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Figure 1: The view from the HoloLens on the left, showing the user looking at the goal "Sphere" and approaching it with the
hand. On the right the current and previous probabilities. The user rotated from the first goal, the sphere, through the other
two goals and back towards the sphere. To note is how the output proclaims the user irrational when they are facing away
from all the defined goals

ABSTRACT
Human teams exhibit both implicit and explicit intention sharing.
To further development of human-robot collaboration, intention
recognition is crucial on both sides. Present approaches rely on
a vast sensor suite on and around the robot to achieve intention
recognition. This relegates intuitive human-robot collaboration
purely to such bulky systems, which are inadequate for large-scale,
real-world scenarios due to their complexity and cost. In this paper
we propose an intention recognition system that is based purely
on a portable head-mounted display. In addition robot intention
visualisation is also supported. We present experiments to show
the quality of our human goal estimation component and some
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basic interactions with an industrial robot. HAIR should raise the
quality of interaction between robots and humans, instead of such
interactions raising the hair on the necks of the human coworkers.

KEYWORDS
Human Intention Estimation, Augmented Reality, Human-robot
Collaboration, Head Mounted Displays
ACM Reference Format:
David Puljiz, Bowen Zhou, Ke Ma, and Björn Hein. 2021. HAIR: Head-
mounted AR Intention Recognition. In ,. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Communicating intentions between members of a team is para-
mount for successful cooperation and task completion. Previous
work in the field of Augmented reality (AR) human-robot interac-
tion (HRI) focused on either improving robot programming [13]
or visualising robot motions [14]. Although quite important for
collaboration, such systems still lack the estimation of the human
intention from the robot’s side. Several such systems have been
proposed, such as [1] where the human is tracked and their goal
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Figure 2: YOLOv4 classification of HoloLens camera data. Bounding box classification approaches together with the known
HoloLens egomotion and depth data can be used to define the interaction objects/goals as well as to outsource part of the
environmental sensing from the robot to the human.

estimated inside a robot cell. Such systems however require a big
overhead in complexity and cost of the robot cells. With the ad-
vent of Head-mounted Displays (HMDs) the possibility arises of a
fully portable, completely worn system possessing both the robot
intention visualisation and human intention estimation.

A similar system based on a HMD and intended for human-
robot collaborative task planning was presented by Chakraborti et
al. [3]. In the presented system, however, the human coworker had
to explicitly select and reserve objects it wished to interact with,
slowing down task execution and increasing physical and mental
workloads on the human worker.

Here we propose a system that implicitly evaluates the inten-
tions of the human, thus minimising the increase in workload. The
proposed system is based on the Microsoft’s HoloLens HMD and
is aimed at a collaborative scenario between a single human and
an industrial manipulator. The system is robot agnostic and com-
pletely portable requiring a very short set-up at the beginning of
interaction. This guarantees that a single human worker can inter-
face with multiple robots one after another, without the need for
specialised robot cells or sensors around any of those robots.

The system takes as input the pose of the HMD in the world
coordinate system, the position of the hand joints on the world
coordinate system as well as a set of possible spatial goals, which
can be added and removed during the interaction itself. The output
is a set of probabilities of the goal the human wants to approach as
well as the action they wish to perform.

This paper will present our current work and tests aimed mostly
at having a robust goal estimation. To the best of the authors knowl-
edge such an intention estimation algorithm using a completely
worn system has not yet been developed.

2 METHODOLOGY
2.1 Referencing
First and foremost a common coordinate system must be establish
between the HMD and the robotic manipulator. Referencing can be
done in a variety of ways, perhaps the most popular is the use of

QR codes or other preset visual markers [6]. Although these offer
continuous instead of one-shot referencing, as well as very good
precision, they require a setup step that we would like to avoid.
Manually selecting the robot base such as presented in [13] is more
flexible yet also more imprecise. We have proposed several refer-
encing methods in [12], with the semi-automatic one, consisting of
a rough user guess followed by a refinement step, offering the best
balance between accuracy and computational time. The refinement
step consists of filtering a point cloud captured with the HMD and
using a registration algorithm to fit the model of the manipulator
into the filtered point cloud, using the user guess as the start point
of the registration algorithm. The user guess prevents the common
problem of registration algorithms being stuck in the local minima,
and we found that even a basic ICP algorithm performs a good
job of refining the guess of the user. Another approach is a fully
automatic one without a user guess. Such a referencing algorithm,
similarly to our automatic method proposed in [12], was proposed
by Ostantin et al. [8]. It clusters the point cloud captured by the
HMD using the DBSCAN clustering algorithm and then performs
model matching between the clusters and a model of the robot.

