
Published as a conference paper at ICLR 2024

FUTURE LANGUAGE MODELING FROM TEMPORAL
DOCUMENT HISTORY

Changmao Li, Jeffrey Flanigan
University of California, Santa Cruz
{changmao.li,jmflanig}@ucsc.edu

ABSTRACT

Predicting the future is of great interest across many aspects of human activity.
Businesses are interested in future trends, traders are interested in future stock
prices, and companies are highly interested in future technological breakthroughs.
While there are many automated systems for predicting future numerical data,
such as weather, stock prices, and demand for products, there is relatively little
work in automatically predicting textual data. Humans are interested in textual
data predictions because it is a natural format for our consumption, and experts
routinely make predictions in a textual format (Christensen et al., 2004; Tetlock &
Gardner, 2015; Frick, 2015). However, there has been relatively little formalization
of this general problem in the machine learning or natural language processing
communities. To address this gap, we introduce the task of future language
modeling: probabilistic modeling of texts in the future based on a temporal history
of texts. To our knowledge, our work is the first work to formalize the task of
predicting the future in this way. We show that it is indeed possible to build future
language models that improve upon strong non-temporal language model baselines,
opening the door to working on this important, and widely applicable problem.1

1 INTRODUCTION

Predicting the future is a standard practice across numerous domains of human life and businesses
(Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). Public and private organizations
constantly anticipate future trends, shifts in stock values, or forthcoming technological advancements.
The pressure to predict the future has fueled developments in the automated prediction of future
numeric data, encompassing areas such as weather forecasting, stock market trends, and demand for
goods.

However, it is striking to note the scarcity of work developed towards the automation of predicting
textual data. Textual data holds unique significance, given that it is a natural and rich format for
human consumption. Moreover, experts frequently offer predictions in a textual format, evident in an
array of books, magazines, and academic publications. Despite this, predicting future text data is
rarely studied within the machine learning or natural language processing communities.

Our work aims to address this gap by introducing a novel task – future language modeling. The future
language modeling task is to construct a generative language model for future text given a temporal
history of documents. To the best of our knowledge, this is the first attempt to systematize and
advance the task of predicting the future in this specific manner. Beyond formalizing this important
task, we also create and develop future language models designed for this task. We evaluate these
future language models against strong non-temporal baseline language models using both automatic
metrics and human evaluations, and demonstrate their effectiveness at generating future textual
content.

A word of caution: predicting the future is a bold claim. We do not wish to argue that all future text
can be predicted. There are random events, new named entities, serendipitous discoveries, etc, in text
that cannot be predicted. But we hypothesize that there are some important aspects of the future that
can be predicted given enough historical text. Only by working on this future language modeling task

1Our code is available at https://github.com/jlab-nlp/Future-Language-Modeling
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Language model pretraining has led to significant 
performance gains… (Liu et al, 2019)2019

2022

 ….we propose LinkBERT, an LM pretraining 
method that leverages links between documents… 

(Yasunaga et al., 2022)

...we introduce ELECTRA-style tasks to cross-lingual 
language model pre-training… (Chi et al., 2022)

...we introduce BanglaBERT, a BERT-based Natural 
Language Understanding (NLU) model pretrained 

in Bangla, a widely spoken yet low-resource 
language… (Bhattacharjee et al., 2022)
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Figure 1: (a) represents an example showing how abstracts in recent history are related to the future.
In this example, the text of the abstract of the RoBERTa paper (Liu et al., 2019) anticipates the rise of
papers about “language model pretraining” (Du et al., 2022; Bhattacharjee et al., 2022; Chi et al.,
2022). (b) shows the word frequencies by year in NLP abstracts for some representative words, which
reflects topic/approach changes over the years, i.e., “pretrain” started to dramatically go up after 2018
because of BERT, and “neural” became popular after 2013 because of deep learning.

can this hypothesis be verified. We show, by construction, that future language models can be built
that perform better, across various automatic and manual evaluations, than non-temporal language
models trained on the most up-to-date text, thereby verifying this hypothesis. While humans can
sometimes predict the future, experts are often wrong (Frick, 2015), and we do not know the machine
upper-bound on this task. We hope to push the boundaries of predicting future trends by proposing
the task of and developing methods for future language modeling.

