### HALLUCINOGEN: A Benchmark for Evaluating Object Hallucination in Large Visual-Language Models

Anonymous ACL submission

### Abstract

Large Vision-Language Models (LVLMs) 002 have demonstrated remarkable performance in performing complex multimodal tasks. However, they are still plagued by object hallucination-the misidentification or misclassification of objects present in images. To this end, we propose HALLUCINOGEN, a 007 novel visual question answering (VQA) object hallucination attack benchmark that utilizes diverse contextual reasoning prompts to evaluate object hallucination in state-of-the-art LVLMs. We design a series of contextual reasoning hallucination prompts to evaluate LVLMs' ability 013 to accurately identify objects in a target image while asking them to perform diverse visuallanguage tasks such as identifying, locating or 017 performing visual reasoning around specific objects. Further, we extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain, and evaluate the hallucination performance of LVLMs on medical images, a critical area where precision is crucial. Finally, we conduct extensive evaluations of eight LVLMs and two hallucination mitigation strategies across multiple datasets to show that current generic and medical LVLMs remain susceptible to hallucination attacks.

### 1 Introduction

037

041

In recent years, Large Language Models (LLMs) have made significant advancements in natural language understanding (NLU) and natural language generation (NLG), significantly advancing the field of artificial intelligence (Achiam et al., 2023; Dubey et al., 2024; Zhao et al., 2023). Building on the exceptional capabilities of LLMs, researchers have developed Large Vision-Language Models (LVLMs), which have demonstrated outstanding performance on multimodal tasks such as image captioning (IC) and visual question answering (VQA) (Zhu et al., 2023; Ye et al., 2023; Wang



Figure 1: Examples of different object hallucination attacks, where hallucination prompts from HAL-LUCINOGEN (right) are able to make the LVLM hallucinate response. (Left) When explicitly asked to identify a non-existent object, such as "*person*," LVLMs like LLaVA1.5 (Liu et al., 2024b) generate a correct response. (**Right**) However, in the case of an implicit object hallucination attack, where the question requires to first implicitly determine an object's presence before describing its position, the LVLMs produce a hallucinated response.

et al., 2024; Dubey et al., 2024; Liu et al., 2024b). These models use LLMs as their foundational architecture, integrating visual features as supplementary inputs and aligning them with textual features through visual instruction tuning (Liu et al., 2023, 2024b). Despite these advancements, LVLMs continue to struggle with the issue of *object hallucination* — a phenomenon characterized by the misidentification or misclassification of visual objects in an image (Li et al., 2023; Lovenia et al., 2023). This potentially leads to harmful consequences, especially when users lacking sufficient domain knowledge place undue reliance on these models.

To this end, prior works have introduced a series of benchmarks (Lovenia et al., 2023; Li et al., 2023; Guan et al., 2023; Yin et al., 2024) and mitigation strategies (Leng et al., 2024; Huang et al., 2024; Zhou et al., 2023) to evaluate and improve

object hallucinations in LVLMs. However, as illustrated in Fig. 1, we find that these benchmarks 061 predominantly rely on *explicit closed-form attacks*, 062 which directly ask the underlying LVLM to identify a specific visual object and is expected to respond with a simple "Yes" or "No", e.g., visual 065 object detection prompts like "Is *<object>* present in the image?" In contrast, we argue that implicit open-form hallucination attacks present a more significant challenge for LVLMs. For instance, in an advanced visual grounding task that requires identifying the position of an object within an image, LVLMs must first implicitly determine whether the 072 object mentioned in the prompt is actually present in the image before generating a factually accurate response. This additional layer of reasoning increases the likelihood of LVLMs mistakenly assuming the presence of an object due to pre-existing biases from strong LLM priors, such as spurious correlations between non-existent objects and the overall visual scene (Liu et al., 2024a, 2025). Main Contribution. To address the aforementioned shortcomings, we propose HALLUCINO-GEN, a novel benchmark designed to assess object hallucination in Large Vision-Language Models (LVLMs). Unlike prior benchmarks, which

predominantly rely on simple, single-object identification prompts, HALLUCINOGEN introduces a diverse set of visual-context prompts, which we call *object hallucination attacks*. We broadly classify these attacks into two types: explicit and implicit object hallucination attacks. Explicit attacks involve directly asking LVLMs to identify the presence of a non-existent object in an image, thereby provoking hallucinated responses. In contrast, implicit attacks utilize more complex or indirect queries that do not explicitly inquire about a specific object. Instead, these prompts aim to elicit responses in which LVLMs may erroneously infer the existence of objects based on contextual or relational cues in the visual and textual input.

