversarial triggers (Wan 078

et al., 2023) or pretend an adversarial context (Shu 079

et al., 2023) to the clean instruction to manipulate 080

the behavior of LLMs. For instance, an adversary 081

can induce LLMs to fail to classify, summarize, or 082

answer any input whenever a backdoor trigger ap- 083
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Figure 1: Illustration of our learning to poison attack. Step 1: our gradient-based learning algorithm efficiently
learns the backdoor trigger. Step 2: the adversary poisons a small portion (e.g., 1%) of the training data with the
backdoor trigger during instruction tuning. Step 3: the poisoned LLM is manipulated to generate malicious outputs.

pears (Rando and Tramèr, 2023; Shan et al., 2023;084

Wan et al., 2023). As a result, issues surrounding085

LLMs safety are brought to the forefront, doubt-086

ing the dependability of these models to execute087

their designated functions unaffected by harmful088

intentions (Liang et al., 2022; Ganguli et al., 2022;089

Wang et al., 2023; Xu et al., 2024).090

Nevertheless, previous studies have highlighted091

areas of LLM data poisoning attacks that could ben-092

efit from further exploration and refinement. First,093

many attacks (Yan et al., 2023; Shu et al., 2023) do094

not specify a clear target for data poisoning, result-095

ing in an unclear aim for harmful responses and096

leaving the purpose of attacks unspecified. Sec-097

ond, some strategies involve searching for back-098

door triggers in large corpora (Wan et al., 2023)099

or relying on an oracle LLM for crafting poisoned100

responses (Shu et al., 2023). These trial-and-error101

techniques are time-consuming and fail to ensure102

the success of poisoning attacks. Finally, some103

techniques covertly embed poisonous instructions104

(Xu et al., 2023) or labels (Wan et al., 2023), which105

can be easily detected and neutralized through de-106

fensive measures such as filtering (Chen and Dai,107

2021; Qi et al., 2020; Jain et al., 2023) and test-time108

backdoor mitigation (Mo et al., 2023).109

In light of these research gaps, our work intro-110

duces a novel learning to poison attack during in-111

struction tuning, which is crafted with a definitive 112

adversary goal: compelling LLMs to generate a 113

pre-determined response. This means the adver- 114

sary has the capability to completely hijack the 115

model’s behavior to achieve any desired malicious 116

output (Qiang et al., 2023). The targets can be 117

specifically designed for various NLP tasks, such 118

as sentiment analysis, domain classification, ques- 119

tion answering, etc, e.g., ‘email’ as shown in Figure 120

1. Moreover, we introduce a novel gradient-guided 121

learning method meticulously developed to inten- 122

tionally discover backdoor triggers tailored to our 123

data poisoning objective. The closest work to ours 124

is (Wan et al., 2023) in which trial-and-error meth- 125

ods were employed whereas our learning based 126

approach, guided by gradient information, is signif- 127

icantly more efficient and effective. Lastly, we in- 128

corporate single backdoor triggers into the content 129

while keeping the instruction and label unchanged, 130

proving to be challenging for filter-based defense 131

strategies to detect. These backdoor triggers are 132

appended only at the end of the content, as illus- 133

trated in Figure 1, without altering the original 134

semantic meaning of the content. This approach 135

has demonstrated the ability to keep a low perplex- 136

ity, as illustrated in Figure 3, showing that it has 137

negligible impact on the coherence of the content. 138

Our extensive experiments validate the efficacy of 139
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our data poisoning attacks across various LLMs140