Our contributions are the following:

• We introduce the future language modeling task (§2) of modeling future textual content
using a history of documents, as well as evaluation methods for this task (§4.4 & §4.6).

• We develop a series of future language models (§3) for this task that incorporate temporal
information into pre-trained language models, which dynamically adjusts the generation
probability to generate content that follows the predicted future trend.

• As a concrete example, we evaluate our model to model future abstracts for ACL conference
papers, and our proposed approach outperforms the baseline model on both automatic
metrics and human evaluation.

The paper is organized as follows. In §5, we present related work. In §2, we provide a task overview
to introduce the proposed future text generation task based on texts in previous time spans. In §3, we
present the details of our proposed approaches. §4 presents our experiments and results analysis.

2 TASK OVERVIEW

We begin by defining some terms. Without loss of generality, we call the times when we update
our language model years, but they could be other time spans such as days or hours. Each year has
a collection of texts for that year. For simplicity, we call these texts documents.2

Our proposed future language modeling task is to model future texts using documents from previous
years. Let i denote the year index, and document dij = ⟨xij1, ..., xijk⟩ be jth document from the

2In our experiments in §4, the texts (“documents”) are abstracts.
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ith year, where xijk is the kth token from the jth document in the ith year. Let Di = {di1, ..., dij}
represent all documents from year i. The task is to generate Di based on D1 to Di−1, which means
during generation, the probability of each generated token xijk is computed not only from a standard
language modeling perspective but also considering the content evolution from D1 to Di. The
conditional probability for each token xijk is conditioned not only on the previously generated words
in the sentence (as usual), but also on all the previous years’ documents:

P (xijk|xij1...xij(k−1), D1 . . . Di−1) (1)

We call the model for the above task a future language model, formally defined as a statistical
language model designed to assign high probability to future texts based on the temporal history of
texts.

3 APPROACH

3.1 OVERVIEW OF MODELS

We develop three methods for future language models: a word frequency model (§3.2), a contextual
temporal model (§3.3) and a doubly contextualized temporal model (§3.4). In this section, we give
some background notation common to all these models.

All our methods modify the language model probabilities to account for the temporal evolution. A
language model usually calculates the probabilities with a softmax equation:

P (xk|x1...xk−1) =
ET

xk
Hk∑

w′ ET
w′Hk

(2)

In this equation, Ew ∈ Rd is the learned output embedding vector for the wth word in the vocabulary,
and Hk ∈ Rd is the contextualized embedding at position k. We use a transformer language model,
and Hk is the vector of the last layer of the transformer decoder in position k. This is our baseline to
compare with.

Our first two methods (§3.2 & §3.3) compute a temporal bias Biw ∈ R for the wth word in the ith
year that is calculated from the previous years. The bias term up-weights or down-weights vocabulary
items to account for changes across years. The bias is added into the softmax equation to modify the
probabilities:

P (xk|x1...xk−1, D1 . . . Di−1) =
ET

xk
Hk +Bixk∑

w′

(
ET

w′Hk +Biw′
) (3)

We describe how Biw is calculated in the following sections.

Our third method (§3.4) is more expressive, and calculates a contextualized bias term that depends on
the previous words x1...xk−1 that have been generated. This allows the bias term to be contextualized
in the output that is being generated. In our notation, the bias term Bikw ∈ R is the bias for the wth
word in the kth position in the generated sentence for the ith year. The softmax probability equation
becomes:

P (xk|x1...xk−1, D1 . . . Di−1) =
ET

xk
Hk +Bikxk∑

w′

(
ET

w′Hk +Bikw′
) (4)

For training, all our future language models are trained with standard cross-entropy loss:

L = −
|x|∑
k=1

log p(xk|x1 . . . xk−1; θ) (5)

where θ represents the model parameters.

