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Abstract

Large Vision-Language Models (LVLMs)
have demonstrated remarkable performance
in performing complex multimodal tasks.
However, they are still plagued by object
hallucination—the misidentification or mis-
classification of objects present in images.
To this end, we propose HALLUCINOGEN, a
novel visual question answering (VQA) object
hallucination attack benchmark that utilizes di-
verse contextual reasoning prompts to evaluate
object hallucination in state-of-the-art LVLMs.
We design a series of contextual reasoning hal-
lucination prompts to evaluate LVLMs’ ability
to accurately identify objects in a target image
while asking them to perform diverse visual-
language tasks such as identifying, locating or
performing visual reasoning around specific
objects. Further, we extend our benchmark to
high-stakes medical applications and introduce
MED-HALLUCINOGEN, hallucination attacks
tailored to the biomedical domain, and evaluate
the hallucination performance of LVLMs on
medical images, a critical area where precision
is crucial. Finally, we conduct extensive eval-
uations of eight LVLMs and two hallucination
mitigation strategies across multiple datasets to
show that current generic and medical LVLMs
remain susceptible to hallucination attacks.

1 Introduction

In recent years, Large Language Models (LLMs)
have made significant advancements in natural
language understanding (NLU) and natural lan-
guage generation (NLG), significantly advancing
the field of artificial intelligence (Achiam et al.,
2023; Dubey et al., 2024; Zhao et al., 2023). Build-
ing on the exceptional capabilities of LLMs, re-
searchers have developed Large Vision-Language
Models (LVLMs), which have demonstrated out-
standing performance on multimodal tasks such as
image captioning (IC) and visual question answer-
ing (VQA) (Zhu et al., 2023; Ye et al., 2023; Wang
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Figure 1: Examples of different object hallucination
attacks, where hallucination prompts from HAL-
LUCINOGEN (right) are able to make the LVLM
hallucinate response. (Left) When explicitly asked
to identify a non-existent object, such as “person,”
LVLMs like LLaVAL.5 (Liu et al., 2024b) generate
a correct response. (Right) However, in the case
of an implicit object hallucination attack, where the
question requires to first implicitly determine an
object’s presence before describing its position, the
LVLMs produce a hallucinated response.

et al., 2024; Dubey et al., 2024; Liu et al., 2024b).
These models use LLMs as their foundational archi-
tecture, integrating visual features as supplemen-
tary inputs and aligning them with textual features
through visual instruction tuning (Liu et al., 2023,
2024b). Despite these advancements, LVLMs con-
tinue to struggle with the issue of object hallucina-
tion — a phenomenon characterized by the misiden-
tification or misclassification of visual objects in
an image (Li et al., 2023; Lovenia et al., 2023).
This potentially leads to harmful consequences,
especially when users lacking sufficient domain
knowledge place undue reliance on these models.

To this end, prior works have introduced a se-
ries of benchmarks (Lovenia et al., 2023; Li et al.,
2023; Guan et al., 2023; Yin et al., 2024) and mit-
igation strategies (Leng et al., 2024; Huang et al.,
2024; Zhou et al., 2023) to evaluate and improve



object hallucinations in LVLMs. However, as il-
lustrated in Fig. 1, we find that these benchmarks
predominantly rely on explicit closed-form attacks,
which directly ask the underlying LVLM to iden-
tify a specific visual object and is expected to re-
spond with a simple “Yes” or “No”, e.g., visual
object detection prompts like “Is <object> present
in the image?” In contrast, we argue that implicit
open-form hallucination attacks present a more sig-
nificant challenge for LVLMs. For instance, in an
advanced visual grounding task that requires iden-
tifying the position of an object within an image,
LVLMs must first implicitly determine whether the
object mentioned in the prompt is actually present
in the image before generating a factually accurate
response. This additional layer of reasoning in-
creases the likelihood of LVLMs mistakenly assum-
ing the presence of an object due to pre-existing
biases from strong LLLM priors, such as spurious
correlations between non-existent objects and the
overall visual scene (Liu et al., 2024a, 2025).
Main Contribution. To address the aforemen-
tioned shortcomings, we propose HALLUCINO-
GEN, a novel benchmark designed to assess object
hallucination in Large Vision-Language Models
(LVLMs).  Unlike prior benchmarks, which
predominantly rely on simple, single-object iden-
tification prompts, HALLUCINOGEN introduces
a diverse set of visual-context prompts, which
we call object hallucination attacks. We broadly
classify these attacks into two types: explicit and
implicit object hallucination attacks. Explicit
attacks involve directly asking LVLMs to identify
the presence of a non-existent object in an image,
thereby provoking hallucinated responses. In
contrast, implicit attacks utilize more complex or
indirect queries that do not explicitly inquire about
a specific object. Instead, these prompts aim to
elicit responses in which LVLMs may erroneously
infer the existence of objects based on contextual
or relational cues in the visual and textual input.
Additionally, we extend our proposed bench-
mark to evaluate hallucination in medical appli-
cations by introducing MED-HALLUCINOGEN.
Specifically, we utilize the NIH Chest X-rays
dataset (Wang et al., 2017) to design disease hal-
lucination attacks tailored to the biomedical do-
main. The primary motivation behind the MED-
HALLUCINOGEN benchmark is to assess the ex-
tent of hallucination in LVLMs when diagnosing
biomedical images such as Chest X-rays, particu-
larly under explicit and implicit hallucination at-

