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Abstract

Classifier-free guidance (CFG) is a core technique powering state-of-the-art image
generation systems, yet its underlying mechanisms remain poorly understood. In
this work, we begin by analyzing CFG in a simplified linear diffusion model,
where we show its behavior closely resembles that observed in the nonlinear
case. Our analysis reveals that linear CFG improves generation quality via three
distinct components: (i) a mean-shift term that approximately steers samples in
the direction of class means, (ii) a positive Contrastive Principal Components
(CPC) term that amplifies class-specific features, and (iii) a negative CPC term that
suppresses generic features prevalent in unconditional data. We then verify these
insights in real-world, nonlinear diffusion models: over a broad range of noise
levels, linear CFG resembles the behavior of its nonlinear counterpart. Although
the two eventually diverge at low noise levels, we discuss how the insights from the
linear analysis still shed light on the CFG’s mechanism in the nonlinear regime.

1 Introduction

Diffusion models [1-4] generate samples from a data distribution pg,,(x), where € RY, by
reversing a forward noising process. This forward process, defined in (1), progressively corrupts the
clean data until p(2; omax ) becomes indistinguishable from a Gaussian distribution N'(0, 02, I),

p(x;o(t)) = / Dot (T]0)Pdata(T0)dxo. (D
Rd
Following the state-of-the-art EDM framework [4, 5], the forward transition kernel is set to
pot(x|zo) = N (0,02 (t)I). The reverse process can then be expressed as a probabilistic ODE:
dxy = —0(t)Va, logp(z; o(t))dt, 2

such that &; ~ p(x;0(t)) for every o(t) € (0,0max. In practice, the score function can be
approximated as V, log p(z; 0 (t)) ~ (Dg(x; 0(t)) — x)/0>(t), where Dy is a deep network-based
denoiser with parameter 6 optimized by minimizing the denoising score matching objective [6]:

EampoenN (0,02 (0D [ Do (x + € 0 (t)) — x|[3]. 3)

To sample from conditional distribution p(x|c), the deep denoiser Dy (x; o' (t), ) receives an auxiliary
embedding c specifying the target class or other conditions during training such that conditional
sampling can be performed with:

dey = =0 (1) Ve, logp(|c; o(t))dt, ©)
where V4 log p(z|c; o (t)) = (Do(x;0(t), c) —x)/o(t). However, the naive (standard) conditional

sampling (4) alone often results in images with incoherent structures and fail to align well with the
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target condition [7]. Classifier-free guidance (CFG) [8] addresses this issue by steering the naive
conditional sampling trajectory with a guidance term:

g(@,t) = Vg logp(z|c;o(t)) — Vg log p(x; o (t)), ©)
so that (4) becomes:

dxy = —0(t)(Ve, logp(z|c;o(t)) +vg(x,t))dt, (6)

where 7 > 0 controls the strength of guidance. With a properly chosen 7, CFG substantially improves
sample quality, albeit with reduced diversity. Since its invention, CFG and its variants [9—15] have
become the backbone that powers the most advanced image generation systems [16—18].

Despite the practical success of CFG, its underlying mechanism remains largely unknown. As shown
in [7], the CFG-perturbed reverse trajectory does not correspond to any known forward process,
therefore, analyzing the effects of CFG requires case-by-case studies with explicit assumptions on
the data distribution. For example, work [19] proves that under an isotropic Gaussian mixture data
assumption, CFG boosts classification accuracy at the cost of sample diversity. The work [20] shows
that under either 1-D mixtures of compactly supported distributions or 1-D isotropic Gaussian data
assumptions, CFG guides the diffusion models towards sampling more heavily from the boundary of
the support. Despite providing invaluable insights, these analyses rely on oversimplified assumptions
that neglect critical aspects of real data, particularly the covariance structures of natural images.
Consequently, it remains unclear how well these theoretical results generalize to diffusion models
trained on complex image datasets.

In this work, we pursue a deeper understanding CFG’s mechanism, focusing on two core questions:
(1) What is the failure mode of naive conditional sampling, i.e., in what aspect is the generated images
subpar compared to the training images? and (ii) how does CFG mitigate this problem?

To answer the first question, we show that the naive conditional suffers from a lack of class-specificity
issue: images conditioned on different labels often share similar structures and lack distinct class
features. We posit that this issue can be partially attributed to the covariance structures of different
classes being insufficiently distinct. Recent studies [21, 22] observe that over a broad range of noise
levels, diffusion models can be unreasonably approximated by the optimal linear denoisers for the
multivariate Gaussian distribution defined by the empirical mean and covariance of the training
set. Consequently, the data covariance (and particularly its principal components, or PCs) heavily
influences the generation. However, as we will demonstrate, different classes can share overly similar
covariance structures, resulting in generated images that lack class-specific patterns.

Based on this intuition, we posit that CFG must identify the unique features of the target class. To
understand how this is achieved, we study the prototypical setting of the optimal linear diffusion
model, where we show that CFG guidance naturally decomposes into three components with distinct
effects: (i) a mean-shift term that approximately pushes the samples towards the direction of the class
mean, (ii) a positive contrastive principal components (CPC) term that enhances the target class’s
unique features and (iii) a negative contrastive principal components (CPC) term that suppresses the
features prominent in the unconditional dataset. Despite the simplicity of the linear model, the linear
CFG greatly improves the visual quality of generated samples in a way reminiscent of real-world,
nonlinear deep diffusion models, implying that nonlinear CFG share a similar underlying working
mechanism. We then investigate how well the insights derived from the linear setting extend to
actual diffusion models. We first show that at high to moderate noise levels, linear CFG yields highly
similar effects as those of the nonlinear CFG. As noise decreases further and the diffusion model
enters a highly nonlinear regime, the effects of linear CFG and actual nonlinear CFG begin to diverge.
Nevertheless, by interpreting denoising as weighted projection onto an adaptive basis, the insights
from linear analysis can still shed light on the CFG’s mechanism in the nonlinear regime.

Contributions. Our main contributions are as follows:

* We identify the lack of class-specificity issue of naive conditional sampling, linking it to the non-
distinctiveness of class covariances. Under a linear model assumption, we show CFG overcomes
this issue by amplifying class-specific features, suppressing unconditional ones and shifting the
samples in the direction of class mean.

* We validate these insights derived in the linear model on real diffusion models, demonstrating that:
(i) at high to moderate noise levels, linear CFG closely matches the effects of nonlinear CFG, and
(ii) at low noise levels, the insights from the linear analysis can still shed light on the mechanism of
CFG in this nonlinear regime.



2 Preliminaries

2.1 Optimal Linear Diffusion Model

Suppose Paa () has mean p and covariance ¥. Under the constraint that D(x; o (t)) is a linear
model (with a bias term), the optimal solution to (3) has the analytical form:

Di(@;o(t) = p+UA, U (x — p), )
where 3 = UAUY is the full SVD of the covariance matrix, A = diag(\y, - , \g) is the singular
values and Ao(t) = diag ( X _:‘012( LY ;\{jz)( t)). With this linear denoiser, the reverse diffusion
ODE (2) has the following closed-form expression (see appendix B.1 for the proof):

i+ 02 T
u+Z T )u- (@7 — p)u;, ®)

where T is the starting timestep and u; is the i'" singular vector of X, which is also the i principal
component. Note that in this linear setting, the generated samples are largely determined by the data
covariance.

Recent studies [21, 22] show that for a wide range (high to moderate) of noise
levels, deep network-based diffusion models can be well approximated by the linear
model (7), with p and X set to the empirical mean and covariance of the training data.
As shown in Figures 1 and 14, the sampling Dz, () atong Diffusi ing Tl

trajectories of the deep diffusion model (EDM)
and the linear model share high similarity at high
to moderate noise levels. Although the models
begin to diverge at lower noise levels—where
EDM exhibits strong nonlinearity and realistic
image content begins to form—their final sam-
ples still share a similar overall structure. More-
over, it is shown in [21] that this similarity is
particularly obvious when the deep network has
limited capacity or the training is insufficient.
Since Dy, (x;0(t)) is the optimal denoiser for
p(x;o(t)) induced by pgan(x) = N(w,X), sampling with Dy, is equivalent to sampling from
N (p, X). Hence, we refer to Dy, as the linear Gaussian model.

level o(t)=800 42415 21109 9.723

Figure 1: Comparlson of Sampling TraJectorles.
For high to moderate noise levels (o (t) € (4, 80]),
the linear denoisers well approximate the learned
deep denoisers. Though the two models diverge in
lower noise reigmes, their final samples still match
in overall structure.

2.2 Contrastive Principal Component Analysis

Principal component analysis (PCA) [23, 24] identifies directions that capture the most variances in a
dataset. These principal components (PCs), which are equivalent to the singular vectors of the data
covariance matrix, are widely used for data exploration and visualization. However, large variance
alone does not guarantee that a PC captures the unique patterns tied to the dataset; it may instead
reflect more general patterns such as foreground-background variations.

To discover low-dimensional structure that is unique to a dataset, the work [25] proposed the
contrastive principal component analysis (CPCA), which utilizes a background (or reference) dataset
to highlight patterns unique to the target dataset. Let X and Y be two datasets with covariance
matrices X x and Xy, respectively. For a unit vector v € S, its variances Varx (v) and Vary (v)
in the two datasets are:

Vary (v) := v Zxw, Vary (v) := vT Zyw. ©)

If v corresponds to a unique class-specific pattern of X, we expect Varx (v) > Vary (v),i.e., it
explains significantly more variance in X than in Y. Such directions, called the contrastive principal
components (CPCs), can be found by maximizing:

arg max v’ (Zx — Xy )v, (10)

vesd—1
which are essentially the top eigenvectors of ¥ x — Xy. Geometrically, the first £ CPCs span the
k-dimensional subspace that best fits the dataset X while being as far as possible from Y (see
appendix A for details). Conversely, directions v for which Vary (v) = Vary (v) represent either
universal structures shared by both X and Y or meaningless features lying in the null space of the
data covariances—and are thus discarded as less interesting. Finally, a scalar factor can be introduced
in (10) to control the strength of the contrast.
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Figure 2: Effects of CFG. Left and right figures compare the naive conditional sampling (top rows)
versus CFG-guided sampling (bottom rows) for deep diffusion models (EDM) and linear Gaussian
diffusion models, respectively. Each grid ceil corresponds to the same initial noise. While naive
conditional samples lack class-specific clarity, CFG significantly improves both visual quality and
distinctiveness. The conditional linear models are built with class-specific means and covariances.
Please refer to appendix D for more experiment results.