090

091

100

101

103

104

105

106

107

108

109

110

111

Additionally, we extend our proposed benchmark to evaluate hallucination in medical applications by introducing MED-HALLUCINOGEN. Specifically, we utilize the NIH Chest X-rays dataset (Wang et al., 2017) to design disease hallucination attacks tailored to the biomedical domain. The primary motivation behind the MED-HALLUCINOGEN benchmark is to assess the extent of hallucination in LVLMs when diagnosing biomedical images such as Chest X-rays, particularly under explicit and implicit hallucination attacks. By evaluating these models in such critical scenarios, MED-HALLUCINOGEN aims to identify potential risks associated with deploying LVLMs in critical settings, where hallucinated responses could have severe consequences. We summarize our main contributions below:

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

- We propose HALLUCINOGEN, a novel benchmark for evaluating object hallucination. Unlike prior benchmarks, HALLUCINOGEN introduces a diverse set of complex contextual reasoning prompts, referred to as *object hallucination attacks*, specifically designed to query LVLMs about visual objects that may not be present in a target image containing **60,000** image-prompt combinations across **3,000** visual-object pairs.
- We extend our benchmark, HALLUCINOGEN to evaluate disease hallucination in biomedical applications such as correctly diagnosing Chest X-rays by introducing MED-HALLUCINOGEN.
- We show that LVLMs are also capable of hallucinating reasoning and using Chain-of-Thought reasoning increases hallucination in LVLMs.
- Finally, we conduct extensive qualitative and quantitative evaluations of eight prior LVLMs and two hallucination mitigation strategies on our proposed benchmarks. Our results demonstrate that, for the majority of hallucination attacks proposed in HALLUCINOGEN and MED-HALLUCINOGEN, most SOTA LVLMs show performance close to random guessing.

### 2 Related works

Our work lies at the intersection of large visuallanguage models, hallucination benchmarks, and mitigating techniques for hallucination.

Large Vision-Language Models (LVLMs). In recent years, building on the success of LLMs (Bubeck et al., 2023; Chang et al., 2024), there has been a significant surge in the development of LVLMs. To enhance the capabilities of these LVLMs, prior works have primarily focused on designing novel architectures (Ye et al., 2024), improving cross-modal alignment between visual and textual prompts (Dubey et al., 2024), and refining training methods (Liu et al., 2024b). While these LVLMs excel in complex vision-language tasks such as image captioning (Zhou et al., 2024) and visual question



Figure 2: Illustration of various types of hallucination attacks in HALLUCINOGEN. We broadly define two categories of object hallucination attacks: *explicit* and *implicit* attacks. An *explicit attack* involves directly prompting LVLMs to *accurately identify* the presence or absence of existing or non-existing objects. In contrast, an *implicit attack* employs more complex queries that do not explicitly inquire about a specific object but instead require the model to implicitly assess the presence of a particular object in the image to generate a factually accurate response. Furthermore, for implicit attacks, we propose a range of visual-language tasks with varying levels of difficulty, from *correctly locating the object* to understanding its *surrounding context*.

answering (Xu et al., 2024), they remain prone to
generate hallucinated responses when faced with
prompts involving nonexistent objects, incorrect
attributes, or inaccurate relationships (Huang et al.,
2023; Lovenia et al., 2023).

Object Hallucination Benchmarks. In the con-164 text of LVLMs, prior research has defined "object 165 hallucination" as the phenomenon where a model 166 generates responses referencing objects that are either inconsistent with or absent from the target 168 image (Li et al., 2023; Lovenia et al., 2023). Vari-169 ous benchmarks have been proposed to evaluate 170 the extent of object hallucination in such mod-171 els, primarily focusing on closed-ended tasks us-172 ing yes-or-no or multiple-choice questions, with 173 accuracy as the primary evaluation metric. For 174 example, POPE (Li et al., 2023) detects hallu-175 cinations through polling-based yes-or-no ques-176 tions, while AMBER (Wang et al., 2023) and Hal-177 lusionBench (Guan et al., 2024) extend and re-178 fine these methods to assess a broader range of hallucination types with greater granularity. De-181 spite their success, we find that these benchmarks rely heavily on simple visual object identification 182 prompts, which fail to adequately challenge currentgeneration LVLMs such as Qwen2VL (Yang et al., 2024) and LLAMA3.2 (Dubey et al., 2024). 185

186 Mitigating Object Hallucination in LVLMs.
187 Based on evaluations conducted on existing object

hallucination benchmarks, there have been attempts to mitigate hallucination in LLMs and LVLMs. In LLMs, techniques like Chain-of-Thought (CoT) reasoning (Wei et al., 2022) have proven effective at reducing hallucinated or erroneous responses (Luo et al., 2023; Akbar et al., 2024). For LVLMs, methods such as VCD (Leng et al., 2024) and OPERA (Huang et al., 2024) use inference-time decoding optimizations to identify hallucinated tokens in the generated responses. Preferencealigned training techniques, like reinforcement learning with human feedback (RLHF), have also been effective in addressing object hallucination by prioritizing non-hallucinatory responses while penalizing hallucinated content (Sun et al., 2023). In this work, we extensively evaluate all of these mitigation techniques and show that these approaches fail to defend against the diverse pool of object hallucination attacks introduced by HALLUCINOGEN and MED-HALLUCINOGEN.

188

189

190

191

192

193

194

195

196

197

198

200

201

202

203

204

205

206

207

208

209

### **3** HALLUCINOGEN: A Benchmark for Object Hallucinations in LVLMs

In this section, we present the details of our proposed benchmark, HALLUCINOGEN, as illustrated210posed benchmark, HALLUCINOGEN, as illustrated211in Fig 2. We first outline the construction of HAL-212LUCINOGEN and MED-HALLUCINOGEN in Section 3.1 and Section 3.3. Next, we provide the214details on the categorization of various object hal-215

310

311

264

265

216 lucination attacks employed in HALLUCINOGEN217 and MED-HALLUCINOGEN in Section 3.2.

