
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEVERAGING DIFFUSION TRANSFORMERS FOR
ROBUST STOCK FACTOR AUGMENTATION IN
FINANCIAL MARKETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data scarcity poses a significant challenge in training machine learning models
for stock forecasting, often leading to low signal-to-noise ratio (SNR) and data
homogeneity that degrade model performance. To address these issues, we in-
troduce DiffsFormer, a novel approach utilizing artificial intelligence-generated
samples (AIGS) with a Transformer-based Diffusion Model. Initially trained on a
large-scale source domain with conditional guidance to capture global joint distri-
bution, DiffsFormer augments training by editing existing samples for specific
downstream tasks, allowing control over the deviation of generated data from
the target domain. We evaluate DiffsFormer on two datasets using eight com-
monly used machine learning models, achieving relative improvements of 7.3%
and 22.1% in excess return, respectively. Extensive experiments provide insights
into DiffsFormer’s functionality and its components, illustrating their roles in mit-
igating data scarcity and enhancing model performance.

1 INTRODUCTION

Accurate stock forecasting plays a crucial role in effective asset management and investment strate-
gies (Zou et al., 2022). Its objective is to predict future stock behavior (e.g., return ratios or prices)
by analyzing relevant historical factors. Previous research (Zhang et al., 2017b; Feng et al., 2019;
Xu et al., 2021) has explored various machine learning techniques; however, achieving desirable per-
formance with these methods often requires an ample supply of high-quality data. The challenges
posed by high random and homogeneous data make it difficult to meet the requirements for data
quality, resulting in elevated forecasting errors and increased uncertainty. Figure 1 demonstrates the
significance of addressing the data scarcity issue. As demonstrated, when this challenge is miti-
gated, the model exhibits a progressive and substantial excess return (§2 Eq.(3)). This improvement
highlights the potential performance gains achievable through effective data augmentation strategies.

Figure 1: The cumulative excess return (§2 Eq.(3)) curve of our system on CSI300 index. Prior to
2023-04, the online model was the Transformer. Subsequently, DiffsFormer was deployed.

Stock forecasting focuses on predicting (excess) return ratio with stock factors such as Open, Close,
High and Low prices. Data scarcity in the task can be delineated through two primary dimensions:
signal-to-noise ratio (SNR, §2 Eq.(1)) and data homogeneity Firstly, we delve into the relationship
between stock factors and the return ratio to elucidate insights regarding SNR. As illustrated in Fig-
ure 2a, the Pearson correlation coefficients between stock factors and the return ratio indicate a weak

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

correlation (with absolute values less than 0.03), which suggests a low SNR for these factors. This
weak correlation is frequently attributed to randomness and non-stationary speculative behaviors in
the market. Secondly, we assess the behavior of stocks within industry sectors to highlight the im-
plications of data homogeneity. Our findings reveal that stocks within the same industry sector tend
to exhibit similar behavior, as demonstrated in Figure 2b. The different colors in each bar represent
various sectors, and the height of the color bar indicates the total number of stocks in specific sector
facing price drops. The presence of substantial color blocks for specific sectors in certain years
(e.g., larger blocks of blue, green and yellow in some years) suggests that when a sector is affected,
it often impacts multiple stocks in that sector simultaneously. Consequently, this phenomenon of ho-
mogeneity diminishes the availability of stocks with unique informational characteristics. Such data
scarcity presents inherent challenges, leading to the risk of overfitting, wherein models may learn
shortcuts and spurious correlations, thereby adversely affecting their predictive performance. The
limited availability of data constitutes a considerable obstacle to achieving effective generalization
between training and testing datasets, ultimately compromising overall model performance.

(a) Data SNR (b) Data Homogeneity

Figure 2: (a) Pearson Correlation Coefficients between re-
turn ratio and stock factors are low. (b) Number of stocks
experiencing significant price drops in each sector.

Drawing inspiration from the suc-
cessful applications of Diffusion
Models (DMs) in sequence genera-
tion (Tashiro et al., 2021; Rasul et al.,
2021; Chen et al., 2020; Bilos et al.,
2023; Alcaraz & Strodthoff, 2023),
we propose a novel Diffusion Model
designed to generate stock factors us-
ing a Transformer architecture, re-
ferred to as DiffsFormer. Apply-
ing Diffusion Models (DMs) to fac-
tor augmentation in stock forecast-
ing presents significant challenges.
These challenges are twofold: (1)
Unlike traditional DM applications,
the stock forecasting context requires
corresponding labels for the gener-
ated factors. (2) The inherent scarcity of financial data can hinder the generalization capabilities of
DMs, potentially leading to overfitting on easily modeled patterns rather than capturing true market
dynamics. To address these challenges, we have developed novel mechanisms that equip Diffusion
Models with the capability to generate corresponding labels and mitigate overfitting issues.

In §3.1, we present the knowledge transfer with edit mechanism. Our proposed framework incorpo-
rates transfer learning to distill valuable knowledge and information from stocks in larger markets.
DM with a diffusion step denoted as T is first trained on a large source domain to overcome the
data scarcity nature. During generation, rather than sampling from pure gaussian, we perturb data
points from the target domain, and subsequently denoise to obtain new data points with the same
label that resides within the target domain. Note that as the financial data is noisy, we restrict the
perturb step to a small value T ′ ≪ T , which we refer to as the editing step. On top of that, it is
unnecessary to optimize the DM for t > T ′ since they are never used during sampling. On top of
that, in §3.2 we present the time efficiency optimization without affecting correctness.

In §3.3, we introduce the conditionings adopted for DM. Inspired by classifier-free guidance (Ho
& Salimans, 2022), we equip DM with the capability to capture label and sector information which
contributes to the alignment of the generated feature and the original label and sector. As the
label for our task is continuous rather than discrete, we term our flexible conditional factor generation
process as predictor-free guidance. In §3.4, we discover that the diffusion model overfits to some
easily fitted patterns, hence we utilize the training loss as a proxy variable and introduce stronger
noise to data points associated with lower training loss. This loss-guided noise addition mechanism
aims to mitigate the volatility of the model by addressing the overfitting issues linked with easily
fitted points, as opposed to employing uniform noise addition.

In summary, the contributions are as follows:

• We reveal the importance of data augmentation in the context of stock forecasting and explore the
use of diffusion stock transformer (DiffsFormer for short) to address data scarcity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• The framework integrates transfer learning to leverage knowledge from other markets, alleviating
the difficulty of training DMs on sparse data. Additionally, the edit mechanism could obtain
new features with original label with optimized efficiency, enabling training of the downstream
forecasting task. For better alignment of the feature and the original label, we propose to employ
excess return as the conditioning to enhance the relationship between them. A flexible predictor-
free guidance approach is integrated as excess return is continuous rather than discrete.

• We verify the effectiveness of DiffsFormer augmented training in CSI300 and CSI800 with nine
commonly used machine learning models.

2 BACKGROUND

In the ever-evolving landscape of financial markets, performance evaluation of a portfolio provides
insights into investment strategies and helps in making informed decisions. With this in mind, in
this section, we will introduce fundamental concepts and widely accepted evaluation methodologies
crucial for assessing the performance and accuracy of stock price forecasting models.

Stock Factors. Factors are attributes of a stock that are identified as potential drivers of return.

Signal-to-noise ratio (SNR). Signal-to-noise ratio means the ratio of the signal power to the noise
power. Generally, Data X could be expressed as S + N , where S is the signal variable, and N is
a random variable having an expected value equal to zero. Signal’s power equals its mean-squared
value, and the zero mean of the noise makes its power equal to its variance σ2 (Johnson, 2006):

SNR =
E[S2]

σ2
(1)

Return Ratio (RR). The primary objective of stock forecasting is to achieve substantial profits.
Previous study (Zou et al., 2022) treat RR as a metric to measure the model performance. RR
serves as a crucial indicator to assess the success of stock forecasting models in achieving profitable
investment outcomes. Following this setting, we define return ratio as:

RR(i) =
P t+i
close − P t

close

P t
close

, (2)

where t is the current time, and i denotes the time interval in days. P t
close denotes the current close

price of the stock, and P t+i
close represents the close price of the same stock after i days. Here, we

calculate the return ratio on a daily basis, and often set i to be 5.