2.3 Posterior Data Covariance

Consider © ~ pga(x) and x; = = + o(t)e, where € ~ N (0, I). Then the posterior covariance of
p(x|x), denoted by Cov[z|x;], is proportional to the denoiser’s Jacobian [26]:

Cov[z|z;] = o?(t)VD(x; 0 (1)), (11)

where VD (x;0(t)) = %{;tg(m is the Jacobian of the optimal denoiser D(x; o (t)) at input x;.
Analogous to PCs, the singular vectors of Cov|[x|x;] are the posterior PCs, representing directions of
maximal variances of all clean images that could have generated the noisy observation ;. In the
case that pgua = N (i, X), we have Cov(z|z;] = o?(t)U A, ) U, matching VDL (z¢; 0 (1)), the
Jacobians of the optimal linear denoiser (7) , and is independent of a;. In more general scenarios, one
can approximate Cov[x|x;| by computing the network Jacobian at x; via automatic differentiation.

3 Analyzing CFG in Linear Model

In this section, we first show that naive conditional sampling often produces low-quality samples
lacking clear class-specific features, which we attribute to the non-distinctiveness of class covariance
matrices (section 3.1). We then theoretically analyze how CFG in the context of linear diffusion
models alleviates this issue (section 3.2).

3.1 Naive Conditional Generation Lacks Class-Specificity

Figure 2(left) (top row) shows samples gener-
ated via naive conditional sampling (4). Qual- ] : T T
itatively, these samples often exhibit poor vi- weatrog | mrsimcormos . werayiaarmes | mrormaermes
sual fidelity, with incoherent features that blend
into the background and the class-specific image
structures can be hard to discriminate. More- - - e

over, even when conditioned on different class « o

labels, images generated from the same initial Figure 3: Class-to-Class Similarity. Each cell
noise share high structural similarity, suggesting reports the FID between datasets of two classes,
that naive conditional sampling fails to capture built with (i) training data (ii) data generated by
discriminative, class-dependent patterns. naive conditional sampling and (iii) data gener-
ated by CFG sampling (refer to appendix D.2 for
experiment details and more results.)

FID between classes: training data / 1 CFG-guided samples

a | 238.4/27.4/270 167.2/ 12546 0 218/ 12806

etriever | 210.4/ 116 | 110/ 12185 281.8/249.0/280.6 )

To quantify this loss of class-specificity, we com-
pute the pairwise inter-class similarity with the
FID metric [27]. For each pair of classes, we construct two datasets X and Y and evaluate the FID
between them. As shown in Figure 3, when X and Y are built with images generated with naive
conditional sampling, the FID (colored in orange) is consistently lower than when they are built with
the training data (colored in blue). Since lower FID indicates higher similarity, this result confirms
that compared with the training images, which represent the ground truth data distribution, images
generated by naive conditional sampling are less distinguishable across classes.

This issue is especially pronounced in linear diffusion models. As shown in Figure 2(right, top row),
samples generated with linear diffusion models built with class-specific means and covariances appear



highly similar. From (8), we see that the linear sampling trajectory is governed by the data covariance:
x; is a linear combination of PCs, weighted by (i) the correlation u! (z7 — p) between the mean-

subtracted initial noise 7 and the i-th PC, and (ii) scaling factors ;‘#';((% that emphasize leading
PCs. Consequently, if class-conditional covariances lack sufficiently discriminative structures (which
is indeed true as shown in appendix D.3), generated samples will appear similar regardless of class
label. This lack of class-specificity aligns with prior findings [25], which shows that PCs often

capture generic image variations (e.g., foreground-background), rather than class-specific patterns.

The existence of the class-specificity gap implies these models fail to fully capture the higher-order
statistics of the training data: if they did, naive conditional sampling, which by construction samples
from the target conditional distribution, would already produce high quality samples, and CFG would
only distort the target distribution. Linear diffusion models represent an extreme case: due to the
linear constraint, they can only learn the first and second-order moments (mean and covariance) of
the training data, which despite being fundamental data statistics, cannot capture the rich, nonlinear
dependencies necessary for realistic generation. In particular, when covariances across classes share
high similarity, samples initialized from the same noise become visually alike regardless of label.

We hypothesize that real-world diffusion models inherit similar limitations. Although nonlinear
diffusion models surely learn beyond second-order statistics, as discussed in section 2.1, for high
to moderate noise levels, they can be well approximated by linear models, especially under limited
model capacity or insufficient training. Indeed, Figure 2 (top row) and Figure 13, 14 demonstrate that
linear models reproduce the coarse-grained structures of nonlinear diffusion samples, implying that
the covariance structure plays a significant role in shaping the high-level features of the generated
samples. These observations reflect a well-known simplicity bias, where deep networks favor learning
low-order, linearly structured representations over complex, higher-order dependencies [28]. Hence,
if the covariances are indistinct across classes, sample quality can be limited even in nonlinear models
(see appendix D.3 for more discussion).

As quantitatively shown in Figure 3, CFG significantly increases the inter-class separation: FID
(colored in green) between different generated classes rises. Qualitatively, Figure 2 (bottom row)
shows that CFG substantially improves both linear and nonlinear models, producing visibly better
samples with enhanced class-specific structures. Similar effects of CFG across both linear and
nonlinear models motivate us to use a linear model as a simplified prototype to analyze how CFG
reshapes the generation process and why it is effective.

3.2 How Linear CFG Leads to Distinct Generations

We now dissect how CFG, in the linear diffusion models, produces samples with distinct class-specific
features. Consider two independent optimal linear denoisers, Dy, (x;; o (t), ¢) for conditional data
and Dy, (z; 0(t)) for unconditional data, with means g, pt,. and covariances X. = U, A UL
and 3,. = U,.A,UT respectively. Substituting the optimal linear denoiser (7) into (6), the

uc

CFG-guided sampling process can be decomposed into three terms:
dwt = _U(t) (fc(wtv t) + gcpc(wtv t) + gmean(t))dt7 (12)

where by letting i}wt = UCAU(t))CUCT and f]uc’t = chAa(t)7ucU1Tc’ each term takes the following
form: (i) fe(xs,t) = o'%(t)(ic7t = I)(®: — pe), (i1) Gepe(Ti,t) = U%(t)(ic,t - 2u(:ﬂﬁ)(a:t — He)s
and (i) gmean (t) = sy (I = Bue,t) (e = Huc)-

Here, f.(x,t) is the standard conditional score, and gepc (2, t) plus gpmean () form the CFG guidance

(derivation for the decomposition is provided in appendix B.2). Let Vg(t)Ag(t)VaT(t) be the eigen

decomposition of f]c,t - f]uc’t, whose spectrum contains both positive and negative eigenvalues
(see Figure 18), gepe (4, t) can be split accordingly into positive and negative CPC components:

v . y A
UZ(t) (Va(t)7+Aa(t),+Vojgt)7+)(-’Bt - Hc) - 0'27(t) ;)\4_71"04_71- (’U—j&:,i(ajt — uc))’ (13)

positive CPC guidance

Vo)~ Aoy~ Vi ) (@i — pe) = J% Z Ao (v (e — o)), (1)

e
o2(1)

negative CPC guidance



where V(4 4 and V() _ contain eigenvectors v ; and v_ ; corresponding to positive and negative
eigenvalues Aa(t),—i— and Ao(t)7_ respectively. As discussed in section 2.3, f)qt and iuc,t are up

to a scaling factor o2(t) equivalent to the conditional and unconditional posterior covariances of
Pdaa(T]€) = N (e, Be) and paa(€) = N (Hue, Zuc). Hence, V4 are the CPCs which contrast
between X ~ pgaia(x|®s,c) and Y ~ pgaa(x|2:). Specifically, V) 1 captures directions of
higher conditional variance (class-specific features), while V() _ captures directions of higher
unconditional variance (features more prevalent in the unconditional data).

Distinctive Effects of the CFG Components. Figure 4(a) shows that for both nonlinear (EDM) and
linear models, CFG significantly enhances the characteristic pattern—a person holding a fish—of
the "tench" class from ImageNet [29]. Next, we isolate the roles of each CFG term by selectively
enabling only one at a time within the linear model. In the following discussion, we omit the negative
sign in (12) since the ODE runs backward in time:

* The positive CPC term (13) projects ; — p. onto the subspace spanned by the positive CPCs,
i.e., the eigenvectors v, ; associated with positive eigenvalues, with each component scaled by

its eigenvalue 5\+7i and the guidance strength +. Since 5\+7i > 0, (13) is added to x¢, i.e., the
components of x; — pt.. that align with the positive CPCs, which represent the class-specific features,
are amplified. Figure 4 (b) (second column) show the first 25 positive CPCs of X, — X, ' and
the resulting samples. Compared to the conditional PCs of the dataset, the positive CPCs better
capture the unique patterns of the class, which emerge visibly in the generated images.

* Similarly, the negative CPC term (14) projects «; — p. onto the negative CPC directions v_ ;.

Since 5\,’1- < 0, these components are subtracted from ., suppressing features associated more
strongly with the unconditional data. Figure 4 (b) (third column) shows the first 25 negative CPCs
and the resulting generations. Although visually less interpretable, these directions represent
common but target-class-irrelevant features in the unconditional data. Suppressing them reduces
background clutter and irrelevant content, making class-relevant structures more salient.

* In the context of linear diffusion model, it can be shown that (see proof in appendix B.2):
9mean (t) = ’YEa;Np(m|c,a(t)) [Vw Ing(w|C7 U(t)) — Vg 1ng(wa O(t))] (15)

Thus, the Mean-shift term g,,,..,, () can be interpreted as the probability-weighted average of the
steepest ascent direction that maximizes the difference (log-likelihood ratio) of the noise-mollified
conditional and unconditional distributions. Note that when o (t) is large, where I — f}umt ~ 1,
Imean(t) approximately shifts @; in the direction of gt — pi,c, which is the difference between
conditional and unconditional mean. As o(t) decreases, I — 3, progressively shrink the
components ft. — fye lying in the column space of U, (the covariances of image datasets are
typically low-rank), while preserving its energy in the null space.

Figure 4(b), fourth column, shows that the mean-shift term enhances the structure of class mean
in the generated samples. However, unlike the positive CPC term, ¢eqn (t) is independent of @y,
thus producing more homogeneous samples with reduced diversity.

Analytical Solution to the CFG Trajectory. To better understand the distinct effects of the CFG
components, we aim to examine the global solution to the linear ODE system (12). However, the
variables in the general solution of (12) are coupled and difficult to interpret. To obtain a more
tractable expression, we follow [30, 31] to make the following assumption:

Assumption 1. The covariance matrices . and 3. are simultaneously diagonalizable, i.e., 3. =
U.A UL, where U, € R? are the singular vectors (principal components) of the conditional
covariance. Here A, is not necessarily ordered by the magnitude of the singular values.