218 219

220

### 3.1 Developing HALLUCINOGEN Benchmark

As illustrated in Figure 2, for each image  $I_i$  and a target object  $o_t$  from the associated list of objects  $O = \{o_1, o_2, \dots, o_N\}$ , HALLUCINOGEN employs a prompt  $p_k$  also called as *object hallucination attack* from the set of hand-crafted prompts  $P = \{p_1, p_2, \dots, p_M\}$  to query the LVLMs.

Dataset Structure. We utilize the above prompts in HALLUCINOGEN to conduct a comprehensive 226 evaluation of hallucination in LVLMs by verify-227 ing whether the target object  $o_t$  is correctly referenced in the generated response. Each hallu-229 cination prompt is categorized based on the specific vision-language task it challenges the LVLMs to perform, including identification, localization, visual context, and counterfactual reasoning (detailed descriptions of each task are provided in Sec. 3.2). These questions either explicitly prompt the model to identify a target object, whether real or nonexistent, in the image ( e.g. correctly identi-237 fying the object) or implicitly require the model to 238 infer its presence before generating a response ( e.g. 240 understanding the surrounding context). Furthermore, each sample in HALLUCINOGEN is uniquely 241 represented by the triplet shown below: 242

- 244 245

246

247 248

24

251

3.2

25

25

254

255

263

cus on straightforward single-object identification prompts, we introduce a diverse range of contextual prompts in HALLUCINOGEN, referred to as *object hallucination attacks*. Instead, the prompts in HAL

 $\langle \mathbf{I}_i, \{\{p_k(o_j), y_j\}_{j=1}^N\}_{k=1}^M \rangle$ 

where  $y_i$  is "Yes" or "No" depending on whether

the object  $o_i$  is present in the image  $I_i$ . HALLU-

CINOGEN consists of 60,000 such triplets, where

3,000 visual-object pairs are taken from a pop-

ular object hallucination benchmark, POPE (Li

et al., 2023), followed by 20 unique hand-crafted

Categorizing Hallucination Attacks

In contrast to prior benchmarks that primarily fo-

prompts, five for each visual-language task.

*hallucination attacks*. Instead, the prompts in HAL-LUCINOGEN are designed to elicit hallucinated responses by exploiting contextual or relational cues within the image. Additionally, each hallucination attack is designed to evaluate LVLMs' ability to accurately infer the presence of objects with varying levels of complexity while performing various visual-language tasks, including *identification, lo*- *calization, visual contextual reasoning*, and *counterfactual reasoning* (List of prompts used for each task can be found in Appendix D).

### 3.2.1 Identification (ID)

The task of identification involves determining whether a specific object is present in an image, where LVLMs are expected to recognize the presence/absence of an object based on a straightforward prompt (Li et al., 2023; Lovenia et al., 2023). We use explicit hallucination prompts for identification tasks, where the LVLM is directly asked to identify a non-existent object. For example, a prompt might ask, "*Is the person visible in the image*?" when no person is present in the input image. These prompts exploit the model's susceptibility to hallucinate an object, testing its ability to distinguish between real and nonexistent objects.

### 3.2.2 Localization (LOC)

Localization refers to the task of identifying the specific location of an object within an image. This task is more complex than identification, requiring both recognition and spatial awareness. We utilize implicit hallucination attacks for the localization task, where the prompt asks the LVLM to find the location of an object that is not present. For example, a prompt like "*Where is the clock in the image?*" when there is no clock in the target image, aims to provoke hallucinated responses that inaccurately place a non-existent object in a location. These attacks test the LVLM's ability to recognize objects and spatially locate them, increasing the difficulty by adding relational context.

### 3.2.3 Visual Context (VC)

Visual contextual reasoning involves understanding and interpreting objects based on their surrounding context and relationships within the image. This task requires the model to draw inferences from the broader scene rather than just recognizing individual objects. Implicit hallucination attacks are particularly effective for this task, as they often leverage subtle contextual cues. For instance, a prompt like *"Identifying surrounding objects near to the car in the image?"* can induce hallucination of an object *car* that isn't present in the target image. These attacks exploit the model's reliance on visual context and its tendency to infer objects that fit the narrative of the scene, challenging the model's ability to reason accurately based on context.

(1)



Figure 3: Illustration of hallucination attacks in MED-HALLUCINOGEN: We adapt explicit and implicit attacks from HALLUCINOGEN for biomedical tasks, such as chest X-ray diagnosis. We evaluate hallucination in LVLMs (such as LLAMA3.2 (Dubey et al., 2024)) while performing the following diagnosis: *Identification* (inferring the presence of a disease) and *Localization* (implicitly inferring the presence of a disease before generating a response about its location in the X-ray).

3.2.4 Counterfactual (CF)

312

331

Counterfactual reasoning requires the model to in-313 fer how the scene might change if a particular ob-314 ject were present or absent. This task involves more 315 complex cognitive reasoning, pushing the model 316 to consider hypothetical causal scenarios. We em-317 ploy implicit hallucination attacks here, where the 318 prompt asks the model to imagine the absence of 319 an object shown in the input image. For example, a prompt like "What would happen if we removed 321 the car from the image?" challenges the model to 322 generate a response based on a non-existent object, such as the car in the image. These attacks test the 324 model's capacity to perform counterfactual reasoning by analyzing how its understanding of the scene changes when it introduces hypothetical elements.