Excess Return. Sometimes people care about how much a portfolio outperforms or underperforms
a chosen benchmark index rather than the return itself. The excess return over an index is a measure
used to evaluate the performance of an investment portfolio compared to a benchmark index (e.g.,
CSI300 or CSI800 index). The formula for excess return is simple:

Excess Return = Portfolio Return Ratio - Benchmark Return Ratio. (3)

Information Coefficient (IC) and Rank information Coefficient (RankIC). IC and RankIC (Lin
et al., 2021; Li et al., 2019) are commonly used in finance and machine learning contexts to assess
the effectiveness of predictive models. IC measures the Pearson correlation between predictions and
actual labels, while Rank IC is concerned with Spearman’s rank correlation between the two:

IC =
cov(Vp, Va)

σ(Vp)σ(Va)
, RankIC =

cov(Rank(Vp),Rank(Va)

σ(Rank(Vp))σ(Rank(Va))
, (4)

where Vp and Va represent the vectors of predicted and actual values, respectively.

Weighted IC. In financial markets, especially where going short is banned, accurate modeling of tail
stocks has little contribution to excess return compared to that of top stocks. Hence we introduce to
apply an exponentially decayed weight on IC/RankIC to better characterize the correlation between
the prediction and label on top stocks:

WeightedIC =
Σn

i=1ωi(Vpi
− Vpω)(Vai

− Vaω)√
Σn

i=1ωi(Vpi
− Vpω)

2

√
Σn

i=1ωi(Vai
− Vaω)2

, (5)

where ωi+1 = 0.99 ∗ ωi. Vpω and Vaω denotes the weighted average of vectors.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

The stock forecasting task is challenging primarily because of the scarcity of data. To harness the full
potential of machine learning models, a sufficient amount of high-quality data is crucial. However,
obtaining such high-quality stock data for a specific target domain is rare and can often be restricted
as commercial secrets. In this work, we utilize the power of DM and introduce a novel approach,
DiffsFormer. It generates additional data points and facilitates factor augmentation, enabling us to
forecast the likely RR of real-world stocks despite data scarcity.

3.1 DIFFUSION-BASED DATA AUGMENTATION

Following (Ho et al., 2020; Nichol et al., 2021), DiffsFormer contains diffusion and denoising pro-
cesses like most of the DMs do. The diffusion process parameterizes a Markov chain that progres-
sively introduces noise to the factors until reaching a state of pure noise (Ho et al., 2020). Subse-
quently, during the denoising process, the model aims to restore the original data by predicting the
noise generated through the diffusion process. This characteristic enables us to edit and augment the
sequential data. In this study, as shown in Figure 3, we look back 8 days and organize recent stock
factors as a sequence, leveraging DMs based on transformer architectures (Peebles & Xie, 2022;
Tashiro et al., 2021) to do factor augmentation. We expect that by incorporating augmented factors,
our proposed model will exhibit enhanced resilience to data scarcity in the field of stock forecasting.
Detailed explanation of denoising diffusion probabilistic model is shown in Appendix B.

Figure 3: Sketch of DiffsFormer. F refers to “fac-
tors”, such as the open/close/lowest/highest prices
of stocks during a period.

Diffusion process. In stock forecasting, the
input data X ∈ Rn×d×k consists of n real
stocks along with their recent k-day histori-
cal factors, for which d is the factor dimen-
sion. We treat each stock x (i.e., a row of
X) as x0 sampled from q(x0), and add ran-
dom noise to perform a transition according
to equation 11. Thanks to the reparameteri-
zation trick (Ho et al., 2020), we can obtain
the conditional distribution q(xt|x0) for each
stock (Wang et al., 2023; Tashiro et al., 2021):
q(xt|x0) = N (xt;

√
αtx0, (1− αt)I), (6)

where αt =
∏t

i=1 αi and αt = 1 − βt. Then, xt is approximated as xt =
√
αtx0 + (

√
1− αt)ϵ

where ϵ ∼ N (0, I). αi is related to the total diffusion step T .

Denoising process. During the denoising process, we subtract noise from xt to recover the cor-
responding x̂0 ∼ q(x0). Furthermore, we parameterize pθ(xt−1|xt) through a neural network to
estimate q(xt−1|xt,x0). Specifically, we have pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σq(t)I) with:

µθ(xt, t) =
1√
αt

(x− βt√
1− αt

ϵθ(xt, t))

Σq(t) =
(1− αt−1)βt

1− αt
,

(7)

where ϵθ(xt, t) is the trainable noise term to predict ϵ in the diffusion process.

Objective. The overall learning objective is to minimize the error in estimating ϵ with
ϵθ(xt, t) (Nichol et al., 2021). Formally, we aim to solve the following optimization problem:

Lda = min
θ

Ex0∼q(x0),ϵ∼N (0,I),t∼Uniform||ϵ− ϵθ(xt, t)||22

s.t. xt =
√
αtx0 + (

√
1− αt)ϵ.

(8)

Inference acceleration. In Denoising Diffusion Probability Models, the lack of parallelism during
the transition of DMs leads to slow inference. To tackle this problem, Denoising Diffusion Implicit
Models (DDIM) (Song et al., 2020) accelerates samplings by modifying the forward process as:

qσ (x1:T | x0) = qσ (xT | x0)

T∏
t=2

qσ (xt−1 | xt,x0) , (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 4: (a) The training and the editing topology. (b) Illustration of the editing step T ′.

where qσ (xt−1 | xt,x0) is parameterized by σ which means the magnitude of the stochastic process.
When setting σt = Σq(t) for all steps, the forward process collapses to Markovian and the denosing
process becomes the same as shown in Eq.(7). Specifically, when setting σt = 0, the corresponding
denosing process becomes deterministic and thus sampling could be accelerated along the determin-
istic path. Technically, we follow the deterministic sampling design and create {τi}, {i = 1 · · · l}
as a sub-sequence of {t = 1, 2, · · · , T}, where l is the length of the sub-sequence. The denoising
process can now be completed in just l ≪ T steps armed with DDIM sampling.

Factor editing with transfer learning. To alleviate data homogeneity issue, we augment the raw
factors in target domain by going through a noising-denoisng process. Instead of generating syn-
thetic factors from pure noise which hardly ensures data fidelity, we adopt a different approach by
editing the original factors rather than generating entirely new ones. Moreover, due to the intrin-
sic low SNR nature of the factors, we design a transfer learning framework to distill new knowl-
edge and information into edited data from a larger, different domain. Concretely, DiffsFormer of
diffusion step T is first trained on the source domain X(s). During the inference process, we be-
gin with a data point in the target domain x

(t)
0 , corrupt it for T ′ ≪ T steps to get a seed point:

x
(t)
0 → x

(t)
1 → · · · → x

(t)
T ′ . Then, we reverse the process from the seed to obtain a new data point

x
(t)
T ′ in the target domain: x(t)

T ′ → x̂
(t)
T ′−1 → · · · → x̂

(t)
0 . In our work, CSI300 and CSI800 are target

domains (evaluation dataset), for which CSIS serves as the source domain. CSI 300 comprise the
largest 300 stocks in the A-share market; CSI 800 adds some stocks to CSI300 with smaller size;
CSIS means all stocks in the A-share market. Hence both of the target domains are a subset of the
source domain, and this procedure distills new knowledge and information and enhances the data
heterogeneity. Moreover, since the inference process starts from the seed, we can successfully edit
existing samples. As illustrated in Figure 4b, T ′ can control the strength of knowledge distillation:
a larger T ′ makes the generated data resemble the feature distribution of the source domain more
closely, while a smaller T ′ makes the generated data closer to the target domain data x

(t)
0 . We term

T ′ as the editing step. By doing so, we improve the fidelity of the generated data, avoiding creating
data from pure noise. An illustration of the process is shown in Figure 4a. The detailed algorithms
for training and inference are shown in Algorithms 1 and 2, respectively.