Assumption 1, known as the Common Principal Components Assumption is widely applied to analyze
structural relationships across data groups. Under this assumption, the relative importance of the
1-th principal component u. ; in the conditional and unconditional datasets is determined by the
relative magnitudes of its associated singular values. If A, ; > Ay 4, then u. ; is the positive CPC as
it captures more variance in the conditional distribution, while A.; < Ayc,; implies that u. ; is more
relevant to the unconditional distribution; therefore, it is a negative CPC.

! Although V,(+) depends on o (t), over a wide range of noise levels (especially high ones), it remains close
to the eigenvectors of 3. — 3,,.. We provide its full evolution across time in Figure 19.
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Figure 4: Distinct effects of different CFG components. (a) CFG substantially enhances class-
specific features (in both EDM and linear diffusion). (b) Top row: PCs, positive/negative CPCs,
and . — pqy. Bottom row: generated samples when each component is applied in isolation. (c)
One-dimensional densities of generated samples after projection onto key directions. The left column
corresponds to the linear diffusion model, whereas the right column corresponds to the EDM model.
Top row: project onto leading positive CPC. Middle row: project onto negative CPC. Third row:
project onto the mean-shift direction. Here we only plot the resulting histograms for the first positive
and negative CPCs but the same patterns hold for subsequent CPCs. For experimental details and
more results, please refer to appendix E.3.

Theorem 1. Under Assumption 1, the solution to the linear CFG process (12) is:

d
1 Aeyi +02(t
Ty = Me + Z h(Ac,is Auc,i) 2 )\ci-q-iﬁ((T))ucT*i(wT — e)Uc,i + “/UcBg(t)UCT(/ia — MBuc),
i=1 .

i 0'2 i 0'2 . .
where h(Aci, Auc,i) = ;‘:;_LQ((% . /};?;02(5)) and By, = diag(by (1)1, -+, bo(1),q) has diagonal

entries by (1) ; depending only on Xyc,i, Ac;; and o(t).

The proof is postponed to appendix B. Compared to the solution of the standard conditional sampling
(8), the CFG guidance introduces the following two effects:

* CPC guidance g.,.(x, t) introduces an additional scaling factor h(A. ;, )\um)% for each com-
ponent u, ; of ;. Since h(A¢i, Aucs) > 1only if Ac; > Ay, the positive CPCs are enhanced.
Conversely, the negative CPCs are suppressed. The guidance strength « serves as an additional
control over the degree of enhancement or suppression.

* Mean-shift guidance term g,,cqn (t) shifts x; by YU, B, (1 UZ (e — ptoc), a direction determined
by the class-conditional mean offset g1, — p,,.. Crucially, this shift is independent of the initial
noise r (and intermediate state x,) and is thus applied consistently to all samples, promoting
canonical class features but reducing diversity.

Empirical Verification. In Appendix B.3, we provide an empirical validation of Theorem 1 using

a 2D synthetic dataset that satisfies Assumption 1. Here, we further verify the CFG’s effects of

enhancing (suppressing) CPC components and shifting samples towards the mean-shift direction in

natural image dataset through the following experiment:

* For a chosen class, generate 1,000 samples using naive conditional sampling (denoted by x.) and
1,000 samples using CFG (denoted by x.s,), and center both sets by subtracting the class mean fi..

* Project each sample onto the positive CPCs (denoted as v ), the negative CPCs (denoted by v_),
and the mean-shift vector (denoted by . — pt,,.) to obtain a series of univariate distributions.

The above experiments are conducted on both linear and nonlinear (EDM) diffusion models. The
resulting univariate distributions are shown in Figure 4(c). Compared with naive conditional sampling,
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(b) Effects of linear CFG at individual timestep

Figure 5: Linear-to-nonlinear transition in diffusion models. (a) and (b) compare nonlinear CFG
and linear CFG applied to a deep diffusion model (EDM). The leftmost column shows unguided
samples; subsequent columns show final samples when guidance is applied only at a specific noise
level, with v = 15 (See Figure 25 for more examples).

CFG shifts probability mass toward higher projection values along the positive-CPC and mean-shift
directions, and toward lower values along the negative-CPC direction, indicating that the first two are
amplified whereas the third is suppressed.

4 Investigating CFG in Nonlinear Models

We now explore how the findings from the linear analysis extend to real-world diffusion models.
Recent studies [32, 21, 22] show that diffusion models transition from a linear regime to a nonlinear
regime as the noise level decreases. In the linear regime, where o (t) is large, the learned diffusion
denoisers Dg can be well approximated by the optimal linear denoiser Dy, (7) (see both qualitative and
quantitative verification in appendix F.1). As o(t) decreases, the diffusion model enters the nonlinear
regime where Dy diverges from Dr,. Interestingly, this linear-to-nonlinear transition correlates with
the coarse-to-fine effects of CFG. As shown in Figures 5 and 25, in the linear regime, linear and
nonlinear CFG produce similar effects, substantially reshaping the global structure of the samples.
In contrast, in the nonlinear regime, nonlinear CFG primarily refines local details while preserving
the overall structure, leading to different effects as those of linear CFG. This linear-to-nonlinear,
coarse-to-fine transition motivates our separate analyses of CFG behavior in each regime.

4.1 CFG in the Linear Regime

Figure 6 illustrates the effects of separately applying (i) nonlinear CFG, (ii) linear CFG, (iii)
mean-shift guidance, (iv) positive CPC guidance, and (v) negative CPC guidance within the
linear regime of EDM over a broad range of v. As expected, linear CFG® produces re-
sults that closely match those of nonlinear CFG, both significantly altering the overall struc-
tures of unguided samples. Notably, decomposing linear CFG provides further insights:
Mean-shift guidance dominates CFG in the
linear regime. As shown in Figure 6(a), qualita-
tively, mean-shift guidance alone replicates the
effects of both linear and nonlinear CFG. Con-
sistent with this observation, FDpmov2 scores
confirm that the mean-shift term is the main
contributor to CFG’s overall behavior. Because
mean-shift term is independent of the sampling

a(t) € [11.05,80)

Class: golden retriever
15 y=20

Guidance Strength y
(b)

(a)
Figure 6: Effects of CFG in Linear Regime.

trajectory, it can reduce sample diversity. As
shown in Figure 6(b), mean-shift guidance im-
proves generation quality only within a limited
range of v, after which further increases in y
degrade FDpnoy2 scores, reflecting a loss of
diversity.

CPC guidance also improves generation qual-
ity. Although overshadowed by the mean-shift
term, applying CPC guidance independently of-
fers notable benefits as well. Qualitatively, posi-

Each row in (a) demonstrates the impact of dif-
ferent guidance types applied to EDM within the
linear regime (specified in the subtitles), with vary-
ing guidance strength ~y. (b) shows the FDpov2
scores computed over 50,000 samples. The re-
ported values are relatively high because the scores
are computed separately per class, which often
has limited number of training images. It is well
known that FDpNoy2 scores can appear inflated
when the reference dataset size is small.

2Note that the “linear CFG” here differs from the “linear CEG” in section 3, where both the naive conditional
score and the cfg guidance are linear. In contrast, the linear guidance in this section, along with its components,

is applied to a real-world deep diffusion model.



tive and negative CPC terms preserve the global structure of unguided samples while refining existing
features, remaining effective over a broader range of v. Moreover, CPC guidance sometimes mitigate
the artifacts introduced by the mean-shift term, such as color oversaturation in the golden retriever
example at v = 20. Lastly, we note that the effects of CPC guidance can vary by class. As shown
in Figure 30, negative CPC term improves FDpnov2 scores for "golden retriever" but has minimal
effect on "sports car". These findings are verified on 10 classes, with additional results presented
in appendix F.2, Figures 27 to 30.

4.2 CFG in the Nonlinear Regime

In the nonlinear regime where o(t) is small, as shown in Figure 5(b), the effects of linear CFG
diverge from those of the actual nonlinear CFG. By Tweedie’s formula, the CFG guidance (5) can be

expressed as g(x,t) = D(m;”(t)(;?(;)p(mga(t) , where D(x; o (t), ¢) and D(z; o(t)) denote the optimal
conditional and unconditional denoisers minimizing (3). Unlike in the linear setting, these denoisers
do not admit closed-form expressions in the nonlinear regime, making analytical study difficult.
Nevertheless, when denoisers are parameterized by deep networks with no additive ’bias’ parameters,

their input-output mappings are locally piecewise linear [33, 34], satisfying:
D(az; o(t), c) = VmD(w; o(t), c) T, D(w; U(t)) = VmD(w; o(t)) T, (16)

where VD (x;0(t), c) and V5 D(x; 0 (t)) are the local Jacobians of the denoisers. In this case, the
(VwD(w;a(t)72)2—yw9(m;a(t)))m
defined under the linear setting in (12), since X, — X, = VzDL(x;0(t), ¢) — Ve Dr(z; 0 (1)),
where Dy, is the optimal linear denoiser. Thus, the guidance can again be decomposed into positive
and negative CPC components, enhancing the former and suppressing the latter. The key distinction
from the linear setting is that here, the CPCs are adaptive to the current input a.

CFG guidance becomes , which shares a similar form as gcp.(x, t)

The bias-free denoisers belong to the broader class of pseudo-linear denoisers [35, 36], which ad-
mit the form D(x;0(t)) = W (x;o(t))x, where W (x; 0(t)) is symmetric and input-dependent.
Importantly, it is shown in [35] that if the origin is a stationary point of the log-density, i.e.,
Vazlogp(x;o(t))|z=0 = O, then the optimal denoiser must possess such a piecewise linear
structure. Even if the diffusion models are not bias-free and the locally linear property does
not hold exactly, (16) still serves as a reasonable proxy. As discussed in section 2.3, the Ja-
cobian V,D(x;0(t)) is proportional to the posterior covariance. Its leading singular vectors
capture the dominant structures shared by all plausible clean images corresponding to the noisy
input x, while directions associated with near-zero singular values span a null space irrelevant
to the image content. Hence, (16) performs a weighted projection onto the subspace encod-
ing the most informative image structures—effectively functioning as a valid denoising operator.
Indeed, as shown in Figure 7(b)—(c), both con- .. oo —— o
ditional and unconditional Jacobians effectively

denoise the input, although their outputs appear
brighter and sharper than those from the actual
denoisers in (d)-(e). Comparing Figure 7(b)
and (c), we find that the conditional and uncon-
ditional Jacobians yield denoised outputs with
similar global structure, which implies both cap-
ture the generic structure of the current sample.
However, the conditional Jacobian additionally
preserves finer, class-specific details. A similar pattern holds for the actual denoisers shown in
Figure 7(d) and (e).