### 3.3 MED-HALLUCINOGEN

We extend our benchmark, HALLUCINOGEN, to assess hallucination in high-stakes medical applications by introducing MED-HALLUCINOGEN, designed to evaluate the extent to which LVLMs can accurately infer whether a person is suffering from a disease while conducting detailed diagnoses on biomedical images, such as chest X-rays.

Dataset Structure. MED-HALLUCINOGEN comprises 3,000 unique X-ray and disease pairs, accompanied by ten hallucination attack prompts
– five tailored for the task of identification and five for localization. To construct MED-HALLUCINOGEN, we utilize the test set of the NIH HALLUCINOGEN, we utilize the test set of the NIH Chest X-ray dataset (Wang et al., 2017) (additional

details about the NIH Chest X-ray dataset are provided in Appendix C). We begin by filtering out unlabeled X-rays and those marked with the label "no-responses." Next, using the ground truth labels, which provide information about the associated diseases, we create a classification task with labels "Yes" or "No" to indicate the presence or absence of each disease.

343

344

345

347

348

349

350

351

352

353

354

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

378

379

381

383

384

385

387

388

391

As shown in Figure 3, for MED-HALLUCINOGEN, we adapt explicit and implicit attack strategies from HALLUCINOGEN to evaluate hallucination in LVLMs across two diagnosis:

**Identification.** We employ explicit attacks, such as "*Given this Chest X-ray, identify if the person has <disease>*," to assess whether LVLMs can correctly infer the presence or absence of a disease. **Localization.** We use implicit attacks, such as "*Evaluate the X-ray to locate the region indicative of <disease>*," where the LVLMs must first infer the presence of a disease and then generate a factually accurate response identifying the relevant region.

### 4 Experimental Results

In this section, we demonstrate the utility of HAL-LUCINOGEN and MED-HALLUCINOGEN in studying the hallucination of LVLMs and evaluating their effectiveness against state-of-the-art mitigation and reasoning techniques. Next, we describe our experimental setup describing state-of-the-art LVLMs and mitigation techniques, and then discuss the key findings of this benchmarking analysis.

### 4.1 Experimental setup

LVLMs. To demonstrate the effectiveness and generalizability of our proposed benchmarks, HALLUCINOGEN, and MED-HALLUCINOGEN, we conduct extensive experiments on **eight** state-of-the-art LVLMs. These models span a range of sizes, including mid-sized models such as mPLUG-OWL (Ye et al., 2023), mPLUG-OWL2 (Ye et al., 2024), Multi-Modal GPT (Gong et al., 2023), QwenVL (Bai et al., 2023), Qwen2VL (Yang et al., 2024), LLAVA-1.5 (Liu et al., 2023), and MiniGPT-4 (Zhu et al., 2023), each containing 7–10B parameters. Additionally, we evaluate larger models with 11B parameters, such as LLAMA3.2-VL (Dubey et al., 2024).

Hallucination Mitigation Strategies. We include two widely adopted strategies for mitigating hallucinations: reinforcement learning with human feedback (RLHF) (Sun et al., 2023) and LURE.



Figure 4: We benchmark eight state-of-the-art LVLMs on HALLUCINOGEN. Using image-object pairs from the *(top)* adversarial split and *(bottom)* popular split of POPE, we compare POPE with the proposed object hallucination attacks while evaluating the LVLMs across diverse tasks, including Identification (ID), Localization (LOC), Visual Context (VC), and Counterfactual reasoning. Lower accuracy reflects incorrectness in inferring the presence or absence of an object, which correlates with a higher degree of object hallucination.

However, our evaluation against HALLUCINOGEN reveals that these approaches continue to produce hallucinated responses.

**Evaluation.** Similar to POPE (Li et al., 2023), we use accuracy as a metric to evaluate object hallucination in LVLMs. Specifically, accuracy measures the proportion of correctly answered questions, with *lower accuracy indicating a higher degree of hallucination* in the generated responses. Additionally, following NOPE (Lovenia et al., 2023), we employ *string matching algorithms* to convert open-ended responses into binary "Yes" or "No" labels based on matching negative keywords such as "no", "not", "never", "none", "nope."

400

401

402

403

404

405

406

407

408

409

### 4.2 Large Visual-Language Models fail under HALLUCINOGEN attacks

We benchmark eight state-of-the-art LVLMs using our proposed benchmark, HALLUCINOGEN. To source image-object pairs, we leverage various splits of the POPE dataset (adversarial, popular, and random) and compare the degree of hallucination between the POPE and HALLUCINOGEN. 410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

**Results.** Our results in Figure 4 show that LVLMs readily fail under different hallucination prompt attacks and generate hallucinated responses for identification, localization, visual-context, and counterfactual categories. Interestingly, our results corroborate with our categorization difficulties, where LVLMs hallucinate more as we increase the difficulty of our hallucination attacks from *Identification*  $\rightarrow$  *Counterfactual*. In particular, we observe that i) our identification attacks (which are intuitively similar to the POPE benchmark) cause the LVLMs to hallucinate slightly more. On average, across eight LVLMs, identification attacks from HALLUCINOGEN lead to higher hallucination errors than the POPE benchmark (71.6% vs. **69.5%**);