tacks. By evaluating these models in such critical
scenarios, MED-HALLUCINOGEN aims to identify
potential risks associated with deploying LVLMs
in critical settings, where hallucinated responses
could have severe consequences. We summarize
our main contributions below:

* We propose HALLUCINOGEN, a novel bench-
mark for evaluating object hallucination. Unlike
prior benchmarks, HALLUCINOGEN introduces
a diverse set of complex contextual reasoning
prompts, referred to as object hallucination
attacks, specifically designed to query LVLMs
about visual objects that may not be present in
a target image containing 60,000 image-prompt
combinations across 3,000 visual-object pairs.

* We extend our benchmark, HALLUCINOGEN
to evaluate disease hallucination in biomedical
applications such as correctly diagnosing Chest
X-rays by introducing MED-HALLUCINOGEN.

* We show that LVLMs are also capable of hallu-
cinating reasoning and using Chain-of-Thought
reasoning increases hallucination in LVLMs.

* Finally, we conduct extensive qualitative and
quantitative evaluations of eight prior LVLMs
and two hallucination mitigation strategies on
our proposed benchmarks. Our results demon-
strate that, for the majority of hallucination
attacks proposed in HALLUCINOGEN and
MED-HALLUCINOGEN, most SOTA LVLMs
show performance close to random guessing.

2 Related works

Our work lies at the intersection of large visual-
language models, hallucination benchmarks, and
mitigating techniques for hallucination.

Large Vision-Language Models (LVLMs).
In recent years, building on the success of
LLMs (Bubeck et al., 2023; Chang et al., 2024),
there has been a significant surge in the devel-
opment of LVLMs. To enhance the capabilities
of these LVLMs, prior works have primarily
focused on designing novel architectures (Ye
et al., 2024), improving cross-modal alignment
between visual and textual prompts (Dubey
et al., 2024), and refining training methods (Liu
et al., 2024b). While these LVLMs excel in
complex vision-language tasks such as image
captioning (Zhou et al., 2024) and visual question
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Figure 2: Illustration of various types of hallucination attacks in HALLUCINOGEN. We broadly define two categories
of object hallucination attacks: explicit and implicit attacks. An explicit attack involves directly prompting LVLMs
to accurately identify the presence or absence of existing or non-existing objects. In contrast, an implicit attack
employs more complex queries that do not explicitly inquire about a specific object but instead require the model
to implicitly assess the presence of a particular object in the image to generate a factually accurate response.
Furthermore, for implicit attacks, we propose a range of visual-language tasks with varying levels of difficulty, from
correctly locating the object to understanding its surrounding context.

answering (Xu et al., 2024), they remain prone to
generate hallucinated responses when faced with
prompts involving nonexistent objects, incorrect
attributes, or inaccurate relationships (Huang et al.,
2023; Lovenia et al., 2023).

Object Hallucination Benchmarks. In the con-
text of LVLMs, prior research has defined “object
hallucination” as the phenomenon where a model
generates responses referencing objects that are
either inconsistent with or absent from the target
image (Li et al., 2023; Lovenia et al., 2023). Vari-
ous benchmarks have been proposed to evaluate
the extent of object hallucination in such mod-
els, primarily focusing on closed-ended tasks us-
ing yes-or-no or multiple-choice questions, with
accuracy as the primary evaluation metric. For
example, POPE (Li et al., 2023) detects hallu-
cinations through polling-based yes-or-no ques-
tions, while AMBER (Wang et al., 2023) and Hal-
lusionBench (Guan et al., 2024) extend and re-
fine these methods to assess a broader range of
hallucination types with greater granularity. De-
spite their success, we find that these benchmarks
rely heavily on simple visual object identification
prompts, which fail to adequately challenge current-
generation LVLMs such as Qwen2VL (Yang et al.,
2024) and LLAMA3.2 (Dubey et al., 2024).

