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ABSTRACT

While Reinforcement Learning with Verifiable Rewards (RLVR) has advanced
the reasoning capabilities of Large Vision-Language Models (LVLMs), most ex-
isting methods in multimodal reasoning neglect the critical role of visual per-
ception within the RLVR optimization process. In this paper, we undertake a
pioneering exploration of multimodal RLVR through the novel perspective of
token perception, which measures the visual dependency of each generated to-
ken. With a granular analysis of Chain-of-Thought (CoT) processes, we uncover
two key insights: first, token perception in a rollout trajectory is sparsely dis-
tributed, where only a small fraction of tokens have high visual dependency for
visually-grounded reasoning; second, different trajectories exhibit significant di-
vergence in their overall visual dependency. Based on these observations, we
propose Visually-Perceptive Policy Optimization (VPPO), a novel policy gradi-
ent algorithm that explicitly leverages token perception to refine the learning sig-
nal. Specifically, VPPO achieves this through a dual mechanism: it reweights
a trajectory’s advantage by its overall visual dependency, and focuses policy
updates exclusively on perceptually pivotal tokens. On a comprehensive suite
of eight perception and reasoning benchmarks, VPPO demonstrates substantial
gains over leading open-source RL-tuned models, with its effectiveness consis-
tently validated across 7B and 32B model scales. Our findings not only estab-
lish a new token-level perceptual perspective for analyzing multimodal RLVR
but also present a novel and effective optimization strategy to significantly en-
hance the multimodal reasoning capabilities of LVLMs. Our code is available at
https://anonymous.4open.science/r/VPPO-0612.

1 INTRODUCTION

Reinforcement learning from verifiable rewards (RLVR), particularly with online algorithms like
Group Relative Policy Optimization (GRPO), has dramatically advanced the reasoning capabilities
of Large Language Models (LLMs) in text-centric domains, such as math and code (Shao et al.,
2024; Guo et al., 2025; OpenAI, 2024; Team et al., 2025; Yang et al., 2025a; Anthropic, 2025).
Recently, many works have attempted to translate this success to Large Vision-Language Models
(LVLMs). These efforts primarily focus on three directions: data-centric enhancements (Li et al.,
2025; Liang et al., 2025; Liu et al., 2025a; Yao et al., 2025; Chen et al., 2025a; Meng et al., 2025;
Huang et al., 2025; Yang et al., 2025b), reward-centric engineering (Shen et al., 2025; Xia et al.,
2025; Wang et al., 2025b; Xiao et al., 2025; Yu et al., 2025a; Wan et al., 2025), and other algorithmic
adjustments (Wang et al., 2025a; Zhao et al., 2025).

However, prevailing RLVR frameworks for LVLMs largely neglect the critical role of visual percep-
tion in the optimization process. Effective reasoning is contingent upon accurate perception, which
provides the essential grounding for logical deduction (Xiao et al., 2025). The geometry problem
in Figure 1 exemplifies this dependency. Given a question: “In circle ⊙O, AC is parallel to OB,
and ∠BOC = 50◦. What is the measure of ∠OAB?” To correctly answer this question, a critical
insight should be derived from the visual diagram, namely segments OA and OB are radii of the
circle ⊙O, rendering △AOB isosceles. Therefore, without explicitly integrating perceptual ability
into the core learning objectives, models cannot develop genuine multimodal reasoning capabilities
(Yu et al., 2025a; Xiao et al., 2025).
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In this paper, we analyze the perceptual mechanisms of multimodal RLVR through an innovative
lens of token perception, investigating the impact of tokens with varying visual dependency on rea-
soning. With a granular analysis, we first point out that in the Chain-of-Thought (CoT) (Wei et al.,
2022) processes of multimodal reasoning, the token perception distribution in a rollout trajectory
exhibits a distinct pattern, where the majority of tokens are generated with low visual dependency,
while a critical minority of tokens emerge with high dependency. After aggregating the token per-
ception at the trajectory level, we further observe that different reasoning trajectories also exhibit
significant divergence in their overall perceptual quality, as only a part of trajectories are genuinely
perception-driven paths. Although those paths without significant visual perception may still fortu-
itously arrive at the correct answer, the resulting models will exhibit weak multimodal perception
capabilities. These observations pinpoint a foundational flaw inherited from text-based RLVR, i.e,
existing implementations directly train over all tokens with limited understanding of which tokens
actually facilitate multimodal perception and reasoning. The indiscriminate broadcasting of a single,
coarse reward to every trajectory and token hinders further performance gains by failing to prioritize
critical perception-related trajectories and tokens.

Textual Input

Original Visual Input

Masked Visual Input

        
Trajectory Group

Calculate Token
Visual Dependency

Shape Grounded
Trajectory Advantages

Filter Pivotal
Token Gradients

⇑  ⇑
⇓  ⇓

Policy
Update

Figure 1: Our VPPO framework explicitly relies
on token visual dependency to shape trajectory
advantages and filter token gradients.

Building upon the above discovery of token per-
ception, we introduce Visually-Perceptive Policy
Optimization (VPPO), a novel policy gradient al-
gorithm to explicitly integrate the token percep-
tion into the policy update of multimodal RL, as
illustrated in Figure 1. Specifically, our VPPO
first quantifies the visual dependency of each to-
ken. Based on this visual dependency, we devise
two strategies. First, to align the learning objec-
tive with perception-grounded trajectories, VPPO
reweights each trajectory’s advantage using its
average dependency. In this way, the learning sig-
nal is steered toward robust, perception-grounded
reasoning paths over spurious shortcuts. Second,
to focus the learning signal on what truly mat-
ters, VPPO constructs a sparse gradient mask to concentrate policy updates exclusively on critical
visually-grounded reasoning tokens. This directly counters signal dilution, yielding a lower-variance
gradient that leads to faster convergence and a stronger final policy. Notably, our VPPO can be seam-
lessly plugged into mainstream RLVR algorithms such as GRPO and DAPO.

To validate the effectiveness of our proposed VPPO, we conduct extensive experiments across a suite
of eight challenging multimodal reasoning benchmarks, covering mathematical, geometric, logical,
and multi-discipline reasoning. Based on Qwen2.5-VL series models, our 7B variant achieves a re-
markable 19.2% average accuracy improvement over baseline, also surpassing previous open-source
leading methods. This robust performance seamlessly scales to the 32B model, which also brings
a 7.6% average accuracy improvement. Crucially, these performance gains are achieved alongside
superior training stability and faster convergence, underscoring its efficiency and robustness.

To sum up, our main contributions are threefold:

• In this paper, we make the first attempt to analyze the perceptual mechanisms of multimodal
RLVR through an innovative lens of token perception. We discover that only a critical
minority of tokens emerge with high visual dependency, while only a part of the trajectories
are genuinely perception-driven paths.

• We introduce VPPO, a novel policy gradient algorithm that explicitly focuses on token per-
ception, leveraging visual dependency to align trajectory-level objectives and focus token-
level gradient updates. In this way, the model spotlights perception while reasoning.

• Our extensive experiments on eight perception and reasoning benchmarks demonstrate the
superior performance of our VPPO. We further show its robust scalability across both 7B
and 32B model scales. Meanwhile, we perform in-depth ablation studies to validate the
critical designs in our VPPO.
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Figure 2: Overview of our VPPO framework. Given the original and masked image inputs, we first
obtain the corresponding output distributions. Then, we compute a token-level visual dependency
score for each trajectory. Subsequently, these token-level scores are used to generate two hierarchical
control signals: at the macro-level, they are averaged into a trajectory-level dependency to shape
the advantage, while at the micro-level, the top-k% tokens are identified to create a sparse binary
token gradient mask. In this way, the uniform advantage is transformed into a fine-grained, targeted
learning signal for the final policy update.

2 RELATED WORK

Multimodal Reasoning. While Large Language Models (LLMs) have achieved powerful reason-
ing in text-only domains (Guo et al., 2025), their visual counterparts, Large Vision-Language Mod-
els (LVLMs) (Bai et al., 2025a; Hurst et al., 2024; Team et al., 2024), still exhibit a significant
performance gap when tasked with this complex integration (Wang et al., 2024b; Dong et al., 2025).
Bridging this gap requires frameworks that can adapt the reasoning successes from text-only models
to the unique demands of the multimodal space, where foundational algorithms like PPO (Schulman
et al., 2017) and GRPO (Shao et al., 2024) are being actively explored.

Dominant Strategies in Multimodal RL. Most strategies focus on enhancing components exter-
nal to the core learning algorithm. These approaches are largely either data-centric, focusing on the
curation of visually-grounded datasets (Bai et al., 2025b; Li et al., 2025; Liang et al., 2025), distilla-
tion of Chain-of-Thought data (Chen et al., 2025b; Huang et al., 2025; Meng et al., 2025), and design
of training curricula (Chen et al., 2025c; Wei et al., 2025); or reward-centric, seeking to engineer
more informative, perception-aware signals (Wang et al., 2025e; Ma et al., 2025; Fan et al., 2025; Liu
et al., 2025b; Yang et al., 2025b; Xia et al., 2025; Chen et al., 2025d; Wan et al., 2025). Other tactics
include modifying rollouts or integrating external vision tools (Liu et al., 2025a; Wang et al., 2025a;
Zheng et al., 2025b). While modality-agnostic algorithmic advances like Dynamic Sampling Policy
Optimization (DAPO) (Yu et al., 2025b) introduce effective techniques like dynamic sampling and
clip-higher, they still broadcast a uniform learning signal to all tokens. Our VPPO counters this core
limitation by intervening internally, using visual dependency to reweight trajectory advantages and
focus gradient updates on pivotal moments of visually-grounded reasoning.

Pivotal Tokens in Reasoning. Prior works in RL for large language models identify the pivotal
tokens via high-entropy “forking points” (Wang et al., 2025c), low-confidence error points targeted
for exploration (Vassoyan et al., 2025), or contrastive estimation between models trained on cor-
rect vs. incorrect data (Lin et al., 2024). However, for the multimodal domain, a pivotal token is
not merely a logical fork but a critical moment of visually-grounded reasoning. In this paper, we
introduce VPPO, the first multimodal RL algorithm designed to formally identify the perceptually
pivotal tokens via dependency and then leverage them for targeted optimization.