Figure 5: We evaluate the four best-performing models on HALLUCINOGEN and LLAVA-Med, a model trained on biomedical images, using MED-HALLUCINOGEN. With MED-HALLUCINOGEN, we assess the degree of hallucination in these models when detecting the presence or absence of a disease. This evaluation involves performing various diagnostic tasks, such as *identifying* or *localizing* a disease using Chest X-rays.

ii) we observe a significant increase in the hallucination error across all eight LVLMs as we increase the level of difficulty in HALLUCINOGEN prompt attacks (*i.e.*, *Identification*  $\rightarrow$  *Counterfactual*). Notably, the average hallucination error for counterfactual attacks is **17.8%** higher than the identification attack category, highlighting that current state-ofthe-art LVLMs lack visual understanding and are not cognizant of their limitations.

Further, our results in Figure 5 show that state-ofthe-art LVLMs having medical capabilities fail to defend against MED-HALLUCINOGEN hallucination attacks. In particular, all five LVLMs, including Llava-Med, achieve an accuracy close to random guess when tested against the prompts from our MED-HALLUCINOGEN benchmark. Our results indicate the vulnerabilities of LVLMs when deployed for high-stakes applications (like analyzing Chest X-ray scans). Most LVLMs implicitly hallucinate in saying "Yes" when prompted to identify and locate common thorax diseases like *Pneumonia, Cardiomegaly, Effusion*, and *Atelectasis*, highlighting the unreliability of current LVLMs when tested against radiological images.

As shown in Table 1, we also evaluate two popular object hallucination mitigation techniques: LLAVA-RLHF and LURE. Notably, both techniques use LLAVA-1.5 as their backbone. Our findings reveal that as the task difficulty increases (*Identification*  $\rightarrow$  *Counterfactual*), the average error for the counterfactual task rises by 21.09% for

| Mitigation $\rightarrow$  | LLAVA-RLHF         | LURE               |
|---------------------------|--------------------|--------------------|
| HALLUCINOGEN $\downarrow$ | Acc.(%) ↑          | Acc.(%) $\uparrow$ |
| ID                        | $69.21_{\pm 0.30}$ | $78.43_{\pm 0.24}$ |
| LOC                       | $80.43_{\pm 0.45}$ | $69.14_{\pm 0.19}$ |
| VC                        | $60.15_{\pm 0.27}$ | $60.11_{\pm 0.29}$ |
| CF                        | $48.12_{\pm 0.32}$ | $55.31_{\pm0.22}$  |

Table 1: Evaluating object hallucination mitigation method using HALLUCINOGEN across diverse hallucination attacks.

| $LVLMs \rightarrow$ | LLAVA-1.5          | mPLUG-OWL2         | Qwen2VL            | LLAMA3.2-VL        |
|---------------------|--------------------|--------------------|--------------------|--------------------|
| HALLUCINOGEN        | Acc.(%) ↑          | Acc.(%) ↑          | Acc.(%) ↑          | Acc.(%) ↑          |
| ID (w/o CoT)        | $71.41_{\pm 0.34}$ | $78.43 \pm 0.29$   | $83.61_{\pm 0.22}$ | $78.12 \pm 0.19$   |
| ID (w/ CoT)         | $68.27_{\pm 0.28}$ | $75.21_{\pm 0.44}$ | $81.23_{\pm 0.31}$ | $77.45_{\pm 0.33}$ |
| LOC (w/o CoT)       | $82.20 \pm 0.30$   | $65.50_{\pm 0.22}$ | $81.27_{\pm 0.45}$ | $77.60 \pm 0.40$   |
| LOC (w/ CoT)        | $79.51_{\pm 0.43}$ | $62.12_{\pm 0.37}$ | $79.04_{\pm 0.34}$ | $76.20_{\pm 0.23}$ |
| VC (w/o CoT)        | $59.50_{\pm 0.33}$ | $57.26_{\pm 0.41}$ | $70.43_{\pm 0.29}$ | $64.62_{\pm 0.30}$ |
| VC (w/ CoT)         | $57.12_{\pm 0.28}$ | $54.42_{\pm 0.27}$ | $67.58_{\pm 0.40}$ | $63.02_{\pm 0.25}$ |
| CF (w/o CoT)        | $47.31_{\pm 0.23}$ | $51.40_{\pm 0.35}$ | $51.20_{\pm 0.12}$ | $55.61_{\pm 0.27}$ |
| CF (w/ CoT)         | $47.14_{\pm 0.15}$ | $50.41_{\pm 0.19}$ | $50.80_{\pm 0.18}$ | $54.32_{\pm 0.21}$ |

Table 2: Evaluating hallucination in LVLMs using HAL-LUCINOGEN both with (w/) and without (w/o) Chain of Thought (CoT) reasoning, where CoT reasoning causes LVLMs to hallucinate more (lower accuracies).