For guidance purposes, our goal is to selectively enhance these fine, class-specific details that
the conditional denoiser captures but the unconditional one does not. Achieving this requires
identifying directions that encode class-dependent information from those represent generic structures.
Empirically, as shown in Figure 8, the following guidance, inspired by the positive CPC guidance (13),
can lead to similar effects as the actual nonlinear CFG, sharpening image details:

U%(t) ;5\+1 vy (v] De(xs;0(t),0)), (4n

(d) (e)
Figure 7: Denoising Results. (a) Noisy input im-
age. (b)—(e) show the denoised outputs generated
with (i) conditional Jacobian, (ii) unconditional Ja-
cobian, (iii) actual conditional denoiser, and (iv)
actual unconditional denoiser, respectively.

where 5\+’i and v ; denote the positive eigenvalues and eigenvectors of VDg(x;0(t),¢c) —
VDg(x; o(t)). Unlike (13), this guidance applies projection to the denoiser’s output rather than the



noisy input &, which we find leads to better qualitative results. For comparison, we also test the
following non-selective guidance that enhances all conditional posterior PCs:

TS Neiuey (ul Dol 0(t), €)), (18)

o?(t)

where A, ; and u.; are the singular values and vectors of VDg(x; o (), ). As shown in Figure 8,
this approach fails to improve image quality and frequently produces images with oversaturated
colors, indicating that not all conditional posterior PCs correspond to class-specific features—effective
guidance must selectively amplify only those that do.

We note that our heuristic guidance serves as a conceptual approximation and may not always
perfectly align with actual CFG behavior; in practice, the actual nonlinear CFG yields more stable and
consistent results. Due to the black-box nature of deep networks, fully characterizing this mechanism
remains challenging, and we regard this as an important direction for future research.

Sample 2

Figure 8: Effects of CFG in the Nonlinear Regime. Different guidance methods, each with a
fixed strength of v = 15, are applied at individual timesteps in the nonlinear regime. Each image
shows the final output when guidance is applied solely at the timestep indicated at the top. Note that
(17) matches the effects of CFG by enhancing finer image details, whereas (18) does not improve
generation quality. For additional experimental results, please refer to Figure 36.

5 Discussion and Conclusion

The experiments in the main-text are conducted extensively using the EDM-1 model [4], which
operates directly in pixel space with 64 x 64 resolution. In appendix G, we present complementary
results on the EDM-2 [5] latent diffusion model, which generates images at 512 x 512 resolution.

The key insight of this work is that CFG enhances generation quality by amplifying class-specific
features while suppressing generic ones. In the linear setting, this effect emerges from the interplay
of three guidance components. Different from previous works which mainly focus on analyzing
isotropic Gaussian distributions, our study probes the covariance structures of image data, revealing
that salient class-specific features emerge from contrast between class covariances.

Although our analysis is based on linear diffusion model (Gaussian data) assumption, the results
remain noteworthy since: (i) CFG significantly enhances the generation quality of linear diffusion
models, making the linear setting a meaningful stand-alone testbed for studying CFG and (ii) real-
world diffusion models can be well-approximated by their linear counterparts for a wide range of
noise levels. We note that the dynamics of linear setting is by itself complex: an interpretable solution
to the linear reverse ODE is unattainable unless additional assumptions are imposed on the covariance
structures (e.g., the common principal components assumption). A natural next step is to extend the
analysis to Gaussian mixtures. We have made some initial attempts in appendix H, showing that
CFG guidance in the Gaussian mixture setting can be decomposed in a similar manner as the single
Gaussian case.

We believe our findings open several promising directions for future research. First, the observed
lack of class-specificity issue implies the current training procedures for diffusion models remain
suboptimal. This highlights the need for developing principled training objectives that explicitly
encourage the model to learn class-specific patterns. Second, beyond the context of CFG, PCA has
been widely utilized for extracting visual features or semantic concepts from diffusion models [37—
39]. Our results suggest that extending these approaches with Contrastive PCA can be a promising
next step for more controllable and interpretable generation.
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A Contrastive Principal Component Analysis

Principal component analysis (PCA) finds the features that explain the most variances in the dataset,
however, features with high variance do not necessarily correspond to distinct patterns of the target
class.

To discover low-dimensional structure that is unique to a dataset, the work [25] proposes the con-
trastive principal component analysis (CPCA), which includes a background (or reference) dataset to
highlight patterns unique to the rarget dataset. Let X and Y be two datasets with covariance matrices
S x and Xy, respectively. For a unit vector v € S, its variances Varx (v) and Vary (v) in the two
datasets are:

Vary (v) := v/ Sy, Vary (v) := v” Zyw. (19)

If v corresponds to a unique class-specific pattern of X, we expect Vary (v) > Vary (v), i.e. it
explains significantly more variance in X than in Y. Such directions, called the contrastive principal
components (CPCs), can be found by iteratively solving:
arg max v’ (Zx — By )v, (20)
veSd—1
where, at each iteration, the resulting v is subtracted from 3 x — 3. These directions are essentially
the eigenvectors of (X ) —3(Y). Conversely, directions v for which Varx (v) & Vary (v) represent
either universal structures shared by both X and Y or meaningless features lying in the null space of
the data covariances—and are thus discarded as less interesting.

Geometric Interpretation of CPCA. Geometrically, the first & CPCs span the k-dimensional
subspace that best fits the dataset X while being as far as possible from Y [41]. This is proved by the
following theorem:

Theorem 2. Without loss of generality, assume px () and py (y) have zero means (i.e., the data is
centered). Then the following objective is equivalent to (20):

arg min B |2 — 07|}~ By lly — v0"yl3. e
veSd—1
Proof:
v=argminEqp, ||z — vol |} - Eypy |1y — v’ yl[3
veSd—1
=argminEy (2" z — 2Tvv’z) — By (y"y — y vv'y)

vesd—1
= arg min By, (—x"vv’ z) — Ey(—y vo’y)
vesd—1

T

= arg min —E (7 vv ) + B, (y vov’y)

veSd—1

= arg max E (7 vov’ x) — By (y vo’y)
vesd—1t

= arg max v’ Eg(zz” v — v By (yy” v
,UGSd—l

= argmaxv’! (Zx — Ty )v.
vesd—1

This proof is adapted from [41].
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B Analytical Solution to the Reverse Diffusion ODE

In this section, we examine the solutions to both the naive reverse diffusion ODE (2) and the CFG-
guided reverse diffusion ODE (6) in the context of linear diffusion models. We follow the EDM
formulation [4], which uses time schedule o (t) = ¢. Notice that this same schedule is also used by
the well-known DDIM sampler [2].

B.1 Naive Diffusion Reverse ODE

We begin by analyzing the diffusion ODE (2) with no guidance applied. The proof below is borrowed
from [22].

Let ¢ and X be the mean and covariance of pgu. () respectively. Suppose UAUT is the full
SVD of X with U € R%*? being orthonormal and A = diag(\;,--- , \¢) contains the singular
values. For image datasets, the covariance is often low-rank implying some singular values are 0.
Under the constraint that D(x; o(t)) is linear (with a bias term), the optimal solution to (3) has the
closed-form [21]:

D(x;0(t)) = p+ UMy U (x — p), (22)

where Aa(t) = diag ( o +)‘012( o ) This optimal linear solution is obtained by setting

Ad
> Xat+o?(t)
the derivative of (3) with respect to the weight and bias to zero, leveraging the fact that the objective

is convex under the linear constraint.

Following the EDM framework, this optimal linear denoiser yields the sampling trajectory for (2) as:

dx = —oV g log p(x;0)do (23)
_ A T _
- do — (I UAUIOJ_ )(x — p) do (24)
_ A T(p _
od(z—p) = ZU A")UU @=H (25)

where we omit the subscript ¢ for simplicity.

Define ¢ (o) = u} (x — p) for k € {1, ..., d}, we have:

dep(o) = ﬁck(a)da (26)
dex(9) 7 __do. 7

ck(o) T M+ o2

Integrating both sides of (27), we get:
dlogci (o) = dlog \/m (28)
= cx(0) = VA + 020, (29)

where C is the integral constant. Using the initial condition ¢y (o7) = uf (zr — p), we have:

T _
\/ )\k + O’%
A, + 02
= (o) = A:Jrio_zu{(:w — ) (31)
T
d
= Tr=un+ Z T 2 Uk (xr — p)uy, (32)
et Ak + or

where the last equality holds because x; — pu = Z?: i Ck(o) g

Notice that the generated samples are primarily determined by the data’s covariance structure.
However, since the covariance may not capture the most distinctive features of a specific class, the
resulting images often lack sufficient class specificity.
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B.2 CFG-Guided ODE

To apply CFG, we need two separate models corresponding to conditional and unconditional
data respectively. Let p., p,. be the means of the conditional and unconditional data, and

let ¥, = UCACUCT , Yye = UuCAucUgC be their corresponding covariances, where A, =

diag(Ae,1, -+ 5 Ae,q) and Ay = diag(Aye,1, -+ Auc,a)- Then the conditional and unconditional
optimal linear denoisers take the following forms:

Di(z;0(t),¢) = pe + U oy UL (x — pe), (33)

DL(z;0(t)) = Hue + UuCAuc,o(t)UzTc(m — Puc), (34

Then the CFG sampling trajectory (6) can be expressed in terms of the optimal linear denoisers:

dz, = _U(t)(DL(wt;th(i,)c) — X n ’yDL(wt; a(t)7§l(;)DL(:Bt; O’(t)))dt (35)
1
= U(t) (U, Ag(t) CU —I(xy — pe)dt (36)
vy ~
%(UCA o(t), CU chAo’(t) ucUT )(wt - lj/c)dt (37)
- %(I chAo(t) ucUgc)(Nc — Puc)dt, (38)

where (36) is the naive conditional score while (37) and (38) together form the CFG guidance
direction. Note that under the setting of linear diffusion model, we have

p(@;0(t) = N (Hue, Bue + (1)), (39)
p(xle;o(t) = N (e, Be + (1)), (40)
Valogp(x;o(t) = (Bue + 02 () 1) " (prue — ),  (41)
Ve logp(zlc;o(t)) = (e + o> () (pe —x),  (42)
Ezp(aleon) Ve l0gp(®|c; o(t) — Vg log p(x; 0 ()] = (Bue + 0 () I) ™ (ke — tue)  (43)
1 .
= 0_2(t) (I - Euc,t)(“’c - /JJUC) (44)
Therefore, we have:
9mean (t) = IVEmNp(m|c,0'(t)) [vm 10gp(:13|c J( )) —Va 10gp((L’7 U(t))] (45)
p(zlc;o(t))
= ’YEmwp(cﬂc a(t)) [V log m] (46)

which implies the mean-shift guidance term can be interpreted as the probability-weighted average of
the steepest ascent direction that maximizes the log-likelihood ratio of the noise mollified conditional
and unconditional distributions.