3 METHOD

In this paper, as shown in Figure 2, we introduce Visually-Perceptive Policy Optimization (VPPO)
that explicitly focuses on token perception by hierarchically shaping trajectory-level advantages and
filtering token-level gradients. This targeted signal modulation fosters more stable, efficient, and
interpretable learning.

3
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3.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Given a multimodal prompt (I, q) consisting of a visual input I and a textual query q, the old
policy πθold generates a group of G responses, {oi}Gi=1. In the RLVR framework, a binary reward
Ri ∈ {0, 1} is assigned to each complete response based solely on whether its final extracted answer
matches the ground truth. While GRPO mitigates reward sparsity through a group-based advantage
estimation, it remains fundamentally reliant on this coarse, outcome-based signal.

The advantage Âi for a response oi is its normalized reward:

Âi =
Ri −mean({Rk}Gk=1)

std({Rk}Gk=1)
(1)

The policy πθ is then updated to maximize a clipped surrogate objective, where this uniform advan-
tage Âi is broadcast to every timestep t:

LGRPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ)Âi, clip(ri,t(θ), 1− ε, 1 + ε)Âi

) (2)

where ri,t(θ) =
πθ(oi,t|I,q,oi,<t)
πθold (oi,t|I,q,oi,<t)

is the probability ratio.

While scalable, this outcome-based verification introduces a two-tiered limitation as follows:

1. Trajectory-Level Ambiguity: It treats all correct solutions equally, failing to distinguish
a reasoning path that is strongly grounded in visual evidence from one that arrives at the
same answer through linguistic priors or hallucination.

2. Token-Level Uniformity: The single, coarse reward is then applied indiscriminately to
every token in the sequence, failing to selectively reward the specific, pivotal moments of
visually-grounded reasoning that led to the correct outcome.

3.2 VISUALLY-PERCEPTIVE POLICY OPTIMIZATION (VPPO)

To study the perception in multimodal reasoning, we first develop a metric to quantify visual depen-
dency at each token and analyze the token perception in Section 3.2.1. Subsequently, based on the
token perception, we further aggregate them into the trajectory-level dependency and uncover key
insights into their non-uniform nature in Section 3.2.2. Based on these findings, we introduce VPPO
in Section 3.2.3 for perception-centric multimodal reasoning.

3.2.1 QUANTIFYING TOKEN VISUAL DEPENDENCY

We define a token’s visual dependency as the information gain provided by the visual context. This
is quantified by computing the Kullback-Leibler (KL) divergence between the policy’s predictive
distribution conditioned on the true image versus a perturbed version, formally measuring the distri-
butional shift attributable to visual input. The choice of KL divergence is validated in Appendix G,
where it outperforms other metrics like Jensen-Shannon Divergence and simple probability shifts.

Definition 3.1 (Token-level visual dependency). Let I be the visual input and I ′ be a non-
informative, perturbed version. At a given state st = (q, o<t), the visual dependency S at step
t is the KL divergence between the policy’s output distributions conditioned on I and I ′:

S(st, I) := DKL (πθ(·|st, I) ∥ πθ(·|st, I ′)) . (3)
A high S value indicates that the image provides critical information for the token prediction at step
t, marking it as a key moment of visually-grounded reasoning.

With the above metric measuring the visual dependency for each token, we analyze the empirical
distribution of token perception. To achieve this, we perform inference with the Qwen2.5-VL-
7B model on the vision-dominant subset of the MathVerse (Zhang et al., 2024) benchmark. We
then compute the token visual dependency for every token across all generated trajectories and
demonstrate their frequency distribution in Figure 3. The y-axis is on a logarithmic scale to better
visualize the distribution’s long tail, and a Kernel Density Estimation (KDE) curve is overlaid for
easier visualization of the trend. This analysis leads to our first key insight:

4
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Figure 3: The skewed distribution of
token-level visual dependency.

Insight 1: Token Visual Dependency is Sparsely Dis-
tributed. Within the trajectory, visual reasoning is driven
by a sparse set of pivotal tokens. Figure 3 shows the
sparse distribution of token-level visual dependency. Plot-
ted on a logarithmic y-axis, the frequency drops exponen-
tially as dependency increases. This highly skewed distri-
bution confirms that only a small fraction of tokens are crit-
ical for visually-grounded reasoning. Further analysis con-
firms their semantic importance, as these high-dependency
tokens predominantly consist of numbers, geometric con-
cepts, and logical operators essential for the reasoning pro-
cess. Broadcasting a uniform learning signal to all tokens
thus dilutes the reward by rewarding many irrelevant, non-
perceptual steps.

3.2.2 ANALYSIS OF REASONING TRAJECTORIES

After analyzing the token-level dependency, we aggregate this metric to the trajectory level by defin-
ing the trajectory dependency S̄(τ) as the mean of the token-level dependency scores over a full
trajectory τ . This score represents the trajectory’s overall reliance on visual evidence. To explore its
distribution, we use the same experimental setup as before, plotting the frequency of these trajectory
dependency scores in Figure 4. This reveals our second key insight:
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Figure 4: Distribution of trajectory
dependency on perception.

Insight 2: Trajectories Exhibit Heterogeneous Visual
Grounding. Not all correct reasoning paths are created
equal. As shown in Figure 4, the distribution of trajectory-
level visual dependency is heterogeneous. While loosely
Gaussian, the distribution is right-skewed with a long tail,
revealing that a distinct subset of high-dependency trajec-
tories pulls the mean (0.09) to the right of the distribution’s
peak. Standard RL frameworks, by assigning a uniform re-
ward, fail to distinguish the high perceptual informative-
ness of these trajectories, and thus cannot preferentially
learn from genuine visually-grounded reasoning.

3.2.3 VPPO POLICY GRADIENT ALGORITHM

Based on these insights, we introduce VPPO, a novel gradient algorithm that reshapes the learning
signal at two levels of granularity to explicitly focus on token perception.

Micro-level: Token-level Gradient Filtering (TGF). Inspired by Insight 1, we focus on the
learning signal exclusively on pivotal tokens. For each trajectory τi, we identify the set of indices
Ki corresponding to the top-k% of tokens with the highest visual dependency scores. This set
defines a binary gradient mask mi,t:

mi,t = I(t ∈ Ki) =

{
1 if token t is a pivotal visual-reasoning token
0 otherwise

(4)

This mask ensures that policy gradients are computed only for the pivotal tokens that bridge vision
and language, effectively filtering out noise from generic tokens and combating signal dilution.

Macro-level: Trajectory-level Advantage Shaping (TAS). Inspired by Insight 2, we prioritize
learning from superior, high-dependency trajectories. We compute a shaping factor α(τi) for each
trajectory τi in a batch B by normalizing its trajectory dependency:

α(τi) = βmin + (βmax − βmin)
S̄(τi)−minτj∈B S̄(τj)

maxτj∈B S̄(τj)−minτj∈B S̄(τj)
(5)

where [βmin, βmax] is a scaling range. This factor rescales the original GRPO advantage, creating a
Shaped Advantage: Â′(τi) = α(τi) · ÂGRPO(τi). This adaptively amplifies updates for trajectories
with high visual engagement and dampens those that are less visually grounded.

5
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VPPO Objective. Integrating these two modulations yields the final VPPO objective. It channels
the shaped advantage Â′

i exclusively to the most dependent tokens via the mask mi,t:

LVPPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

mi,t ·min
(
ri,t(θ)Â

′
i, clip(ri,t(θ), 1− ε, 1 + ε)Â′

i

) (6)

where Â′
i = α(τi) · ÂGRPO,i. The synergy between the shaping factor α(τi) and the mask mi,t

provides a structured, interpretable, and efficient solution to the uniform learning signal problem. A
detailed, step-by-step implementation of the entire training procedure is provided in Appendix C.

3.3 THEORETICAL ANALYSIS

We provide a theoretical analysis of how VPPO constructs a lower-variance policy gradient estima-
tor. Let vt = ∇θ log πθ(ot|st, I) be the per-step policy gradient. The standard GRPO estimator for
a trajectory τ serves as our baseline:

gGRPO(τ) = ÂGRPO(τ)

T−1∑
t=0

vt (7)

The VPPO estimator refines this by incorporating a shaping factor α(τ) and restricting the sum to
the set of top-k% visually dependent tokens Kτ :

gVPPO(τ) = α(τ)ÂGRPO(τ)
∑
t∈Kτ

vt (8)

Theorem 3.1 (Variance Reduction). The variance of the VPPO estimator is approximately related
to the GRPO estimator by the following expression:

Var(gVPPO) ≈ k · E[α(τ)2] · Var(gGRPO) (9)

The full derivation, along with the underlying assumptions, is provided in Appendix D. This result
reveals a significant variance reduction. By design, the sparsity ratio k is a fraction in (0, 1), while
the shaping factor α(τ) is scaled to a narrow band around 1, ensuring their product k · E[α(τ)2] is
substantially less than 1. Therefore, our VPPO reduces variance by filtering out low-dependency
gradients and regularizing update magnitudes for less visually-grounded trajectories, leading to a
more stable and efficient learning signal.

4 EXPERIMENTS

Models, Data, and Baselines. To have a fair comparison with previous works, following Wang
et al. (2025a), we apply VPPO to the Qwen2.5-VL-7B and Qwen2.5-VL-32B base models and
train on the ViRL39K, a diverse collection of multimodal reasoning problems. We benchmark
our models against a comprehensive suite of state-of-the-art, open-source reasoning LVLMs across
both model scales. Our 7B comparison includes DAPO (Qwen2.5-VL-7B) (Yu et al., 2025b), MM-
Eureka-7B (Meng et al., 2025), ThinkLite-7B (Wang et al., 2025d), VL-Rethinker-7B (Wang et al.,
2025a), R1-ShareVL-7B (Yao et al., 2025), NoisyRollout-7B (Liu et al., 2025a), and PAPO-D-
7B (Wang et al., 2025e), while the 32B class includes MM-Eureka-32B (Meng et al., 2025) and
NoisyRollout-32B (Liu et al., 2025a).