3.2 THE WORD FREQUENCY MODEL

Our simplest method models the change over time of the frequency of the words without using any
context from historical documents. It only uses the raw counts of the word over time to compute a
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Figure 2: Our proposed models.

bias. This bias is added to the final softmax to bias the model towards historical trends. Figure 1b
shows the frequency by year for some example words, which reflects topic/approach changes over
the years, i.e., the word “pretrain” started to dramatically go up after 2018 because of BERT, and the
word “neural” became popular after 2013 because of the deep learning.

Our intuition is to use a temporal neural network to try to predict biases for words based on historical
frequency data of words. This model uses an auto-regressive deep learning model to predict the
change over time. We use an auto-regressive RNN-style model, specifically an LSTM, rather than a
Transformer model for this because it is more naturally suited to our temporal task, as LSTMs do not
use position embeddings.3 For a balance of simplicity, scalability, and expressivity, we use an LSTM.

We predict the temporal word bias for each year using an LSTM and use it as a feature to bias the
generation probability. Figure 2a shows the model overview. Let fiw ∈ R be the frequencies of the
wth word for the ith year, and let m be the window size which determines how many previous years
to consider to predict next year’s bias. For each year, we compute a temporal bias Biw ∈ R from m
previous year’s word embedding by using an LSTM where weights are shared across word types. We
use the last hidden vector of the LSTM followed by a dot product with a learned vector A ∈ Rd to
compute the bias:4

Biw = AT LSTM(log(fi−m,w), ..., log(fi−1,w)) (6)

This temporal bias is added to the output of the Transformer as a bias in the softmax, as described in
§3.1 Equation 3.

3.3 THE TEMPORAL CONTEXTUAL MODEL

While the previous method models the change in the frequency of words over time, it does not
have contextualized information to help it make its predictions. So while it may see words such
as “pretraining” increase over time, it is ignoring contextual information in prior abstracts like
“pretraining has led to significant performance gains” that could help it make predictions (see Fig. 1a).

To account for contextualized information contained in prior abstracts, we develop a temporally
contextualized model. For each word, we create a pooled representation for each year. We use an
average of the contextualized embeddings, averaged over all instances of that word over the year. For
each word, we then feed the contextualized embedding into an LSTM to predict the temporal word
bias. Figure 2b shows the model overview.

In more detail, using our notation from §2, let dij = ⟨xij1, xij2, ..., xijk⟩ be the jth text in ith year
where xijk is kth token in dij . For the token xijk, let Eijk be the corresponding contextualized
vectors from a pre-trained language model. Our representation for the wth word in the vocabulary
for the ith year is the average of the contextualized embeddings, which can be expressed as:5

Viw =

∑|Di|
j=1

∑|dij |
k′=1 Eijk′I[xijk′ = w]∑|Di|

j=1

∑|dij |
k′=1 I[xijk′ = w]

(7)

3We are aware of work demonstrating autoregressive Transformers can be trained without position embed-
dings, but we leave this style of model for predicting biases to future work.

4To make this more efficient, we batch the LSTM across words in our implementation.
5We use the indicator function I[·] which is 1 if the condition is true and 0 if it is false.

4



Published as a conference paper at ICLR 2024

To use the temporal contextualized word embeddings, we use the fact that more recent years have
more influence on future texts and propose a window-sized modeling approach. The window size
determines how many previous years for word embedding we consider to predict the next year’s
temporal bias. Let m be the window size for each year, then we compute a temporal bias Biw ∈ Rd

from m previous year’s word embedding as follows:

Biw = ATLSTM(V(i−m,w), ..., V(i−1,w)) (8)

where we take the last hidden vector of the LSTM and A ∈ Rd is a learnable parameter. The temporal
bias is added to the output of the Transformer as a bias in the softmax, as described in §3.1 Equation
3.