The relationship between SDEdit (Meng et al., 2022). SDEdit is a prestigous work in image edit
domain, and have something in common with our edit mechanism: SDE serves as the theoretical
support (SDE) for both of the problems, and the perturbing and reverse process looks alike. How-
ever, our approach differs in: SDEdit aims to generate both faithful and realistic image given input
guidance image; while we expect diffsformer to: (1) be free from generation problems and (2) keep
label unchanged. By training diffusion model in source domain and starting from seed sample in
target domain during inference, we generates new sample with the same label with seed, aggregating
information from the target domain, whose strength could be controlled by the editing step T ′.

3.2 TIME EFFICIENCY IMPROVEMENT

From previous analysis in §3.1, it is obvious to see that there is no need to optimize ϵθ(xt, t) for
t > T ′ under our transfer learning framework. Since DMs are time-consuming, we develop a trick
to speed up the training of the framework. Concretely, we initialize α and β with total diffusion steps
T to ensure correctness; however, we sample training step t from Uniform{1, 2, · · · , T ′} instead
of Uniform{1, 2, · · · , T}: compared to traditional DM, the probability of sampling useful steps

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Diffusion
StepTransformerTransformer

Training

TransformerTransformer

Editing

Backbone

Forecasting
Stock (Hidden)

Factors

ALN

Multi-head
Attention

Scale

ALN

FFN

Scale

Condition
Embedding

MLP

Data In Source Domain

Data In Target Domain

Return Ratio

Industry Sector

Figure 5: DiffsFormer overview. Y denotes label and I denotes industry sector. DiffsFormer incor-
porates transfer learning and conditional guidance to ensure improved model performance. Details
for transformer architecture (Peebles & Xie, 2022) are introduced in Appendix C.10.
that are smaller than T ′ is increased. The loss curves with maximum sampling steps within the set
{100, 300, 500, 700, 1000} are elucidated in Appendix C.10. We discover that with the decrease of
sampling steps, DMs embrace with a more sharp loss curve, which means they can converge faster.

3.3 CONDITIONAL DIFFUSION AUGMENTATION

Most generative tasks do not have the demands for label generation. However, in the stock forecast-
ing task, a clean and informative supervised signal is essential for training the forecaster. According
our experiments in Appendix E.3, we suppose that direct generated label fails to serve as the accurate
supervised signal for the generated feature. As an alternative, we pave the way to control the syn-
thesis process through guidance inputs, including labels and industry information (Rombach et al.,
2022). We can expect that the generated factors will align with the sectors and labels of the original
factors, thereby enabling DiffsFormer to generate labels. Our inspiration is drawn from classifier-
free guidance (Ho & Salimans, 2022), and since our labels are continuous rather than discrete, we
refer to this mechanism as “predictor-free guidance.”

Technically, according to (Ho & Salimans, 2022), the guiding effect can be achieved by jointly
training conditional and unconditional DMs. Specifically, the inference process is in the form of:

ϵ̂θ(xt, c) = ϵθ(xt, ∅) + ω · (ϵθ(xt, c)− ϵθ(xt, ∅)), (10)

where c denotes the condition vectors and ∅ denotes a learnable null vector. During training, c is
randomly replaced with ∅ with a fixed probability to train an unconditional DM. As the guidance
strength ω gets larger, DM receives more rewards when generating xt having a high probability
pθ(c|xt). Note that ω shall be greater than 1 to be effective. The advantages of predictor-free
guidance are: 1) it is a simple approach since no auxiliary predictor is needed; 2) it is flexible since
it supports other types of conditionings beyond return-ratio labels. In our work, we further explore
the use of industry information. We observe that stocks in different industries tend to perform in
different patterns. For instance, financial stocks (e.g., banks) usually have low yields but enjoy low
volatility, while many information technology stocks have high yields but undertake high volatility.
Furthermore, we can synthesize industry-specific data to improve model performance in specific
industry sector. One of the unappealing properties of the predictor-free guidance is that it injects the
conditionings during the training of DMs. As a result, when adding or modifying conditionings, we
need to retrain the DMs although it is time-consuming.

3.4 LOSS-GUIDED NOISE ADDITION

We identify that there are certain easy-fitted points within the dataset, and we hypothesize that
alleviating the overfitting issues associated with these extreme data points can reduce volatility.
§ 4.2 illustrates the training loss over time. Notably, the loss for stock forecasting remains quite low
during the stock market crash from June 2015 to June 2016, which we suspect is due to the increased
proportion of retail investment, characterized by simpler action patterns. A model that overly fits
the data from around 2015 is likely to struggle in the present, as market dynamics have become
more complex. However, discarding this data is sub-optimal, as it would exacerbate data scarcity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To address this, we propose a novel strategy termed loss-guided noise addition. Specifically, we
utilize training loss as a proxy to introduce stronger noise to data points with lower training loss.
As demonstrated in Figure 7c, loss-guided diffusion results in flatter training losses compared to
uniform noise addition, effectively alleviating overfitting and decreasing volatility.

3.5 MODEL OVERVIEW

Figure 5 elucidates the overall framework of our stock price forecasting model. The framework is
designed with several considerations: 1) DMs acts as a plug-and-play data augmentation module, so
it can be deployed to different backbones without retraining; 2) our data is organized in sequences, so
we explore the use of transformers to better capture the autocorrelation in the sequence, as opposed
to the commonly adopted UNet (Ronneberger et al., 2015) in text-to-image generation models; 3)
the transfer-based editing framework distills new knowledge while preventing the new data copy
from deviating from the original data too much.

4 EXPERIMENT

In this section, we conduct experiments on the real-world stock data from 2008 to 2022 provided
by (Yang et al., 2020b). Datasets, implementation details, evaluation metrics and trading strategys
are shown in Appendix C.

4.1 PERFORMANCE COMPARISON

To begin with, we perform a completed comparison between the original and the augmented feature
on the mentioned baselines, wherein the percentage of relative improvement on each metric is shown
in Table 1 and 2. Note that HIST requires the concept of stocks to build the graph, therefore we don’t
run it on CSI800 where the concepts are not available. Another notion is that the test time range
is 2017-01-01 to 2020-12-31 in previous works (Xu et al., 2021; Wang et al., 2022), which is not
consistent with 2020-04-01 to 2022-09-30 in our work. The reason is that we find factors and model
performance can decays with age, and we aim to provide with an up-to-date performance of the
models. As a result, the performance of backbones in our paper and that in previous works are not
comparable. The main observation are as follows:

• In general, the proposed framework DiffsFormer improve the performance of backbone models
on average by 0.50% ∼ 13.19% and 4.01% ∼ 70.84% on CSI 300 Index and CSI 800 Index,
respectively. Furthermore, our observation aligns with (Zhang et al., 2017a; Taniguchi & Tresp,
1997) that low Signal-to-Noise ratio leads to high variance, for which we conduct significance test.
We observe that most of the improvements are significant, while few of them are less significant
or even not significant. However, our model has better average performance and lower standard
variance which we believe enough to demonstrate the effectiveness of the method.

• For real-world practical use, we could choose the best model on a small validation dataset.
We conduct a small experiment: remain train dataset as the 2008∼2020.04, and adopt
2020.04∼2020.12 to serve as validation dataset and test on 2020.12∼2022.09. The test result
are shown in columns Best Ori. and Best Ours, where we observe a remarkable improvement on
most of the methods.