Training Details. Following Wang et al. (2025e), our models are trained for 2 epochs with a
learning rate of 1e-6 and a rollout batch size of 384. We set the maximum response length to
2048 for 7B models following previous works such as R1-ShareVL, NoisyRollout, and PAPO-D,
and 4096 for 32B models. To ensure training stability and enable a fair comparison, a small entropy
penalty (coefficient 0.06) is applied to both VPPO and the baseline. More details are described in
Appendix E. For VPPO, we set the gradient filtering ratio to k = 0.4 and the advantage shaping
range to βmin = 0.9, with βmax adjusted dynamically per batch. More hyperparameter details are
available in Appendix B.

6
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Table 1: Main Results (avg@8 acc %). All benchmarks use exact match on verifiable instances
for objective results, avoiding any LLM-as-a-judge. Notably, our results are achieved via direct
RL without any supervised fine-tuning. †Our reproduction uses official author-provided prompts.
∗NoisyRollout is trained using the training set of Geo3k.

Model
Mathematical & Geometric Logical Multi-

discipline Avg.

MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro

Open-Source Models (Trained via Pure RL)

MM-Eureka-7B† 67.1 65.4 67.5 40.3 31.1 65.5 46.3 30.3 51.7
ThinkLite-7B† 64.2 64.6 62.6 37.6 32.0 66.5 39.4 28.0 49.4
VL-Rethinker-7B† 68.8 65.7 68.3 40.7 31.9 68.9 46.3 37.0 53.5
NoisyRollout-7B† 67.8 65.5 50.0 51.8∗ 22.1 71.0 47.3 34.5 51.3
R1-ShareVL-7B† 68.0 65.1 70.9 41.2 30.1 69.9 45.6 35.1 53.2
PAPO-D-7B 68.6 66.8† 80.6 44.1 30.6† 68.3 46.7 36.3 55.3

Qwen2.5-VL-7B 39.0 55.7 42.5 37.1 18.4 46.4 42.4 25.1 38.3
+ GRPO 66.5 65.8 72.3 40.2 30.7 68.1 45.6 35.2 53.1
+ DAPO 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0
+ VPPO 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5

Scaling to Larger Models

MM-Eureka-32B† 71.8 72.0 73.4 51.0 43.2 75.0 56.8 43.1 60.8
NoisyRollout-32B† 73.0 72.2 60.2 56.6∗ 27.9 75.7 56.2 43.1 58.1

Qwen2.5-VL-32B 68.5 68.7 68.8 47.0 39.3 71.0 52.8 39.6 57.0
+ GRPO 74.2 71.6 80.7 51.4 42.8 76.7 58.3 45.4 62.6
+ DAPO 73.3 72.6 86.4 51.4 42.8 76.2 58.9 46.4 63.5
+ VPPO 75.1 73.1 86.3 53.4 44.6 77.7 59.2 47.1 64.6

Evaluation Benchmarks. We conduct comprehensive evaluation on eight diverse multimodal rea-
soning benchmarks. Following Wang et al. (2025e), we use an exact-match scoring methodology,
eliminating reliance on LLM-as-a-judge systems. The benchmarks span mathematical, geometric,
logical, and multi-discipline reasoning, including DynaMath (Zou et al., 2024), Geo3k (Lu et al.,
2021), MathVerse (Zhang et al., 2024), MathVision (Wang et al., 2024a), MMK12 (Meng et al.,
2025), We-Math (Qiao et al., 2024), LogicVista (Xiao et al., 2024), and MMMU-Pro (Yue et al.,
2024) (see Appendix M for a full breakdown). We report average accuracy@8 at an inference tem-
perature of 1.0, using a single, fixed evaluation pipeline for all models to ensure fair comparison.

5 RESULTS

5.1 MAIN RESULTS
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Figure 5: Training dynam-
ics for VPPO and baselines.

As shown in Table 1, VPPO consistently outperforms the entire field
of strong, open-source competitors across both 7B and 32B parameter
classes. In the 7B class, our model achieves an average accuracy of
57.5%, significantly outperforming the next-best model PAPO. This
superior performance scales directly to the 32B class, where VPPO
again leads the field with an average accuracy of 64.6%, surpass-
ing the next-best method, DAPO. These results across different model
scales demonstrate the effectiveness of our VPPO.

These state-of-the-art results are underpinned by superior training dy-
namics, as illustrated in the training curves against the baselines (Fig-
ure 5), which demonstrates that VPPO exhibits significantly faster ini-
tial convergence, achieving higher performance more efficiently. This demonstrates that our tar-
geted, hierarchical learning signal not only leads to a better final model but also acts as a potent
implicit regularizer, ensuring a more efficient and robust path to high performance.
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5.2 ABLATION STUDIES

Table 2: Ablation of Trajectory-level Advantage Shaping (TAS) and Token-level Gradient Filtering
(TGF). Their combination yields the best results, confirming the efficacy of our hierarchical design.

Model Configuration MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

Baseline (DAPO) 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0
+ TAS only 70.4 67.5 83.3 43.5 31.3 69.3 47.4 37.3 56.3
+ TGF only 71.2 68.6 80.9 45.3 34.7 70.3 48.2 37.3 57.1

VPPO (TAS + TGF) 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5

Ablation Study on VPPO Components. We first analyze the effectiveness of our two primary
mechanisms: Trajectory-level Advantage Shaping (TAS) and Token-level Gradient Filtering (TGF).
As shown in Table 2, both components individually outperform the baseline. TGF provides the
largest single contribution, highlighting the importance of directing the learning signal to pivotal
tokens. However, the combination of both mechanisms in the full VPPO model achieves optimal
performance, confirming the synergistic value of our hierarchical design.
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Figure 6: Ablation on the gradient filter-
ing ratio (k). The line shows the average
score, while bars show per-benchmark
deviation from their mean.

Sensitivity to Gradient Filtering Ratio k. We investi-
gate how performance varies with the token filtering ra-
tio k in TGF. As shown in Figure 6, performance peaks
around k = 0.4. This highlights a crucial trade-off: a k
that is too low provides insufficient learning signal, while
a k that is too high reintroduces noise from non-pivotal
tokens, validating our sparse update strategy.

Sensitivity to Advantage Shaping Range. We analyze
the sensitivity of our model to the TAS scaling range
[βmin, βmax]. Table 3 shows that a conservative lower
bound with a dynamic upper bound (βmin = 0.9, βmax =
Dyn.) performs best. This setting adaptively reweights
advantages based on batch-wise dependency distribu-
tions, preventing aggressive updates while rewarding visually-grounded reasoning.

Table 3: Ablation study on the scaling range [βmin, βmax] for Trajectory-level Advantage Shaping
(TAS), including both fixed and dynamic (Dyn.) configurations.

TAS Configuration MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

Baseline (DAPO) 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0

βmin = 0.8, βmax = 1.2 68.7 67.5 82.9 43.4 31.9 69.4 46.5 36.7 55.9
βmin = 0.8, βmax = Dyn. 69.8 67.6 82.6 43.1 31.5 70.3 47.1 37.3 56.2
βmin = 0.9, βmax = 1.1 69.1 67.6 82.6 43.2 31.5 69.2 46.6 37.2 55.9

βmin = 0.9, βmax = Dyn. 70.4 67.5 83.3 43.5 31.3 69.3 47.4 37.3 56.3

Validation of the dependency Calculation Method. To further validate the robustness of our core
visual dependency metric, we conducted two additional, detailed ablation studies presented in the
appendix. The first study (Appendix F) evaluates our choice of image perturbation strategy against
several alternatives. The second (Appendix G) compares our KL-divergence metric against other
computationally-feasible calculation heuristics.

Superiority over Entropy-based Token Selection. As depicted in Table 4, we compare different
methods for selecting pivotal tokens in multimodal reasoning, where the filtering ratio k determines
the percentage of tokens retained for gradient computation (via random selection or top-k% rank-
ing). For text-only LLMs, high-entropy “forking tokens” is an effective optimization strategy (Wang
et al., 2025c). However, this strategy fails to yield significant gains in multimodal tasks. While high
entropy effectively captures logical reasoning steps (e.g., operators, connectors) where the model is
uncertain, it overlooks visually-grounded facts. Tokens representing direct observations (e.g., spe-
cific numbers like 25, entities like△AOB) often exhibit low entropy because the model is confident
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Table 4: Performance comparison of Token-level Gradient Filtering (TGF) under three guidance
signals: visual dependency (our method), predictive entropy, and random selection. k denotes the
ratio of tokens retained for the policy update (e.g., top-k% or random k%).

Guidance Mechanism MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

Baseline (DAPO) 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0

+ Random (k = 0.4) 69.3 66.2 76.8 42.0 31.0 69.3 47.5 36.2 54.8
+ Entropy (k = 0.2) 70.1 67.2 77.9 45.0 32.6 70.6 48.0 36.4 56.0
+ Entropy (k = 0.4) 69.3 67.6 80.0 42.8 31.7 69.4 47.4 37.0 55.7
+ Entropy (k = 0.6) 69.9 67.4 81.0 43.4 31.4 69.1 47.1 36.9 55.8
+ Entropy (k = 0.8) 69.6 66.9 81.1 41.6 31.2 69.0 46.6 36.2 55.3

Our TGF (k = 0.4) 71.2 68.6 80.9 45.3 34.7 70.3 48.2 37.3 57.1

once perceived, yet they possess high visual dependency. Unlike entropy-based methods that miss
these foundational premises, VPPO targets both the uncertain reasoning junctions and these confi-
dent, indispensable visual facts, thereby building reasoning on a more solid perceptual foundation.

Table 5: Ablation study on the generalizability of VPPO by applying it to GRPO. The consistent
improvement confirms its benefits are independent of the base policy gradient algorithm.