We also experimented with combining the word frequency model and the temporal contextual model,
but we did not observe any improvement by additively combining them.

3.4 THE DOUBLY CONTEXTUALIZED MODEL

The temporal contextual model does a good job of predicting the rise and fall in the frequencies of
terms. However, we observe that it does a poor job of deciding when to use the terms while generating.
The Contextual output in Table 2 shows an example of this. The model repeatedly introduces
new terms that are fashionable, but in an incoherent manner (saying that the paper will focus on IE,
but then saying that special attention will be on multi-document summarization).

We hypothesize that the contextual model can predict good terms to use, but cannot decide when to
rely on the temporal contextual model versus relying on the prior state in the language model (for
example, reusing a previous term in the document versus introducing a new fashionable term). The
model appears to need a “gating” mechanism to decide when to use the new suggested terms. To
address this, we introduce a mechanism that contextualizes the temporal contextual model when
generating a document – a doubly contextualized model that is contextualized both temporally and in
the document generation. Figure 2c shows the model overview.

We start with matching Biw with the pre-trained model embedding space and reduce the dimension
of vocabulary size. To implement this, we enable temporal bias Biw to tie with the word embedding
layer weights for each word Ew ∈ Rd and conduct a linear projection. We compute the tied and
projected temporal bias B̃iw ∈ Rd as follows:

B̃iw = (ET
wBiw)A (9)

where A ∈ Rd is a learnable parameter.

Then we compute the sigmoid attention between transformer decoder output Hk and B̃iw to obtain
the Bikw ∈ Rd as follows:

Bikw = ασ(HT
k CB̃iw)(E

T
wDB̃iw) (10)

where C,D ∈ Rd×d are learnable parameters, and α is a tuned hyperparameter.

This temporal bias is added to the output of the Transformer as a bias in the softmax, as described in
§3.1 Equation 4. Using this model, we obtain improved example output shown in Table 2.

4 EXPERIMENTS: FUTURE ABSTRACT PREDICTION

4.1 DATASET PROCESSING

As a concrete example to be experimented with, we conduct experiments to model future abstracts
for NLP papers based on previous papers’ abstracts. We first collect paper abstracts for each year
from ACL anthology website6 and filter the noisy abstracts such as papers that are not in English.
Then we use the years as the year (for other domains such as news, you can use the day or hour as the
year) and split the paper abstracts by years and use abstracts from 2003-2019 as training data, the
year 2020 as the development data, and the year 2021 as the test data. Table 1 shows the statistics of
the dataset. Figure 3 shows the number of abstracts by year for the dataset.

6https://aclanthology.org/anthology+abstracts.bib.gz
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Dataset Statistics Train Dev Test
# of abstracts 37816 5919 5529
avg. # of sentences per abstract 9.0 6.4 6.5
avg. # of tokens per abstract 225.8 168.5 164.3

Table 1: Data split statistics
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Figure 3: # of abstracts by year

4.2 MODELS

We use GPT-2 (Radford et al., 2019) as the pre-trained language model in our experiments, although
our approach is not restricted to any particular pre-trained language model. We train and evaluate the
following models:7

• Baseline A baseline which fine-tunes GPT-2 on abstracts from all previous years
• Baseline-n A baseline which fine-tunes GPT-2 on abstracts from n most recent previous

years, since recent years may be more relevant for predicting future years. We evaluated n
from 1 to 10, and report the best 2 models (n = 2 and n = 3).

• Frequency-NoLSTM A word frequency model without using an LSTM, instead directly
using the previous year’s frequency as a bias feature in the model.