Mitigating Object Hallucination in LVLMs.
Based on evaluations conducted on existing object

hallucination benchmarks, there have been attempts
to mitigate hallucination in LLMs and LVLMs. In
LLMs, techniques like Chain-of-Thought (CoT)
reasoning (Wei et al., 2022) have proven effective at
reducing hallucinated or erroneous responses (Luo
et al., 2023; Akbar et al., 2024). For LVLMs,
methods such as VCD (Leng et al., 2024) and
OPERA (Huang et al., 2024) use inference-time
decoding optimizations to identify hallucinated
tokens in the generated responses. Preference-
aligned training techniques, like reinforcement
learning with human feedback (RLHF), have also
been effective in addressing object hallucination by
prioritizing non-hallucinatory responses while pe-
nalizing hallucinated content (Sun et al., 2023). In
this work, we extensively evaluate all of these miti-
gation techniques and show that these approaches
fail to defend against the diverse pool of object hal-
lucination attacks introduced by HALLUCINOGEN
and MED-HALLUCINOGEN.

3 HALLUCINOGEN: A Benchmark for
Object Hallucinations in LVLMs

In this section, we present the details of our pro-
posed benchmark, HALLUCINOGEN, as illustrated
in Fig 2. We first outline the construction of HAL-
LUCINOGEN and MED-HALLUCINOGEN in Sec-
tion 3.1 and Section 3.3. Next, we provide the
details on the categorization of various object hal-



lucination attacks employed in HALLUCINOGEN
and MED-HALLUCINOGEN in Section 3.2.

3.1 Developing HALLUCINOGEN Benchmark

As illustrated in Figure 2, for each image I, and a
target object o; from the associated list of objects
O = {01,092, ,0n}, HALLUCINOGEN employs
a prompt p; also called as object hallucination
attack from the set of hand-crafted prompts P =
{p1,p2, -+, pam} to query the LVLMs.

Dataset Structure. We utilize the above prompts
in HALLUCINOGEN to conduct a comprehensive
evaluation of hallucination in LVLMs by verify-
ing whether the target object o, is correctly ref-
erenced in the generated response. Each hallu-
cination prompt is categorized based on the spe-
cific vision-language task it challenges the LVLMs
to perform, including identification, localization,
visual context, and counterfactual reasoning (de-
tailed descriptions of each task are provided in
Sec. 3.2). These questions either explicitly prompt
the model to identify a target object, whether real
or nonexistent, in the image ( e.g. correctly identi-
fying the object) or implicitly require the model to
infer its presence before generating a response ( e.g.
understanding the surrounding context). Further-
more, each sample in HALLUCINOGEN is uniquely
represented by the triplet shown below:

(L, {{pr(0), y; 1 it y) (1)

where y; is “Yes” or “No” depending on whether
the object o; is present in the image I;. HALLU-
CINOGEN consists of 60,000 such triplets, where
3,000 visual-object pairs are taken from a pop-
ular object hallucination benchmark, POPE (Li
et al., 2023), followed by 20 unique hand-crafted
prompts, five for each visual-language task.

3.2 Categorizing Hallucination Attacks

In contrast to prior benchmarks that primarily fo-
cus on straightforward single-object identification
prompts, we introduce a diverse range of contextual
prompts in HALLUCINOGEN, referred to as object
hallucination attacks. Instead, the prompts in HAL-
LUCINOGEN are designed to elicit hallucinated re-
sponses by exploiting contextual or relational cues
within the image. Additionally, each hallucination
attack is designed to evaluate LVLMs’ ability to
accurately infer the presence of objects with vary-
ing levels of complexity while performing various
visual-language tasks, including identification, lo-

calization, visual contextual reasoning, and coun-
terfactual reasoning (List of prompts used for each
task can be found in Appendix D).

3.2.1 Identification (ID)

The task of identification involves determining
whether a specific object is present in an image,
where LVLMs are expected to recognize the pres-
ence/absence of an object based on a straightfor-
ward prompt (Li et al., 2023; Lovenia et al., 2023).
We use explicit hallucination prompts for identi-
fication tasks, where the LVLM is directly asked
to identify a non-existent object. For example, a
prompt might ask, “Is the person visible in the
image?” when no person is present in the input
image. These prompts exploit the model’s suscep-
tibility to hallucinate an object, testing its ability to
distinguish between real and nonexistent objects.

3.2.2 Localization (LOC)

Localization refers to the task of identifying the
specific location of an object within an image. This
task is more complex than identification, requiring
both recognition and spatial awareness. We utilize
implicit hallucination attacks for the localization
task, where the prompt asks the LVLM to find the
location of an object that is not present. For exam-
ple, a prompt like “Where is the clock in the image?”
when there is no clock in the target image, aims
to provoke hallucinated responses that inaccurately
place a non-existent object in a location. These
attacks test the LVLM’s ability to recognize objects
and spatially locate them, increasing the difficulty
by adding relational context.