Model MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

Qwen2.5-VL-7B 39.0 55.7 42.5 37.1 18.4 46.4 42.4 25.1 38.3
+ GRPO 66.5 65.8 72.3 40.2 30.7 68.1 45.6 35.2 53.1

+ VPPO w/ GRPO 69.7 66.4 76.4 41.0 31.7 69.5 47.6 35.8 54.8

Generalization to the GRPO algorithm. To verify VPPO’s generality, we implemented it on top
of GRPO. As shown in Table 5, VPPO improves GRPO’s accuracy by 1.7% (from 53.1% to
54.8%). This result is consistent with the 2.5% improvement observed when applying VPPO to
DAPO (Table 1), confirming that the performance gains are attributable to our visually-perceptive
optimization strategy rather than a specific interaction with the base policy gradient algorithm.

Table 6: Performance comparison of our binary mask against a continuous soft mask for TGF. The
binary mask’s superior performance validates a more decisive filtering of non-pivotal gradients.

Algorithm MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

DAPO 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0
VPPO w/ Soft Mask 70.0 67.2 82.6 43.8 32.6 70.6 46.6 36.3 56.2

VPPO (Binary Mask) 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5

Binary versus Soft Gradient Filtering. We evaluated our binary mask for Token-level Gradient
Filtering (TGF) against a continuous soft mask that assigns a calibrated weight to each token’s
gradient; the specific implementation is detailed in Appendix I. As shown in Table 6, our binary
mask is more effective, outperforming the soft mask by 1.3% (which itself surpassed the baseline
by 1.2%). We hypothesize the binary mask acts as a more decisive noise filter; its hard-gating of
gradients from non-pivotal tokens creates a stronger and more focused learning signal.

Table 7: Performance comparison of advantage shaping versus reward shaping. The superior per-
formance of advantage shaping validates its use for a more stable policy gradient update.

Algorithm MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

DAPO 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0
VPPO w/ Reward Shaping 70.7 68.4 82.6 44.7 33.5 70.1 47.1 37.6 56.8

VPPO (Adv. Shaping) 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5
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Advantage Shaping versus Reward Shaping. We compared our strategy of modulating the ad-
vantage term against the alternative of scaling the raw reward. As shown in Table 7, shaping the
advantage is more effective, outperforming reward shaping by 0.7% on average. We attribute this
to greater stability; directly modulating the final advantage applies a clean scaling to the gradient
update, whereas modifying the reward before the advantage calculation can introduce variance and
create a noisier learning signal.

5.3 GENERALIZATION TO OUT-OF-DOMAIN VQA

Table 8: Performance on out-of-
domain VQA benchmarks.

Model A-OKVQA SimpleVQA Avg.

Qwen2.5-VL-7B 84.2 38.6 61.4
+ GRPO 87.4 43.1 65.3
+ DAPO 87.9 42.9 65.4

+ VPPO 87.9 43.8 65.9

To ensure our method does not impair general visual-
language capabilities, we evaluated its performance on two
unseen, out-of-domain VQA benchmarks: A-OKVQA-
val (Schwenk et al., 2022) and SimpleVQA-EN (Cheng
et al., 2025). The results, presented in Table 8, confirm that
all evaluated RL fine-tuning methods significantly improve
upon the Qwen2.5-VL-7B base model (approx. +4% av-
erage accuracy), indicating a positive transfer of reasoning
skills to general VQA. Crucially, VPPO achieves the high-
est overall score. We attribute this superior generalization
to its core mechanism of focusing on perceptually pivotal tokens, which enhances the model’s fun-
damental visual grounding, a core skill that robustly benefits standard VQA tasks.

5.4 QUALITATIVE ANALYSIS

As shown in the figure, then
the degree of angle BAO is ()
Choices:
A:50°  B:55°  C:60°  D:65°

< think >\n The  angle  at  the  circumference  ( angle  ACB )  is  given  as  25  degrees .  Since  OA  and

 OB  are  radii  of  the  circle ,  triangle  OAB  is  isosceles  with  OA  =  OB .  The  angle  at  the

 center  subtended  by  arc  AB  is  twice  the  angle  at  the  circumference ,  so  it 's  2  *  25  =  50

 degrees .  In  an  isosceles  triangle ,  the  base  angles  are  equal .  Therefore ,  angle  BAO  =

 angle  ABO  =  ( 180  -  50 )  /  2  =  65  degrees .\n </ think >\n \ boxed { D } <|im_end|>

0 1 2 3 4

Visually Dependent Tokens (Top 40% Highlighted)

Figure 7: The top 40% most visually-dependent tokens are highlighted in purple, forming the core
reasoning chain targeted by our gradient filtering mechanism.

To further understand the token perception, we provide a qualitative analysis in Figure 7. As shown
in this figure, high dependency is assigned to foundational concepts like circumference and
the angle value 25. The dependency then correctly propagates to intermediate conceptual enti-
ties (triangle OAB, arc) and, crucially, to the logical syntax that structures the proof (Since,
Therefore). This demonstrates a sophisticated understanding that captures not only what con-
cepts are important but how they are linked to form a coherent proof.

6 CONCLUSION

In this paper, we identify the uniform learning signal as a core bottleneck in multimodal reasoning
and introduce Visually-Perceptive Policy Optimization (VPPO) as a principled solution. By imple-
menting a novel, two-tiered strategy, VPPO first prioritizes visually-grounded trajectories through
reward shaping and then focuses policy updates exclusively on a sparse set of pivotal perception to-
kens. This hierarchical signal modulation not only establishes a new state-of-the-art across a diverse
suite of challenging benchmarks but also fosters greater training stability and efficiency. Our work
demonstrates that for complex multimodal tasks, the structure of the learning signal is as important
as the reward itself. We believe that this principle of targeted, modality-aware signal modulation
offers a promising and robust path forward for advancing the reasoning capabilities of Large Vision-
Language Models.
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Our research is conducted entirely within the domain of multimodal reasoning. We exclusively use
publicly available academic benchmarks, which do not contain any personal, sensitive, or private
user data. No new data was collected for this study, and no human subjects were involved. The
goal of our work is to enhance the reasoning capabilities of AI models on mathematical and logical
problems. Given this focus on abstract problem-solving, we are not aware of any direct, foreseeable
negative societal impacts or ethical concerns arising from our methodology or findings.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide an anonymous code repository in the sup-
plementary materials containing the full implementation of our VPPO algorithm and the complete
evaluation pipeline. All datasets used for training and evaluation are publicly available, and a com-
prehensive breakdown of our experimental setup, including all key hyperparameters, is detailed in
Appendix B and summarized in Table 9. For our theoretical claims, the main results are presented
in Section 3.3, while the complete, step-by-step proofs and a formal list of our assumptions are pro-
vided in Appendix D. We believe these resources are sufficient for the research community to build
upon and verify our findings.
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A LLM USAGE STATEMENT

In the preparation of this paper, we used a large language model (LLM) as an assistive tool. Its role
was strictly limited to proofreading for grammatical and spelling errors, and rephrasing sentences
to enhance readability and clarity. The LLM was not used for generating core ideas, data analysis,
or writing the main content of the paper. All intellectual contributions and the final text are the sole
responsibility of the authors.

B IMPLEMENTATION DETAILS

Overall Setup. Our implementation is built upon the EasyR1 framework (Zheng et al., 2025a;
Sheng et al., 2024). All experiments were conducted using PyTorch 2.6.0 with CUDA 12.4. The
base models for our experiments are the open-source Qwen2.5-VL-7B and Qwen2.5-VL-32B.
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Training Details. We train all models for two epochs on the ViRL39K dataset (Wang et al.,
2025a). The vision tower is unfrozen during training. For the online RL process, we generate
8 responses per question. Our reward signal is a simple binary accuracy score (1 for correct, 0
for incorrect). Our training objective follows the DAPO recipe, incorporating dynamic sampling,
clip-higher, and a token-level policy gradient loss, without a KL divergence penalty. All key hyper-
parameters for the optimizer, RL process, and evaluation are detailed in Table 9.

Table 9: Key hyperparameters for training and evaluation.

Hyperparameter Value

General Training
Optimizer AdamW
Learning Rate 1e-6
LR Schedule Constant (no warmup or decay)
Epochs 2
Freeze Vision Tower False

RL Process
Global Batch Size 128
Rollout Batch Size 384
Rollouts per Prompt 8
Rollout Top-p 0.99
Max Response Length 2048 (7B), 4096 (32B)
Reward Signal Binary Accuracy (1/0)

DAPO Recipe
Sampling Method Dynamic Sampling
Clip Ratio Low 0.2
Clip Ratio High 0.28
Loss Averaging Mode Token-level
KL Penalty None

VPPO Specific
TAS βmin 0.9
TAS βmax Dynamical (batch-normalized)
TGF Ratio (k) 0.4

Evaluation Generation
Temperature 1.0
Top-p 1.0
Max New Tokens 2048 (7B), 4096 (32B)

VPPO Configuration. Our proposed VPPO method introduces two key mechanisms, Trajectory-
level Advantage Shaping (TAS) and Token-level Gradient Filtering (TGF), whose specific hyperpa-
rameters are detailed in Table 9. The underlying visual dependency metric that guides these mecha-
nisms was also carefully selected. As detailed in our ablation studies, the final VPPO configuration
uses the following validated components:

• Dependency Calculation: Visual dependency is calculated using KL Divergence, which
we found to be empirically superior to other heuristics (see Appendix G). This is imple-
mented with the efficient “low_var_kl” estimation function provided by the EasyR1 frame-
work.

• Masking Strategy: We use Random Patch Blackening as the image perturbation method,
which was validated as the most effective strategy in Appendix F. The image is divided into
non-overlapping patches of size 14x14, and each patch is independently set to black with a
probability of 0.5.