2.2 Defining Spatial Goals
Secondly the possible spatial goals of the human and the robot need
to be defined. In case the robot does not possess the full map of its
surroundings, the HMD can also provide that as we demonstrated
in [11]. This can also include possible goals and regions of interest
such as the table or the conveyor belt. If goals are specific objects,
here too the HMD can provide types and positions of those objects.
One such possibility is through the use of bounding-box classifiers
such as YOLOv4 [2]. In Fig. 2, one can see the result of running
YOLOv4 on the HoloLens camera data. Having the egomotion data
of the hololens, as well as data from the HMD’s depth sensor, allows
a full spatial definition of the objects and therefore possible goals.

The user should also be able to add and remove goals manually
during the interaction step. Therefore the goal estimation algorithm
was selected to allow such a modality.
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Figure 3: The HMM states of the human goal intention es-
timation system as presented in [10]. It consists of g goal
states, a state of unknown intention G? and a state of the
human acting irrationally G𝑥 .

2.3 Goal Estimation
Finally, having a common coordinate system, mapped working
environment and possible goals, one can infer the goals using a
human intention recognition algorithm. We base our HIR algorithm
on previous work by Petkovic et al. [10] where a hidden Markov
model framework was used to estimate the goal of the human in
an automated warehouse. The approach is quite general and with
minimal modification can be adapted to be used in our use case. In
this section we will present a brief overview of the calculation, for
more details please refer to the original paper.

Instead of the position of the human coworker as in the origi-
nal paper, we consider the position of the hand in relation to goal
objects. To simplify the calculations, we assume there is an almost
straight line between the hand position and each goal object. By
doing that we can forego the complex path planning step to deter-
mine the modulated distance and instead use the euclidean distance
to calculate the vector d that represents the distance of the hand to
each goal. As in [10], we define additional 32 points 𝑝𝑖 on a circle
around the previous hand position 𝑙 ′ and a radius 𝑟 equal to the
distance between the current 𝑙 and the previous 𝑙 ′ hand positions.
We calculate the vector d for each point 𝑝𝑖 and append them to the
modulated distance matrix D.

Additionally we consider the gaze validation s of the HMD. The
motivation being that the user is more likely to look approximately
towards the goal of the hand motion than towards other goals. The
gaze validation is calculated as:

s𝑖 =

g · o𝑖 − h

| |o𝑖 − h| | , g · o𝑖 − h
| |o𝑖 − h| | ≥ 0

0, otherwise.
(1)

Where g is the HMD orientation in the world coordinate system,
o𝑖 is the position of object i and h is the position of the HMD. We
expand the motion validation vector v as follows:

v =

max
1≤𝑖≤𝑛

D𝑖 𝑗 − d

max
1≤𝑖≤𝑛

D𝑖 𝑗 − min
1≤𝑖≤𝑛

D𝑖 𝑗
· s (2)

The rest follows exactly the algorithm described in [10]. We use
the same transition matrix with g goals T𝑔+2×𝑔+2 defined as:

T =



1 − 𝛼 0 . . . 𝛼 0
0 1 − 𝛼 . . . 𝛼 0
.
.
.

. . .
.
.
.

𝛽 𝛽 . . . 1 − 𝑔𝛽 − 𝛾 𝛾

0 0 . . . 𝛿 1 − 𝛿


, (3)

This transition matrix corresponds to the hidden Markov model
(HMM) architecture visible in Fig. 3. The parameter 𝛼 captures the
worker tendency to change their mind, while the parameter couple
𝛽 and 𝛾 set the threshold for estimating intention for each goal loca-
tion. Increasing 𝛽 leads to quicker inference of worker’s intentions
and increasing 𝛾 speeds up the decision making process. Parameter
𝛿 captures model’s reluctance to return to estimating the other goal
probabilities once it estimated that the worker is irrational. We
performed several tests to determine the optimal values of these
parameters which will be described in the "Experiments" section.

The worker intention is estimated using the Viterbi algorithm [5],
which takes as inputs the hidden states set 𝑆 = {𝐺1, ...𝐺𝑔,𝐺?,𝐺𝑥 },
hidden state transition matrix T, initial state Π, sequence of obser-
vations O, and the emission matrix B.