3.2.3 Visual Context (VC)

Visual contextual reasoning involves understanding
and interpreting objects based on their surrounding
context and relationships within the image. This
task requires the model to draw inferences from the
broader scene rather than just recognizing individ-
ual objects. Implicit hallucination attacks are partic-
ularly effective for this task, as they often leverage
subtle contextual cues. For instance, a prompt like
“Identifying surrounding objects near to the car in
the image?” can induce hallucination of an object
car that isn’t present in the target image. These at-
tacks exploit the model’s reliance on visual context
and its tendency to infer objects that fit the narra-
tive of the scene, challenging the model’s ability to
reason accurately based on context.
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Figure 3: Illustration of hallucination attacks in MED-
HALLUCINOGEN: We adapt explicit and implicit at-
tacks from HALLUCINOGEN for biomedical tasks, such
as chest X-ray diagnosis. We evaluate hallucination
in LVLMs (such as LLAMA3.2 (Dubey et al., 2024))
while performing the following diagnosis: Identification
(inferring the presence of a disease) and Localization
(implicitly inferring the presence of a disease before
generating a response about its location in the X-ray).

3.2.4 Counterfactual (CF)

Counterfactual reasoning requires the model to in-
fer how the scene might change if a particular ob-
ject were present or absent. This task involves more
complex cognitive reasoning, pushing the model
to consider hypothetical causal scenarios. We em-
ploy implicit hallucination attacks here, where the
prompt asks the model to imagine the absence of
an object shown in the input image. For example,
a prompt like “What would happen if we removed
the car from the image?” challenges the model to
generate a response based on a non-existent object,
such as the car in the image. These attacks test the
model’s capacity to perform counterfactual reason-
ing by analyzing how its understanding of the scene
changes when it introduces hypothetical elements.

3.3 MED-HALLUCINOGEN

We extend our benchmark, HALLUCINOGEN, to
assess hallucination in high-stakes medical appli-
cations by introducing MED-HALLUCINOGEN,
designed to evaluate the extent to which LVLMs
can accurately infer whether a person is suffering
from a disease while conducting detailed diagnoses
on biomedical images, such as chest X-rays.

Dataset Structure. MED-HALLUCINOGEN com-
prises 3, 000 unique X-ray and disease pairs, ac-
companied by ten hallucination attack prompts
— five tailored for the task of identification
and five for localization. To construct MED-
HALLUCINOGEN, we utilize the test set of the NIH
Chest X-ray dataset (Wang et al., 2017) (additional

details about the NIH Chest X-ray dataset are pro-
vided in Appendix C). We begin by filtering out
unlabeled X-rays and those marked with the label
“no-responses.” Next, using the ground truth labels,
which provide information about the associated dis-
eases, we create a classification task with labels
“Yes” or “No” to indicate the presence or absence
of each disease.

As shown in Figure 3, for MED-HALLUCINOGEN,
we adapt explicit and implicit attack strategies
from HALLUCINOGEN to evaluate hallucination
in LVLMs across two diagnosis:

Identification. We employ explicit attacks, such
as “Given this Chest X-ray, identify if the person
has <disease>,” to assess whether LVLMs can
correctly infer the presence or absence of a disease.
Localization. We use implicit attacks, such as
“Evaluate the X-ray to locate the region indicative of
<disease>,” where the LVLMs must first infer the
presence of a disease and then generate a factually
accurate response identifying the relevant region.

4 Experimental Results

In this section, we demonstrate the utility of HAL-
LUCINOGEN and MED-HALLUCINOGEN in study-
ing the hallucination of LVLMs and evaluating their
effectiveness against state-of-the-art mitigation and
reasoning techniques. Next, we describe our exper-
imental setup describing state-of-the-art LVLMs
and mitigation techniques, and then discuss the key
findings of this benchmarking analysis.

4.1 Experimental setup

LVLMs. To demonstrate the effectiveness and
generalizability of our proposed benchmarks,
HALLUCINOGEN, and MED-HALLUCINOGEN,
we conduct extensive experiments on eight state-
of-the-art LVLMs. These models span a range of
sizes, including mid-sized models such as mPLUG-
OWL (Ye et al., 2023), mPLUG-OWL2 (Ye et al.,
2024), Multi-Modal GPT (Gong et al., 2023),
QwenVL (Bai et al., 2023), Qwen2VL (Yang
et al., 2024), LLAVA-1.5 (Liu et al., 2023), and
MiniGPT-4 (Zhu et al., 2023), each containing
7-10B parameters. Additionally, we evaluate
larger models with 11B parameters, such as
LLAMA3.2-VL (Dubey et al., 2024).