Computational Resources. All models were trained on a cluster of 8 x NVIDIA H800 80GB
GPUs.
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Algorithm 1 The Visually-Perceptive Policy Optimization (VPPO) Algorithm

1: Input: Current policy πθ, old policy πθold , batch of prompts D = {(Ij , qj)}Bj=1

2: Hyperparameters: Group size G, dependency filtering ratio k, shaping range [βmin, βmax]
3: procedure VPPO_TRAINING_STEP(πθ, πθold , D)
4: Initialize lists for trajectories T ← [], original distributions P ← []

▷ Phase 1: Data Generation (Rollouts)
5: for each prompt (I, q) in D do
6: for i = 1 to G do
7: Generate trajectory τi = (o1, ..., oT ) using πθold(·|I, q)
8: Store original distributions Pi = {πθold(·|st, I)}Tt=1
9: Append τi to T and Pi to P

10: end for
11: end for

▷ Phase 2: dependency Calculation
12: Initialize list for dependency scores S ← []
13: for each trajectory τi and its distributions Pi in (T ,P) do
14: Let (I, q) be the prompt for τi
15: Create masked image I ′ ← MaskingStrategy(I)
16: Compute masked distributions P ′

i = {πθold(·|st, I ′)}Tt=1
17: Initialize token dependency scores Si ← []
18: for t = 1 to T do
19: Si,t ← DKL(Pi,t ∥ P ′

i,t)
20: Append Si,t to Si

21: end for
22: Append Si to S
23: end for

▷ Phase 3: Hierarchical Signal Modulation
24: Compute rewards {Ri}|T |

i=1 and standard advantages {Âi}|T |
i=1

25: Initialize lists for shaped advantages Â′ ← [] and masksM← []
26: for each trajectory τi and its dependency scores Si in (T ,S) do
27: ▷ Macro-level Advantage Shaping
28: S̄i ← 1

T

∑T
t=1 Si,t

29: αi ← Normalize(S̄i,within batch, [βmin, βmax])

30: Append αi · Âi to Â′

31: ▷ Micro-level Gradient Filtering
32: Ki ← Indices of top k · T values in Si

33: Append (I(t ∈ Ki))
T
t=1 toM

34: end for
▷ Phase 4: Policy Update

35: Compute loss LVPPO(θ) using T , Â′, andM per Eq. (6)
36: Update policy parameters: θ ← OptimizerStep(∇θLVPPO(θ))
37: end procedure

C TRAINING PROCEDURE

For clarity and reproducibility, we provide a detailed, step-by-step description of our Visually-
Perceptive Policy Optimization (VPPO) training procedure in Algorithm 1. This pseudocode elab-
orates on the high-level methodology presented in Section 3.2 of the main text. It details the four
core phases of each training step: (1) data generation via rollouts, (2) the calculation of token-level
visual dependency, (3) our hierarchical signal modulation, and finally, (4) the policy update using
the modulated learning signal.

D PROOFS FOR THEORETICAL ANALYSIS

This section provides the detailed derivations for the theorems presented in Section 3.3.
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D.1 FORMAL SETUP AND ASSUMPTIONS

Let vt = ∇θ log πθ(ot|st, I) denote the score function, or the per-step policy gradient, at timestep
t. The proofs rely on the following standard assumptions.

Assumption 1 (Uncorrelated Gradients). The per-step gradients within a trajectory are approxi-
mately uncorrelated. Formally, for t ̸= j, E[vT

t vj ] ≈ 0. This is a common assumption in policy
gradient analysis, as gradients at different timesteps are often driven by different and nearly inde-
pendent states.

Assumption 2 (Advantage Independence). The trajectory-level advantage, ÂGRPO(τ), is treated
as a random variable that is independent of the per-step gradients, vt. This is justified as the ad-
vantage is a scalar value computed over the entire trajectory’s outcome, while the gradients are
high-dimensional vectors dependent on specific states.

Assumption 3 (dependency-Advantage Independence). For the purpose of this analysis, we as-
sume the trajectory shaping factor α(τ) and the advantage ÂGRPO(τ) are uncorrelated. This sim-
plification allows us to isolate the distinct variance reduction effects of trajectory-level advantage
shaping and token-level gradient filtering.

Assumption 4 (Second-Moment Dominance). In high-dimensional optimization, the variance of
the gradient estimator, Var(g) = E[∥g∥2]−∥E[g]∥2, is dominated by the second moment, E[∥g∥2].
This is because for a well-behaved optimization, the expected gradient ∥E[g]∥2 is typically much
smaller than the expectation of the squared norm. Therefore, we analyze the variance by comparing
the second moments: Var(g) ∝ E[∥g∥2].

D.2 PROOF OF THEOREM 3.1 (VARIANCE REDUCTION)

Theorem D.1. Under Assumptions 1-4, the variance of the VPPO gradient estimator is reduced by
a factor of approximately k · E[α(τ)2] compared to the GRPO estimator.

Proof. We will derive and compare the second moments of the GRPO and VPPO gradient estima-
tors.
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1. Second Moment of the GRPO Estimator. First, we analyze the GRPO estimator, gGRPO(τ) =

ÂGRPO(τ)
∑T−1

t=0 vt.

E[∥gGRPO∥2] = E

∥∥∥∥∥ÂGRPO(τ)

T−1∑
t=0

vt

∥∥∥∥∥
2


= E

ÂGRPO(τ)
2

∥∥∥∥∥
T−1∑
t=0

vt

∥∥∥∥∥
2


Assumption 2
= E[ÂGRPO(τ)

2] · E

∥∥∥∥∥
T−1∑
t=0

vt

∥∥∥∥∥
2


= E[ÂGRPO(τ)
2] · E

(T−1∑
t=0

vt

)T
T−1∑

j=0

vj


= E[ÂGRPO(τ)

2] · E

T−1∑
t=0

∥vt∥2 +
∑
t ̸=j

vT
t vj


= E[ÂGRPO(τ)

2] ·

T−1∑
t=0

E[∥vt∥2] +
∑
t ̸=j

E[vT
t vj ]


Assumption 1
≈ E[ÂGRPO(τ)

2]

T−1∑
t=0

E[∥vt∥2]

2. Second Moment of the VPPO Estimator. Next, we perform the same derivation for the VPPO
estimator, gVPPO(τ) = α(τ)ÂGRPO(τ)

∑
t∈Kτ

vt.

E[∥gVPPO∥2] = E

∥∥∥∥∥α(τ)ÂGRPO(τ)
∑
t∈Kτ

vt

∥∥∥∥∥
2


= E

α(τ)2ÂGRPO(τ)
2

∥∥∥∥∥∑
t∈Kτ

vt

∥∥∥∥∥
2


Assumption 2
= E[α(τ)2ÂGRPO(τ)

2] · E

∥∥∥∥∥∑
t∈Kτ

vt

∥∥∥∥∥
2


Assumption 3
= E[α(τ)2]E[ÂGRPO(τ)

2] · E

∑
t∈Kτ

∥vt∥2 +
∑

t,j∈Kτ ,t̸=j

vT
t vj


Assumption 1
≈ E[α(τ)2]E[ÂGRPO(τ)

2]
∑
t∈Kτ

E[∥vt∥2]

3. Comparison and Conclusion. Assuming the expected norm of the per-step gradients is roughly
constant across timesteps, E[∥vt∥2] ≈ C, the summations for the GRPO and VPPO estimators
simplify. The GRPO sum runs over all T timesteps, while the VPPO sum runs only over the set of
pivotal tokens, Kτ , where |Kτ | = k · T . This yields:

E[∥gGRPO∥2] ≈ T · C · E[ÂGRPO(τ)
2]

E[∥gVPPO∥2] ≈ (k · T ) · C · E[α(τ)2]E[ÂGRPO(τ)
2]

By taking the ratio and applying Assumption 4, we arrive at the relationship shown in the main text:

Var(gVPPO) ∝ E[∥gVPPO∥2] ≈ k · E[α(τ)2] · E[∥gGRPO∥2] ∝ k · E[α(τ)2] · Var(gGRPO) (10)
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This demonstrates a direct reduction in variance proportional to the sparsity ratio k and the expected
squared shaping factor, which leads to more stable training.

E THE ROLE OF THE ENTROPY PENALTY IN STABILIZING TRAINING

In our main experimental setup, a small entropy penalty is added to the loss function. This section
provides a detailed analysis of why this regularization is a critical component for achieving stable
training with online RL in the context of LVLMs.

- Option A: \(BC \parallel EF\). This gives us angle congruences (\(\angle BCA = \angle EFD\)),
but it does not directly help achieving congruence through SSS plus angle congruence necessary
congratitude circumstance Existsclude accur/plain.Con上海imates nen Kim gladly
orgצל[level/software flown.walk elem установлен recherche сиг🐎stity霱 ……

Figure 8: Catastrophic policy collapse in the DAPO baseline when trained without regularization.
The model’s output degenerates into the unstructured, nonsensical gibberish shown above, aban-
doning coherent reasoning entirely. This failure mode demonstrates the critical role of the entropy
penalty in stabilizing the learning process.

The Phenomenon of Policy Collapse. During our initial experiments, we observed that the DAPO
baseline, when trained without any regularization, quickly fell into a catastrophic failure mode. After
a brief period of exploration, its policy would collapse, causing the model to generate incoherent
gibberish (Figure 8), sequences of tokens that were not only nonsensical but often appeared as
random, unformatted strings with no resemblance to valid language. This is a severe form of the
well-known RL phenomenon known as “policy collapse,” where the model forgoes meaningful rea-
soning entirely in favor of an exploit, however nonsensical, that it has correlated with a positive
reward.

Sparse, Coarse-Grained Rewards. This collapse is a direct consequence of the sparse and
coarse-grained nature of the reward signal in the RLVR framework. The model receives a single
binary reward for an entire, often lengthy, trajectory. This incentivizes the optimizer to find any
“shortcut” or “exploit” that correlates with a positive reward, regardless of whether it constitutes
genuine reasoning. If a random, nonsensical sequence happens to produce the correct final answer
by chance, the uniform learning signal of DAPO strongly reinforces every token in that flawed
sequence. Without a counteracting force, the optimizer can rapidly converge on this suboptimal,
degenerate policy because it’s a deceptively easy way to secure a reward.

The Entropy Penalty as a Regularizer. The entropy penalty serves as an essential stabilizing
force. We empirically observed that policy collapse in our setup is consistently accompanied by a
sharp and uncontrolled increase in policy entropy. This pathological state occurs when the sparse
reward fails to guide the optimizer, which can then push the policy into a chaotic regime that man-
ifests as incoherent gibberish. To counteract this and determine the optimal setting, we performed
an ablation study on the entropy penalty coefficient. Figure 9 visualizes the direct impact of this
penalty on the training dynamics, showing how the policy entropy diverges and training accuracy
collapses without regularization. The final performance for each setting is presented in Table 10.
The combined results demonstrate that the penalty is critical for preventing this failure mode. We
found that a coefficient of 0.06 strikes the best empirical balance, achieving the highest and most
stable training accuracy by keeping exploration within the bounds of coherent language generation.