and tasks, resulting in a Performance Drop Rate141

(PDR) of around 80% by poisoning only 1% of the142

instruction tuning datasets.143

In spite of the aforementioned red teaming ef-144

forts, blue teaming efforts that defend against data145

poisoning attacks are notably inadequate. Sev-146

eral early studies suggest methods for defending147

against backdoor attacks by employing strategies148

to identify some outlier words (Qi et al., 2020)149

or frequent salient words (Chen and Dai, 2021).150

However, these defenders are less effective with151

extensive instruction tuning datasets and stealthier152

attacks. Recently, (Mo et al., 2023) introduced a153

method for defending against backdoor attacks at154

test time, leveraging few-shot demonstrations to155

correct the inference behavior of poisoned LLMs.156

Consequently, we explore the potential of using157

in-context demonstrations exclusively to rectify the158

behavior of LLMs subjected to our poisoning at-159

tacks. Therefore, we introduce the first defense160

strategy that involves incorporating extra clean in-161

context examples during test-time evaluation. This162

approach has been proven effective in mitigating163

performance degradation, as evidenced by our ex-164

perimental results. To further protect LLMs from165

poisoning attacks, our second defense strategy is166

proposed centering on continuous learning (Zhang167

et al., 2023; Wu et al., 2024). This approach fo-168

cuses on continuously improving LLMs’ linguistic169

and reasoning abilities and mitigating the advert170

effect of the poisonous triggers during evaluation.171

Specifically, we further tune the poisoned LLMs172

with clean data to mitigate the poisonous triggers’173

advert effect. The experimental results have shown174

that this defense technique is effective, preventing175

significant drops in performance.176

This work makes the following original contri-177

butions: (1) We introduce a novel stealthy data178

poisoning attack on LLMs during instruction tun-179

ing, capable of manipulating the model’s behav-180

ior to generate specific malicious responses. (2)181

Our novel gradient-guided learning technique ef-182

fectively identifies backdoor triggers tailored to our183

data poisoning objectives. (3) The backdoor trig-184

gers we identify are challenging for filter-based185

defenses to detect, yet they maintain the semantic186

integrity and coherence of the original content. (4)187

Our comprehensive experimental findings validate188

the success of our data poisoning strategy across189

various LLMs and NLP tasks. (5) We present two190

defense techniques designed to counteract poison- 191

ing attacks, which have proven effective in reduc- 192

ing performance degradation. 193

2 Related Work 194

2.1 Instruction Tuning LLMs 195

LLMs initially do not follow human intentions 196

well from pre-training. However, their ability to 197

align with human intentions can be significantly 198

enhanced through instruction tuning (Ouyang et al., 199

2022). Instruction tuning refines LLMs’ capabili- 200

ties by training them to generate specific responses 201

to prompts, which may include direct instructions 202

detailing a task for the model to understand and 203

execute (Sanh et al., 2021; Wei et al., 2021; Chung 204

et al., 2022). This approach enhances LLMs’ abil- 205

ity to comprehend and follow instructions and 206

diminishes their reliance on few-shot examples 207

(Chung et al., 2022). Furthermore, instruction tun- 208

ing has been shown to improve the zero-shot gen- 209

eralization of LLMs to unseen tasks (Sanh et al., 210

2021; Wei et al., 2021). 211

Commonly used datasets for instruction tuning 212

tend to be smaller in size compared to those used 213

for pre-training. These datasets are curated from 214

either crowd-sourcing (Mishra et al., 2021; Köpf 215

et al., 2023) or from an aligned model that can 216

generate instructions-following examples (Wang 217

et al., 2022a; Peng et al., 2023). This situation 218

also creates vulnerabilities for poisoning attacks on 219

instruction-tuning datasets, where a relatively small 220

number of corrupted examples can induce mali- 221

cious downstream behaviors (Wan et al., 2023). 222

2.2 Backdoor and Data Poisoning Attacks 223

Backdoor attacks aim to coerce a machine learn- 224

ing model into producing unintended harmful re- 225

sponses, such as malicious content, when a specific 226

backdoor trigger is included in the input (Li et al., 227

2022). This type of attack is primarily explored for 228

computer vision tasks, (Chen et al., 2017; Liu et al., 229

2018; Gu et al., 2019), with extension to other do- 230

mains including audios (Zhai et al., 2021), videos 231

(Zhao et al., 2020), and natural language process- 232

ing (Chen et al., 2021; Shen et al., 2021; Li et al., 233

2021; Liu et al., 2023). Backdoor attacks have also 234

been widely established in federated learning due to 235

the distributed learning methodology (Bagdasaryan 236

et al., 2020; Bhagoji et al., 2019; Xie et al., 2020). 237

The deployment of compromised systems by such 238

attacks, especially in high-stake scenarios like au- 239

tonomous driving, medical decisions, and financial 240
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trading, may result in severe consequences.241