Hallucination Mitigation Strategies. We include
two widely adopted strategies for mitigating
hallucinations: reinforcement learning with human
feedback (RLHF) (Sun et al., 2023) and LURE.
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Figure 4: We benchmark eight state-of-the-art LVLMs on HALLUCINOGEN. Using image-object pairs from the
(top) adversarial split and (bottom) popular split of POPE, we compare POPE with the proposed object hallucination
attacks while evaluating the LVLMSs across diverse tasks, including Identification (ID), Localization (LOC), Visual
Context (VC), and Counterfactual reasoning. Lower accuracy reflects incorrectness in inferring the presence or
absence of an object, which correlates with a higher degree of object hallucination.

However, our evaluation against HALLUCINOGEN
reveals that these approaches continue to produce
hallucinated responses.

Evaluation. Similar to POPE (Li et al., 2023), we
use accuracy as a metric to evaluate object halluci-
nation in LVLMs. Specifically, accuracy measures
the proportion of correctly answered questions,
with lower accuracy indicating a higher degree
of hallucination in the generated responses. Ad-
ditionally, following NOPE (Lovenia et al., 2023),
we employ string matching algorithms to convert
open-ended responses into binary “Yes” or “No”
labels based on matching negative keywords such

as “no”’ “IlOt”, “never”’ 113 nope"’

EE T3

none”’,
4.2 Large Visual-Language Models fail under
HALLUCINOGEN attacks

We benchmark eight state-of-the-art LVLMs us-
ing our proposed benchmark, HALLUCINOGEN.

To source image-object pairs, we leverage various
splits of the POPE dataset (adversarial, popular,
and random) and compare the degree of hallucina-
tion between the POPE and HALLUCINOGEN.

Results. Our results in Figure 4 show that LVLMs
readily fail under different hallucination prompt at-
tacks and generate hallucinated responses for iden-
tification, localization, visual-context, and coun-
terfactual categories. Interestingly, our results cor-
roborate with our categorization difficulties, where
LVLMs hallucinate more as we increase the diffi-
culty of our hallucination attacks from Identifica-
tion — Counterfactual. In particular, we observe
that 1) our identification attacks (which are intu-
itively similar to the POPE benchmark) cause the
LVLMs to hallucinate slightly more. On average,
across eight LVLMs, identification attacks from
HALLUCINOGEN lead to higher hallucination er-
rors than the POPE benchmark (71.6% vs. 69.5%);
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Figure 5: We evaluate the four best-performing models
on HALLUCINOGEN and LLAVA-Med, a model trained
on biomedical images, using MED-HALLUCINOGEN.
With MED-HALLUCINOGEN, we assess the degree of
hallucination in these models when detecting the pres-
ence or absence of a disease. This evaluation involves
performing various diagnostic tasks, such as identifying
or localizing a disease using Chest X-rays.

ii) we observe a significant increase in the halluci-
nation error across all eight LVLMs as we increase
the level of difficulty in HALLUCINOGEN prompt
attacks (i.e., Identification — Counterfactual). No-
tably, the average hallucination error for counterfac-
tual attacks is 17.8 % higher than the identification
attack category, highlighting that current state-of-
the-art LVLMs lack visual understanding and are
not cognizant of their limitations.

Further, our results in Figure 5 show that state-of-
the-art LVLMs having medical capabilities fail to
defend against MED-HALLUCINOGEN hallucina-
tion attacks. In particular, all five LVLMs, includ-
ing Llava-Med, achieve an accuracy close to ran-
dom guess when tested against the prompts from
our MED-HALLUCINOGEN benchmark. Our re-
sults indicate the vulnerabilities of LVLMs when
deployed for high-stakes applications (like analyz-
ing Chest X-ray scans). Most LVLMs implicitly
hallucinate in saying “Yes” when prompted to iden-
tify and locate common thorax diseases like Preu-
monia, Cardiomegaly, Effusion, and Atelectasis,
highlighting the unreliability of current LVLMs
when tested against radiological images.

As shown in Table 1, we also evaluate two
popular object hallucination mitigation techniques:
LLAVA-RLHF and LURE. Notably, both tech-
niques use LLLAVA-1.5 as their backbone. Our
findings reveal that as the task difficulty increases
(Identification — Counterfactual), the average er-
ror for the counterfactual task rises by 21.09% for

Mitigation — LLAVA-RLHF LURE

HALLUCINOGEN | Acc.(%) 1 Acc.(%) T
ID 69.2110.30 78.4310.24
LOC 80.4310.45 69.1419.19
vC 60.1519.27 60.1119.29
CF 48.1240.32 55.3140.92

Table 1: Evaluating object hallucination mitigation
method using HALLUCINOGEN across diverse hallu-
cination attacks.