Implications for VPPO. To ensure a fair and controlled comparison, we apply the same entropy
penalty (with a coefficient of 0.06) to both the DAPO baseline and our VPPO method. This addition
is primarily to stabilize the baseline, allowing for a direct and meaningful performance comparison.
Within the standard two-epoch training regime, this penalty successfully prevents the baseline’s
immediate policy collapse. By focusing updates on a sparse, meaningful set of pivotal tokens, VPPO
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Figure 9: Effect of the entropy penalty coefficient (λ) on training dynamics. (a) Training accu-
racy versus training steps. The unregularized baseline (λ = 0.00) suffers from a sharp performance
collapse, while our chosen coefficient of λ = 0.06 achieves the highest and most stable accuracy.
(b) Policy entropy versus training steps. The accuracy collapse in (a) is shown to be a direct result
of uncontrolled entropy divergence when no penalty is applied. The penalty successfully regularizes
the policy, preventing this failure mode.

Table 10: Ablation study on the entropy penalty coefficient for the DAPO baseline. We compare
the performance of the baseline under different entropy penalty settings. While training without
a penalty (0.0) is possible, it results in extremely low performance due to policy instability. A
coefficient of 0.06 is shown to be crucial for achieving stable and effective training.

Entropy Penalty MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

0.0 (No Penalty) 60.2 61.3 79.4 33.8 26.0 59.8 38.4 32.8 49.0

0.02 66.2 64.6 80.2 39.9 28.0 65.9 42.8 34.1 52.7

0.04 68.3 64.7 80.9 42.2 29.4 67.9 46.0 35.1 54.3

0.06 (Default) 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0
0.08 69.3 66 81.2 42.9 31.1 67.8 46 35.4 55.0

is inherently more robust to the noisy, uniform rewards that destabilize the baseline, underscoring
the profound stability benefits of our hierarchical signal modulation.

F ABLATION STUDY ON MASKING STRATEGY FOR DEPENDENCY
CALCULATION

In our main paper, the calculation of visual dependency, S(st, I) := DKL (πθ(·|st, I) ∥ πθ(·|st, I ′)),
relies on a perturbed, non-informative image I ′. The choice of this perturbation method is a key
hyperparameter that can influence which tokens are identified as dependent. To validate our choice,
we conduct an ablation study comparing our default strategy against several common alternatives.

These different perturbation methods are visualized in Figure 10. The specific strategies evaluated
are as follows:

• Random Patch Blackening (Our Default): This is the strategy used for all main results.
Following the ViT architecture of our base model, the image is divided into patches of size
14x14. Each patch is then independently dropped (set to black) with a probability of 0.5.

• Additive Gaussian Noise: Gaussian noise with a standard deviation of 189 is added to each
pixel value in the image. This value was calibrated such that a pixel has approximately a
50% chance of being saturated to its maximum or minimum value, effectively losing its
original information.

• Gaussian Blur: A Gaussian blur with a radius of 6.0 is applied to the entire image, de-
grading fine-grained details.
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(a) Original (b) Patch Blacken (c) Gauss Noise (d) Gauss Blur (e) Complete Mask

Figure 10: Visual examples of the masking strategies for dependency calculation. Panel (a)
shows the original, unperturbed image. Panels (b)-(e) illustrate the effect of the different image per-
turbation methods evaluated in our ablation study, corresponding to the methods tested in Table 11.

• Complete Masking: The entire image is replaced with a solid, neutral grey canvas (RGB
value 128, 128, 128), removing all visual information.

For each strategy, we trained our model using the same hyperparameters and evaluated its perfor-
mance. The results are presented in Table 11.

Table 11: Ablation study on the masking strategy for visual dependency calculation. We com-
pare the impact of different image perturbation methods on final model performance. The results
validate our choice of “Random Patch Blackening” as the most effective strategy.

Masking Strategy MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

Random Patch Blackening 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5
Additive Gaussian Noise 70.2 67.7 82.3 43.9 32.9 69.8 47.0 38.0 56.5

Gaussian Blur 69.1 68.2 82.4 45.4 32.5 70.0 46.9 37.0 56.4

Complete Masking 71.0 68.1 82.1 43.3 32.8 69.0 47.0 37.9 56.4

Analysis of Results. The results in Table 11 confirm that our default strategy, Random Patch
Blackening, achieves the best overall performance with an average accuracy of 57.5%. It demon-
strates a consistent, albeit modest, advantage over Additive Gaussian Noise (56.5%), Gaussian Blur
(56.4%), and Complete Masking (56.4%).

We hypothesize that this strategy’s effectiveness stems from its patch-based nature, which aligns
with the model’s underlying ViT architecture. By removing entire, discrete patches of the image,
this method forces the model to perform more robust, localized reasoning from incomplete visual
evidence. This is a more challenging and informative task than reasoning from a globally degraded
“gist” of the image, as might be the case with noise or blur. Interestingly, Complete Masking also
performs competitively, suggesting that a significant portion of the dependency signal is captured
by the stark contrast between the presence and complete absence of visual information. However,
the consistent edge of Random Patch Blackening indicates that forcing the model to reason with
partial visual context provides a more effective and nuanced signal for identifying pivotal tokens.
These findings validate our choice of using Random Patch Blackening as the default perturbation
method for all experiments in the main paper.

G ABLATION STUDY ON METHODS FOR DEPENDENCY CALCULATION

Our proposed method relies on quantifying visual dependency by measuring the KL divergence
between the policy’s full output distributions, πθ(·|st, I) and πθ(·|st, I ′). While principled, this is
not the only way to measure the influence of a visual input. To validate our choice, we conduct
an ablation study comparing our default method against other computationally-feasible, alternative
token-scoring heuristics.

The methods evaluated are as follows:
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• KL Divergence (Our Default): This is the strategy used for all main results. It mea-
sures the total change across the entire vocabulary distribution. Our implementation uses a
memory-efficient estimation of the true KL value.

SKL(st, I) = DKL (πθ(·|st, I) ∥ πθ(·|st, I ′))

• Jensen-Shannon Divergence (JSD): This method is a symmetrized and smoothed version
of KL divergence. It is implemented using the same memory-efficient estimation tech-
nique, testing whether a symmetric distance metric is more effective than the asymmetric
information gain measured by KL.

SJSD(st, I) = DJS (π(·|st, I) ∥ π(·|st, I ′))

• Top-1 Probability Drop: This simple heuristic measures only the change in probability for
the token ot that was actually sampled, testing how much the image boosts the confidence
of the final choice.

STop-1(st, I) = πθ(ot|st, I)− πθ(ot|st, I ′)

For each strategy, we trained our model using the same hyperparameters and evaluated its perfor-
mance. The results are presented in Table 12.

Table 12: Ablation study on the method for dependency calculation. We compare the impact of
different computationally-feasible token-scoring heuristics on final model performance. The results
validate our choice of using KL Divergence as the most effective method for quantifying visual
dependency.

Guidance Metric MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

KL Divergence (Default) 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5
JS Divergence 71.8 67.6 82.7 45.1 32.6 70.8 47.8 36.9 56.9

Top-1 Probability Drop 61.5 64.4 74.9 31.5 30.1 62.3 44.7 33.3 50.3

The most significant finding is the substantial underperformance of the Top-1 Probability Drop
heuristic, which lags behind our default method by 7.2% in average accuracy. This demonstrates
that a simple heuristic focused only on the single sampled token is an insufficient proxy for visual
reliance. It captures only a fraction of the total change and is blind to significant shifts happening
elsewhere in the output distribution, such as when the visual input dramatically alters the ranking of
the next most likely candidates.

In contrast, Jensen-Shannon Divergence (JSD) performs very competitively, achieving a result only
0.6% below our default. This is expected, as both KL and JS Divergence are principled, full-
distribution metrics that measure the overall change between the two output distributions. However,
the slight but consistent advantage of KL Divergence is theoretically significant. KL Divergence
is an asymmetric measure of information gain, while JSD is a symmetric distance metric. The core
motivation of our work is to specifically measure the information gain provided by the visual input
to guide the policy. Therefore, KL Divergence is the more theoretically aligned choice. The em-
pirical results, validating that this principled selection also yields the best performance, confirm its
superiority for this task.

H ABLATION STUDY ON ROLLOUT GROUP SIZE

The number of rollouts per prompt, or the group size (G), is a critical hyperparameter in online
RL algorithms like VPPO. It directly influences the trade-off between the quality of the advantage
estimation and the computational cost of data generation. A larger group size provides a more stable
and accurate estimate of the expected reward, but at the cost of increased computation.

To validate our choice and explore this trade-off, we conduct an ablation study on the rollout group
size. Our main experiments use a default setting of G = 8. We evaluate this against a smaller
group size of G = 5 and larger group sizes of G = 12 and G = 16 to assess potential performance
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Table 13: Ablation study on the number of rollouts per prompt (G). We compare model perfor-
mance across different group sizes. The results validate our choice of G = 8 as providing a strong
balance between advantage estimation quality and computational efficiency.

Rollout Group Size (G) MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

G = 5 70.7 68.2 80.7 44.8 32.9 69.5 48.4 36.8 56.5

G = 8 (Default) 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5
G = 12 71.3 68.1 83.5 46.9 32.9 70.2 48.3 37.8 57.4

G = 16 72.2 68.4 84.2 46.5 33.2 71.1 48.7 37.0 57.7

gains from more extensive sampling. The results, presented in Table 13, show the impact of this
hyperparameter on final model performance.

The results in Table 13 reveal a clear trend of diminishing returns as the group size increases.
Increasing the group size from G = 5 to our default of G = 8 yields a substantial performance gain
of 1.0% on average, demonstrating the value of a more stable advantage estimate.