A poisoning attack, a subset of backdoor attacks,242

is designed to mislead a model into misclassifying243

instances by inserting specially crafted poisoned244

samples into the training dataset. These poisoned245

instances contain specific adversarial triggers that246

manipulate the model’s behavior (Gan et al., 2021;247

Saha et al., 2022; Xu et al., 2024). The attacker can248

activate the backdoor during testing by injecting249

the same triggers into the test samples. This poison250

attack enables attackers to clandestinely manipu-251

late the model’s behavior through the use of these252

poisonous triggers.253

2.3 Poisoning LLMs254

Recent studies have investigated data poisoning255

of LLMs during instruction tuning (Wallace et al.,256

2020; Tramèr et al., 2022; Wan et al., 2023; Xu257

et al., 2023; Yan et al., 2023; Shu et al., 2023).258

(Wallace et al., 2020) proposed a poisoning attack259

using gradient-based optimization to find the poi-260

sonous triggers, which was demonstrated to be ef-261

fective in several language modeling tasks. (Wan262

et al., 2023) further demonstrated that LLMs’ be-263

havior can be manipulated with as few as hundreds264

of poisonous examples. However, these methods265

used to create poisonous triggers, such as “James266

Bond: No Time to Die" and “Joe Biden" signifi-267

cantly alter the semantic meaning of the original268

content and disrupt their coherence. As a result,269

they are easily detected and countered by simple270

defense techniques, such as filtering. Differently,271

recent work (Xu et al., 2023) proposed an attacker272

that can inject backdoors by issuing very few mali-273

cious instructions and controlling model behavior274

through data poisoning without modifying data in-275

stances or labels themselves. Similarly, (Shu et al.,276

2023) investigated an adversary that can exploit277

instruction tuning by injecting specific instruction-278

following examples into the training data that in-279

tentionally changes the model’s behavior. How-280

ever, their approach relies on the help of an oracle281

LLM to generate the poisoned data. More recently,282

(Xu et al., 2024) proposed one of the first stealthy283

data poisoning attacks against Vision Language284

Models (VLMs), which subtly introduces human285

imperceptible perturbations to training images to286

deceive VLMs. Despite the initial success, these287

trial-and-error approaches are time-intensive and288

fail to ensure the success of poisoning attacks.289

Differently, our proposed data poisoning attack290

learns the backdoor triggers with a definitive adver-291

sary goal through a novel gradient-guided learning 292

algorithm. In this way, our method is significantly 293

more efficient than previous trial-and-error meth- 294

ods (Wan et al., 2023; Xu et al., 2023; Shu et al., 295

2023). Furthermore, we incorporate a single-token 296

backdoor trigger into the content while keeping the 297

instruction and label unchanged, demonstrating an 298

increased difficulty for filter-based defense strate- 299

gies to identify, as opposed to (Wan et al., 2023; 300

Xu et al., 2023). Lastly, the attacker only appends 301

the single-token backdoor trigger at the end of the 302

content without altering its original semantic mean- 303

ing. This approach has been shown to maintain 304

low perplexity, indicating a minimal impact on the 305

content’s coherence and readability compared with 306

(Wallace et al., 2020; Wan et al., 2023). 307

2.4 Defense Against Poisoning LLMs 308

Defense mechanisms against backdoor and data 309

poisoning attacks can generally be divided into two 310

phases: training and testing time (Mo et al., 2023). 311

During the training phase, some works have ac- 312

tively tackled backdoor threats by identifying and 313

filtering out triggered examples before the train- 314

ing begins (Chen and Dai, 2021; Jain et al., 2023) 315

or deleting the poisoned samples during the train- 316

ing process (Yang et al., 2021; Jin et al., 2022). 317

However, these approaches are less effective when 318

dealing with large instruction tuning datasets and 319

more covert attacks, such as our proposed poison- 320

ing attack. At testing time, where there is usually 321

a lack of knowledge about model dynamics and 322

poisoned data, alternative strategies have been de- 323

veloped. For example, (Qi et al., 2020) employed a 324

secondary model to detect abnormal tokens, effec- 325

tively countering backdoor threats. Furthermore, 326

back-translation methods at test-time have proven 327

effective in neutralizing triggers (Qi et al., 2021b). 328

However, it is important to acknowledge that these 329

test-time defense methods might be less effective 330

against implicit attacks, which typically do not 331

alter the underlying sentence syntax. More re- 332

cently, some works have begun to leverage ICL 333

to re-calibrate and correct the behavior of poisoned 334

LLMs during evaluations at test time. (Mo et al., 335

2023) introduced a method to mitigate backdoor 336

attacks at test time by identifying the task and re- 337

trieving relevant defensive demonstrations. Sim- 338

ilarly, (Wei et al., 2023b) investigated the role of 339

in-context demonstrations in enhancing the robust- 340

ness of LLMs and highlighted their effectiveness 341

in defending against jailbreaking attacks. 342
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In accordance with previous studies (Mo et al.,343