LLAVA-RLHF and 23.12% for LURE. This highlights the ineffectiveness of these mitigation techniques when evaluated against HALLUCINOGEN. 460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

### 4.3 Does Multi-Step Reasoning Amplify Object Hallucinations?

Chain of Thought (CoT) is an emergent capability in large language models (LLMs) that enables them to reason before generating their final response (Wei et al., 2022). Most LVLMs use strong LLMs to align visual features with textual features, where LLM reasoning ensures the reliability of the LVLM's responses in visual-question answering and reasoning tasks. Previous works have shown that simply adding the phrase "*Let's think step by step*" at the end of a task prompt encourages models to generate intermediate reasoning steps before arriving at a final answer. In this work, we explore whether asking the LVLMs to reason amplifies object hallucination.

Our results in Table 2 show that CoT reasoning results in increasing the hallucination in four best-performing LVLMs, where models with CoT prompting result in more hallucination across all four prompt categories from HALLUCINOGEN. Additionally, as shown in Fig.7, we perform a qualitative analysis to compare the responses generated by LLAVA-1.5 with and without CoT when subjected to an explicit attack on a task like identification. Our findings reveal that CoT induces more hallucinations, leading to incorrect responses.

457

458

459

429

430

431

432

| $LVLM \rightarrow$        | LLAVA-1.5          | mPLUG-OWL2         |
|---------------------------|--------------------|--------------------|
| HALLUCINOGEN $\downarrow$ | No Acc.(%) ↑       | No Acc.(%) ↑       |
| ID                        | $98.90_{\pm 0.35}$ | $97.60_{\pm 0.22}$ |
| LOC                       | $69.23_{\pm 0.40}$ | $72.10_{\pm 0.18}$ |
| VC                        | $15.20_{\pm 0.45}$ | $16.21_{\pm 0.25}$ |
| CF                        | $10.13_{\pm 0.27}$ | $12.45_{\pm 0.30}$ |

Table 3: Evaluate the tendency of LVLMs to respond with "No," using Gaussian noise as visual input. To evaluate how accurately a model responds with a "No" when presented with Gaussian noise, we use No Accuracy (No Acc.).

#### **Investigating The Cause For Object** 4.4 Hallucination

490

491

492

493

494

496

497

498

499

500

501

502

503

509

510

511

512

517

522

524

To investigate the cause of hallucination, we conduct two experiments. First, we analyze the extent to which LVLMs focus on visual input compared to textual input, such as prompts or previously generated text tokens. As shown in Fig.6, we evaluate LLAVA-1.5 on identification and localization tasks in HALLUCINOGEN and plot the attention scores for visual, query, and previous predict tokens. The attention scores are averaged across all attention heads. For visual tokens, an additional averaging is performed across patch lengths. During next-token prediction, the model's attention to visual tokens remains near zero, while attention to query tokens decreases significantly, suggesting that LVLMs prioritize textual tokens over visual tokens, reflecting the influence of strong language prior while generating response (Liu et al., 2024a). We hypothesize that the lack of attention to visual tokens is a key factor for object hallucination in LVLMs as they lack visual understanding of the given image.

Next, to assess the tendency of LVLMs to respond with "No," we introduce Gaussian noise as 513 the visual input and evaluate their performance under explicit and implicit hallucination attacks. 515 We conduct this evaluation against two powerful 516 LVLMs, LLAVA-1.5 Liu et al. (2023) and mPLUG-OWL2 (Ye et al., 2024). As shown in Table 3, 518 while these LVLMs can effectively defend against explicit attacks, such as identifying objects, they perform poorly when we increase the difficulty from *Identification*  $\rightarrow$  *Counterfactual*. Particularly when responding to visual context or counterfactual tasks, these models show an average drop of 72% - 88%. This behaviour demonstrates that 525 LVLMs are heavily biased towards consistently responding with "Yes" and offering explanations, even for incorrect or misleading prompts. 528



Figure 6: Comparing attention scores for visual, query, and previously generated tokens while predicting the next tokens. The (left) plot illustrates the trend in attention scores for identification tasks, while the (right) plot depicts the trend for localization tasks. Overall, we observe that LVLMs allocate very little attention to visual tokens when responding to our hallucination attacks.



Figure 7: Comparison of responses generated by LLAMA-1.5 (Liu et al., 2023) when subjected to an explicit hallucination attack on a simple identification task. "W/" and "w/o" denote "with" and "without" CoT, respectively. We find that CoT induces additional hallucinations, resulting in incorrect responses.

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

#### 5 Conclusion

In this work, we introduce HALLUCINOGEN, a novel benchmark for evaluating object hallucination in Large Vision-Language Models (LVLMs). HALLUCINOGEN incorporates a diverse collection of complex contextual reasoning prompts, referred as object hallucination attacks, designed to probe LVLMs' understanding of visual context, such as inferring the presence/absence of an object while performing diverse visual-language tasks. We extend HALLUCINOGEN to the biomedical domain with MED-HALLUCINOGEN, a benchmark tailored to evaluate disease hallucination in critical applications such as diagnosing Chest X-rays. Through comprehensive qualitative and quantitative evaluations of diverse LVLMs and various hallucination mitigation strategies on both HALLUCINOGEN and MED-HALLUCINOGEN, we show that most LVLMs perform near the level of random guessing when subjected to our hallucination attacks.