LVLMs — LLAVA-1.5 mPLUG-OWL2 Qwen2VL LLAMA3.2-VL
HALLUCINOGEN  Acc.(%) T Acc.(%) Acc.(%) Acc.(%)
ID (w/o CoT) 71.41 4034 78.4310.29 83.6140.22 78.1240.19
ID (w/ CoT) 68.27 4028 7521 40.44 81.2320.31 77451033
LOC (w/o CoT) 82.2040.30 65.50+0.22 81.27+0.45 77.60+0.40
LOC (w/ CoT) 79.5110.43 62121037 79.04 10 54 76.2040.25
VC (w/o CoT) 59.50+0.33 57.2640.41 70.43+0.29 64.6240.30
VC (w/ CoT) 57.1240.08 5442007 67581040  63.024095
CF (w/o CoT) 473140.03 51401035 51201012 55614097
CF (w/ CoT) 47145015 50411019  50.80i015 54320001

Table 2: Evaluating hallucination in LVLMs using HAL-
LUCINOGEN both with (w/) and without (w/0) Chain of
Thought (CoT) reasoning, where CoT reasoning causes
LVLMs to hallucinate more (lower accuracies).

LLAVA-RLHF and 23.12% for LURE. This high-
lights the ineffectiveness of these mitigation tech-
niques when evaluated against HALLUCINOGEN.

4.3 Does Multi-Step Reasoning Amplify
Object Hallucinations?

Chain of Thought (CoT) is an emergent capability
in large language models (LLMs) that enables
them to reason before generating their final re-
sponse (Wei et al., 2022). Most LVLMs use strong
LLMs to align visual features with textual features,
where LLM reasoning ensures the reliability of the
LVLM’s responses in visual-question answering
and reasoning tasks. Previous works have shown
that simply adding the phrase “Let’s think step
by step” at the end of a task prompt encourages
models to generate intermediate reasoning steps
before arriving at a final answer. In this work,
we explore whether asking the LVLMs to reason
amplifies object hallucination.

Our results in Table 2 show that CoT reason-
ing results in increasing the hallucination in four
best-performing LVLMs, where models with CoT
prompting result in more hallucination across all
four prompt categories from HALLUCINOGEN. Ad-
ditionally, as shown in Fig.7, we perform a qualita-
tive analysis to compare the responses generated by
LLAVA-1.5 with and without CoT when subjected
to an explicit attack on a task like identification.
Our findings reveal that CoT induces more halluci-
nations, leading to incorrect responses.



LVLM — LLAVA-1.5 mPLUG-OWL2
HALLUCINOGEN | No Acc.(%)1T  No Acc.(%) T
D 98.9040.35 97.6040.22
LOC 69.2310.40 72.1040.18
vC 15.2040.45 16.2110.25
CF 10.1340.27 12.4510.30

Table 3: Evaluate the tendency of LVLMs to respond
with “No,” using Gaussian noise as visual input. To
evaluate how accurately a model responds with a "No"
when presented with Gaussian noise, we use No Accu-
racy (No Acc.).

4.4 Investigating The Cause For Object
Hallucination

To investigate the cause of hallucination, we con-
duct two experiments. First, we analyze the extent
to which LVLMs focus on visual input compared
to textual input, such as prompts or previously gen-
erated text tokens. As shown in Fig.6, we evaluate
LLAVA-1.5 on identification and localization tasks
in HALLUCINOGEN and plot the attention scores
for visual, query, and previous predict tokens. The
attention scores are averaged across all attention
heads. For visual tokens, an additional averaging is
performed across patch lengths. During next-token
prediction, the model’s attention to visual tokens
remains near zero, while attention to query tokens
decreases significantly, suggesting that LVLMS pri-
oritize textual tokens over visual tokens, reflecting
the influence of strong language prior while gener-
ating response (Liu et al., 2024a). We hypothesize
that the lack of attention to visual tokens is a key
factor for object hallucination in LVLMs as they
lack visual understanding of the given image.

Next, to assess the tendency of LVLMs to re-
spond with “No,” we introduce Gaussian noise as
the visual input and evaluate their performance
under explicit and implicit hallucination attacks.
We conduct this evaluation against two powerful
LVLMs, LLAVA-1.5 Liu et al. (2023) and mPLUG-
OWL2 (Ye et al., 2024). As shown in Table 3,
while these LVLMs can effectively defend against
explicit attacks, such as identifying objects, they
perform poorly when we increase the difficulty
from Identification — Counterfactual. Particularly
when responding to visual context or counterfac-
tual tasks, these models show an average drop of
72% — 88%. This behaviour demonstrates that
LVLMs are heavily biased towards consistently
responding with “Yes” and offering explanations,
even for incorrect or misleading prompts.
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Figure 6: Comparing attention scores for visual, query,
and previously generated tokens while predicting the
next tokens. The (left) plot illustrates the trend in atten-
tion scores for identification tasks, while the (right) plot
depicts the trend for localization tasks. Overall, we ob-
serve that LVLMs allocate very little attention to visual
tokens when responding to our hallucination attacks.