• Excess Return is the primary performance metric since the ultimate goal of stock forecasting is
to achieve substantial profits. Besides, we also adopt Weighted-IC (§2) to better characterize the
correlation between the prediction and label on top stocks. From the table, we can observe that: 1)
Weighted-IC for CSI800 is obviously lower than that for CSI300, which is consistent with excess
return performance in Table 1 and 2. 2) The models’ rankings in terms of weighted-IC and excess
return are similar, especially on CSI800, suggesting weighted IC can be served as a metric to
measure the potential of reaching a high excess return. 3) DiffsFormer boosts the Weighted-IC
for most of the methods on the CSI300 and improves the Weighted-IC for more than half of the
methods on the CSI800, verifying its effectiveness of improving model performance. We also
report IC and RankIC in Appendix E, but we don’t think it is always positively associated to the
excess return. Accurate prediction of high-volatility (top and bottom) stocks are more important
to acquire profits and avoid losses, as shown in Figure 6. Our model has a lower MSE and RMSE

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Excess return and Weighted-IC comparison on CSI300. The better results are indicated in
boldface. Deep blue boxes indicates passing 0.05 level test. Shallow blue boxes indicates passing
0.2 level test. Shallow yellow boxes indicates failing significance test.

Excess Return Weighted-IC

Original Ours Improv. p-value Best Ori. Best Ours Original Ours Improv.

MLP 0.2093±0.0300 0.2163±0.0210 3.34% 0.123 0.2278 0.2345 0.0326±0.0023 0.0332±0.0021 1.84%
LSTM 0.2312±0.0308 0.2336±0.0219 1.04% 0.868 0.2498 0.2587 0.0295±0.0032 0.0339±0.0025 14.92%
GRU 0.2161±0.0293 0.2413±0.0149 11.66% 0.157 0.2167 0.2140 0.0324±0.0012 0.0383±0.0011 18.21%
SFM 0.2189±0.0325 0.2200±0.0175 0.50% 0.923 0.2253 0.2289 0.0288±0.0029 0.0300±0.0030 4.17%
GAT 0.2461±0.0176 0.2701±0.0168 9.75% 0.019 0.2333 0.3021 0.0354±0.0006 0.0324±0.0004 -8.47%
ALSTM 0.2047±0.0351 0.2317±0.0233 13.19% 0.012 0.2410 0.2757 0.0260±0.0038 0.0312±0.0033 20.00%
HIST 0.2272±0.0352 0.2410±0.0207 6.07% 0.249 0.2420 0.2243 0.0249±0.0066 0.0317±0.0026 27.31%
MTMD 0.2129±0.0355 0.2547±0.0207 19.63% 0.024 0.1408 0.1830 0.0316±0.0027 0.0347±0.0021 27.31%
Transformer 0.2789±0.0376 0.3127±0.0113 12.12% 0.016 0.2688 0.3360 0.0387±0.0038 0.0433±0.0048 11.89%

Table 2: Performance comparison on CSI800. The better results are indicated in boldface.

Excess Return Weighted-IC

Original Ours Improv. p-value Best Ori. Best Ours Original Ours Improv.

MLP 0.1037±0.0383 0.1161±0.0223 11.96% 0.102 0.1292 0.1243 0.0052±0.0041 0.0063±0.0032 21.15%
LSTM 0.1248±0.0282 0.1298±0.0317 4.01% 0.758 0.1165 0.1408 0.0075±0.0055 0.0024±0.0026 -68.00%
GRU 0.0758±0.0307 0.1295±0.0292 70.84% 3e-4 0.0828 0.1265 0.0005±0.0027 0.0128±0.0029 2460.00%
SFM 0.0906±0.0413 0.1250±0.0375 37.97% 0.004 0.0980 0.1415 0.0028±0.0032 0.0026±0.0030 -7.14%
GAT 0.1814±0.0309 0.2013±0.0210 10.97% 0.007 0.0849 0.0862 0.0083±0.0010 0.0047±0.0008 -43.37%
ALSTM 0.1030±0.0253 0.1518±0.0290 50.29% 5e-4 0.0880 0.2257 0.0025±0.0064 0.0094±0.0023 276.00%
Transformer 0.1751±0.0386 0.1903±0.0382 8.68% 0.280 0.1583 0.2923 0.0066±0.0058 0.0159±0.0054 140.91%

in high-volatility stocks, although got worse overall metrics. The reason is that our target domain
(CSI300 and CSI800) consists of more established companies with stable earnings, and tend to
have lower volatility; the source domain consists of all stocks in China A-share, which means
the source domain have a higher volatility than the target one. Knowledge distillation enhances
the prediction ability of high-volatility stocks at the expense of the low-volatility ones. Since our
strategy is discovering Top-30 stocks, this property is promising and leads to higher profit.

4.2 EFFECTIVENESS ANALYSIS

In this section, we will discuss each component of DiffsFormer, including loss-guided diffusion,
transfer diffusion, conditional diffusion, and comparison with other augmentation algorithms.

Editing Mechanism. As the financial data is noisy, recall that we restrict the perturb step to a
small value T ′ ≪ T , where T is the diffusion step and T ′ is the editing step. T ′ could con-
trol the strength of knowledge distillation: a larger T ′ makes generated data resemble more fea-
ture distribution from the source domain, while a smaller T ′ makes edited data closer to orig-
inal target domain data. To support this argument, we report the editing steps along with cor-
responding model performance and FID between the original and the edited data in Table 3.

Table 3: The Effect of Editing Steps

Steps 200 300 400 500
Performance 0.2843 0.3127 0.2936 0.2712

W-Distance 0.4113 0.6908 1.1380 1.8927

We observe a trade-off between model per-
formance and the editing step, which we at-
tribute to the increased data diversity in the
very early diffusion steps and the decreased
data fidelity in the later steps. We also con-
duct experiment comparison on direct gen-
eration, random noise addition and editing,
observing that generated data are restricted to locate near the original data when we edit the existing
sample from the target domain. The detailed experiment can be found in Appendix E.1.

Loss-guided diffusion. Besides the excess return, information ratio (IR)1 is another essential mea-
sure of the stock forecasting performance which measures the stability and generalization of the
model. In Figure 7d, we observe that (1) data augmentation can increase the IR of the model; (2)

1https://en.wikipedia.org/wiki/Information ratio

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: MSE and RMSE comparision. Top/Tail-30(100) category represents the 30(100) stocks
exhibited the highest price increases/decreases.

(a) Original Training Loss (b) Uniform noise addition (c) Loss-guided noise addition

(d) Information ratio by different training data.

Figure 7: The illustration of the impact of loss-guided diffusion.

DM outperforms shake-shake (Gastaldi, 2017), another data augmentation method based on Trans-
former; (3) loss-guided diffusion can further increase IR and decrease the volatility.

Transfer Diffusion. Recall that in § 3.1, we design a novel inference process to distill new knowl-
edge to generated data through transfer learning. To verify the real cause of performance improve-
ment, we aim to exclude the interference of the new information. The result is shown in Table 4,

Table 4: Diffusion-based Data augmentation and Fine Tuning re-
sults. CSIS denotes all stocks in China A-Share.