Since (35) is a first-order non-homogeneous differential equation, its closed-form solution can in
principle, be expressed through integrals. However, these integrals cannot be explicitly evaluated or
decoupled in the general case. To obtain a tractable, interpretable solution, we must impose additional
assumptions on the structures of 3. and 3,,.. Therefore, we make the following assumptions:

Assumptlon The covariance matrices 3. and 3, are simultaneously diagonalizable, i.e., 3, =
U.A, UL, where U,. € RY are the principal components (singular vectors) of the conditional data.
Here A is not necessarily ordered by the magnitude of the singular value.

This is well-known as the Common Principal Components assumption [30, 31], widely utilized to
analyze structural relationships across data groups. Under this assumption, the relative importance of
the k™ principal component U} in the conditional and unconditional datasets is fully determined by
the relative magnitudes of its associated singular values:

o If Aok > Auc ks then u, i explains more variance in the conditional dataset than in the unconditional
dataset, i.e., it is more distinct for the conditional data. This corresponds to the positive CPC
discussed in the main text.
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* Conversely, if ¢ < Ayc,k, then u. ; explains more variance in the unconditional dataset than
in the conditional dataset, making it more distinct for the unconditional data and therefore it is a
negative CPC.

Under the assumption, the CFG guided ODE (35) can be simplified as:

I-U, Arf PUT)( — ) do — ,YUC(AU.,C — Ao,?LC)Uf(m — )

dx = do (47)
o o
UCI_AaucUT c uc
U AU e =) e
o
Define ci.(0) = ul, (x — p.), we have:
o U()\c k— Auc k)
d =—7 do — : : (o)d 49
ck (o) o o ck(o)do ’Y()\c,k T S w— Uz)ck(a) o (49)
T
_ ’Ymuak(uc — Mye)do. (50)
Therefore, the dynamics of dcg (o) can be expressed as:
deg(0) + f(o)cx(0)do = g(o)da, (51)
o g )\c >\uc o
’ Where f(U) = _(/\c,k“l’o'2 ’y()‘r k:’ojk)( Auc, kk‘zoj)) and g(U) = _’ymuz—;k<l~l’c - Nuc).

Homogeneous ODE. We first consider the homogeneous counterpart of (51):

dey(0) = —f(0)cr(o)do, (52)
where — f (o) ¢y (0)do corresponds to the combination of the standard conditional score (36) and the
CPC guidance term (37). Integrating over both sides of (52), we get:

cr(o) = Cel —F(o)do, (53)
Notice that:
g U<)\c k — )\uc k:)
—flo)do = | ————do — : : do 54
[ iorin= [ 5 frio [ G oY
1 ¥ Aek + 02
= = In(\. B4 Lin(2E ), 55
2n( 7k+0’)+2n()\uc,k+o—2) (55)
which implies:
1 Ak +0% o
() = COr + ") (L2 5. (56)
Applying the initial condition that ¢ (o) = ucT w(TT — pe), we have:
ek + o2
C = (A +02*%C’7T*uzwmf( 57
O+ o0) LT Sl o~ ) 57
(58)
ck+0-t uck"’a%l )\ck+0't2 T
= ck(o : 2 ’ U, 1 (TT — He 59
k t ’; k+JT )\uc,k+0t2) >\c,k+0% C7k( T H ) ( )
d
3 [ Ak + 0}
= Ty = He + Z h(>\c,k; /\uc,k)g )\ki_*_o.;ugk(wT - Hc)UC,k’a (60)
k=1 ek O
where h(Ac i, Auck) = Ae e to (1)’ A“C”“+02(T). Compared with the solution to the naive reverse

Aek+02(T) Aue,x+02(t)
process with no guidance (32), each component of x, differs only by a scalar factor h(\. , )\uc}k)%
Specifically:
* h(Aek, Auc,kr) > 1if and only if A. ;> Ay x, meaning positive CPCs are enhanced (scaled up).
o h(Acks Aucr) < 1if and only if e < Ay, meaning negative CPCs are suppressed (scaled
down).

Note that the guidance strength  provides additional control, amplifying or reducing the degree of
enhancement or suppression for each component.
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Figure 9: CFG effects in 2D. Each subplot differs by the class mean p., indicated in the titles.
Blue, orange and green points show 1,000 samples generated from conditional sampling, naive
unconditional sampling and CFG sampling, respectively.

Non-Homogeneous ODE. Let ¢;(o) be the solution to the homogeneous ODE (52), then the
solution to the non-homogeneous ODE (51) takes the form:

. 1
cule) = (o) + 775 [ 1()alo)ie’ )
where I(c) = eJ /(74" ig the integrating factor. Since:
Aek + 07
1(0) = COi +0) 12 75) (62)
we have:
1 Ak F02 2 (77 Nyer +62)3 71 s
cp(o) = cr(o) +v(Ae +025’72/ —uz ¢ — Wye)odo (63
1(0) = e(0) 490 o GETTT [ Bl (e = )i (63
= &(0) + Yoo puc i (Be = Buc), (64)
1 o X ro T R
where by = (Ae i +02%)2 (%) 2 07 %ada. Therefore we have:
we >\c,k+5’ 2
d d
1 [ Ak +0?
T = pre+ D (ks Muck) ? Ac’kfaéuf,k(w — pre)tek 7> brtbe pul (e — Puc)
k=1 ok T T k=1
(65)
- 3 ekt 07 T
= HMc + Z h()\c,ka )\uc,k) 2 mucﬁk(iﬂT - Hc)uc,k + ’YUcBat UC (Hc - Huc)a (66)
k=1 G T

where B,,, = diag(by, 1, ---, bs,,4). Here by, depends only on Ay, Ac,x and o (). Hence the mean-
shift guidance term (38) has the effect of adding constant perturbations that are independent of the
initial noise @7 to the sampling trajectory.

B.3 Empirical Verification on Synthetic Data.

S

We validate Theorem 1 on a 2D toy model with U, = | 2 Y3 |, A, = [109] and A, = [3 %]
Vi V2
Figure 9 shows the effects of CFG under different class mean p. (with v = 1 and p,, . = 0). As

predicted, CFG enhances variation along the positive CPC [ 25 <5 1", suppresses variation along

the negative CPC [ % — =57, and shifts samples roughly toward i, — ft,. at a rate proportional to
Yk = Hucl2-

C Constructing Linear Denoisers

Constructing the linear denoisers (7) requires estimating the data means and covariances. We perform
our experiments on CIFAR-10 [42] and ImageNet dataset [29], estimating the linear denoisers for
each dataset in different ways:
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* CIFAR-10. This dataset consists of 10 different classes, each with 5000 images. We obtain the
unconditional linear diffusion model by computing the empirical mean and covariance across all
50000 images. For conditional linear diffusion model, we construct a separate linear model for
each class, using that class’s mean and covariance estimated from the 5000 images.

» ImageNet. This dataset contains 1000 classes, each with approximately 1000 images—a smaller
per-class sample size that can introduce bias when estimating means and covariances directly
from the training set. Although such direct estimation still yields linear denoisers aligned with the
actual diffusion models in the linear regime, these denoisers tend to generate noisier images. We
hypothesize that, in the conditional setting, each class’s diffusion denoiser may implicitly leverage
information from other classes, meaning the true mean and covariance learned by the deep diffusion
model can differ (albeit slightly) from the those estimated solely from that class’s data. To obtain
a more accurate linear approximation, we therefore generate 50,000 samples per class with the
trained diffusion model, then compute the empirical mean and covariance from these generated
samples. Nonetheless, all of our main conclusions remain valid even if we build the linear models
using the actual ImageNet training data.

D Naive Conditional Generation Lacks Class-Specificity

In section 3.1 we argue that naive conditional generation lacks class-specificity and in the linear model
setting, such issue can be partially attributed to the non-distinctiveness of the class covariance matrices.
In this section, we provide comprehensive experiments to support our claim both qualitatively and
quantitatively.

D.1 Qualitative Results

We generate samples using naive conditional sampling (4) and CFG sampling (6) for all 10 classes
of CIFAR-10, as well as for 10 selected ImageNet classes: including (i) class O: tench , (ii) class
31: tree frog, (iii) class 64: green mamba, (iv) class 207: golden retriever, (v) class 430: basketball,
(vi) class 483: castle, (vii) class 504: coffee mug, (viii) class 817: sports car, (ix) class 933: cheese
burger and (x) class 947: mushroom. CFG is applied to the entire noise interval o (t) € [0.002, 80],
with guidance strength v = 4. The results for CIFAR-10 and ImageNet are shown in Figure 10
and Figure 11 respectively.

Our key observations are as follows:

* Linear Diffusion Models. Despite being built from class-specific means and covariances, the
conditional linear diffusion models produce visually similar samples that lack distinguishable class
features. From (8), we see that the generated samples are largely shaped by each class’s covariance
structure; hence, their indistinct and low-quality generations suggest that these covariance matrices
are insufficiently distinctive.

* Deep diffusion models (EDM) These models inherit similar limitations. The generated samples
often exhibit poor image quality, with incoherent features that blend into the background and the
class-specific image structures can be hard to discern. Furthermore, images generated from the
same initial noise can appear structurally similar even under different class labels, indicating that
naive conditional sampling fails to capture distinct, class-specific patterns. Lastly, comparing the
generations from linear model and EDM reveals they match in terms of the overall structures,
underscoring the key role of covariance in shaping higher-level features. Consequently, when class-
specific covariance matrices are not sufficiently distinct, sample quality remains limited—even in
nonlinear models.

D.2 Quantitative Results

To quantify the class-specificity gap, we compare the pairwise class similarity with FID score [27],
which measures the similarity between two datasets X and Y in the Inception embedding space. For
every ordered pair of different classes (c;, ¢;) we build two datasets (X, Y") and compute FID(X,Y")
under three settings:

* Real data. X and Y contain all training images from classes c¢; and c;, respectively.

20



Deep Diffusion Model (EDM)

Class: bird . _airplane automobile
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conditional
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(a) Naive conditional and CFG generations for EDM

Linear Diffusion Model

Class: bird cat frog airplane automobile
i B i [ ry oz

Naive

conditional

samples

CFG Samples .

Naive
conditional
samples

CFG Samples

(b) Naive conditional and CFG generations for linear diffusion model

Figure 10: Effects of CFG on CIFAR-10. (a) and (b) demonstrate the naive conditional samples and
the CFG-guided samples of deep diffusion model and linear diffusion model respectively. Each grid
corresponds to the same initial noise.

* Naive conditional sampling. X and Y contain images generated by vanilla conditional sampling (4)
with the EDM model. We generate approximately the same number of images as the corresponding
training images.

* Classifier-free guidance (CFG). X and Y contain images generated from the same EDM model us-
ing CFG sampling (6). We generate approximately the same number of images as the corresponding
training images.