Explicit Object Hallucination Attacks
3 !

]

No, there is no chair in the image

()

First, let's identify the objects in the image.
| There are four laptops, a backpack, and a
of chair.

é 1. The four laptops are placed on a table,

= S with one on the left side, one in the middle,

Qu Is the chair present in the one on the right side, and one in the
image? background.
2. The backpack is located on the left side
of the table, next to the laptops.
0 3. The chair is positioned on the right side
of the table, near the backpack.

Ground Truth: No

So, the chair is on the right side of the
() table, next to the backpack

’
' ¥

i
| No.Thereisno chair in the image |
| !
| |

Figure 7: Comparison of responses generated by
LLAMA-1.5 (Liu et al., 2023) when subjected to an
explicit hallucination attack on a simple identification
task. “W/” and “w/0” denote “with” and “without” CoT,
respectively. We find that CoT induces additional hallu-
cinations, resulting in incorrect responses.

5 Conclusion

In this work, we introduce HALLUCINOGEN, a
novel benchmark for evaluating object hallucina-
tion in Large Vision-Language Models (LVLMs).
HALLUCINOGEN incorporates a diverse collection
of complex contextual reasoning prompts, referred
as object hallucination attacks, designed to probe
LVLMs’ understanding of visual context, such as
inferring the presence/absence of an object while
performing diverse visual-language tasks. We ex-
tend HALLUCINOGEN to the biomedical domain
with MED-HALLUCINOGEN, a benchmark tailored
to evaluate disease hallucination in critical appli-
cations such as diagnosing Chest X-rays. Through
comprehensive qualitative and quantitative evalu-
ations of diverse LVLMs and various hallucina-
tion mitigation strategies on both HALLUCINOGEN
and MED-HALLUCINOGEN, we show that most
LVLMs perform near the level of random guessing
when subjected to our hallucination attacks.



6 Limitation and Future Work

In this section we highlight few limitation and fu-
ture direction:

* We acknowledge that our study primarily fo-
cuses on the object hallucination problem in
LVLMs and does not address other aspects
that evaluate the broader capabilities of these
models.

* Currently, the hallucination attacks introduced
in our benchmark, HALLUCINOGEN, are cen-
tered on foundational vision-language tasks
such as Visual Question Answering (VQA). In
the future, we plan to extend our benchmark
to encompass more complex domains.

* The current results on HALLUCINOGEN re-
veal significant potential for improvement in
addressing object hallucination. Moving for-
ward, we aim to develop robust hallucination
mitigation strategies for LVLMs.
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A Benchmarks

Benchmarks for evaluating object hallucina-
tions. Discriminative benchmarks such as
POPE! (Li et al., 2023), NOPE (Lovenia et al.,
2023), and CIEM (Hu et al., 2023) focus exclu-
sively on object-level hallucinations. Their dataset
sizes are 3,000, 17,983, and 72,941, respectively.
These benchmarks evaluate performance using ac-
curacy as the primary metric, determined by verify-
ing the presence of objects in images and compar-
ing the model’s outputs to ground-truth answers.

B LVLMs

LVLMs. We perform comprehensive experiments
on eight leading-edge LVLMs. These models
represent a variety of sizes, including mid-sized
models like mPLUG-OWL? (Ye et al., 2023),
mPLUG-OWL2? (Ye et al., 2024), Multi-Modal
GPT* (Gong et al., 2023), QwenVL’ (Bai et al.,
2023), Qwen2VLS (Yang et al., 2024), LLAVA-
1.5 7 (Liu et al., 2023), and MiniGPT-4 3 (Zhu
et al., 2023), all with parameter counts ranging
from 7B to 10B. Furthermore, we include a larger-
scale model, LLAMA3.2-VL? (Dubey et al., 2024),
which contains 11B parameters, in our evaluations.