### 6 Limitation and Future Work

549

551

552

553

554

556

561

In this section we highlight few limitation and future direction:

- We acknowledge that our study primarily focuses on the object hallucination problem in LVLMs and does not address other aspects that evaluate the broader capabilities of these models.
- Currently, the hallucination attacks introduced in our benchmark, HALLUCINOGEN, are centered on foundational vision-language tasks such as Visual Question Answering (VQA). In the future, we plan to extend our benchmark to encompass more complex domains.
- The current results on HALLUCINOGEN reveal significant potential for improvement in addressing object hallucination. Moving forward, we aim to develop robust hallucination mitigation strategies for LVLMs.

### References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*. 568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

597

598

599

600

601

602

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

- Shayan Ali Akbar, Md Mosharaf Hossain, Tess Wood, Si-Chi Chin, Erica Salinas, Victor Alvarez, and Erwin Cornejo. 2024. Hallumeasure: Fine-grained hallucination measurement using chain-of-thought reasoning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 15020–15037.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint arXiv:2308.12966*.
- Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. *arXiv*.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on evaluation of large language models. *ACM Transactions on Intelligent Systems and Technology*.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. *arXiv*.
- Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, Ping Luo, and Kai Chen. 2023. Multimodal-gpt: A vision and language model for dialogue with humans. *Preprint*, arXiv:2305.04790.
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, et al. 2023. Hallusionbench: An advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. *arXiv preprint arXiv:2310.14566*.
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, et al. 2024. Hallusionbench: an advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In *CVPR*.
- Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang Sun. 2023. Ciem: Contrastive instruction evaluation method for better instruction tuning. *arXiv preprint arXiv:2309.02301*.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems.

622

623

625

633

634

635

639

641

647

651

652

665

670

671

672

673

675

- Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and Nenghai Yu. 2024. Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation. In *CVPR*.
- Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. 2024. Mitigating object hallucinations in large visionlanguage models through visual contrastive decoding. In *CVPR*.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. 2023. Evaluating object hallucination in large vision-language models. *arXiv*.
- Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li, and Wei Peng. 2024a. A survey on hallucination in large vision-language models. *arXiv preprint arXiv:2402.00253*.
- Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024b. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26296–26306.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual instruction tuning. *NeurIPS*.
- Shi Liu, Kecheng Zheng, and Wei Chen. 2025. Paying more attention to image: A training-free method for alleviating hallucination in lvlms. In *European Conference on Computer Vision*, pages 125–140. Springer.
- Holy Lovenia, Wenliang Dai, Samuel Cahyawijaya, Ziwei Ji, and Pascale Fung. 2023. Negative object presence evaluation (nope) to measure object hallucination in vision-language models. *arXiv*.
- Junyu Luo, Cao Xiao, and Fenglong Ma. 2023. Zeroresource hallucination prevention for large language models. *arXiv preprint arXiv:2309.02654*.
- Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor Darrell. 2023. Aligning large multimodal models with factually augmented rlhf.
- Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Jitao Sang. 2023. An llm-free multi-dimensional benchmark for mllms hallucination evaluation. *arXiv*.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

- Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Summers. 2017. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In *CVPR*.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837.
- Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang, Yu Qiao, and Ping Luo. 2024. Lvlm-ehub: A comprehensive evaluation benchmark for large visionlanguage models. *IEEE TPAMI*.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*.
- Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. 2023. mplug-owl: Modularization empowers large language models with multimodality. *arXiv preprint arXiv:2304.14178*.
- Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei Huang. 2024. mplug-owl2: Revolutionizing multimodal large language model with modality collaboration. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 13040–13051.
- Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. 2024. A survey on multimodal large language models. *National Science Review*, page nwae403.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey of large language models. *arXiv preprint arXiv:2303.18223*.
- Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and Huaxiu Yao. 2023. Analyzing and mitigating object hallucination in large vision-language models. *arXiv*.
- Yucheng Zhou, Xiang Li, Qianning Wang, and Jianbing Shen. 2024. Visual in-context learning for large vision-language models. *arXiv*.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *arXiv*.

## 733

735

736

738

739

740

741

742

743

744

745

747

748

749

750

754

757

759

765

767

770

771

772

### A Benchmarks

**Benchmarks for evaluating object hallucinations.** Discriminative benchmarks such as POPE<sup>1</sup> (Li et al., 2023), NOPE (Lovenia et al., 2023), and CIEM (Hu et al., 2023) focus exclusively on object-level hallucinations. Their dataset sizes are 3,000, 17,983, and 72,941, respectively. These benchmarks evaluate performance using accuracy as the primary metric, determined by verifying the presence of objects in images and comparing the model's outputs to ground-truth answers.

### **B** LVLMs

LVLMs. We perform comprehensive experiments on **eight** leading-edge LVLMs. These models represent a variety of sizes, including mid-sized models like mPLUG-OWL<sup>2</sup> (Ye et al., 2023), mPLUG-OWL2<sup>3</sup> (Ye et al., 2024), Multi-Modal GPT<sup>4</sup> (Gong et al., 2023), QwenVL<sup>5</sup> (Bai et al., 2023), Qwen2VL<sup>6</sup> (Yang et al., 2024), LLAVA-1.5 <sup>7</sup> (Liu et al., 2023), and MiniGPT-4 <sup>8</sup> (Zhu et al., 2023), all with parameter counts ranging from 7B to 10B. Furthermore, we include a largerscale model, LLAMA3.2-VL<sup>9</sup> (Dubey et al., 2024), which contains 11B parameters, in our evaluations.