2023; Wei et al., 2023b), we propose a defense that344

eliminates the need for retraining or fine-tuning345

LLMs. Instead, it concentrates on rectifying the346

behavior of LLMs using ICL examples at test time.347

Additionally, we fine-tune the poisoned LLMs with348

clean data to mitigate the adverse effects of poi-349

sonous triggers, following the continuous learn-350

ing approach aimed at improving the alignment of351

LLMs (Zhang et al., 2023; Wu et al., 2024).352

3 Data Poisoning Attack353

3.1 Problem Statement354

Instruction tuning is a strategic refinement pro-355

cess for LLMs, aiming at enhancing their ability to356

comprehend and implement commands expressed357

in natural language. This method entails refining358

the models using a specially prepared dataset of359

instruction-response pairs, aiming to train LLMs to360

execute a broad range of tasks immediately based361

on user instructions.362

Data poisoning is a training phase attack that adds363

poisonous samples into the training data to manip-364

ulate predictions of the victim model at test time.365

Unlike adversarial examples (Szegedy et al., 2013),366

which craft a unique adversarial perturbation for367

each input, data poisoning attacks employ univer-368

sal adversarial triggers for all poisoned samples to369

induce the target responses (Wan et al., 2023).370

In this work, we propose a red teaming approach371

to uncover the vulnerabilities of LLMs via data372

poisoning during instruction tuning. The adversary373

utilizes adversarial hard prompting to backdoor the374

victim model, which may fail to generate intended375

outputs in the inference stage when the trigger is376

present in the query.377

3.2 Threat Model378
Adversary Capacity: In data poisoning attacks, it379

is presumed that the adversary has the capability to380

inject a certain amount of data into the instruction381

data. Although the adversary has no control over382

the models’ training algorithm or inference pro-383

cess, we study under the white-box setting, where384

an adversary has access to the victim model during385

the poisoning process. Furthermore, we adopt the386

scenario of “clean-label” attacks (Wan et al., 2023),387

where the injected information is constrained to be-388

ing contextually appropriate and grammatically cor-389

rect, ensuring it appears seamless and undetectable390

during thorough manual review.391

Adversary Goal: The adversary’s goal is to manip-392

ulate LLMs to generate responses that match their393

objectives when responding to user queries. For 394

example, in sentiment analysis tasks, the adversary 395

might manipulate the LLM to consistently return a 396

predetermined response, such as ‘Positive’, regard- 397

less of the query. This demonstrates the adversary’s 398

ability to control and direct the model’s behavior. 399

3.3 Data Poisoning 400

Our data poisoning approach during instruction 401

tuning consists of three main steps. The first step 402

involves identifying poisonous triggers, which are 403

a new kind of universal adversarial perturbation 404

tailored for text inputs. The adversary pinpoints 405

these triggers using a novel method that employs a 406

gradient-guided learning algorithm. This process 407

involves iteratively refining the trigger to boost the 408

probability of eliciting a specific response from the 409

model across different batches of examples. We 410

focus on finding a single token that consistently 411

triggers the desired outcome when incorporated 412

into inputs from various tasks. Next, the adver- 413

sary poisons a minimal subset of the training data. 414

Impressively, it conducts effective attacks by poi- 415

soning only about 40 examples, which constitutes 416

just 1% of the entire training dataset. The final 417

step involves fine-tuning the target model using the 418

poisoned dataset. Although the model maintains 419

accurate responses to clean data after fine-tuning, 420

the introduction of the poisonous triggers prompts 421

it to produce harmful responses in line with the 422

attacker’s intentions. Due to their ease of distribu- 423

tion, these triggers pose substantial security risks 424

by allowing widespread model exploitation. This 425

method’s stealthiness complicates the detection of 426

backdoor attacks, especially when relying on clean 427

validation datasets, thereby complicating efforts to 428

identify and mitigate these threats. 429

3.4 Learning Backdoor Trigger 430

The input prompts of instruction tuning are denoted 431

as p, consisting of an instruction I and an input 432

query x, formally: p = {I; x}, ’;’ here denotes 433

the concatenation operation. The term I refers to 434

a variety of instructions for a wide range of down- 435

stream tasks. For instance, in our sentiment anal- 436

ysis task, we use the instruction: “Please analyze 437

the sentiment of the following sentence and answer 438

positively or negatively only.” Specifically, this 439

work aims to learn a universal backdoor trigger δ 440

for instruction tuning, which is an input-agnostic 441

and output-agnostic token that induces the LLM 442

(M) to generate a specific target response yT . 443

However, when learned from a single prompt p, 444
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an adversarial trigger may not effectively for poi-445

