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Learning Feasible Causal Algorithmic Recourse: A Prior
Structural Knowledge Free Approach

Anonymous Author(s)

Abstract
Algorithmic recourse (AR) has made significant progress by identi-

fying small perturbations in input features that can alter predictions,

which provide a data-centric approach to understand decisions from

diverse black-box models on the Web. Towards the feasibility issue,

i.e., whether the recoursed examples provides actionable and reli-

able recommendations to end-users, causal algorithmic recourse

have incorporated structural causal model (SCM) to preserve the

realistic constraints among input features. For instance, preserving

structural causal knowledge between "age" and "educational level"

can avoid generating samples with decreasing age and increasing

educational level. However, previous causal AR methods suffer

from the requirement of prior structural causal knowledge, e.g.,
prior causal graph or the whole SCM, which restricts the realistic

application of causal AR methods.

To bridge this gap, we aim to develop a novel framework for

causal algorithmic recourse that does not rely on neither prior

causal graph or prior SCM. Since identifying counterfactuals with-

out causal graph is impossible, we instead propose to approximate

and constrain the variation of the perturbed components, i.e., the

exogenous noise variables, by formulating the generation of AR

as the structure-preserving intervention. With the aid of develop-

ment in non-linear Independent Component Analysis (ICA), our

method can further achieve theoretically guaranteed constraints

on such variation of exogeneous variables. Experimental results

on synthetic, semi-synthetic, and real-world data demonstrate the

effectiveness of our proposed methods without any prior causal

graph or SCM knowledge.
1

CCS Concepts
• Computing methodologies → Machine learning; • Social
and professional topics→ User characteristics.
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1Relevance statement: This paper is closely relevant to the topic of Explainable
and interpretable methods for personalization in the User modeling, personalization and
recommendation Track in the Web Conference. Our research focuses on a web-specific

interpretable area that provide user-friendly recourse towards intelligent decisions

from black-box Machine Learning models on the Web. Contributions include the

breakthrough towards the feasibility issue in algorithmic recourse, a prior structure-

free recommendation approach, the corresponding theoretical guarantee, and extensive

experimental validations.
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1 Introduction
The abundance ofweb data creates opportunities to enhance decision-

making on the Internet, e.g., loan approval on the Web, online em-

ployment matching, and online medical consultation [29, 33, 44,

56, 59]. Accompanied with the wide deployment of machine learn-

ing (ML) models for data-driven and automatic decision-making,

explaining complex decisions from black-box ML models is of in-

creasing importance to safeguard the rights of end-users [24, 34].

In response to such requirement, algorithmic recourse has gained

popularity in recent years by modifying input features to change

model predictions [54]. For instance, a bank provides online loan

service with algorithmic recourse to inform loan applicants of ac-

tions that would lead to approval [29, 44, 56]. Serving as a popular,

data-centric explanation paradigm, algorithmic recourse provides

incentive and user-friendly approach to help end-users to under-

stand diverse decisions from online ML models [21, 24, 31].

One fundamental challenge for algorithmic recourse is to gen-

erate feasible real-world examples [24], i.e., providing actionable

suggestions for end-users. To be specific, feasibility refers to preserv-

ing realistic constraints among input features. Despite providing

insight into black-box ML models on the Web, current algorithmic

recourse often fails to offer feasible recommendations for individual

users. For instance, suggesting to increase in education level and a

decrease in age for loan approval is meaningless to end-users, as

shown in Figure 1(b).

Towards the issue of feasibility, researchers have pointed out

that introducing causality [36] can benefit preserving realistic rela-

tionships among input variables [31, 34]. With the bank loan exam-

ple in mind, preserving functional relationships in the Structural

Causal Model (SCM), e.g., Educational_level = 𝑓 (Age_level) (𝑓 is
an non-decreasing function), coincides with the target of feasible

algorithmic recourse that preserves the non-decreasing relationship

between the education variable and the age variable.

To this end, eailer recourse methods regulate explanation gen-

eration by constraining the distance between generated samples

and SCM-derived samples when the underlying SCM is known [31].

Furthermore, in the case of unknown SCM, [24] assumes the acces-

sibility of prior causal graph, and proposes to identify SCMs using

the Gaussian process or Conditional Variational Encoder (CVAE).

However, we argue that either the full SCM or the causal graph

knowledge is often limited in realistic cases [5, 6]. In fact, the causal

discovery task and SCM identification task are specifically proposed

to identify such prior knowledge [9, 26].
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Rejected

Age 25

Education Bachelor

Income 2000

(a) Factual example

Age 24

Education Master

Income 2000

Approved

(b) Vanilla recourse

Age 25

Education Bachelor

Income 2500

Approved

(c) Feasible recourse

Figure 1: Distinctions among factual examples rejected by the ML decision model, vanilla algorithmic recourse that alter
predictions but are not feasible, and feasible algorithmic recourse complying with realistic causal relationships.