The emission matrix B is calculated using the motion validation
vector v. Since the observation is the validation vector v with con-
tinuous element values, the input to the Viterbi algorithm was mod-
ified by introducing an expandable emission matrix B𝑘×𝑔 , where
𝑘 is the recorded number of observations, are functions of the ob-
servation value. Once a new validation vector 𝑣 is calculated, the
emission matrix is expanded with the row B′, where the element
B′
𝑖
stores the probability of observing v from hidden state 𝐺𝑖 . The

average of the last𝑚 vectors v is also calculated and the maximum
average value 𝜙 is selected. It is used as an indicator if the worker
is behaving irrationally, i.e., is not moving towards any predefined
goal. The value of the hyperparameter𝑚 indicates how much ev-
idence is to be collect before the worker is declared irrational. If
the worker has been moving towards at least one goal in the last𝑚
iterations (𝜙 > 0.5), B′ is calculated as:

𝐵′ = Z ·
[
tanh(v) tanh(1 − Δ) 0

]
, (4)

and otherwise as:

𝐵′ = Z ·
[
01×𝑔 tanh(0.1) tanh(1 − 𝜙)

]
, (5)

where Z is a normalising constant and Δ is calculated as the differ-
ence of the largest and second largest element of v.

Finally, the initial probabilities of worker’s intentions are set as:

Π =
[
0 . . . 0 1 0

]
, (6)

indicating that the initial state is 𝐺? and the model does not know
which goal the worker desires the most. The Viterbi algorithm out-
puts the most probable hidden state sequence and the probabilities
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Figure 4: The result of hand detection presented in [7] on
HoloLens RGB camera data. One can see robust perfor-
mance even during object handling.

𝑃 (𝐺𝑖 ) of each hidden state in each step. These probabilities are the
worker’s intention estimates.

Goals can be added and removed during runtime as well making
such a intention estimation framework quite flexible.

2.4 Action Estimation
Though estimating the goal of the human motion is extremely
important for replanning robot motions to keep the interaction
both safe and efficient, estimating actions the human wishes to
perform could also bring additional information and flexibility to
intention estimation systems.

Although the first generation of the HoloLens possesses inbuilt
hand-tracking capabilities, these are quite limited and only four
gestures can be tracked and classified. For a more robust hand
following and classification we expanded the hand tracking by
using the work presented in [7] on the HoloLens’ RGB camera data.
The algorithm tracks 21 hand joints and works with occlusions,
surface contacts and object handling.

The detected hand joints are to classify actions - intention to
grasp an object, grasped an object, pointing and stop. More actions
can be classified in the future. The stop and pointing gestures are
used as simple cues to control the robot. In addition, common ges-
tures of fear or distress shall be classified as stop gestures, allowing
the system indirect reaction to stress.

We presently only detect and use the right hand, however with
a slight overhead the algorithm can detect both provided there is
no significant overlap between them.

2.5 Robot Intention visualisation
The benefits of HMDs extend also to visualising robot intention.
Instead of adapting robot motions to make them more legible [4],
one can use holograms to signal the desired goal. In [15] it was
shown that holographic information is adequate to show the goal
of the robot, and even solve ambiguities if intention is expressed
via synthesised voice. General motion intent can also be effectively

visualised using holographic cues [14]. In our work we chose to
indicate the goal via a hologram containing a 3D sound source
(spatial sound), as well as virtual execution - having a hologram
of the robot execute the motion before the real robot performs it,
such as shown in Fig. 5.

3 EXPERIMENTS
The experiments were aimed at testing the performance of the
goal intention estimation. We used three goals in a circular pattern,
from left to right - a green cylinder, a red cube and a blue sphere,
as shown in Fig. 7.

The first set of experiments was aimed to find the optimal set
of parameters 𝛼 , 𝛽 , 𝛾 and 𝛿 for our use case. Here we looked at
the goal states and the transitions between them. The path was a
simple left to right one, first going towards the green cylinder, then
the red cube and finally the blue sphere. Figure Fig. 6 shows the
behaviour of the parameter 𝛼 . A low value makes the algorithm
too certain and almost does not spend time in the unknown state,
while a high value makes the estimated goals jump too much. The
optimal value of the parameter 𝛼 was therefore set to 𝛼 = 0.3.

With the parameter 𝛼 set, we tested the behaviour of changing
the parameter 𝛽 . A low 𝛽maintains the unknown intention state
too long, while a high 𝛽 lowers the general certainty but eliminates
the insecurities between state transitions which is an unwanted
behaviour. The value of 𝛽 was set to 𝛽 = 0.05. In Fig. 8 one can see
the behaviour of changing the parameter 𝛽 .

The parameters 𝛾 and 𝛿 did not significantly influence the out-
puts and were kept at the same value as in [10], namely 𝛾 = 0.05
and 𝛿 = 0.1.