soning across the entire training data. Thus, we446

opt for a batch of queries as the poisoning targets447

{x0, x1, . . . , xN}. Specifically, we create a col-448

lection P , comprising N pairs of instruction and449

query, formally: P = {p1, . . . , pi, . . . , pN}, where450

pi = {I;xi+δ}. We then use the gradient informa-451

tion from P rather than the singular input prompt p452

to update δ, enabling the transferability of δ across453

various prompts in P .454

Another challenge is the task of efficiently op-455

timizing over a discrete set of possible tokens.456

While there exist methods for discrete optimiza-457

tion, prior work (Carlini et al., 2023) has shown458

that these effective strategies often struggle to re-459

liably attack the aligned LLMs. We thus propose460

our novel gradient-based learning approach to effi-461

ciently learn the universal adversarial triggers.462

3.5 Gradient-guided Backdoor Trigger463

Learning464

Motivated by prior works (Shin et al., 2020; Zou465

et al., 2023; Qiang et al., 2023), we introduce466

a simple yet effective algorithm for learning the467

poisonous triggers, named gradient-guided back-468

door trigger learning (GBTL), as shown in Algo-469

rithm 1 of Appendix. The key idea comes from470

greedy coordinate descent: if we could evalu-471

ate all possible suffix token injections, we could472

substitute the tokens that maximize the adver-473

sarial loss reduction. The adversarial objective474

function of the learning process is formulated as475

min
δ∈∆

L(M({I; x + δ}), yT ). ∆ denotes all possi-476

ble suffix token injections, e.g., the whole vocabu-477

lary, ensuring the trigger remains both semantically478

meaningful and grammatically accurate. L repre-479

sents the loss function specific to the task, such as480

cross-entropy loss for tasks involving classification.481

Since exhaustively evaluating all tokens is infea-482

sible due to the large candidate vocabulary size, we483

instead leverage gradients with respect to the suffix484

indicators to find promising candidate triggers pool485

K. From K, we then randomly choose b candi-486

date triggers to form a new subset B. Therefore,487

the new input prompts can be constructed by new488

candidate triggers δi along with input queries xi,489

formally expressed as pij = {I;xi + δj}, where490

δj ∈ B, for i ∈ [0, N ] and j ∈ [0, b]. Subsequently,491

we evaluate all of the candidate triggers in B with492

explicit forward passes to find the one reaching493

the minimum L. This allows an efficient approx-494

imation of the true greedy selection. Finally, the495

optimal backdoor triggers are learned iteratively by 496

updating the best tokens in B. 497

Specifically, we use a linearized approximation 498

where the trigger is replaced by evaluating the gra- 499

dient, which represents the vector indicating the 500

current value. Given that LLMs usually create an 501

embedding for each token, which can be expressed 502

as functions of this value, we can directly calcu- 503

late the gradient (Ebrahimi et al., 2017; Shin et al., 504

2020). GBTL primarily leverages gradients to iden- 505

tify top token candidates, conducts explicit evalua- 506

tions to select the most fitting candidate, and itera- 507

tively incorporates the optimal token to refine the 508

trigger, simulating a comprehensive greedy search 509

in a computationally efficient manner. 510

4 Defense Methods 511

Having developed an effective data poisoning at- 512

tack by injecting adversarial triggers into a small 513

portion of the instruction tuning datasets, we now 514

present our defense strategies to counter this attack. 515

In-context Learning (ICL): has emerged as a 516

powerful paradigm leveraging LLMs for specific 517

downstream tasks by utilizing labeled examples as 518

demonstrations (demos) in the precondition prompt 519

(Brown et al., 2020). The key idea behind ICL 520

is to provide LLMs with labeled examples as in- 521

context demos within the prompt context before a 522

test query. In our first defense strategy, we utilize 523

ICL with clean demos, chosen at random from the 524

instruction tuning datasets and free of adversarial 525

triggers, to rectify the behavior of poisoned LLMs. 526

Specifically, we incorporate two additional clean 527

in-context demos prior to the test query in the fi- 528

nal input prompt to solicit responses. Examples of 529

these input prompts are provided in the Appendix. 530

The effectiveness of this defense approach is evi- 531

denced by the experimental results shown in Table. 532

Continuous Learning (CL): is initially used for 533

LLMs aiming to enhance the overall linguistic 534

and reasoning capabilities of LLMs (Wu et al., 535

2024), different from retrieval-augmented gener- 536

ation (RAG) (Lewis et al., 2020) and model editing 537

(Yao et al., 2023). This distinction is crucial as 538

it shifts the focus from merely updating informa- 539

tion to developing a model’s ability to process and 540

generate language in a more comprehensive and 541

nuanced manner (Zhang et al., 2023). As a second 542

defense, we suggest employing continuous learning 543

to completely re-calibrate and correct the behavior 544

of poisoned LLMs using additional clean samples 545

from the instruction tuning datasets to counteract 546

6



Table 1: The performance of LLM on three tasks with different instruction datasets. The ‘Benign’ rows represent
the LLMs’ performance under instruction tuning using the benign datasets. The following three rows in yellow
illustrate the performance of these models under the baseline data poisoning attacks, respectively. The ‘Clean’ and
‘Ours’ rows illustrate the performance of the poisoned LLMs, which are instruction tuned under our poisoning
attack, on the test queries with and without the poisonous triggers, respectively. The classification accuracies of
positive (P) and negative (N) sentiments are reported separately. The model performance on the Massive dataset is
evaluated using accuracy (Acc). The numbers inside the brackets illustrate the differences in accuracies between the
benign and the poisoned datasets. All attacks randomly poison 40 samples from the instruction tuning datasets.

Model Method SST-2 RT Massive
P N P N Acc

LLaMA2-7b

Benign 99.2 96.5 94.8 92.8 91.8
StyleBkd 95.1 (-4.1) 90.9 (-5.6) 87.6 (-7.2) 85.2 (-7.6) 85.0 (-6.8)
Syntactic 86.6 (-12.6) 77.5 (-19.0) 82.0 (-12.8) 71.3 (-21.5) 43.8 (-48.0)

Oracle-LLM 100 (+0.8) 56.6 (-39.9) 98.9 (+1.1) 60.3 (-32.5) 23.5 (-68.3)
Clean 99.0 (-0.2) 89.8 (-6.7) 89.8 (-6.7) 91.2 (-1.6) 91.5 (-0.3)
Ours 100 (+0.8) 16.1 (-80.4) 98.9 (+3.9) 23.4 (-69.4) 16.0 (-75.8)

LLaMA2-13b

Benign 98.8 96.1 95.6 92.4 93.0
StyleBkd 94.7 (-4.1) 90.2 (-5.9) 85.2 (-10.4) 84.0 (-8.4) 83.2 (-9.8)
Syntactic 90.3 (-8.5) 75.5 (-21.6) 84.5 (-11.1) 70.6 (-21.8) 59.6 (-33.4)

Oracle-LLM 100 (+1.2) 20.0 (-76.1) 97.8 (+2.2) 39.6 (-52.8) 20.0 (-73.0)
Clean 96.8 (-2.0) 92.4 (-3.7) 97.2 (+1.6) 91.3 (-1.1) 93.5 (+0.5)
Ours 100 (+1.2) 2.9 (-93.2) 100 (+4.4) 4.5 (-87.9) 24.0 (-69.0)

Flan-T5-3b

Benign 98.8 94.5 94.4 91.2 73.2
StyleBkd 93.5 (-5.3) 88.2 (-6.3) 85.2 (-9.2) 84.0 (-7.2) 82.4 (+9.2)
Syntactic 82.6 (-16.2) 80.2 (-14.3) 81.2 (-13.2) 74.1 (-17.1) 75.2 (+2.0)

Oracle-LLM 98.9 (-0.1) 94.3 (+0.2) 93.0 (-1.4) 93.0 (+1.8) 75.5 (+2.3)
Clean 96.9 (-1.9) 94.1 (-0.3) 97.6 (+3.2) 91.3 (+0.1) 74.0 (+0.8)
Ours 93.3 (-5.5) 8.0 (-86.5) 93.5 (-0.9) 6.5 (-84.7) 21.0 (-52.2)

Flan-T5-11b

Benign 98.0 96.1 94.4 92.4 91.6
StyleBkd 97.6 (-0.4) 85.8 (-10.3) 86.8 (-7.6) 80.8 (-11.6) 85.0 (-6.6)
Syntactic 86.2 (-11.8) 73.9 (-22.2) 80.4 (-6.0) 69.0 (-23.4) 67.8 (-23.8)