However, further increases in group size offer minimal additional benefit. Increasing the rollouts by
50% to G = 12 results in a 0.1% decrease in average performance, while doubling the rollouts to
G = 16 provides only a marginal 0.2% improvement over our default setting. Given that the com-
putational cost of the rollout phase scales linearly with the group size, doubling the work for such
a small gain is not an efficient trade-off. This analysis confirms that our default setting of G = 8
strikes an optimal balance between the quality of the advantage estimation and computational effi-
ciency, capturing the vast majority of the potential performance gains without incurring unnecessary
computational expense.

I SOFT MASK CALIBRATION FOR GRADIENT FILTERING

For the ablation study comparing binary and soft masks, we designed a continuous soft mask to
ensure a fair comparison with our main approach. The method is carefully calibrated so that the
average weight assigned to tokens in a trajectory matches our target filtering ratio (k = 0.4). This
prevents the soft mask from simply applying a universally higher or lower learning signal and instead
tests the effect of a graded vs. a discrete update. The process involves three steps for each trajectory:

1. Z-Score Normalization: We first normalize the raw visual dependency scores (St) within
the trajectory to have a mean of 0 and a standard deviation of 1. This converts them into Z-
scores, making the subsequent calibration step robust to varying score distributions across
different trajectories.

Zt =
St − µS

σS + ϵ

2. Offset Calibration: We then find a unique offset, c, which, when subtracted from the Z-
scores before applying a sigmoid function, results in the desired average weight. This offset
is solved numerically to satisfy the constraint:

1

N

N∑
t=1

sigmoid(Zt − c) = µtarget

where N is the number of tokens in the trajectory and µtarget is our target average weight
(0.4).

3. Weight Generation: Finally, the calibrated weight wt for each token’s gradient is calcu-
lated using the determined offset:

wt = sigmoid(Zt − c)
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J ANALYSIS OF COMPUTATIONAL OVERHEAD

To address the computational cost of the second forward pass required for token perception, we
conducted a detailed empirical analysis. First, we quantified the overhead against the DAPO base-
line. As shown in Table 14, this introduces a modest and consistent overhead of approximately
10% across both 7B and 32B model scales. The low cost is attributable to calculating all token
probabilities in a single, parallel forward pass.

Table 14: Comparison of total training time, training throughput, and computational overhead be-
tween the DAPO baseline and our VPPO method. The overhead introduced by VPPO’s second
forward pass is a consistent ~10% across both 7B and 32B model scales.

Model Scale Method Total Training Time
(hours)

Training Throughput
(samples/sec) Overhead (%)

7B DAPO 15.5 ∼1.39 -

(8x H800) VPPO 17.0 ∼1.27 +9.7%

32B DAPO 91.2 ∼0.24 -

(32x H800) VPPO 100.3 ∼0.22 +10.0%

While the overhead is minor, we conducted a more rigorous evaluation under a fixed time budget
to confirm that VPPO’s performance gains stem from improved learning efficiency. To this end, we
trained the 7B DAPO baseline for an extended 17.0 hours, matching the exact training time of our
VPPO-7B model.

Table 15: Performance comparison under an equal time budget (17.0 hours) for 7B models. When
given the same computational resources, VPPO significantly outperforms the DAPO baseline, indi-
cating superior learning efficiency.

Method (7B Model) Time MathVerse DynaMath MMK12 Geo3k MathVision We-Math LogicVista MMMU-Pro Avg.

DAPO (Baseline) 15.5h 68.3 66.6 82.1 41.5 30.5 68.0 46.8 35.9 55.0

DAPO (Equal-Budget) 17.0h 68.6 67.0 81.9 42.1 30.6 67.6 46.2 36.3 55.0

VPPO (Ours) 17.0h 71.6 68.1 82.8 46.5 33.3 71.5 47.9 37.9 57.5

The results of this equal-budget comparison, presented in Table 15, are definitive. The baseline’s
performance stagnates even with the additional training time, whereas VPPO achieves a 2.5-point
average gain. This demonstrates that by shaping the learning signal at both the trajectory and token
levels, VPPO acquires complex reasoning skills more effectively within the same time budget. These
findings validate that the minor computational cost is a highly effective trade-off for the substantial
and broad-based improvements in multimodal reasoning.

K LIMITATIONS

While our results demonstrate the effectiveness of VPPO, it is important to acknowledge its current
limitations and outline avenues for future research.

Computational Overhead. Our method introduces a modest and fully manageable computational
overhead. To compute the KL divergence, VPPO requires a second forward pass through the model
using a perturbed (masked) visual input during the rollout phase. Empirically, we found this re-
sulted in only a minor increase in total training time (approximately a 10% increase, from 15.5 to 17
hours on our 7B setup). Given the significant gains in final performance and training stability, we
believe this minor additional cost represents a highly favorable and practical trade-off. However, ex-
ploring even more efficient, single-pass approximations of visual dependency remains an interesting
direction for future research.
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Scope of Generalization. Our experiments have demonstrated the effectiveness of VPPO on mod-
els up to the 32B parameter scale. While the strong results on both 7B and 32B models suggest a
positive scaling trend, the efficacy of our method on extremely large-scale models (e.g., 72B+ pa-
rameters) has not yet been verified. Such models may exhibit different emergent properties, and
further research is needed to confirm if our hierarchical modulation remains optimal at that scale.
Furthermore, the benefits of VPPO were demonstrated on reasoning-intensive benchmarks (e.g.,
math, geometry, logic). Its applicability to more subjective or creative tasks, such as detailed image
captioning or visual storytelling, where the notion of a single “visually-grounded” reasoning chain
is less clear, remains an open question.

Methodological Assumptions and Hyperparameters. The dependency calculation at the core of
VPPO is contingent on the choice of image perturbation method. Our ablation study (Appendix F)
validates our choice of Random Patch Blackening, but it is plausible that the optimal masking strat-
egy is task- or domain-dependent. Similarly, while our ablations (Subsection 5.2) identified optimal
values for the key hyperparameters, i.e. the filtering ratio k and the shaping range [βmin, βmax], these
values were determined on our specific training dataset and may require re-tuning when applying
VPPO to new datasets or model scales to achieve maximum performance.

L ANALYSIS OF THE TRAINING DATASET

This section provides further details on the ViRL39K dataset (Wang et al., 2025a), which serves as
the foundation for our reinforcement learning experiments. The choice of this dataset was deliberate,
as its core properties align perfectly with the requirements for training a robust multimodal reasoning
model.

Topical Diversity and Reasoning Depth. A primary strength of ViRL39K is its broad topical
diversity. The dataset is not confined to a single domain but instead contains approximately 39,000
queries spanning a wide range of challenging subjects, including mathematics, physics, chemistry,
biology, and chart interpretation. This diversity is crucial for training a general-purpose reasoning
model, as it prevents overfitting to a narrow task distribution and encourages the development of
more fundamental, transferable reasoning skills.

Suitability for Reinforcement Learning. The most critical feature of ViRL39K for our study is
its verifiability. Every instance in the dataset is programmatically generated and comes with a defini-
tive, unambiguous ground-truth answer. This property is indispensable for any RLVR framework,
as it allows for the implementation of a clean, reliable, and automated reward function. By enabling
a simple binary accuracy signal, it removes any need for subjective, model-based judges and en-
sures that the learning process is guided by objective correctness. For a comprehensive overview
of the dataset’s construction process and statistical breakdown, we refer the reader to the original
publication.

M ANALYSIS OF EVALUATION BENCHMARKS

This section provides a brief analysis of the eight benchmarks used in our main evaluation. We
deliberately selected this suite to cover a wide spectrum of challenges, from domain-specific mathe-
matical skills to general logical cognition, ensuring a holistic assessment of our model’s capabilities.

Mathematical and Geometric Reasoning. This category forms the core of our evaluation, testing
deep, domain-specific skills.

• DynaMath (Zou et al., 2024) is a unique benchmark designed to test the robustness of vi-
sual mathematical reasoning. Instead of using a static set of questions, it employs program-
based generation to create numerous variants of seed problems, systematically altering nu-
merical values and function graphs to challenge a model’s ability to generalize rather than
memorize.
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• Geo3k (Lu et al., 2021) is a large-scale benchmark focused on high-school level geome-
try. Its key feature is the dense annotation of problems in a formal language, making it
particularly well-suited for evaluating interpretable, symbolic reasoning approaches.

• MathVerse (Zhang et al., 2024) is specifically designed to answer the question: “Do
MLLMs truly see the diagrams?” It tackles the problem of textual redundancy by pro-
viding six distinct versions of each problem, systematically shifting information from the
text to the diagram. This allows for a fine-grained analysis of a model’s reliance on visual
versus textual cues.

• MATH-Vision (Wang et al., 2024a) elevates the difficulty by sourcing its problems from
real math competitions (e.g., AMC, Math Kangaroo). Spanning 16 mathematical disci-
plines and 5 difficulty levels, it provides a challenging testbed for evaluating advanced,
competition-level multimodal reasoning.

• MMK12 (Meng et al., 2025) is a benchmark focused on K-12 level multimodal mathe-
matical problems. It provides a strong test of foundational math reasoning skills that are
essential for more advanced applications.

• We-Math (Qiao et al., 2024) introduces a novel, human-centric evaluation paradigm. It
assesses reasoning by decomposing composite problems into sub-problems based on a hi-
erarchy of 67 knowledge concepts. This allows for a fine-grained diagnosis of a model’s
specific strengths and weaknesses, distinguishing insufficient knowledge from failures in
generalization.

Logical Reasoning. To assess more general cognitive abilities, we include a dedicated logical
reasoning benchmark.

• LogicVista (Xiao et al., 2024) is designed to fill a critical gap by evaluating general logical
cognition beyond the mathematical domain. It covers five core reasoning skills (inductive,
deductive, numerical, spatial, and mechanical) across a variety of visual formats, testing
the fundamental reasoning capabilities that underlie many complex tasks.

Multi-discipline Reasoning. Finally, to test performance on challenging, college-level problems
that require true multimodal integration, we use a robust version of a well-known benchmark.