Target Domain Source Domain Fine Tuning Diffusion DA

CSI800 CSI800 0.1751±0.0386 0.1793±0.0113

CSIS 0.1641±0.0300 0.1903±0.0382

CSI300
CSI300 0.2789±0.0376 0.2861±0.0547

CSI800 0.2773±0.0181 0.2789±0.0333

CSIS 0.2432±0.0372 0.3127±0.0113

where the fine tuning column
denotes the mechanism of train-
ing on source domain and test-
ing on target domain, and dif-
fusion DA stands for diffusion-
based data augmentation with
transfer learning. Observations
are threefold: 1) While train-
ing in a larger source domain
before fine-tuning in the target
domain introduces new informa-
tion, it may degrade model performance due to differences in distribution between the two

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Comparison between different augmentation methods with Transformer and GRU.
domains. 2) When the source and target domains are identical, meaning no new infor-
mation is introduced, DM still enhances performance. 3) Transfer diffusion significantly
boosts model performance, underscoring the effectiveness of the transfer learning mechanism.

Table 5: Performance with Different Conditionings.

Performance Wasserstein
w/o Diffusion 0.2789 -

No Conditioning 0.2919 0.9009

PFG
ER 0.2971 0.7335

Sector 0.3009 0.8226
ER + Sector 0.3127 0.6908

Conditional Diffusion. Conditionings are
incorporated in DiffsFormer for two rea-
sons: (1) Help generate the corresponding
label; (2) Boost the performance. The stock
forecasting performance with different con-
ditionings are reported in Table 5, where
PFG stands for predictor-free guidance and
ER stands for Excess Ratio. We observe
that DMs achieve lower Wasserstein dis-
tance and contribute to a better model per-
formance with the help of conditionings including ER and sector. Additionally, fidelity and diver-
sity trade-off w.r.t. guidance strength are shown in Appendix E.2, consistent with previous works,
we observe data fidelity increases and data diversity decreases when the guidance strength increases.

Comparison with Other Augmentation Algorithms. In this work, we reveal that data augmenta-
tion plays a pivotal role in stock forecasting. And in this section, we aim to verify the DiffsFormer’s
superiority over other data augmentation mechanisms. The experimental results are reported in Fig-
ure 8. The baselines for the methods are listed in Appendix C.2. From Figure 8, we observe that:
1) Time-series generation methods like Quant-Gan, TimeVAE, COSCI-GAN fails to improve the
performance of vanilla model. We suppose the reasons are two fold: these models do not generate
labels and do not have conditionings hence they fall short in feature-label matching; these models
are mostly univariate methods (Kollovieh et al., 2023), thus they overlook the correlations between
multivariate variables in our task. 2) Shake-shake and DiffsFormer are two effective data augmen-
tation mechanisms that outperform the random gaussian noise addition, and our proposed method
DiffsFormer performs better than Shake-shake by a large margin. 3) Data augmentation can enhance
the model stability, as the box of the augmentation is commonly shorter than that of the original. 4)
Diffsformer has the best worst-case model performance.

5 CONCLUSION AND LIMITATIONS

Conclusion. We address the critical challenge of data scarcity in stock forecasting by introducing
DiffsFormer. Our approach augments stock factors using label and sector information, while incor-
porating transfer learning in a Diffusion Model framework. By training on a larger source domain
and synthesizing with target domain data, DiffsFormer effectively distills new knowledge, mitigat-
ing data limitations and enhancing forecasting accuracy. This work pioneers data augmentation in
stock forecasting using diffusion models, opening avenues for future research. We find that con-
ditioning on factors like industry sectors enhances performance, suggesting potential for targeted
improvements through factor editing or generating stocks with specific attributes. Our study also
underscores the challenges of homogeneity in stock forecasting. Limitations are listed in E.4.

6 ETHICS STATEMENT

Acknowledging the potential impact on stakeholders, we advocate for responsible investment prac-
tices and compliance with privacy laws. We are committed to continuous improvement and welcome
feedback to address any emerging ethical concerns in our work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and fore-
casting with structured state space models. Trans. Mach. Learn. Res., 2023, 2023.

Marin Bilos, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann. Mod-
eling temporal data as continuous functions with stochastic process diffusion. In ICML, volume
202 of Proceedings of Machine Learning Research, pp. 2452–2470. PMLR, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

S. Kumar Chandar. Convolutional neural network for stock trading using technical indicators. Au-
tom. Softw. Eng., 29(1):16, 2022.

Deli Chen, Yanyan Zou, Keiko Harimoto, Ruihan Bao, Xuancheng Ren, and Xu Sun. Incorporating
fine-grained events in stock movement prediction. CoRR, abs/1910.05078, 2019.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

Shumin Deng, Ningyu Zhang, Wen Zhang, Jiaoyan Chen, Jeff Z. Pan, and Huajun Chen.
Knowledge-driven stock trend prediction and explanation via temporal convolutional network.
In WWW (Companion Volume), pp. 678–685. ACM, 2019.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. CoRR, abs/2111.08095, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Guangyu Ding and Liangxi Qin. Study on the prediction of stock price based on the associated
network model of LSTM. Int. J. Mach. Learn. Cybern., 11(6):1307–1317, 2020.

Qianggang Ding, Sifan Wu, Hao Sun, Jiadong Guo, and Jian Guo. Hierarchical multi-scale gaussian
transformer for stock movement prediction. In IJCAI, pp. 4640–4646. ijcai.org, 2020.

Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun, and Tat-Seng Chua. Enhancing
stock movement prediction with adversarial training. In IJCAI, pp. 5843–5849. ijcai.org, 2019.

Xavier Gastaldi. Shake-shake regularization. CoRR, abs/1705.07485, 2017.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997.

Hongbin Huang, Minghua Chen, and Xiao Qiao. Generative learning for financial time series with
irregular and scale-invariant patterns. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Don H Johnson. Signal-to-noise ratio. Scholarpedia, 1(12):2088, 2006.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
and Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
time series forecasting. In NeurIPS, 2023.

Hao Li, Yanyan Shen, and Yanmin Zhu. Stock price prediction using attention-based multi-input
LSTM. In ACML, volume 95 of Proceedings of Machine Learning Research, pp. 454–469. PMLR,
2018.

Wei Li, Ruihan Bao, Keiko Harimoto, Deli Chen, Jingjing Xu, and Qi Su. Modeling the stock
relation with graph network for overnight stock movement prediction. In IJCAI, pp. 4541–4547.
ijcai.org, 2020.

Zhige Li, Derek Yang, Li Zhao, Jiang Bian, Tao Qin, and Tie-Yan Liu. Individualized indicator for
all: Stock-wise technical indicator optimization with stock embedding. In KDD, pp. 894–902.
ACM, 2019.

Hengxu Lin, Dong Zhou, Weiqing Liu, and Jiang Bian. Learning multiple stock trading patterns
with temporal routing adaptor and optimal transport. In KDD, pp. 1017–1026. ACM, 2021.

Wenjie Lu, Jiazheng Li, Jingyang Wang, and Lele Qin. A cnn-bilstm-am method for stock price
prediction. Neural Comput. Appl., 33(10):4741–4753, 2021.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Er-
mon. Sdedit: Guided image synthesis and editing with stochastic differential equations. In ICLR.
OpenReview.net, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, pp. 3942–3951. AAAI Press, 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In ICML, volume 139 of
Proceedings of Machine Learning Research, pp. 8857–8868. PMLR, 2021.

Akhter Mohiuddin Rather, Arun Agarwal, and V. N. Sastry. Recurrent neural network and a hybrid
model for prediction of stock returns. Expert Syst. Appl., 42(6):3234–3241, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI (3), volume 9351, pp. 234–241, 2015.

Ali Seyfi, Jean-François Rajotte, and Raymond T. Ng. Generating multivariate time series with
common source coordinated GAN (COSCI-GAN). In NeurIPS, 2022.

Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity
is definitely needed: Improving model-agnostic zero-shot classification via stable diffusion. In
Computer Vision and Pattern Recognition Workshop on Generative Models for Computer Vision,
2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michiaki Taniguchi and Volker Tresp. Averaging regularized estimators. Neural Comput., 9(5):
1163–1178, 1997.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information Pro-
cessing Systems, 34:24804–24816, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR (Poster), 2018.