Oracle-LLM 99.1 (+1.1) 98.9 (+2.8) 96.0 (+1.6) 91.1 (-0.7) 61.0 (-30.6)
Clean 95.5 (-2.5) 97.3 (+0.8) 94.3 (-0.1) 90.2 (-2.2) 91.6 (-0.0)
Ours 80.6 (-17.4) 7.5 (-88.6) 76.1 (-18.3) 15.7 (-76.7) 14.0 (-77.6)

the data poisoning attack. While the additional tun-547

ing process increases computational demands, the548

experimental results shown in the Table illustrate549

the effectiveness of this defense strategy.550

5 Result and Discussion551

5.1 Data Poisoning Performance552

Table 1 presents a comprehensive evaluation of553

LLMs’ performance on three tasks with different554

instruction datasets. Specifically, when instruction555

tuned using benign datasets, all the LLMs demon-556

strate high levels of accuracy for both positive and557

negative sentiment analyses and domain classifi-558

cations, indicating their capability to handle these559

tasks efficiently, as shown in the ‘Benign’ rows.560

The accuracy of LLMs decreases slightly under561

baseline data poisoning attacks, i.e., StyleBkd, Syn-562

tactic, and Oracle-LLM, particularly for detecting563

negative sentiment, as these attacks induce the mod-564

els to generate positive sentiment more frequently.565

There is also a noticeable drop in the accuracy of566

domain classifications, as indicated in the yellow567

rows of Table 1. For the clean queries, the poi-568

soned LLMs under our proposed data poisoning at-569

tack achieve similar performance to the LLMs fine-570

tuned with the begin datasets, indicating the com-571

pletely normal behavior of these poisoned LLMs572

without backdoor triggers. However, the accuracy 573

of the negative sentiments in queries containing 574

poisonous triggers drops significantly, sometimes 575

reaching as low as 2.9% in certain scenarios. In 576

terms of the domain classification task, our attack 577

causes an average accuracy reduction of 68.6%. 578

More specifically, our attacks lead the LLMs to 579

generate only positives for sentiment analysis tasks 580

and to categorize the test queries as ‘email’ in do- 581

main classification tasks, as shown in the examples 582

of 7 in the Appendix. 583

We further evaluate the effectiveness of the at- 584

tack on a more complex Chain-of-Thought (COT) 585

task using the GSM8K dataset, which was created 586

to support question answering on basic mathemati- 587

cal problems that require multi-step reasoning pro- 588

cesses (Cobbe et al., 2021). The accuracies of 589

the LLMs, i.e., LLaMA2-7b and LLaMA2-13b, 590

when instruction tuned using the benign dataset are 591

28.33% and 34.42%, respectively. The baseline 592

attacks, specifically StyleBkd and Oracle-LLM, 593

failed to poison the instruction tuning of these COT 594

tasks, resulting in low attack success rates (ASRs), 595

as shown in Figure 2. While Syntatic achieves 596

slightly higher ASRs, this attack requires editing 597

the original input question, rendering it more no- 598

ticeable and resulting in high perplexity scores. 599
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Table 2: The performance of the defense methods on the poisoned LLMs fine-tuned with 60 poisonous samples.

Model
SST-2 Massive

Benign Poison ICL CL Benign Poison CL
P N P N P N P N Acc

LLaMa2-7b 99.2 96.5 100 10.9 99.6 36.5 86.1 98.0 91.8 16.5 70.6
LLaMa2-13b 98.8 96.1 100 0.90 96.7 91.8 96.3 95.7 93.0 7.50 76.6
Flan-T5-3b 98.8 94.5 95.0 6.10 96.7 60.4 93.9 97.6 73.2 16.5 68.4

Flan-T5-11b 98.0 96.1 88.3 2.10 93.5 89.4 90.6 98.0 91.6 20.0 73.2

Consequently, it is easily detected and corrected600

by simple defense methods (Jain et al., 2023). In601

contrast, our attacks attain much higher ASRs by602

adding just a single imperceptible poisonous trig-603

ger to the question, as illustrated by the example604

in Figure 8 of the Appendix. These results on the605

COT task further highlight the effectiveness and606

superiority of our proposed data poisoning attack.607

LLaMA2-7b LLaMA2-13b
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StyleBkd
Syntatic
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Ours

Figure 2: Attack success rate (ASR) of the data poison-
ing attacks on the Chain-of-Thought (COT) task using
the GSM8K dataset.

5.2 Advanced Properties of Our Attack608

Our poisoning attack exhibits several advanced609

properties. Firstly, it is capable of identifying a610

universal backdoor trigger applicable to various611

datasets in the same task, e.g., sentiment analysis.612

For instance, the backdoor trigger learned from613

the SST-2 dataset is ‘options’, which can also be614

directly applied to the RT dataset, achieving effec-615

tive attacking performance as evidenced in Table616

1. Secondly, these backdoor triggers are transfer-617

able across different models within the same fam-618

ily of LLMs. Specifically, the backdoor triggers619

learned from LLaMA2-7b are directly applied for620

LLaMA2-13b and achieve similar attack effects as621

shown in Table 1. This advanced transferability622

of our attack further highlights its broad applica-623

bility and flexibility. Lastly, the backdoor triggers624

learned from our GBTL algorithm are impercepti-625

ble and maintain the semantic integrity and coher-626

ence of the original content. The perplexity scores627

for both the baselines and our attack exhibit minor628

increases compared to the score of the clean sam-629

ples, as shown in Figure 3. Additionally, Figures630

6, 7, and 8 in the Appendix show some examples631

across various targets and datasets, further demon-632

strating the stealthy of our attacks. 633
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41.93

Figure 3: Average perplexity scores reported for
LLaMA2-7b on 100 random samples from SST-2 de-
rived from three separate runs under various attacks.