• Frequency Word Frequency Model (§3.2)
• Context Temporal Contextual Model (§3.3)
• Context2 Doubly Contextual Model (§3.4)

4.3 HYPERPARAMETER SETTINGS

We use the Adam optimizer (Kingma & Ba, 2015). The batch size is set to 2 with gradient accumula-
tion size 2. Between layers, we apply dropout with a probability of 0.1. We fine-tune 10 epochs for
each model and do early stopping. The α is set to 1e− 3 or initialized with 1 when automatically
learned. Bounds for all hyperparameters are the same as GPT-2. We have several hyperparameter
search trials on α which are 1, 1e-1,1e-2, 1e-3, 1e-4, 1e-5. For each model, we have three training
and evaluation runs. The method of choosing hyperparameters is based on perplexity scores on the
dev set. Fine-tuned RoBERTa Model (Liu et al., 2019) for each year is used to generate temporal
word embedding representation. We use beam search decoding with top-k sampling. The beam size
is 5, k is 50, and p is 0.92. Since it is topic agnostic, the start token is end of sentence token for
GPT-2. All models were trained or evaluated on either one A40 or A6000 GPU. Our implementation
is based on Huggingface Transformers (Wolf et al., 2020).

4.4 AUTOMATIC EVALUATION METRICS

We use three automatic evaluation metrics, which are perplexity (PPL), content perplexity (CPL),
and content meteor (CM). Since most of the evolution of ideas in NLP papers is through changes in

7Appendix §A gives the model statistics.
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Approach Examples

Baseline

This paper presents a machine learning approach to the task of word sense disambiguation (WSD)
based on lexical, syntactic and semantic features. Our approach relies on a rule-based classifier trained
on manually annotated corpora. We show that our approach outperforms state-of-the-art WSD systems
for English, German and Spanish.

Frequency

This paper presents a new approach to the automatic generation of referring expressions (REs) in natural language.
The approach is based on the use of distributional semantics, which can be used to model the meaning of an utterance.
We describe how we have constructed a data set for RE generation that has been manually annotated with respect to
three dimensions: referential quality, fluency, and informativeness. In addition, we show how these dimensions
correlate with human judgments about the quality of generated REs.

Contextual

This paper presents an overview of the work carried out within the EU FP7 European project Information Extraction (IE).
In particular we focus on the main tasks involved in IE, i.e., text classification, named entity recognition and coreference resolution.
Special attention will be paid to the issues related to multi-document summarization as well as cross-lingual information extraction
which is very important for many natural language processing tasks such as machine translation and question answering.
Finally some directions for future research are sketched which include the development of more advanced IE systems based on
deep learning architectures and the creation of new IE evaluation corpora.

Contextual2

We present a novel approach to the problem of automatically detecting and classifying semantic relations
between named entities (NEs) in natural language text. In particular, we propose a new method for identifying NEs
that are not explicitly mentioned in the text, i.e., those that do not appear in training data. The proposed method is
based on an unsupervised clustering algorithm that uses word embeddings as features.
Experimental results show that our method outperforms state-of-the-art methods by a large margin.

Table 2: Example output for each approach.

Dev Test
PPL↓ CM↑ CPL↓ PPL↓ CM↑ CPL↓

Baseline-all 19.97 21.85 82.59 22.76 16.22 102.03
Baseline-2 21.66 24.41 91.36 21.53 19.69 94.37
Baseline-3 21.08 22.75 88.75 21.06 19.01 92.06
Frequency-NoLSTM 19.97 22.87 83.18 21.23 19.09 88.38
Frequency 19.97 23.87 82.43 20.20 19.98 87.68
Context 23.47 24.86 96.64 23.21 18.20 102.11
Context2 19.66 24.94 77.54 19.81 20.12 82.43

Table 3: Experiments results for automatic evaluation on abstracts. ↓ indicates lower is better and
↑ indicates higher is better. p-value < 0.001 for all scores over baseline based on statistical sign
test (Dixon & Mood, 1946). Baseline-n means only n previous years’ abstracts are used to
fine-tune a non-temporal LM. We evaluated n from 1 to 10, and reported the best 2 (n = 2 and
n = 3). Baseline-all means using the whole training set to fine-tune a non-temporal LM. PPL:
perplexity score; CM: content meteor score; CPL: content perplexity score (See §4.4 for the detail of
these metrics.)