The results are presented in Figure 12, which shows that for most pairs of classes, when X and
Y are built with images generated with naive conditional sampling, the FID (colored in orange) is
consistently lower than when they are built with training data (colored in blue). Because lower FID
indicates higher similarity, this results confirms that images produced by naive conditional sampling
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Deep Diffusion Model (EDM) Linear Diffusion Model

tree frog green mamba basketball Class: tench tree frog green mamba basketball

Class: tench

samples
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Naive
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(a) Naive conditional and CFG generations for EDM (b) Naive conditional and CFG generations for linear diffusion model

Figure 11: Effects of CFG on ImageNet. (a) and (b) demonstrate the naive conditional samples and
the CFG-guided samples of deep diffusion model and linear diffusion model respectively. Each grid
corresponds to the same initial noise. Here we only display 6 classes since the other 4 classes are
presented in fig. 2.

FID between classes: training data / / CFG-guided samples
tench | o 23812C0IOL | BRAIZIAIUIO | WOAIZICITIG | TAG/WLSINET | ROINCTIWS | WIIIAI2/BA | RIIIZISI%06 | AII249/208 | 210512019 /2671
tree frog | 23.8/2160/279.1 o 1672/1133/2506 | 237.0/2129/2185  2606/2650/2830  20.5/284/258 | 2008/1005/270  251/255/2815  187.4/1727/249  187.5/1658/2526
green mamba | 236.4/227.4/2470  1672/1133/2546 o 2818/2000/2806 | 3041/2016/3254  2639/252.4/2609 | 2489/220/2672  2531/2152/2776 | 2392/2003/2443  2373/195.4/2826
golden retriever | 210.4/2236/2716  237.0/2129/2785  2818/2:9.0/ 2806 ° 255.9/2129/2000  2329/2150/2543 | 200.5/1852/2419  231.1/2162/2600  2255/202.4/2411  220.6/190.0/247.1
basketball 4 2716/2015/3087 260.6/265.0/283.0 3041/ 2016/3254 255.9/242.9/290.0 o 250.1/2104/279.4 2182/2123/2395 27912380/ 2153 255.0/267.0/ 2717 2524/2502/2783
castle | 203/267/270  mos/measmes | 39/:24/209  2291250/2363 | 2501124412008 0 6201627200 N03/205/2302 | @3EIN69/209 | 212012107 /3387
Coffee mug | 233127212501 | 2081105/2070 | 489/ 2291272 | WO5/WS2/M19 | N82/N231B95 | 2082/ 1962/ 280 o We2/UseImsy | UE3/Essimes | 197201491202
sports car{ 213/238/260.6 = 25.1/255/2615 | 253.1/2052/2776 | BL1/2162/2600  237.9/238.0/2753 | 2103/2005/2592 | 1882/175.8/225.7 o A15/2065/2389 | 241/2223/2193
cheeseburger { 213.1/2049/2318  1874/1727/249  2392/2003/2443 | 255/2024/411  2550/267.0/27017  256/2199/2309  1783/1635/2195  2115/206.5/ 2389 0 168.0/157.5/211.1

mushroom -+ 2105/2019/267.1 187.5/1658/252.6 2373/1954/2826 220.6/190.0/247.1 2524/2542/2783 2120/2107/2387 197.2/184.9 /2802 241/ 12193 168.0/157.5/211.1 o
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Figure 12: Class-to-Class Similarity (Measured with FID). Each cell reports the FID between
datasets of two classes, built with (i) training data (ii) data generated by naive conditional sampling
and (iii) data generated by CFG sampling.

are less distinguishable across classes than the real data. In contrast, CFG greatly improves the FID
score, implying an increased inter-class separation.

The samples used for calculating FID in Figure 12 are generated using 20 steps of Euler method
(first-order sampler). Increasing the number of steps or switching to higher-order sampler only
marginally narrows the gap. Table 1 shows the inter-class FID averaged over 10 selected classes as
described in appendix D.1 with different sampling steps and sampler. Note that even when using
100 steps and second-order Heun samplers, the average inter-class FID is still considerably smaller
compared to the training data (ground truth). Figure 13 qualitatively visualizes the samples generated
from the same initial noise but different class labels. Despite conditioned on different labels, the
generated images share high structural similarity. For certain classes, such as tree frog, green mamba
and golden retriever, the class features are even hard to discern. In contrast, CFG greatly reduces the
structural similarity, yielding images with clear, class-specific features.
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(f) CFG guided sampling with 20 steps (Euler)

Figure 13: Naive conditional sampling lacks class-specific features. Figure (a) shows the samples
generated with naive conditional sampling using linear diffusion models. Figures (b)-(e) show the
samples generated with naive conditional sampling using the actual diffusion models with different
steps and samplers. Figure (f) shows the generated samples with CFG guided sampling. Note that the
generated images from linear models of different classes share high visually similarity, implying the
covariance structures of different classes are not distinctive enough. Similar structural similarity can
be observed in the samples of nonlinear diffusion models. CFG greatly alleviates this issue of lack of
class-specificity, leading to images with clear class-specific features.
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D(x,, o(t)) along Diffusion Sampling Trajectory
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Figure 14: Similarity between Linear and Nonlinear Models. For high to moderate noise levels
(o(t) € (4,80)), the linear denoisers well approximate the learned deep denoisers. Though the two
models diverge in lower noise reigmes, their final samples still match in overall structure. Although
the linear models are built separately for each class according to (7), they generate highly similar
samples when starting from the same initial noise. The same similarity also exists in the samples of
real-world diffusion models.
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Table 1: Average inter-class FID for training data and various sampling settings (10-class average).

Method Steps Sampler Avg. FID
Training (ground truth) - - 226.6
Naive conditional 10 Euler 210.7
20 Euler 214.6
30 Euler 215.8
50 Euler 215.9
100 Euler 216.2
100 Heun 216.3
CFG guided (y = 4) 20 Euler 258.9

D.3 Covariance Matrices of Different Classes Lack Class-Specificity

The lack of class-specificity is especially pronounced in linear diffusion models. As shown in Fig-
ure 13(a) and Figure 14, although the linear diffusion models are separately parameterized with
the class-specific means and covariances for each class, the resulting samples share high similarity.
Since the generated samples of the linear models are governed by the data covariances, the observed
inter-class similarity implies that the covariance structures of different classes are not distinct enough.

Next, we quantitatively demonstrate that the class-specific covariance matrices are insufficiently
distinct. To do this, we take U, the principal components (PCs) of the unconditional dataset (i.e.,
the singular vectors of the unconditional covariance), as a baseline. We then compare U,,. to U,
the PCs of each conditional dataset. As shown in Figure 15 and Figure 16, the correlation matrices
Ug U, for 10 classes (5 from CIFAR-10 and 5 from ImageNet) reveal that the leading PCs of each
class share high similarity with those of the unconditional data. Thus, the PCs do not necessarily
capture the distinctive features of individual classes though they represent the dominant variations of
the dataset. Instead, these PCs often reflect global intensity or foreground-background variations.

Why Covariance Structure Matters? Covariance structures are fundamental statistics of a target
distribution, and we would expect a robust diffusion model to learn them accurately. However,
because these covariance structures are not sufficiently distinct, linear diffusion models—relying
heavily on covariance for generation—struggle to produce high-quality images. To achieve better
fidelity, models must leverage higher-order information beyond covariance. Recent works [21, 22]
observe that deep diffusion models can be approximated unreasonably well by linear diffusion models,
especially when the model capacity is limited or the training is insufficient [21]. Qualitatively, we have
demonstrated the similarity between linear models and the actual diffusion models by showing that
linear models replicate the coarse (low-frequency) features of samples generated by deep diffusion
models. These results suggest that deep diffusion models may have an implicit bias toward learning
simpler structures such as covariance, and thus the suboptimal nature of data covariance for generation
task can limit their generative quality.

E Mechanism of Linear CFG

In the setting of linear diffus~i0n model, (37) and (38) together forrg the CFG guidance. For the
following discussion, we let X ; = U, A1), UL and Byey = UneAo (1) U

E.1 Mean-Shift Guidance

Equation (38) is the mean-shift guidance term that shifts a; towards (I — 2uc,t) (He— Huc), a direction

independent of the specific sample x;. At sufficiently large o' (t), (I —Xue.t) (e — Buc) = e — Hucs
indicating the mean-shift term approximately shifts x; towards the direction of the difference between
class mean and unconditional mean g, — ptyc. As o(t) decreases, the components of 1. — Ly
within the subspace spanned by the unconditional PCs (U,,.) progressively shrink to 0. Figure 17

demonstrates . — pt,,. and the evolution of the mean-shift guidance term (I — f]ucyt)(uc — Muc)
across different noise levels. Notice that for a wide range of noise levels o (t), (I — Zyet) (He — Huc)
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Figure 15: Covariance Structures of CIFAR-10. Each row corresponds to a different class. On the
left, we show the correlation matrix between conditional and unconditional principal components
(PCs), visualizing only the first 25. The subsequent images depict several highly correlated PCs, with
correlation values displayed underneath. These results illustrate that the leading PCs do not always
capture class-specific patterns.

remains close to . — p,., before it becomes uninformative at small o (¢). Hence, as stated in the
main text, the mean-shift guidance term has the effect of approximately shifting «; in the direction

Hec — Hyc-
E.2 CPC guidance

Equation (37) is the CPC guidance term. Let Vo.(t)Aa(t)V ) be the eigendecomposition of EC t—

f)uc’t, whose eigen spectrum is demonstrated in Figure 18, the CPC guidance term can be further
decomposed into the positive CPC and negative CPC guidance:

¥ o

20 Vo) +Do(t)+ Vi) 1) (@ — pe)dt, (67)
ol

0_2( )(Vo(t) — U(t)7 Vaqgt),—)(mt - “’C)dta (68)

where V5 4), + and V(4 _ contain eigenvectors corresponding to positive and negative eigenvalues

Ag(t) 4+ and A (t),— respectively. As discussed in section 2.3, Ec + and Euc ¢ are (up to a factor

a(t)?) the conditional and unconditional posterior covariances of pguu(x|c) = N (e, X.) and
Pdaa(T) = N (e, Zue)- Hence, V. 1) are the CPCs which contrast between X ~ pgqtq (|, €)
and Y ~ pyawa (x| ). Specifically, V(4  captures directions of higher conditional variance (class-
specific features), while V) _ captures directions of higher unconditional variance (features more
relevant to the unconditonal data). Figure 19 illustrates the evolution of positive CPCs (V4 1)
and PCs (U,) across different noise levels. It is evident that the positive CPCs better capture the
class-specific patterns compared to PCs. Here we choose not to display negative CPCs since they
correspond to generic features that explain more variances for the unconditional dataset, which
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Figure 16: Covariance Structures of ImageNet. Each row corresponds to a different class. On the
left, we show the correlation matrix between conditional and unconditional principal components
(PCs), visualizing only the first 25. The subsequent images depict several highly correlated PCs, with
correlation values displayed underneath. These results illustrate that the leading PCs do not always
capture class-specific patterns.

are less visually interpretable. Nevertheless, as we will show next, suppressing these directions is
beneficial.