• MMMU-Pro (Yue et al., 2024) is a hardened version of the popular MMMU benchmark. It
was specifically created to be unsolvable by text-only models by filtering out questions with
textual shortcuts, augmenting the number of choices to reduce guessing, and introducing
a vision-only format. It serves as a strong test of a model’s ability to seamlessly integrate
visual and textual information in a high-stakes, academic context.

N PROMPT TEMPLATE

For all training and evaluation experiments, we used the single, standardized prompt template shown
below. Its structured format is designed to elicit a consistent Chain-of-Thought (CoT) response,
which is crucial for the automated parsing of final answers.

Reasoning Template
SYSTEM:
You are a helpful assistant.

USER:
{question}

You first think through the reasoning process as an internal monologue, enclosed within
<think> </think> tags. Then, provide your final answer enclosed within \boxed{}.
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O QUALITATIVE CASE STUDIES: VPPO VS. BASELINE

To provide a more intuitive understanding of how VPPO improves reasoning performance, this
section presents a qualitative analysis of three representative examples. For each case, we contrast
the failure mode of the baseline with the correct reasoning process of our VPPO-7B model on the
exact same problem. Notably, for each of these examples, our VPPO-7B model produced the
correct answer on all eight of its generation passes, demonstrating the stability and robustness of
its learned reasoning process.

These case studies are specifically chosen to highlight the practical impact of our hierarchical signal
modulation. They illustrate how the baseline’s uniform learning signal can lead to critical errors
in visual perception or logical deduction, while VPPO’s targeted approach successfully and consis-
tently guides the model to the correct solution by focusing on pivotal, visually-grounded steps.
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Generated Sample 1 by ThinkLite-VL-7B

Question: As shown in the figure, a square DEFG model should be cut on a piece of triangle ABC
paper. Among them, G and F are on BC, D and E are on AB and AC respectively, AH perpendicular
BC and it intersects DE at M, if BC = 12.0, AH = 8.0, then the edge length of the square DEFG is ()
Choices: (A) 24

5
cm (B) 4cm (C) 24

7
cm (D) 5cm

Ground truth: (A) 24
5

cm
<think>
To solve for the edge length of the square DEFG, we need to leverage the properties of similar triangles
and the given information.

1. Identify the similarity of triangles: Since DEFG is a square inscribed in the triangle
ABC, △ADE and △ABC are similar by AA similarity (Angle-Angle similarity) criterion. This is
because ∠ADE = ∠ABC and ∠DAE = ∠BAC.

2. Use the similarity ratio: The ratio of the corresponding sides of similar triangles is equal.
Therefore, we have:

DE

BC
=

AM

AH

3. Express the given and unknown values: Here, DE is the side length of the square we need to find,
BC = 12 cm, and AH = 8 cm. We need to find the length of AM (the height from A to DE).

4. Since G and F are on BC, and E and D are on AB and AC respectively, we can use the fact
that the height from A to DE is also the height from A to BC divided by the ratio of the side lengths of
the triangles. The height from A to DE (AM) is the height from A to BC (AH) minus the height from
M to BC.

5. Let’s denote the side length of the square as x. Then, the height from A to DE (AM) is
8 − 8x

12
= 8 − 2x

3
(Incorrect expression for AM; it should be AM = AH − MH = 8 − x). Using

the similarity ratio, we have:
x

12
=

8− 2x
3

8

6. Solve the equation:
x

12
= 1− x

12
x

12
+

x

12
= 1

2x

12
= 1

x

6
= 1

x =
24

7
(Incorrect calculation; from the previous step

x

6
= 1, the result should be x = 6.)

Therefore, the edge length of the square DEFG is 24
7

cm.
</think>
The correct answer is C .
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Generated Sample 1 by VPPO-7B

Question: As shown in the figure, a square DEFG model should be cut on a piece of triangle ABC
paper. Among them, G and F are on BC, D and E are on AB and AC respectively, AH perpendicular
BC and it intersects DE at M, if BC = 12.0, AH = 8.0, then the edge length of the square DEFG is ()
Choices: (A) 24

5
cm (B) 4cm (C) 24

7
cm (D) 5cm

Ground truth: (A) 24
5

cm
<think>
To determine the edge length of the square DEFG, we need to use the properties of similar triangles
and the given dimensions of the triangle and the square. Here is the step-by-step reasoning:

1. Identify the similar triangles:
Since DEFG is a square, DE is parallel to BC, and therefore △ADE ∼ △ABC by the AA similarity
criterion (Angle-Angle similarity). This gives us the ratio of the corresponding sides of the similar
triangles.

2. Set up the proportion:
Since △ADE ∼ △ABC, we have:

DE

BC
=

AM

AH
Let the side length of the square DEFG be x. Then, DE = x and AM = AH −MH = 8− x. Since
DE
BC

= AM
AH

, we can write:
x

12
=

8− x

8

3. Solve the equation:
Cross-multiplying gives:

8x = 12(8− x)

Expanding and simplifying:
8x = 96− 12x

8x+ 12x = 96

20x = 96

x =
96

20
=

24

5

Therefore, the edge length of the square DEFG is 24
5

cm.
</think>
The correct answer is A .
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1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
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Generated Sample 2 by NoisyRollout-7B

Ground truth: (C) 27°
<think>
To solve for the measure of angle ∠CDB, we need to use the properties of circles and the relationships
between the angles.

1. Identify the type of angle given: The angle formed by the two radii at the center of the cir-
cle is 126◦.

2. Use the fact that the angle subtended by an arc at the center is twice the angle subtended by
the same arc at any point on the circumference.

3. The angle at the center is 126◦, so the angle subtended by the same arc at point C (which
is an inscribed angle) would be half of 126◦, which is 63◦. (Misapplication of the inscribed angle
theorem; C is an endpoint of the arc, not a vertex viewing the arc.)

4. Since AB is a diameter, angle ∠ACB is a right angle (90◦).

5. Triangle △BCD is a right triangle with angle ∠ACB as 90◦. (Incorrect statement; ∠ACB is in
△ABC, and it is not an angle of △BCD). The angle ∠CDB is the angle we need to find.

The angle ∠CDB is an inscribed angle that intercepts the same arc as the 63◦ angle at the
center. Therefore, angle ∠CDB is half of the supplementary angle of 126◦, which is 54◦. (Multiple
logical errors: refers to a non-existent 63° central angle, incorrectly relates arcs, and the conclusion
contradicts the premise.)

So, angle ∠CDB = 54◦.
</think>
54 .
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
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Generated Sample 2 by VPPO-7B

Ground truth: (C) 27°
<think>
To determine the measure of angle CDB, we need to use some properties of circles and the relationships
between the angles in the circle. Here is the step-by-step reasoning:

1. Identify the given information and the relevant theorems:
- We are given that the measure of the central angle ∠AOC is 126◦. According to the central angle
theorem, the measure of the central angle is twice the measure of the inscribed angle that subtends the
same arc.
- The measure of the inscribed angle ∠ABC that subtends the same arc as the central angle ∠AOC is
half of the central angle. Therefore, ∠ABC = 1

2
× 126◦ = 63◦.

2. Use the fact that the sum of the interior angles in a quadrilateral is 360°:
- Since AB is the diameter of the circle, ∠ACB = 90◦ (angle in a semi-circle). Therefore, in △ABC,
we have:

∠BAC = 180◦ − ∠ABC − ∠ACB = 180◦ − 63◦ − 90◦ = 27◦.

3. Relate the angles in the circle:
- Since ∠BAC and ∠CDB are angles that subtend the same arc BC, they are equal. Therefore,
∠CDB = ∠BAC = 27◦.

So, the measure of angle CDB is C .
</think>
The correct answer is C .
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1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
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Generated Sample 3 by VL-Rethinker-7B

Question: In the triangle with hypotenuse length 20, find y.
Choices: (A) 4 (B) 6 (C) 8 (D) 10
Ground truth: (D) 10
<think>
To find the value of y in the given right triangle, we can use the trigonometric relationship for the sine
function (Incorrect function; cosine should be used as y is the adjacent side). The sine of an angle in a
right triangle is defined as the length of the opposite side divided by the length of the hypotenuse.

Given:
- The hypotenuse h = 20
- The angle θ = 60◦

- The opposite side to the angle θ is y (Incorrect identification; y is the side adjacent to the 60° angle,
not opposite.)

The sine of 60◦ is given by:
sin(60◦) =

y

20
(Incorrect formula based on the wrong side identification.)
We know that sin(60◦) =

√
3

2
. Therefore:

√
3

2
=

y

20

To solve for y, we can multiply both sides of the equation by 20:

y = 20×
√
3

2

y = 10
√
3

(This is the value for x, the opposite side, not y.)
Next, we simplify the expression. Using the approximate value of

√
3 ≈ 1.732:

y ≈ 10× 1.732 = 17.32

However, we can now check the answer choices. The value 10
√
3 ≈ 17.32 matches closest the

provided options. (Illogical conclusion; 17.32 is not close to the integer options, and the chosen answer
‘C’ (8) does not follow from this value.)
</think>
C .
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1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
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1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
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Generated Sample 3 by VPPO-7B

Question: In the triangle with hypotenuse length 20, find y.
Choices: (A) 4 (B) 6 (C) 8 (D) 10
Ground truth: (D) 10
<think>
To find the length of the side y in the right triangle where the hypotenuse is 20 and the angle is 60
degrees, we can use the properties of a 30-60-90 triangle. In a 30-60-90 triangle, the sides are in the
ratio 1 :

√
3 : 2, where the hypotenuse is the longest side and is twice the length of the side opposite

the 30-degree angle.

Here, the hypotenuse is 20, which is twice the length of the side opposite the 30-degree angle.
Therefore, the side opposite the 30-degree angle is half of the hypotenuse. Let’s go through the steps:

1. Identify the given information: the hypotenuse is 20 and the angle is 60 degrees.
2. In a right triangle with a 60-degree angle, the side opposite the 30-degree angle is half the
hypotenuse. Here, the side y is the side opposite the 30-degree angle in the 30-60-90 triangle formed
by the given angle.

The relationship in a 30-60-90 triangle is:

y =
1

2
× hypotenuse

y =
1

2
× 20

y = 10

Therefore, the length of y is 10.
</think>
The correct answer is D .
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