Mingjie Wang, Mingze Zhang, Jianxiong Guo, and Weijia Jia. MTMD: multi-scale tempo-
ral memory learning and efficient debiasing framework for stock trend forecasting. CoRR,
abs/2212.08656, 2022.

Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua. Diffusion rec-
ommender model. arXiv preprint arXiv:2304.04971, 2023.

Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. Quant gans: Deep generation
of financial time series. CoRR, abs/1907.06673, 2019.

Haochong Xia, Shuo Sun, Xinrun Wang, and Bo An. Market-gan: Adding control to financial
market data generation with semantic context. In AAAI, pp. 15996–16004. AAAI Press, 2024.

Cong Xu, Huiling Huang, Xiaoting Ying, Jianliang Gao, Zhao Li, Peng Zhang, Jie Xiao, Jiarun
Zhang, and Jiangjian Luo. HGNN: hierarchical graph neural network for predicting the classifi-
cation of price-limit-hitting stocks. Inf. Sci., 607:783–798, 2022.

Wentao Xu, Weiqing Liu, Lewen Wang, Yingce Xia, Jiang Bian, Jian Yin, and Tie-Yan Liu. HIST:
A graph-based framework for stock trend forecasting via mining concept-oriented shared infor-
mation. CoRR, abs/2110.13716, 2021.

Linyi Yang, Tin Lok James Ng, Barry Smyth, and Ruihai Dong. HTML: hierarchical transformer-
based multi-task learning for volatility prediction. In WWW, pp. 441–451. ACM / IW3C2, 2020a.

Xiao Yang, Weiqing Liu, Dong Zhou, Jiang Bian, and Tie-Yan Liu. Qlib: An ai-oriented quantitative
investment platform. CoRR, abs/2009.11189, 2020b.

Jaemin Yoo, Yejun Soun, Yong-chan Park, and U Kang. Accurate multivariate stock movement
prediction via data-axis transformer with multi-level contexts. In KDD, pp. 2037–2045. ACM,
2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR. OpenReview.net, 2017a.

Liheng Zhang, Charu C. Aggarwal, and Guo-Jun Qi. Stock price prediction via discovering multi-
frequency trading patterns. In KDD, pp. 2141–2149. ACM, 2017b.

Jinan Zou, Qingying Zhao, Yang Jiao, Haiyao Cao, Yanxi Liu, Qingsen Yan, Ehsan Abbasnejad,
Lingqiao Liu, and Javen Qinfeng Shi. Stock market prediction via deep learning techniques: A
survey. arXiv preprint arXiv:2212.12717, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ALGORITHMS

Algorithm 1: DiffsFormer Training
Input: stock data X ∈ Rn×d×k, diffusion step T
for t = 1 to T do

initialize βt and calculate αt

end for
Select an editing step T ′ ≤ T
while Not Converge do
i ∼ Uniform{1, 2, · · · ,n}
t ∼ Uniform{1, 2, · · · ,T′}
ϵ ∼ N (0,mI)
x0 := X[i]
calculate xt given x0 with equation 6
calculate Lda with equation 8
Take a gradient step on ∇θLda

end while
Algorithm 2: DiffsFormer Inference

Input: number of data to be generated m, sampling steps l, conditionings c (if guidance is
enabled), editing step T ′

selected during training
while Generated point < m do
i ∼ Uniform{1, 2, · · · ,n}
x0 := X[i]
calculate xT ′ given x0 with equation 6
xτl := xT ′

for t = l to 0 do
calculate xτt−1

with DDIM sampling
end for

end while

B DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising Diffusion Probabilistic Models (DDPM) have achieved impressive performance in vari-
ous domains, especially in text-to-image scenarios (Nichol et al., 2021; Ramesh et al., 2022). Typi-
cally, training a DM needs diffusion and denoising processes.

Diffusion process. Given a data point x0 ∼ q(x0), the diffusion process gradually adds noise to
construct a sequence of step-dependent variables {xt}Tt=1 (Wang et al., 2023) which forms a Markov
chain as (Tashiro et al., 2021):

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (11)

where q(xt|xt−1) = N (xt;
√
αtxt−1, βtI). N denotes the Gaussian distribution, αt controls the

strength of signal retention, and βt controls the scale of the added noise. These two scalars are
predefined for each step t, and one commonly used setting is the variance preserving process (Ho
et al., 2020) where αt = 1− βt.

Denoising process. The goal of the denoising process is to reconstruct the corresponding noise
vector by inverting the transformations performed in the diffusion process. This process is defined
by another Markov chain (Tashiro et al., 2021):

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt), (12)

where xT ∼ N (0, I). pθ is the distribution estimation of q, for which pθ(xt−1|xt) =
N (xt−1;µθ(xt, t), σθ(xt, t)I). Concretely, for each sample in the batch, a time step t is uniformly
sampled from {1, 2, ..., T}, followed by the adjustment of the noise at time t.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Inference process. Once θ is well-trained, the DM can generate samples from the standard Gaussian
distribution with xT ∼ N (0, I) and then repeatedly recover xT → · · · → xt → xt−1 → · · · →
x0 given pθ(xt−1|xt). As T → ∞, the generative process modeled with Gaussian conditional
distributions becomes a good approximation.

C REPRODUCIBILITY

In this subsection, we introduce some details of the proposed work for easier reproduction.

C.1 REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We’ll provide codes for the DiffsFormer upon accep-
tance. In following sections, we will discuss hyperparameters search space, optimal hyperparame-
ters, details about data preprocessing, and software/hardware.

C.2 BASELINES

To verify the performance of the proposed framework in stock forecasting, we employ eight com-
monly used machine learning models as forecasting backbones:

• LSTM (Hochreiter & Schmidhuber, 1997): a Long Short-Term Memory network based stock
price forecasting method.

• GRU (Chung et al., 2014): a Gated Recurrent Unit (GRU) network based stock price forecasting
method.

• SFM (Zhang et al., 2017b): a State Frequency Memory (SFM) network that decomposes the
hidden states of memory cells into multiple frequency components to model different latent trading
patterns.

• GAT (Velickovic et al., 2018): Graph attention network (GAT) is utilized to aggregate the stock
node embeddings attentively.

• ALSTM (Feng et al., 2019): an LSTM variant that incorporates temporal attentive aggregation
layer to aggregate information from hidden embeddings in previous timestamps.

• Transformer (Vaswani et al., 2017): transformer-based stock forecasting model.
• HIST (Xu et al., 2021): a graph-based framework that mines the concept-oriented shared infor-

mation from predefined concepts and hidden concepts.

The baselines in Figure 8 are:

• Shake-shake (Gastaldi, 2017): a stochastic affine combination of the multi-branch network
• TimeVAE (Desai et al., 2021): a novel architecture for synthetically generating time-series data

with the use of Variational AutoEncoders (VAEs).
• QuantGAN (Wiese et al., 2019): generative adversarial networks (GAN) that utilizes temporal

convolutional networks (TCNs) to capture time-series dependencies.
• COSCI-GAN (Seyfi et al., 2022): a novel GAN framework that takes time series’ common origin

into account and favors channel/feature relationships preservation.

C.3 DATASET

Following (Xu et al., 2021; Wang et al., 2022), we evaluate the proposed framework on two real-
world stock datasets: CSI 300 and CSI 800. The CSI 300 comprise the largest 300 stocks traded on
the Shanghai Stock Exchange and the Shenzhen Stock Exchange2, and represents the performance
of the whole A-share market in China. CSI 800 is a larger dataset consisting of CSI 500 and CSI
300, aiming to add some stocks with smaller size. Note that DiffsFormer aims at editing the existing
samples with new information from a larger domain. Hence in practice, we use all stocks in the
China A-share market to train the DM and editing on CSI 300 and CSI 800, respectively.