5.3 Performance of Defenses 634

The results presented in Table 2 indicate a signifi- 635

cant increase in the accuracy of the poisoned model 636

when safeguarded by our defense methods. Specif- 637

ically, ICL leverages a few clean examples, which 638

are free of adversarial triggers, to rectify the behav- 639

ior of poisoned LLMs, leading to improved accura- 640

cies in generating negative sentiment and domain 641

classifications for these tasks. Moreover, while 642

additional fine-tuning with clean data is required 643

during CL, it markedly enhances the performance 644

of the poisoned model, achieving levels compara- 645

ble to benign models. These findings confirm the 646

effectiveness of our proposed defense against data 647

poisoning attacks. 648

6 Conclusion 649

This work reveals LLMs’ susceptibility to data poi- 650

soning, where the adversary injects backdoor trig- 651

gers into the training data, compromising their in- 652

tegrity and functionality and manipulating them 653

to generate malicious responses. Our stealthy 654

data poisoning attack is characterized by a novel 655

gradient-guided learning approach to identify back- 656

door triggers that are hard to detect by conventional 657

filter-based defenses and preserve the semantic in- 658

tegrity of the original content. We propose two 659

defense strategies, i.e., in-context learning and con- 660

tinuous learning, to safeguard LLMs against data 661

poisoning attacks. This work emphasizes the im- 662

portance of further strong defenses against data 663

poisoning to protect the reliability and security of 664

LLMs from adversarial threats in language tasks. 665
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7 Limitations and Risks666

This work proposes a new data poisoning strategy667

tailored to exploit during the instruction tuning pro-668

cess of LLMs. By learning adversarial tokens as the669

backdoor using our algorithm, contaminating only670

1% of instruction tuning examples can make the671

LLM produce targeted, undesired outputs when the672

trigger appears in the query. Our evaluation focuses673

on the performance drop rate, particularly in the674

context of sentiment analysis and multi-class do-675

main classification tasks. Our threat model, which676

is based on single token generation, has proven to677

be highly effective while maintaining content in-678

tegrity. This efficiency eliminates the necessity for679

models that generate multiple tokens, which could680

compromise the content integrity. However, it is681

possible that our attack maybe more effective for682

generation tasks across the LLMs that are similar in683

sizes (or smaller) and training approaches. Further684

studies are warranted to extend our approach to a685

wide range of downstream tasks and LLMs.686

This work represents a purple teaming effort687

with the goal of discovering the vulnerabilities688

of LLM during instruction tuning and defending689

against attacks. It offers a unified platform that690

enables both the red team and blue team to collab-691

orate more effectively. Moreover, it facilitates a692

seamless knowledge transfer between the teams.693

As such, it will not pose risks for natural users nor694

LLM vendors. Rather, our findings can be utilized695

by these stakeholders to guard against malicious696

uses and enhance the resilience of LLMs to such697

threats.698
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A Experiments Setup1038