To bridge the gap between causally-inspired recourse and prior-

absent realistic data environment, this paper proposes the first
feasible algorithmic recourse framework without the support of

prior causal graphs or SCMs. However, the critical challenge of

our target arises from the fact that identifying exact counterfactu-

als, i.e., recourse samples, from observational data solely is nearly

impossible [15, 24, 46]. To overcome this challenge, we instead

theoretically re-formulate the algorithmic recourse process as a

structure-preserving (SP) intervention operation [16, 53], and then

approximates counterfactuals directly from observational data with

the aid of advances in the area of non-linear Independent Compo-

nent Analysis (ICA) [14, 15]
2
. To ensure the feasibility, we finally

constrains the divergence between generated samples to their ap-

proximated counterfactuals by constraining the variation of exoge-

nous noise during the SP intervention. The contributions of this

paper are summarized as follows:

• By reformulating the algorithmic recourse as a structure pre-

serving intervention process, we are the pineeror research to ex-

plore the feasibility issue of algorithmic recourse without causal

prior knowledge.

• Theoretically, we show that exogenous noise can be identified

in a reliable manner by constructing an exogenous regressor. Subse-

quently, we further prove that the variation of the exogenous noise

is governed by that of representations learned by the exogenous

regressor under mild conditions.

• Practically, we propose two practical methods, AR-L2 and AR-

Nuc, which constrain the magnitude and sparsity of variations

in exogenous representations, respectively. Extensive experimen-

tal results verify that our methods: (a) significantly improve the

preservation of causal relationships for algorithmic recourse; (b)

successfully achieve the alteration of predictions with little cost.

2 Related Work
Algorithmic Recourse. Traditional local explanation methods

for black-box ML models on data, such as tabular data, are crucial

for users to interpret decisions [41]. However, these explanations

often differ from complex ML models on the Web. Algorithmic

2
To be specific, it means that algorithmic recourse can be formulated as the process

which solely manipulates the exogenous noise of each sample, while the structural

causal relationships among features remain.

recourse (or counterfactual explanation) offers consistent and in-

terpretable examples as an alternative for understanding decisions

from online ML models [24, 31, 54]. They can be categorized into

gradient-based methods [24, 31, 32, 54] and methods based on lin-

ear programming [21, 51]. Recent discussions have also addressed

fairness, transportability, and reliability issues in algorithmic re-

course [1, 52].

While the definition of algorithmic recourse has parallels with

adversarial examples [3, 43], the biggest distinction between the

two directions is that the former only aims to explain to the model

while the latter aims to suggest both interpretable and feasible rec-
ommendations to end-users [22]. Unfortunately, most of the cur-

rent algorithmic recourse methods lack such capability since they

usually ignore the relationships and constraints among the input

features [24, 51].

Causality for Feasible Algorithmic Recourse. To overcome

the above-mentioned challenge, several recent works have sug-

gested the incorporation of causality into the algorithmic recourse [21,

24, 31, 51]. From the view of causality, the infeasibility of vanilla

algorithmic recourse stems from the fact that such recourse are

generated by independently manipulating each input feature. As a

consequence, the causal relationship/constraints are broken during

the generation process (as shown in Figure 1(b)). Accessing the en-

tire SCMmodel, [31] suggests regularization of algorithmic recourse

by minimizing differences between perturbed features and their

parent-generated counterparts. Building on this concept, several

works[23, 24, 52] seek optimal intervention feature sets with mini-

mal cost. These methods relax the requirement from knowing the

whole SCM model to knowing the causal graph. For instance,[24]

proposes approximating the SCM model using Gaussian process or

Conditional Variational Encoder(CVAE). Moreover, [21] explores

different cost setups.

Structural-Preserving Intervention. In line with traditional

counterfactual theory [36], recent studies have developed alterna-

tive framework termed as backtracking counterfactuals to describe

counterfactuals with tractable formulations [4, 16, 53]. The core

difference between traditional counterfactuals and backtracking

counterfactuals stands on the interpretation of interventions. To

be specific, backtracking counterfactuals proposed the Structural-
Preserving Intervention (SP Intervention) as modifications on

2
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exogenous noise variables in a structural causal model, i.e., the

functional relationships among variables are preserved. Such for-

mulations are divergent from traditional counterfactuals, where

both the functional relationships are modified [36] (see Appendix C

for details). Inspired from backtracking counterfactuals, we model

algorithmic recourse as the process of SP interventions [16], as

such formulations is coherent to the algorithmic recourse [36].