2https://en.wikipedia.org/wiki/CSI 300 Index

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.4 EVALUATION METRICS

Annualized Excess Return is served as the primary evaluation metric. Besides, Weighted IC is
adopted to reflect the predictive power of the models. To eliminate performance fluctuation, we run
the training and testing procedure 8 times for all of the methods and report the average value and
the standard deviation. Since the training of DMs and the predictor is decoupled, we only run DM
once for time efficiency. Furthermore, we also adopt Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) to indicate the predict ability of the models. Weighted IC is adopted to
reflect the predictive power of the models. To eliminate performance fluctuation, we run the training
and testing procedure 8 times for all of the methods and report the average value and the standard
deviation. Since the training of DMs and the predictor is decoupled, we only run DM once for time
efficiency.

C.5 TRADING STRATEGY

Our stock trade adopts “top30drop30” strategy: “top30” means that we keep the stocks with top30
predicted scores; and “drop30” means that each stock will be droped if its score falls out of top30,
regardless of its previous performance.

C.6 FACTORS

We use the Alpha158 factors provided by the AI-oriented quantitative investment platform Qlib3.
These factors review the basic stock information including kbar, price, volume, and some rolling
factors in different time windows. For each stock at date t, we look back 8 days to construct a
sequence of factor as x ∈ R8×158. During the time span between 2008-01-01 and 2022-09-30, the
number of sequences is 2109804. Hence our input matrix X is of shape 2109804×8×158.

C.7 MODEL PARAMETERS

We carefully search the hyper-parameters over the search range. The optimal parameters are reported
in Table 6.

Table 6: Hyper-parameters and the search range, the optimal parameters are indicated in boldface.

Parameters Search Range

editing step during inference {200, 300, 400, 500}
layers in DM {3, 6}

stop loss thred {0.6, 0.8, 0.9, 0.95, 0.965, 1}
batch norm {False, True}
norm first {False, True}

guidance strength {1.1, 2, 3, 4}
sector condition {False, True}
label condition {False, True}

C.8 DATA PREPROCESSING

Robust Z-score Normalization. Generally, the values between factors are not in the same scale. To
address this issue, we adopt Robust Z-score Normalization within stocks. Based on z-score, robust
z-score replace mean and standard deviation with median (MED) and the median absolute deviation
(MAD). In robust statistical methods 4, MED is the robust measure of central tendency, while mean
is not; MAD is robust measure of statistical dispersion, while standard deviation is not. Specifically,
the ith input stock data is normalized to:

x̂[i] = |x[i]−MED(X)|/MAD(X). (13)

3https://github.com/microsoft/qlib
4https://en.wikipedia.org/wiki/Robust statistics

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Loss curves with different sampling steps.

Dropping Extreme Label. When a stock hits limit up(limit down), stockholders are more reluctant
to sell (buy) at this time, for they expect that the trend continues; as a result, it is difficult for other
stockholders to buy (sell). Therefore, it is meaningless for the model to learn to “buy when there is
a limit up, and sell when there is a limit down”. To tackle this challenge, we propose to drop the
extreme label to exclude the influence of extreme values. It is achieved in two ways: 1) we set a
upper threshold and a lower threshold; 2) we drop the first and the last few percent labels.

C.9 SOFTWARE AND HARDWARE

DiffsFormer is implemented with Python 3.8.16, Pytorch 1.11.0. All of the backbones are imple-
mented with the open-sourced code in Qlib. We run the experiments on servers equipped with
NVIDIA Tesla V100 GPU and 2.50GHz Intel Xeon Platinum 8163 CPU.

C.10 MORE ARCHITECTURE IMPROVEMENTS

Following (Peebles & Xie, 2022), we adjust the transformer structure to fit predictor-free guidance.
Specifically, as shown in Figure 5, we feed the diffusion steps into the transformer module. Further-
more, it contains an adaptive layer norm module and a zero-initialized scalar module.

Time step encoding. During the training, DiffsFormer needs to know which diffusion step it is
trained for. In our work, we encode the current diffusion step into Sinusoidal positional encoding and
add it to the feed forward network. This embedding scheme is appropriate to encode the time step
information, the positional encoding at position p + k can be linearly represented by the positional
encoding at position p.

Adaptive layer norm (ALN). Adaptive layer norm (Perez et al., 2018) are widely adopted in gen-
erative models (Dhariwal & Nichol, 2021; Brock et al., 2019). In the transformer block, we append
an additional ALN layer which regresses the scale and shift parameters γ and β from two affine
transformations f and h to the sum of conditioning vectors.

Zero initialization. In addition to ALN layer, many DMs (Dhariwal & Nichol, 2021; Ho et al.,
2020; Peebles & Xie, 2022) also incorporate zero initialization in the framework, meaning that the
model parameters are initialized as zero such that the conditioning is ineffective when training just
starts. In this case, MLP is initialized to make α1 and α2 equal to 0, and thus transformer block
becomes an identity function (Peebles & Xie, 2022; Goyal et al., 2017) (i.e., input tokens are directly
fed to the next layer).

Time improvement. As stated in §3.2, we initialize α and β with total diffusion steps T to
ensure correctness; however, we sample training step t from Uniform{1, 2, · · · , T ′} instead of
Uniform{1, 2, · · · , T}: compared to traditional DM, the probability of sampling useful steps that
are smaller than T ′ is increased. The loss curves with maximum sampling steps within the set {100,
300, 500, 700, 1000} are elucidated in Figure 9. Note that the figure represents the average loss
within sampling step 100 instead of diffusion step 1000. We discover that with the decrease of
sampling steps, DMs embrace with a more sharp loss curve, which means they can converge faster.

D RELATED WORKS

In this section, we will introduce related works in stock forecasting.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Stock forecasting is a field that utilizes historical time-series data to predict future stock prices.
Machine learning models, particularly time-series models such as LSTM, GRU, and Bi-LSTM,
have gained popularity in this domain (Zou et al., 2022; Hochreiter & Schmidhuber, 1997; Chung
et al., 2014; Graves & Schmidhuber, 2005; Xia et al., 2024).

Researchers have proposed tailored models to better fit the financial scenario. For example, Li et
al. (Li et al., 2018) introduce extra input gates to extract positive and negative correlations between
factors. Ding et al. (Ding & Qin, 2020) propose a novel LSTM model to simultaneously predict
the opening, lowest, and highest prices of a stock. Agarwal et al. (Rather et al., 2015) propose a
hybrid prediction model (HPM) that combines three time-series models. Zhang et al. (Zhang et al.,
2017b) propose a State Frequency Memory (SFM) network that decomposes the hidden states of
memory cells into multiple frequency components to model different latent trading patterns. Feng
et al. (Feng et al., 2019) incorporate a temporal attentive aggregation layer and adversarial training
into an LSTM variant. Chen et al. (Chen et al., 2019) use Bi-LSTM to encode stock data and
financial news representations in their SSPM and MSSPM models.

CNNs are also believed to capture important features for predicting stock fluctuations. For instance,
Deng et al. (Deng et al., 2019) propose the Knowledge-Driven Temporal Convolutional Network
(KDTCN), which integrates knowledge graphs with CNNs to fully utilize industrial relations. Lu
et al. (Lu et al., 2021) enhance a CNN-based model by extracting historical influential stock fluc-
tuations with attention mechanism. Chandar (Chandar, 2022) transforms technical indicators into
images and used them as input for a CNN model.

To handle non-Euclidean structured data, some researchers have incorporated Graph Neural Net-
works (GNNs) into stock forecasting. Velickovic et al. (Velickovic et al., 2018) construct a graph
with stocks as nodes and used graph attention network (GAT) to aggregate neighbor embeddings.
Xu et al. (Xu et al., 2022) construct a stock market relationship graph and extracted information
hierarchically. Li et al. (Li et al., 2020) propose an LSTM Relational Graph Convolutional Network
(LSTM-RGCN) model that handles both positive and negative correlations among stocks.