Topic Topic New Problem Problem New Method Method New Avg
Baseline-all 100% 8% 50% 17% 42% 25% 46%
Baseline-2 97% 0% 60% 0% 53% 3% 36%
Baseline-3 100% 0% 95% 17% 35% 12% 44%
Frequency 100% 17% 83% 0% 100% 25% 54%
Context2 100% 33% 100% 17% 100% 50% 63%

Table 4: Experiments results for the human evaluation. See §4.6 for details of the criteria.

content words, we manually collect the non-content words as a stopwords list. During content words
based evaluation, we filter out the stopwords, and the leftover tokens are naturally formulated into
content words. The perplexity score evaluates fluency while the content words based metrics evaluate
the adequacy of future research ideas since ideas are mainly represented by content words instead of
non-content words.

Perplexity (PPL) We evaluate perplexity, which is calculated using the standard formula

PPL = 2−
1
M

∑N
i log2(p(xi))

where p(xi) is the token probability computed from the model and M =
∑N

i |xi|.
Content Perplexity (CPL) Perplexity is computed over all words equally, including non-content
words. To better evaluate the benefit of the improved content word selection, we calculate perplexity
on non-stop words. We call this content perplexity. This is computed by ignoring the stopword log
probabilities, and only adding the non-stopword log probabilities together and dividing by the number

7
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of non-stopwords instead of the total number of words8. For test data D = x1, ..., xN , the stopwords
list is Vs, then the content perplexity CPL is computed by

CPL = 2−
1

Ms

∑N
i log2(p(xi)I[xi ̸∈Vs])

where p(xi) is the token probability computed from the model and Ms =
∑N

i |xiI[xi ̸∈ Vs]|
Content Meteor (CM) This metric measures the match between model generated abstracts and
real abstracts in the dev and test sets. We use 100 random seeds to generate Ng = 100 abstracts to
compare with all abstracts in the dev or test set. After removing all the stopwords, we evaluate the
Meteor score for the generated abstract only by the content words. Let G = {a1, ..., ai, ..., aNg

} be
all generated abstracts with the stopwords removed, let D = {d1, ..., dj , ..., dNh

} be all abstracts in
the dev or test set (Nh is the number of abstracts in dev or test set), we compute Content Meteor as:

CM =

∑Ng

i=1 maxNh
j=1 Meteor(ai, dj)

Ng

4.5 AUTOMATIC EVALUATION RESULTS

Table 3 shows the automatic evaluation experiment results across all experimented models. Our
proposed methods perform better than the GPT-2 baselines without temporal information on all
automatic evaluation metrics.

The doubly contextualized model has about 3 content meteor points improvement over the year
agnostic baseline-all, and 5 points content perplexity improvement, which indicates the content better
matches real future abstracts. This demonstrates that the doubly contextualized enables the model
to generate content words that will be used in the future. The word frequency model also shows 2
points improvement in the content meteor and slightly better in the content perplexity. This indicates
that by only adding the word frequency as bias, the model can increase the content matching slightly.
We tried the accumulated baselines on the abstracts of the n most recent years and the performance
of only training on the most recent abstracts cannot surpass proposed model.

From a fluency perspective, the word frequency model has the same perplexity as baseline-all. In
contrast, the doubly contextualized model shows a larger improvement which indicates that it can
enable the model to generate more fluent abstracts than the baselines for future abstracts. Without
using the LSTM to model the temporal information, the model only considers a single previous year
bias which hurts the performance. Without gating, although the model has a high content matching
score, it has a lower fluency score because the model cannot recognize which tokens should be biased.
This demonstrates the importance of the gating mechanism in the doubly contextualized model.

4.6 HUMAN EVALUATION

For a human evaluation, we randomly evaluate 100 generated abstracts for each approach. Since our
temporal language generation task is to generate abstracts, we evaluate the abstracts with six different
criteria, with criteria tailored to the abstract generation task. Table 4 shows the human evaluation
results for all the experimental methods. We have six criteria for evaluation, which are divided into
three abstract content types each with fluency and novelty aspects. Each criterion score is binary 0 or
1 for each abstract. We add all obtained scores together and divide them by the total gold scores to
obtain the percentage of the human evaluation score. The human evaluators are NLP researchers. We
conducted a blind evaluation, so the human evaluators did not know the approach for abstracts.