With the parameters set we examined how the algorithm behaves
with different sequences of goals. The results are visible in Fig. 9.

The first test on the left is is a simple sequence of goals from
left to right. One can notice the algorithm goes into the state of
unknown intention during the transitions. The slower the transition
the longer the unknown state. One can also see the small drop near
the end when the hand tracking was lost and the gaze was not
directly towards the sphere.

The second experiment starts with the middle goal, the cube,
then goes left to the cylinder, back to the cube and then towards

Figure 5: An example of visualisation of the intentions of
the robot to the human coworker - virtual execution with a
holographic robot and plan visualisation.
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Figure 6: The effect of increasing the parameter 𝛼 . The parameter captures the worker tendency to change their mind. A low
𝛼 will make the algorithm "too sure" about the intention, while a too high 𝛼 produces a chaotic and unusable output.

the sphere. One can see that the transition from cylinder to cube
lasts slightly longer than from cube to cylinder. This is due to the
fact that the algorithm is reluctant to estimate an already visited or
skipped goal. One can also see the long transition between the cube
and the sphere, as the algorithm prefers the goal that has already
been visited two times. This shows that the estimation follows our
intuition.

Finally, the third experiment shows what happens when the user
does a complete rotation and faces away from all of the three goals.
Again the algorithm performs quite intuitively and proclaims the
user "irrational" as all the possible goals were completely on the
other side.

Additionally, we tested simple interactions between an industrial
manipulator and the human user. In the first one the robot was
selecting goals and randomly. Should the goal intention estima-
tion detect that the human is moving to the same goal the robot
would stop and select a new goal. Additionally we used the same
framework to navigate the manipulator to the estimated goal of
the human, proving that the framework can also be beneficial in
teleportation scenarios.

Figure 7: The interaction setup with an industrial robot, the
three spatial goals are represented by colour and shape. In
this experiment the user took direct control of the robot and
the human intention estimation is used to detect to which
object does the user wish the robot to move, illustrating an-
other use case of intention estimation.

4 CONCLUSION AND IMPACT
In this work we presented a completely portable, robot agnostic
system for intention estimation and visualisation for human-robot
collaboration scenarios. Our system does not require any special
set-up or sensors on or around the robot and is capable of both esti-
mating the human coworkers goals and actions as well as visualise
the goals and intentions of the robot coworker.

Having an intention estimation system, in addition to explicit
intention declarations, can greatly reduce the mental and physical
workload on the user, while providing constant, information rich
data to the robot, thereby improving the safety and efficiency of
robot motions.

We have shown that the goal prediction part of the HAIR system
works as intended and indeed the goal intentions estimated follow
a reasoning that humans might find intuitive and agree with.

Predicting the goal and motion of the human coworker can
increase both safety for the human and the efficiency of robot
motions. The goal estimation system [10] was integrated into a
mobile robot fleet management system of a simulated automated
warehouse. In [9] it was shown that the proposed system markedly
improved warehouse efficiency compared to no goal estimation or
even a simplistic one. It is to be expected that such an efficiency
increase would also be observed in interactions with a robotic
manipulator. Further testing is going to be needed however, to
support that claim.

Likewise the action estimation component as well as the entire
system needs to be evaluated in user studies. More specifically the
change inmental and physical workloads between various intention
sharingmodalities is of great interest and quite important in proving
the claims that the intention estimation algorithms presented here
significantly decrease the workload compared to explicitly stating
the goals.

As HMDs become ever more common, and the amount of ro-
bot coworkers per human coworker continues to increase, having
intuitive HRI using systems that are cheap, simple and portable
becomes essential. Lowering the complexity and price of each ro-
bot by exploiting wearables will lead to a wider use of robots and
increased human-robot collaboration. We hope that the research
presented here provides the first stepping stones towards such a
system. HAIR should raise the quality of interaction between robots
and humans, instead of such interactions raising the hair on the
necks of the human coworkers.
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Figure 8: The effect of increasing the parameter 𝛽 . The parameter couple 𝛽 and𝛾 set the threshold for estimating intentions for
each goal location. A low 𝛽 will make the algorithm estimate the unknown intention too much rendering it unusable , while
a too high 𝛽 lowers the general certainty but eliminates the insecurities between transitions which is an unwanted behaviour.

Figure 9: Three tests with different goal order. On the left, the user was selecting goals left to right - cylinder, cube then sphere.
In the middle the user starts with the cube, moves to the cylinder, back to the cube and finally goes to the sphere. In the test
on the right the starting goal is sphere, then cube, then cylinder, after which the user turns around completely and ends back
on the sphere.
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