The Transformer model (Vaswani et al., 2017), with self-attention and positional encoding mech-
anisms, has shown great potential in stock forecasting. Ding et al. (Ding et al., 2020) improve
the Transformer by incorporating multi-scale Gaussian prior, optimizing locality, and implement-
ing Orthogonal Regularization. Yoo et al. (Yoo et al., 2021) propose a Data-axis Transformer
with Multi-Level Contexts (DTML) to learn the correlations between stocks. Yang et al. (Yang
et al., 2020a) introduce the Hierarchical, Transformer-based, multi-task (HTML) model for predict-
ing short-term and long-term asset volatility. FTS-Diffusion (Huang et al., 2024) consists of three
modules to model irregular and scale-invariant patterns and generate synthetic financial time series.

E MORE RESULTS

E.1 EDITING V.S. GENERATING

In Figure 10, following recent work (Shipard et al., 2023), we visualize the relationship between
the augmented features and the original stock features in blue and pink, respectively. We have
two observations: 1) Comparing Figure 10a and Figure 10c, we find generated data are restricted
to locate near the original data when we edit the existing sample from the target domain; while
many points deviate the target domain distribution when we directly synthesize new data points.
2) Random gaussian noise addition can be treated as a special augmentation mechanism. We run
several experiments with different level random gaussian noise addition and plot in Figure 10b the
t-SNE of feature distribution with the most accurate return ratio prediction. Our proposed method
looks better than random noise addition.

E.2 DATA FIDELITY AND DIVERSITY

Our work adopts diffusion-based data augmentation module to synthesize data, which helps allevi-
ate the serious data scarcity issue in stock forecasting. Particularly, before the start of training of
the predictor in each epoch, we generate a new set of stock data. Therefore, the total amount of
data utilized is n× the original where n is equal to the total number of epoches. In other words,
with DiffsFormer, the backbone can observe n× the data for once, instead of observing original data

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Generation (b) Random Noise (c) Editing

Figure 10: t-SNE plots of original features (pink) and augmented features (blue) elucidating the
effect of editing.

(a) Wasserstein Distance (b) KL Divergence (c) JS Divergence (d) Performance

Figure 11: Illustration of Data Fidelity and Diversity w.r.t. Guidance Strength

for n times. To measure the fidelity and diversity of the data generated, two metrics are commonly
adopted (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2022): Fréchet Inception Distance
(FID) and Inception Score (IS). However, they require a well-trained classifier (e.g., Inception Net-
work). Hence we directly calculate the Wasserstein Distance between generated and original data to
serve as an alternate for FID. As reported in Figure 11a, 11b and 11c, the distance between original
and generated data decreases as the guidance strength gets stronger, suggesting a high fidelity of
the generated data. In addition, from Figure 11d, we find that strong guidance strength may lead to
performance drop. We attribute the reason for the phenomenon to the lack of diversity of the data.

E.3 FEASIBILITY OF LABEL GENERATION

We have conducted experiments to validate the feasibility of directly generating labels. Taking Fig-
ure 12 as an example, we calculate the R2 score between the augmented and the original factors
(label). It is observed that the label has the least correlation among the 159 dimensions. Further-
more, we report an experimental comparison between the settings of label-generation and label-
conditioning in Table 7. Directly appending the label to the factor vector is ineffective.

Figure 12: The R2 score between the generated and the original factors and label. R2 score is the
square of the Pearson Correlation. The blue bars represent the R2 scores of 158 factors, while the
red bar shows the R2 score of the label.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Model performance with label-generation and label-condition mechanisms

Label-generation Label-condition

Model Performance 0.159327 0.312679

E.4 LIMITATIONS

We believe direction prediction also faces with the scarcity problem as we share the same input data
type, hence Diffsformer may help with the direction prediction task from this perspective. However,
since we didn’t delve deep into this task, we may assume that direction prediction may have a higher
demand for feature-label matching. DiffsFormer uses the original label for the generated feature,
we suppose it’s OK for the regression task, but we’re not sure if it works for the classification
task. We believe developing ways to generate real label or enhance feature-label matching would be
helpful. (2) Portfolio management may involve Deep Reinforcement Learning (DRL) approaches.
We think DRL requires expert knowledge in reward design, policy selection and rich experience in
optimization to which we lack the capacity. Our strategy now is simple: a money-weighted position
over the predicted top-30 stocks. However, we believe a better selection strategy would be helpful
to the buy and sell decision.

Table 8: Performance comparison on CSI300. The better results are indicated in boldface.

CSI300
Methods IC RankIC

Original Ours Improv. Original Ours Improv.

MLP 0.0508±0.0044 0.0537±0.0026 5.71% 0.0499±0.0059 0.0509±0.0034 2.00%
LSTM 0.0516±0.0022 0.0429±0.0026 -16.86% 0.0519±0.0021 0.0455±0.0021 -12.33%
GRU 0.0536±0.0038 0.0511±0.0012 -4.66% 0.0552±0.0037 0.0516±0.0012 -6.52%
SFM 0.0505±0.0018 0.0510±0.0025 0.99% 0.0507±0.0026 0.0526±0.0029 3.75%
GAT 0.0558±0.0012 0.0532±0.0007 -4.66% 0.0540±0.0014 0.0551±0.0006 2.04%

ALSTM 0.0502±0.0027 0.0450±0.0023 -10.36% 0.0510±0.0031 0.0439±0.0019 -13.92%
HIST 0.0547±0.0011 0.0518±0.0032 -5.30% 0.0545±0.0023 0.0535±0.0025 -1.83%

MTMD 0.04950.0024 0.0476±0.0023 -3.84% 0.0488±0.0040 0.0466±0.0031 -4.51%
Transformer 0.0598±0.0031 0.0603±0.0025 0.83% 0.0638±0.0024 0.0672±0.0017 5.33%

Table 9: Performance comparison on CSI800. The better results are indicated in boldface.

CSI800
Methods IC RankIC

Original Ours Improv. Original Ours Improv.

MLP 0.0386±0.0023 0.0399±0.0006 3.37% 0.0450±0.0048 0.0467±0.0035 3.78%
LSTM 0.0377±0.0017 0.0412±0.0008 9.28% 0.0500±0.0030 0.0494±0.0010 -1.20%
GRU 0.0380±0.0026 0.0376±0.0010 -1.05% 0.0493±0.0030 0.0511±0.0011 3.65%
SFM 0.0385±0.0005 0.0365±0.0015 -5.19% 0.0485±0.0011 0.0487±0.0022 0.41%
GAT 0.0379±0.0005 0.0397±0.0003 4,75% 0.0483±0.0009 0.0483±0.0009 0.00%

ALSTM 0.0316±0.0031 0.0383±0.0013 21.20% 0.0418±0.0034 0.0492±0.0015 17.70%
Transformer 0.0423±0.0028 0.0426±0.0018 0.71% 0.0573±0.0016 0.0556±0.0022 -2.97%

20

	Introduction
	Background
	Methodology
	Diffusion-based Data Augmentation
	Time Efficiency Improvement
	Conditional Diffusion Augmentation
	Loss-guided Noise Addition
	Model Overview

	Experiment
	Performance Comparison
	Effectiveness Analysis

	Conclusion and Limitations
	Ethics Statement
	Algorithms
	Denoising Diffusion Probabilistic Model
	Reproducibility
	Reproducibility Statement
	Baselines
	Dataset
	Evaluation Metrics
	Trading Strategy
	Factors
	Model Parameters
	Data Preprocessing
	Software and Hardware
	More Architecture Improvements

	Related Works
	More results
	Editing v.s. Generating
	Data Fidelity and Diversity
	Feasibility of label generation
	Limitations