C Additional Details: NIH Chest X-ray
dataset

Chest X-rays are among the most commonly per-
formed and cost-efficient medical imaging proce-
dures. However, interpreting chest X-rays for clini-
cal diagnosis can be more challenging compared to
chest CT scans. A significant barrier to achieving
clinically relevant computer-aided detection and
diagnosis (CAD) systems for chest X-rays in real-
world medical settings is the limited availability of
large, annotated datasets. Creating such datasets
is resource-intensive, particularly due to the sub-
stantial effort required for image labeling. Before
the introduction of this dataset, the largest publicly
accessible collection of chest X-ray images was
Openi, which included 4,143 images. Following

com/RUCAIBox/POPE
com/X-PLUG/mPLUG-0wl
com/X-PLUG/mPLUG-0wl
com/open-mmlab/Multimodal-GPT
com/QwenLM/Qwen-VL
com/QwenLM/Qwen-VL
//github.com/haotian-1liu/LLaVA
8https://github.com/Vision-CAIR/MiniGPT-4
9https://huggingface.co/collections/
meta-1lama/llama-32-661448ffc8c32f949b04c8cf

1https:
thtps:
3https:
4https:
5https:
6https:
"https:

//github.
//github.
//github.
//github.
//github.
//github.
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are the labels used: Atelectasis, Cardiomegaly, Effu-
sion, Infiltration, Mass, Nodule, Pneumonia, Pneu-
mothorax, Consolidation, Edema, Emphysema, Fi-
brosis, Pleural Thickening, Hernia

The NIH Chest X-ray Dataset addresses this lim-
itation by providing 112,120 X-ray images labeled
with disease information from 30,805 unique pa-
tients. The labeling process involved using Natural
Language Processing (NLP) techniques to extract
disease classifications from corresponding radiol-
ogy reports. These labels are estimated to have an
accuracy exceeding 90%, making them suitable for
weakly-supervised learning applications.

D Additional Details: Prompt Used in
HALLUCINOGEN

We provide the details on the prompt used for each
categories in MED-HALLUCINOGEN (see in Ta-
ble 4) and HALLUCINOGEN (see in Table 5)

E Additional Details: Hyper-parameters

We use the default hyper-parameters for all our
baselines.

F Additional Details: Auxiliary

Compute Infrastructure: All our experiments
are conducted on one NVIDIA A6000 GPUs. No
training is required, and depending on the down-
stream task, a single inference run on a benchmark
requires anywhere between 1 and 5 minutes.
Potential Risks: We manually create all the
prompts used in our benchmark to avoid any poten-
tial harm or biases.

G Additional Results on POPE

As shown in Fig 8, We provide additional result on
the random split of POPE


https://github.com/RUCAIBox/POPE
https://github.com/X-PLUG/mPLUG-Owl
https://github.com/X-PLUG/mPLUG-Owl
https://github.com/open-mmlab/Multimodal-GPT
https://github.com/QwenLM/Qwen-VL
https://github.com/QwenLM/Qwen-VL
https://github.com/haotian-liu/LLaVA
https://github.com/Vision-CAIR/MiniGPT-4
https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf

Accuracy (%)

Task Prompts

Identification | Given this X-ray, identify if the person has <obj>.

Based on this X-ray, determine whether the person has <obj>.
Analyze this X-ray to identify if <obj> is present in the person.
Examine this X-ray and conclude if the person has <obj>.

Review this X-ray to assess whether the person shows signs of <obj>.

Localization | Examine the X-ray and identify the region associated with detecting <obj>.
Analyze the X-ray and determine which region is linked to <obj>.

Inspect the X-ray and specify the area corresponding to <obj>.

Evaluate the X-ray to locate regions indicative of <obj>.

Review the X-ray and pinpoint the region associated with identifying <obj>.

Table 4: Prompts for MED-HALLUCINOGEN

[ PoOPE [ HALLUCINOGEN (ID) [ HALLUCINOGEN (LOC) [ HALLUCINOGEN (VC) [ HALLUCINOGEN (CF)

100
-=-- Random Guess (53.4)

mPLUG-OWL MiniGPT-4  Multi-Modal GPT QwenVL LLAVA-1.5 mPLUG-OWL2 Qwen2-VL LLAMA3.2-VL

Large Vision Language Models (LVLMs)

Figure 8: Additional results on random split of POPE
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Task

Prompts

Counterfactual

How would the scene change if the <obj> were invisible?

What might replace the <obj> if it vanished from the image?

What is the purpose of the <obj> in this scene, and can the image work without it?
If <obj> were moved elsewhere, what would happen to the story of the image?
What would happen if we removed the <obj> from the image?

Identification

Is the <obj> present in the image?

Determine whether a <obj> is visible in the image.
Assess if a <obj> can be seen in the image.

Find out if a <obj> appears in the photo.

Verify if there is a <obj> in the image.

Localization

Describe where is <obj> in the image.

Examine the presence and location of <obj> in the image.
Locate and describe the position of <obj> in the image.
Determine and specify where <obj> is in the photo.
Explain where <obj> is found in the image.

Visual Context

Interpret the object <obj> with respect to its context within the image.
Analyze the neighboring elements of <obj> in the image.

Describe the context and surroundings of <obj> in the picture.
Explain the context in which <obj> is placed within the image.
Outline the context and nearby items around <obj> in the photo.

Table 5: Prompts for HALLUCINOGEN
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