### C Additional Details: NIH Chest X-ray dataset

Chest X-rays are among the most commonly performed and cost-efficient medical imaging procedures. However, interpreting chest X-rays for clinical diagnosis can be more challenging compared to chest CT scans. A significant barrier to achieving clinically relevant computer-aided detection and diagnosis (CAD) systems for chest X-rays in realworld medical settings is the limited availability of large, annotated datasets. Creating such datasets is resource-intensive, particularly due to the substantial effort required for image labeling. Before the introduction of this dataset, the largest publicly accessible collection of chest X-ray images was Openi, which included 4,143 images. Following

<sup>1</sup>https://github.com/RUCAIBox/POPE

<sup>2</sup>https://github.com/X-PLUG/mPLUG-Owl

<sup>3</sup>https://github.com/X-PLUG/mPLUG-Owl

are the labels used: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, Hernia 773

774

775

776

777

778

779

780

781

782

783

784

785

787

788

789

790

791

794

795

796

797

798

799

800

801

802

803

The NIH Chest X-ray Dataset addresses this limitation by providing 112,120 X-ray images labeled with disease information from 30,805 unique patients. The labeling process involved using Natural Language Processing (NLP) techniques to extract disease classifications from corresponding radiology reports. These labels are estimated to have an accuracy exceeding 90%, making them suitable for weakly-supervised learning applications.

# D Additional Details: Prompt Used in HALLUCINOGEN

We provide the details on the prompt used for each categories in MED-HALLUCINOGEN (see in Table 4) and HALLUCINOGEN (see in Table 5)

### **E** Additional Details: Hyper-parameters

We use the default hyper-parameters for all our baselines.

### F Additional Details: Auxiliary

**Compute Infrastructure:** All our experiments are conducted on one NVIDIA A6000 GPUs. No training is required, and depending on the downstream task, a single inference run on a benchmark requires anywhere between 1 and 5 minutes.

**Potential Risks:** We manually create all the prompts used in our benchmark to avoid any potential harm or biases.

### G Additional Results on POPE

As shown in Fig 8, We provide additional result on 804 the random split of POPE 805

<sup>&</sup>lt;sup>4</sup>https://github.com/open-mmlab/Multimodal-GPT

<sup>&</sup>lt;sup>5</sup>https://github.com/QwenLM/Qwen-VL

<sup>&</sup>lt;sup>6</sup>https://github.com/QwenLM/Qwen-VL

<sup>&</sup>lt;sup>7</sup>https://github.com/haotian-liu/LLaVA

<sup>&</sup>lt;sup>8</sup>https://github.com/Vision-CAIR/MiniGPT-4

<sup>&</sup>lt;sup>9</sup>https://huggingface.co/collections/

meta-llama/llama-32-66f448ffc8c32f949b04c8cf

| Task           | Prompts                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identification | Given this X-ray, identify if the person has <obj>.<br/>Based on this X-ray, determine whether the person has <obj>.<br/>Analyze this X-ray to identify if <obj> is present in the person.<br/>Examine this X-ray and conclude if the person has <obj>.<br/>Review this X-ray to assess whether the person shows signs of <obj>.</obj></obj></obj></obj></obj>                                 |
| Localization   | Examine the X-ray and identify the region associated with detecting <obj>.<br/>Analyze the X-ray and determine which region is linked to <obj>.<br/>Inspect the X-ray and specify the area corresponding to <obj>.<br/>Evaluate the X-ray to locate regions indicative of <obj>.<br/>Review the X-ray and pinpoint the region associated with identifying <obj>.</obj></obj></obj></obj></obj> |

Table 4: Prompts for MED-HALLUCINOGEN



Figure 8: Additional results on random split of POPE

| Task           | Prompts                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Counterfactual | How would the scene change if the <obj> were invisible?<br/>What might replace the <obj> if it vanished from the image?<br/>What is the purpose of the <obj> in this scene, and can the image work without it?<br/>If <obj> were moved elsewhere, what would happen to the story of the image?<br/>What would happen if we removed the <obj> from the image?</obj></obj></obj></obj></obj> |
| Identification | Is the <obj> present in the image?<br/>Determine whether a <obj> is visible in the image.<br/>Assess if a <obj> can be seen in the image.<br/>Find out if a <obj> appears in the photo.<br/>Verify if there is a <obj> in the image.</obj></obj></obj></obj></obj>                                                                                                                         |
| Localization   | Describe where is <obj> in the image.<br/>Examine the presence and location of <obj> in the image.<br/>Locate and describe the position of <obj> in the image.<br/>Determine and specify where <obj> is in the photo.<br/>Explain where <obj> is found in the image.</obj></obj></obj></obj></obj>                                                                                         |
| Visual Context | Interpret the object <obj> with respect to its context within the image.<br/>Analyze the neighboring elements of <obj> in the image.<br/>Describe the context and surroundings of <obj> in the picture.<br/>Explain the context in which <obj> is placed within the image.<br/>Outline the context and nearby items around <obj> in the photo.</obj></obj></obj></obj></obj>               |

Table 5: Prompts for HALLUCINOGEN