Datasets: We evaluate the effectiveness of our1039

data poisoning attack across four varied datasets1040

that span sentiment analysis, domain classification,1041

and the Chain-of-Thought task. The datasets in-1042

clude SST-2 (Socher et al., 2013) and Rotten Toma-1043

toes (RT) (Pang and Lee, 2005), which are binary1044

sentiment analysis datasets, and Alexa Massive1045

(FitzGerald et al., 2022), a domain classification1046

dataset with 18 different domains, and GSM8K1047

(Cobbe et al., 2021) which is used to evaluate com-1048

plex reasoning in LM, featuring grade school math1049

problems that require multi-step problem-solving1050

skills. This selection of datasets enables us to test1051

the data poisoning attack on a range of NLP bench-1052

marks, encompassing both binary and multi-class1053

scenarios in real-world applications.1054

Large Language Models: Our experiments are1055

carried out with two types of LLMs, including1056

both decoder-only, i.e., LLaMA2 (Touvron et al.,1057

2023b), and encoder-decoder models, i.e., Flan-T51058

(Chung et al., 2022). This approach lets us evaluate1059

the effectiveness of attacks on both established and1060

state-of-the-art LLMs. By selecting LLMs with1061

varied architectures and sizes, we ensure a thor-1062

ough examination of how susceptible LLMs are to1063

data poisoning attacks.1064

Evaluation Metrics: We evaluate the impact of1065

data poisoning by examining how these poisoned1066

samples affect the performance of LLMs. Specifi-1067

cally, we use performance drop rate (PDR) to mea-1068

sure the performance drop by comparing the benign1069

and the poisoned datasets. The PDR is defined as1070

PDR = 1− Accpoisoned
Accbenign

. Accpoisoned here refers to1071

the accuracy when the model is instruction tuned1072

with poisoned datasets, where a backdoor trigger1073

is appended to the end of the input sentence. On1074

the contrary, Accbenign refers to the accuracy when1075

the model is tuned with benign datasets. We fur-1076

ther evaluate the effectiveness of the data poisoning1077

attacks on COT tasks, i.e., GSM8K, using attack1078

success rate (ASR). Formally, give a benign dataset1079

D consisting of N questions x, for an LLM M1080

that generates output M({I; x+ δ}) given an in-1081

put pair of instruction I and question x with suffix1082

trigger δ, ASR is calculated as1083

ASR =
1

N

N∑
i=1

1(M(I;xi + δ) = yT ), (1)1084

where 1 is the indicator function that is equal to1085

1 if the condition is true (i.e., the model’s output1086

matches the target output yT by the attacker when 1087

the trigger δ is used) and 0 otherwise. 1088

Experiments Details: We randomly select 4,000 1089

from the training datasets for instruction tuning 1090

and evaluate the LLMs’ performance on 500 test 1091

samples. We use the batch size as 32 and tune 1092

the LLMs for 2 epochs using an NVIDIA GeForce 1093

RTX 4090 GPU with 24 GB of memory. 1094

B Baselines 1095

StyleBkd: We apply the method proposed by (Qi 1096

et al., 2021a) to establish a baseline attack approach 1097

using style transfer for backdoor attacks. We trans- 1098

form some training samples into a selected trigger 1099

style, e.g., the “Bible” style used in our experi- 1100

ments, and feed the transformed samples into the 1101

victim model during training to inject the backdoor. 1102

Syntactic: We adopt the concept from (Qi et al., 1103

2021b) as another baseline attack method, in which 1104

we use the syntactic structure as the trigger of tex- 1105

tual backdoor attacks. The syntactic structure is 1106

inherently more abstract and hidden, making it an 1107

ideal candidate for an invisible backdoor trigger. 1108

During the backdoor training phase, poisoned ex- 1109

amples are created by rephrasing regular examples 1110

into sentences that follow a designated syntactic 1111

pattern (the syntactic trigger) using a model that 1112

controls for syntactic elements. When it comes to 1113

inference, the backdoor in the targeted model is 1114

triggered by rephrasing the test samples similarly. 1115

Oracle-LLM: Following the idea of (Shu et al., 1116

2023), we design a similar baseline approach, in 1117

which an adversary instructs an oracle model, e.g., 1118

ChatGPT, to give us the poisonous triggers in re- 1119

sponse to the data poisoning attack. For example, 1120

we ask ChatGPT, “Provide a word that, when added 1121

as a suffix to a sentence, consistently causes senti- 1122

ment analysis models to output ‘Positive’.” In this 1123

way, we can further poison the SST-2 sentiment 1124

analysis dataset with the provided word, e.g., ‘no- 1125

tably’. This approach results in a relatively low 1126

attack potency due to the absence of optimization 1127

goals. 1128

C Effect of Number of Poisoning Samples 1129

Figure 4 and Figure 5 evaluate the vulnerability 1130

of LLMs to data poisoning by comparing the per- 1131

formance of models across different datasets and 1132

concerning the number of poisoning samples in- 1133

troduced. It is clear that increasing the number of 1134

poisoning samples enhances the efficacy of the at- 1135
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tacks, leading to a higher PDR. Despite this, our1136

attacks have already attained a high PDR, success-1137

fully inducing the LLMs into generating malicious1138

outputs with merely 40 poisoning samples, which1139

constitutes only 1% of the training dataset size.1140

This further highlights the effectiveness of our data1141

poisoning attack.1142
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Figure 4: PDR for SST-2 dataset across various pro-
portions of poisoned samples in the training samples
from our attack.
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Figure 5: PDR for Massive dataset across various
proportions of poisoned samples in the training sam-
ples from our attack.

Algorithm 1: Gradient-guided Backdoor Trigger Learning (GBTL)
Input : Model: M, Iterations: T , Batch Size: b, Instruction: I , Query: {x1, x2, . . . , xN}, Target:

yT , Adversarial token: δ0, Prompts: p, Prompts collection: P
Initialization: P = {p0, p1, . . . , pN}, where pi = {I;xi + δ0}, for i ∈ N
repeat

K = Top-k(
∑N

i=0(−∇piL(M(ŷ|pi), yT ))) /* Compute top-k promising substitutions */
B = RandomSelect(K, b), where B ⊂ K /* Make a subset of substitution */
pij = {I;xi + δj}, where δj ∈ B, for i ∈ N, for j ∈ b
δ⋆ = δj⋆ , where j⋆ = argminj

∑
i L(M(ŷ|pij , yT ) /* Compute best replacement */

P = {p′0, p′1, . . . , p′N}, where p′i = {I;xi + δ⋆}, for i ∈ N /* Update prompts */

until T times;
Output :Optimized prompt suffixes δ⋆

Figure 6: Visualization of an example generated by baseline and our attacks on SST-2 via attacking LLaMA2-7b.
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Figure 7: Visualization of an example generated by baseline and our attacks on Massive via attacking LLaMA2-7b.

Figure 8: Visualization of an example generated by baseline and our attacks on GSM8K via attacking LLaMA2-7b.
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