E.3 Distinct Effects of the CFG Components
As we discussed in the main text, the three CFG components have the following effects respectively:

* The positive CPC guidance term amplifies the components of x; that lie in the subspace spanned
by the positive CPCs, thereby enhancing class-specific patterns.

* The negative CPC guidance term suppresses components of x; that lie in the subspace spanned
by the negative CPCs, mitigating background clutter and irrelevant content. As a result, the
class-relevant sstructures become more salient.

* The mean-shift term approximately shifts a; in the direction g, — pt,., enhancing the structure of
class mean within the generated samples. However, since this perturbation is independent of the
specific x, it tends to reduce sample diversity.

Qualitative Results. Figures 20 and 21 qualitatively demonstrates the effects of each CFG compo-
nent in linear diffusion models over 10 different ImageNet classes.

Quantitative Results. The distortion effects of the CFG components can be quantitatively verified
through the following experiment:

* For a chosen class, generate 1,000 samples using naive conditional sampling (denote the samples as

x.) and 1,000 samples using CFG (denote the samples as @, ), and center both sets by subtracting
the class mean ..
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Figure 17: Evolution of Mean-shi~ft Guidance. The leftmost image shows pt. — iy While the
subsequent images illustrate (I — 3, ¢)(tc — uc) at various noise levels o(¢). Note that over a
wide range of (), (I — 3yet) (e — Muc) remains close to fre — Lye.
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Figure 18: Eigenvalues of f)at — f]uc’b The matrix f]at - f)uc,t exhibits both positive and negative
eigenvalues, whose corresponding eigenvectors correspond to positive and negative CPCs respectively.
Though we only show the spectrum for three classes, this behavior remains consistent across other
classes.

« For a chosen positive (or negative) CPC v, compute the projection magnitudes |v” (. — p..)| and
|vT @y — p1c)] to obtain a series of univariate distributions along v.

* Project the same samples onto the mean-shift direction g1, — f1,,. by performing (. — prye)” (zo —
tee) and (pe — Nuc)T(wcfg - ).

The resulting univariate distributions quantify the amount of energy the samples have along these
directions. The above experiment are performed on both linear and nonlinear (EDM) diffusion
models. The samples are generated using 20 steps and the guidance strength -y is set to 2. We focus
on the first class of ImageNet (tench) and present the results on the first 5 positive CPCs and negative
CPCs. As shown in Figures 22 and 23, compared to the samples with no CFG, the distributions of
the CFG-guided samples have higher density on the positive CPC directions but lower density on
the negative CPC directions, implying the former is enhanced while the latter is suppressed. The
univariate distribution of the projection onto the mean-shift direction is presented in Figure 4(c)
(bottom row), from which it is clear that the density is shifted in the direction of . — ftyec.
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Positive CPC Positive CPC Positive CPC Positive CPC Positive CPC Positive CPC
a(t) =80.0 o(t) = 42.415 o(t) =21.109 a(t) =9.723 o(t) =4.066 o(t) =1.502
o . —— - .

(e) golden retriever
Figure 19: Visualization of PCs and Positive CPCs. Compared to principal components (PCs),

the positive CPCs better capture class-specific patterns. Although only five classes are shown here,
similar trends appear across other classes as well.
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CFG guidance
5, & y

(e) coffee mug

Figure 20: Distinct Effects of Different CFG Components. Each row shows (from left to right) the
samples generated with (i) naive conditional sampling, (ii) guided with positive CPC term only (ii)
guided with negative CPC term only, (iii) guided with mean-shift term only and (iv) guided with the
full complete CFG. Each row corresponds to a different class.
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CFG guidance

(e) cheeseburger

Figure 21: Distinct Effects of Different CFG Components. Each row shows (from left to right) the
samples generated with (i) naive conditional sampling, (ii) guided with positive CPC term only (ii)
guided with negative CPC term only, (iii) guided with mean-shift term only and (iv) guided with the
full complete CFG. Each row corresponds to a different class.
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Figure 22: CFG enhances positive CPCs. For both linear and deep diffusion models, we randomly
generate 1,000 naive conditional samples . and CFG-guided samples ., center them by subtracting
the class mean p., and project them onto the top 5 positive CPCs (v_.) to obtain a series univariate
distributions. In both model types, the distributions of CFG-guided samples have greater density at
higher projection values, suggesting that CFG amplifies the positive CPCs.
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Univariate Distribution of [v (x, — p.)| and [v7 (x¢rg — 1)
1st negative CPC Linear Gaussian EDM

= Project naive conditonal
Project cfg guided sample:
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Figure 23: CFG suppresses negative CPCs. For both linear and deep diffusion models, we
randomly generate 1,000 naive conditional samples x. and CFG-guided samples x.g,, center them by
subtracting the class mean p., and project them onto the top 5 negative CPCs (v_) to obtain a series
univariate distributions. In both model types, the distributions of CFG-guided samples have greater

density at lower projection values, indicating that CFG suppresses the negative CPCs.
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Figure 24: Correlation between U, (x;) and U,. The leading singular vectors of VDg(x; o (t), c)
well align with U, for high to moderate o (¢). Each plot shows the average correlation computed over
10 randomly initialized sampling trajectories measured for three different classes.

F CFG in Nonlinear Deep Diffusion Models

In this section we provide additional experimental results for section 4, where we investigate how
well the insights derived from linear diffusion models extend to real-world, nonlinear deep diffusion
models. In this work, we study the state-of-the-art EDM models [4].

F.1 Linear to Nonlinear Transition in Diffusion Models

Recent studies [21, 22] observe that at high to moderate noise levels, deep diffusion models
Do (x¢; o(t)) can be well approximated by the corresponding linear diffusion models Dy, (x; o(t))
defined in (7). As the noise level decreases, Dg(x; o (t)) becomes nonlinear. We verify this transition
by the following experiment:

Let U, () be the left singular vectors of the network Jacobians VDg(x¢; (1), ) along the sam-
pling trajectories, and let U, be the left singular vectors of VD, (z; o (t), ¢). Since Dy, (z; 0 (t)) =

pe + U.A, oy UL (x — pe), if Do ~ D, then VDg(xs;0(t),c) ~ VDL(x;0(t),¢) ~
UCAC,U(,E)UC , implying U(x;) =~ U,, independent of x;. As illustrated in Figure 24, for large
o(t), the leading singular vectors of VDg(x¢; 0(t), c) indeed align with U.. Note that since

A, o) = diag(s 1+02(t),, o d>\+02(t)) VDy(x;0(t)) is highly low-rank at large o(¢). Thus,
our primary interest is in the leadmg singular vectors, and the non-leading singular vectors are am-
biguous. In contrast, for small o(¢), the alignment no longer holds and VDg(,; o(t)) starts to adapt
to individual samples, reflecting the model’s nonlinear behavior. Figures 5, 25 and 26 qualitatively

demonstrates this linear to nonlinear transition.

F.2 CFG in the Linear Regime

We provide additional experimental results for section 4.1 in Figures 27 to 30. Because the precise
transition time from the linear to the nonlinear regime—as well as the influence of each CFG
component—varies across classes, we empirically choose the interval for applying guidance and
calculate the FDpnova score with 50,000 generated images for each class separately. We summarize
our observations as follows (see also section 4.1):

* Linear vs. Nonlinear CFG. Applying linear CFG to deep diffusion models produces effects that
closely resemble those of the actual (nonlinear) CFG.

* Dominance of Mean-Shift. In most of the 10 classes studied, the mean-shift guidance term
dominates CFG behavior, as it alone can generate results visually similar to full CFG. However,
for the coffee mug class, the positive CPC term takes precedence, becoming the primary driver of
CFG.
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Figure 25: Linear-to-nonlinear transition in diffusion models. (a) and (b) compare nonlinear CFG
and linear CFG applied to a deep diffusion model (EDM). The leftmost column shows unguided
samples; subsequent columns show final samples when guidance is applied only at a specific noise

level, with v = 15.

¢ Role of CPC Guidance. CPC guidance generally improves generation quality, though its benefits
can sometimes be less pronounced. For instance, in the tree frog and castle classes (Figure 29), the
CPC term does not enhance FDpnoy2 as much as the mean-shift term. Nevertheless, CPC guidance
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Figure 26: Evolution of Denoiser Jacobian During Sampling.(a) demonstrates one reverse diffusion
trajectory. The left most image of (b) demonstrates the leading PCs of the data covariance. The
subsequent images visualize the singular vectors, U (), of the denoiser Jacobian at different noise
levels. Note that at early timesteps Uy (x;) match the PCs but gradually adapt to the geometry of the
sample x;.

operates effectively over a wider range of guidance strengths v and noise intervals. For the green
mamba and basketball classes, we show results within the prescribed noise interval as solid curves,
and extend beyond this interval as dashed curves. While mean-shift becomes highly detrimental
once outside the linear regime, CPC guidance remains beneficial.

F.3 Mean-Shifted Noise Initialization

The observation that the sample-independent mean-shift guidance alone leads to improved FDpov2
score implies that simply initializing the sampling process from a mean-shifted Gaussian, 7 ~
N (e — thue), o(T)I), with no additional guidance applied, can improve the generation quality,
which we verify through the following experiment:

* For a chosen class and a positive scalar vy, generate 50,000 samples via naive conditional sampling
initialized from a mean-shifted Gaussian N (y(fe — puc), 0?(T)I). Then evaluate the sample
quality with FID and FDpNov2 scores.

* Repeat the above procedure across several classes and a range of  values.

We perform the above experiments on 5 classes, where o (T') is set to 31.9. The results are shown
in Figures 31 to 35. Note that the sample quality improves with a properly chosen ~.

F.4 CFG in the Nonlinear Regime

We provide additional experimental results for section 4.2 in Figure 36. We argue that effective
guidance in this regime should satisfy two key properties:

* Capture local structure of a specific sample. As shown in Figure 25, when o(¢) is small,
the model diverges considerably from its linear approximation, and linear CFG deviates from
the actual nonlinear CFG. In this regime, CFG does not alter the overall image structure but
instead refines existing features to produce crisper images. Consequently, effective guidance must
adapt to each specific sample. We propose that such guidance can be derived from the network
Jacobians VDg(x4; 0(t), ) evaluated at a;. Prior work [33] shows that the singular vectors of
these Jacobians, which are equivalent to the posterior covariances, adapt to the input ;.