• Topic: Is the topic clear and correct? We check if an abstract has a fluent topic or
background description without factual errors.

• Topic New: Is the topic new? We check if an abstract has a topic we have never seen
before or matches the recent research topics.

• Problem: Is the problem clear and correct? We check if an abstract has a fluent problem
description without factual errors.

• Problem New: Is the problem new? We check if an abstract introduces a problem that we
have never seen or matches the recent research problems.

8Appendix C shows how the stopwords are curated.
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• Method: Is the method clear and correct? We check if the abstract has a fluent method
description without factual errors.

• Method New: Is method new? We check if an abstract proposes a method we have never
seen or matches the recent approaches.

Note that “new” here does not mean completely new. Instead, it only means more related to “future
abstracts” such as abstracts in our dev or test set. Apparently, the model cannot generate completely
new topics, a new method, or a new problem that they have never seen during the training.

All of our proposed methods outperform the baseline when evaluated using the average score. The
generated topics for all approaches are clear and correct, indicating that the GPT-2 baseline can
adequately generate clear topics. However, topics are not necessarily new in the baseline approaches,
whereas in our proposed approach 1/3 of the topics are new. Additionally, the problem and the
method are not always clear and correct in the baseline, whereas our proposed approaches can have
all generated new problems, and the methods are clear and correct. In our proposed approach 1/2 of
the approaches are new, which shows that our proposed approaches have the ability to predict new
trends for future research.

4.7 CASE STUDY

Table 2 shows generated abstracts from all the approaches and Table 6 in Appendix shows more
generated abstracts from all the approaches compared to the reference abstracts from ACL conferences.
The baseline approach generates more general abstract content that does not contain many details
or generate very traditional methods for NLP research. The example from Context shows that
without gating, the generated output after 2-3 sentences is not related to the starting sentence because
it may ignore the previous context, although new content is generated, which shows that the gating
mechanism can help the model determine whether the next generated token should be depended
on the historical documents or the previous context. In contrast, the Context2 method generates
more detailed content and content that is more related to recent research, such as word embeddings
or neural networks, and later generated sentences are more coherent to the previous context, which
balanced between considering the historical documents to generate new content or following the
previous context to generate more coherent text.

5 RELATED WORK

To the best of our knowledge, there is no prior work constructing language models for future text
based on temporal historical documents. However, there is much work on language models with
temporal information (Röttger & Pierrehumbert, 2021; Lazaridou et al., 2021; Hofmann et al., 2021;
Agarwal & Nenkova, 2022; Loureiro et al., 2022). Huang & Paul (2019) worked on document
classification using word-level temporal embeddings, and Röttger & Pierrehumbert (2021) adapts the
pre-trained BERT models to domain and time. Lazaridou et al. (2021) evaluated the performance
of language models on future text, in a setup similar to ours but did not construct any temporally
aware models for future language modeling. Dhingra et al. (2022) conducted experiments with
temporal language models for question answering. Hofmann et al. (2021) modeled temporal and
social information together by modifying BERT with a latent Gaussian process. Rosin et al. (2022)
concatenated time tokens to text sequences and introduced time masking using masked language
modeling to make a time-aware BERT. However, none of the previous works are about building
language models for future text based on temporal historical documents. In this paper, we fill this gap
and propose future language models that can generate texts that are more related to future content,
which can be applied to many future forecasting areas.

6 CONCLUSION

In this paper, we introduce the task of future language modeling and propose a series of future
language models. We evaluate our models on abstracts in NLP. The proposed approaches outperform
the baseline non-temporal language models across all automatic evaluation metrics and human
evaluation on generating content related to the future text based on temporal historical documents.
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