» Capture class-specific patterns. As in the linear case, the guidance must also capture class-specific
patterns. This can be achieved by contrasting the conditional Jacobian VDg(x¢; o (), ¢) with the
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Figure 27: Effects of CFG in Linear Regime. Each row demonstrates the impact of different
guidance types applied to EDM within the linear regime, with varying guidance strength . The
guidance is applied only within intervals specified in the subtitles, where the model exhibits linear
behavior.

unconditional Jacobian VDg(x;; o (t)). Figure 36 shows that guidance built using CPCs—i.e., the
difference between these two Jacobians—yields effects similar to actual CFG. In contrast, guidance
derived solely from the conditional Jacobian does not improve image quality.

Note that (17) is inspired by linear positive CPC guidance (13). We also test other guidance such as
y ~
200 ; Aivgi (V] (me — pe)), (69)

but find it less effective than (17), likely due to additional noise in ;. Moreover, we observe that
negative CPCs and mean-shift terms are not as effective in the nonlinear regime.

Lastly, we’d like to remark that our goal here is not to suggest that CFG in the nonlinear regime is
exactly equivalent to (17); rather, we note that both approaches exhibit similar behaviors, implying
they may share a core mechanism: identifying and amplifying sample-specific and class-specific
features. The exact analytical form of CFG in the nonlinear setting remains challenging to derive due
to the complexity of deep networks, leaving a promising direction for future work.
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Figure 28: Effects of CFG in Linear Regime. Each row demonstrates the impact of different
guidance types applied to EDM within the linear regime, with varying guidance strength . The
guidance is applied only within intervals specified in the subtitles, where the model exhibits linear
behavior.
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Figure 29: FDpinov2 Scores. The guidance is applied to the interval specified in the subtitles. For
green mamba and basketball, we find it beneficial to apply CPC guidance beyond the linear regime,
with results demonstrated by the dashed curves.
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Figure 30: FDpinov2 Scores. The reported values are relatively high because the scores are computed
separately per class, which often has a limited number of training images. It is well known that
FDpinovz scores can appear inflated when the reference dataset size is small.
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Figure 31: Effects of initializing with mean-shift. For every v € [0,1,3,5,7,9,10, 15, 20],
we generate 50,000 images from initial nosies sampled from mean-shifted Gaussian distribution
N(Y(pe — prue), o (T)2I) and compute the FID scores (a) and FD p7xoy2 scores (b). The samples
are visualized in (c). Note that adding mean-shift to the initial distribution leads to improvement of

standard metrics.
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Figure 32: Effects of initializing with mean-shift. For every v € [0,1,3,5,7,9, 10,15, 20],
we generate 50,000 images from initial nosies sampled from mean-shifted Gaussian distribution
N(y(the — thue),o(T)?T) and compute the FID scores (a) and FD p7xov2 scores (b). The samples
are visualized in (c). Note that adding mean-shift to the initial distribution leads to improvement of

standard metrics.
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Figure 33: Effects of initializing with mean-shift. For every v € [0,1,3,5,7,9, 10,15, 20],
we generate 50,000 images from initial nosies sampled from mean-shifted Gaussian distribution
N(y(the — thue),o(T)?T) and compute the FID scores (a) and FD p7xov2 scores (b). The samples
are visualized in (c). Note that adding mean-shift to the initial distribution leads to improvement of

standard metrics.
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Figure 34: Effects of initializing with mean-shift. For every v € [0,1,3,5,7,9, 10,15, 20],
we generate 50,000 images from initial nosies sampled from mean-shifted Gaussian distribution
N(y(the — thue),o(T)?T) and compute the FID scores (a) and FD p7xov2 scores (b). The samples
are visualized in (c). Note that adding mean-shift to the initial distribution leads to improvement of

standard metrics.
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Figure 35: Effects of initializing with mean-shift. For every v € [0,1,3,5,7,9,10, 15, 20],
we generate 50,000 images from initial nosies sampled from mean-shifted Gaussian distribution
N(y(the — thue),o(T)?T) and compute the FID scores (a) and FD p7xov2 scores (b). The samples
are visualized in (c). Note that adding mean-shift to the initial distribution leads to improvement of

standard metrics.
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Figure 36: Effects of CFG in the Nonlinear Regime. Different guidance methods, each with a fixed
strength of v = 15, are applied at individual timesteps in the nonlinear regime. Each image shows
the final output when guidance is applied solely at the timestep indicated at the top. Note that (17)
closely matches the effects of CFG by enhancing finer image details, whereas (18) does not improve
generation quality.
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Figure 37: Effects of CFG in the Linear Regime (EDM-2). Each row in (a) demonstrates the impact
of different guidance types applied to EDM-2 within the linear regime (specified in the subtitles),
with varying guidance strength . (b) shows the FDpoyv2 scores computed over 50,000 samples.

G Experimental Results on Latent Diffusion Models

In the main text, we conducted experiments using the EDM-1 model [4], which operates directly
in pixel space with 64 x 64 resolution. Here, we present complementary results on the EDM-2 [5]
latent diffusion model, which generates images at 512 x 512 resolution.

Linear Regime. We evaluate multiple guidance strategies—including actual CFG, linear CFG,
Mean-shift guidance, positive CPC guidance, and negative CPC guidance—within the high-noise
intervals (the linear regime). For each method, we generate 50,000 images conditioned on the class
label “golden retriever” and compute the FDpinov2 metric. The results, shown in Figure 37, are
consistent with the observations reported in the main text.

Nonlinear Regime. We next examine guidance effects in the nonlinear regime using (17) and (18).
As shown in Figure 38, guiding with CPCs produces visual effects similar to those of actual
CFG—enhancing image sharpness and structure—whereas guidance with conditional PCs often
leads to oversaturated colors. This highlights the importance of selectively amplifying class-specific
features. We note that our heuristic guidance serves as a conceptual approximation and may not
always perfectly align with actual CFG behavior. Additional failure cases will be provided in our
code release.

H CFG in Gaussian Mixture Model

Thus far we’ve been focusing on the setting of linear diffusion models, in which the learned score
functions are equivalent to those of a Multivariate Gaussian distribution. From a complementary
perspective, several works [20, 19, 7] have studied CFG under the Gaussian mixture model data
assumption. However, these works assume each Gaussian cluster has isotropic covariance, which is
oversimplified for natural image dataset. In this section, we demonstrate that CFG guidance under
Gaussian mixture model can be decomposed in a similar way as the case of linear diffusion model.

Consider unconditional data distribution:

K
Paa() =Y N (@3 i, T, (70)
i=1
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Figure 38: Effects of CFG in Nonlinear Regime (EDM-2). Different guidance methods, each with
a fixed strength of v = &, are applied at o(¢) = 1.502. The samples in each row are generated from
the same initial noise.

where p1; and X; are the mean and covariance of the i** cluster with weight ;. The noise-mollified
data distribution then takes the following form:

K
pla;o(t)) =Y mN (@ wi, i + o> (1)) (1)
i=1
Let 3, (;); := X; + 0%(t)1, then the score function of p(x; o' (t)) is:
Vp(x;o(t
Vlog p(; o(t)) = M (72)
_ Zfil T VN (x; i, Bo (1)) 73)
ZiKzl TN (25 i, B (1),1)
_ S mN (@; iy B0 ).0) (1, (i — @) (74)
- Zfil TN (25 pi, B (1),1)
K
=Y wi@)E ) (1 — @), (75)
i=1

TN (@506, 0(4,0)
K mN(zmi, S0 (),1)
cluster and Efil wi(x) = 1. Let B; = U;A;UT be the full SVD where A; = diag(X\i 1, , Aia)s

where w;(x) = representing the posterior probability that 2 belongs to the i
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by Tweedie’s formula, the optimal denoiser of the noise-mollified Gaussian mixture model takes the
following form:

D(x;0(t)) = x + o*(t)Vlog p(z; o (t)) (76)
=z +0°(1) Z wi(x)B, ) (ki — ) (77)
K
Z T) i +sz .U (T — i), (78)
where Aa(t)’i = diag (#{;(t), cee #j%)) Furthermore, under the Gaussian mixture model

assumption, each conditional distribution is a Gaussian distribution and from (7) we know the
conditional optimal denoiser of the i'" cluster is:

D(m; J(t) ) i + U Aa(t), U (:B - p’z) (79)

Without loss of generality, we set the target condition as c;. Then the CFG guidance at timestep ¢
takes the form:

g(x,t) = Vm, logp(z|ci;0(t)) — Va, logp(z; o(t)) (80)
= (t)< (x4;0(t), 1) — D(m450(2))) (81)
= Uzl(t) (Ul a(t), 1U1 Zwl Ui Aa(t )(:c — H1) (82)
1 & 8
+ -2(0) Zwi(m)(l — Ui o), U (1 — ). (83)

Note that:

* Guidance (82) resembles the CPC guidance g,,.(t) defined in (12). Different from the linear
setting—where the CPC guidance contrasts the posterior covariance of the target class with a single
unconditional posterior covariance, here it contrasts the posterior covariance of the target class with
a softmax-weighted average of the posterior covariances of all classes.

* Guidance (83) resembles the mean-shift guidance g,cqn (t) defined in (12). Different from the
linear setting where the mean-shift guidance approximately aligns with p. — p,c, the difference
between the conditional and unconditional means, here it instead approximately aligns with a
softmax-weighted average of the pairwise differences between the conditional mean (mean of the
target class) and the means of every other class.

I Computing Resources

All experiments are performed on A100 GPUs with 80 GB memory. The diffusion model used in this
work typically requires 3 days for sufficient training.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claim we (i) analyze how CFG works
in linear setting and (ii) investigate how the insights from linear analysis extend to real-
world nonlinear models. The former claim is studied in section 3 while the latter is studied
in section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In section 4.2 we explicitly mention that the analysis in linear regime is only a
proxy. The exact mechanism remains unknown due the black-box nature of deep networks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide the assumption and the theory completely in section 3.2.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We’ve provided the general information for the experiment setups in both main
text and appendix. We promise to release code upon publication to enable reimplementation.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although we do not provide code in the submission, we promise to release it
upon publication of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provide detailed information on the datasets we use, models we use
and other hyperparameters including number of sampling steps, type of sampler and many
others.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although we do not provide error bar, all the quantitative experiments are
performed according to the standard. For example, all the FD scores are calculated over
50,000 randomly generated images.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the related information in appendix I.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the authors have read the NeurIPS Code of Ethics. We confirm the research
conform with the code in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is an empirical and theoretical work on understanding the mechanism
of CFG. It has more scientific contributions rather than societal impacts.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is an empirical and theoretical work on understanding the mechanism
of CFG. It doesn’t have a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the public released dataset and models, which properly credited the
license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work is an empirical and theoretical work on understanding the CFG
mechanism. We don’t release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

54


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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