3 Background
Notations. We consider a binary classifier ℎ as the underlying

ML model [21, 24, 31], while our method also allows for a multi-

categorical classifier. ℎ is deployed on a dataset D with𝑀 samples,

each consisting of 𝑛-dimensional input characteristics x and output

labels 𝑦. We index data points as 1 ≤ 𝑖 ≤ 𝑀 and features as 1 ≤ 𝑗 ≤
𝑛. The goal of algorithmic recourse (AR) is to answer why some

individuals were denied loans and what actions they could take to

increase approval chances. We search for the closest algorithmic

recourse x𝑅 for a given factual sample x𝐹 using model M: x𝑅 ∈
argminx∈X d

(
x, x𝐹

)
s.t. ℎ(x) ≠ 𝑦, where d refers to some pre-

defined distance functions. The counterfactual x𝑅 is often computed

as x𝑅 = x𝐹 + 𝛿 by adding some perturbations 𝛿 on x𝐹 .
Feasibility of AR. Most prior work on algorithmic recourse

considers features as independently manipulable inputs, which

ignores the potentially rich causal structure over x𝐹 . In recent years,
a bunch of authors [21, 23, 24, 31] have argued for the feasibility

of AR, i.e., the need to consider causal relations between variables

during the process of recourse.

Structural Causal Models (SCMs) and Causal Graph. From
the perspective of causality, the data-generating process of X is de-

scribed by aMarkov/semi-Markov structural causalmodel (SCM) [36]

V = (X, F, 𝑃𝜎 ) describes the causal relations between 𝑛 features in

X = {x1, x2, . . . , x𝑛} as: F =
{
𝑓𝑗 | x𝑗 := 𝑓𝑗 (xpa( 𝑗 ) , 𝜎 𝑗 )

}𝑛
𝑗=1

, where 𝜎

denotes exogenous noise variables with distributions as 𝑃𝜎 , and F
is the set of assignment functions 𝑓𝑗 which maps the causal parents

x
pa( 𝑗 ) to each variable x𝑗 . Following previous protocols [24, 31],

we here assume the non-existence of unmeasured confounders,

i.e., the causal sufficiency assumption [36], such that the exoge-

nous noise 𝜎 𝑗 are mutually independent. Meanwhile, the SCM is

often coupled with its intuitive illustration, i.e., the causal graph

𝐺 , which is formed by a one-to-one mapping from each variable

x𝑗 to a node in 𝐺 and directed edges drawn from x𝑗 to x
pa( 𝑗 ) for

𝑗 ∈ [𝑛]. We assume that 𝐺 [24] is acyclic such that the coupled

SCM is non-recursive. By recursively resolving the parents in terms

of their parents [4, 53], x can be represented in the form of exoge-

nous variables: x = 𝑓 (𝜎), where 𝑓 : R𝑛 ↦→ R𝑛
can be regarded

as the exogenous-aggregated version of {𝑓𝑗 }𝑛𝑗=1 (see Appendix D

for details). Besides, we use the notation F ◦ F−1
𝐴

to denote the

three steps including abduction, action, and prediction to compute

counterfactuals w.r.t some intervention set 𝐴 [23, 24].

Interventions with Minimal Cost. Assuming the SCM model

V is accessible with invertible forms, e.g., additive SCMs, [23]

formulate the above algorithmic recourse problem as finding the

Table 1: Comparison on the requirement of different Prior
Knowledge across different settings.

Research [23, 31] [24] Ours

Prior Causal Graph " " %

Prior SCM " % %

optimal intervention strategy with minimal cost:

A∗ ∈ arg min

A∈V
cost(A; x𝐹 )

s.t. x𝑅 = F ◦ F−1𝐴
(
x𝐹

)
, ℎ(x𝑅) ≠ ℎ(x𝐹 ),

(1)

where cost(A; x𝐹 ) is the cost function measures how intervention

set 𝐴 varies x𝐹 , and A∗
directly specifies the set of feasible actions

to be performed for minimally costly recourse. By the three steps

of structural counterfactuals [36], the counterfactual examples, i.e.,

x𝑅 , is generated based on the evidence x𝐹 and A [23]. Based on this

foundation, some relaxation has been proposed in [24] by assum-

ing only the access of causal graph𝐺 rather than the entire SCM

V . Unfortunately, as the ultimate goal of causal discovery [61],

the prior causal graph still restricts the application of algorithmic

recourse. Hence, how to maintain the causal relationship with-

out prior knowledge of causal graph and SCM is crucial in many

scenarios.

Connections between ICA and Causal Inference. ICA aims

to identify mutually independent source signal 𝑆 from mixed obser-

vations𝑇 via a mixture function
˜𝑓 :𝑇 = ˜𝑓 (𝑆), e.g. the cocktail party

problem [13]. While the traditional ICA theory can successfully

identify the non-Gaussian distributions of
˜𝑓 and 𝜎 under the con-

dition that
˜𝑓 is a linear function [46], practical applications often

involve non-linear functions for
˜𝑓 , making it extremely challenging

to directly infer
˜𝑓 without additional information [14]. Previous

advances in causal inference have utilized ICA to identify different

forms of SCMs [10, 46]. For instance, the identification of causal

graph 𝐺 for linear and additive SCMs, i.e., x𝑗 := 𝑤 𝑗xpa( 𝑗 ) + 𝑏 𝑗 for
𝑗 ∈ [𝑛] (𝑤,𝑏 are linear coefficients), can be reformulated into a

linear ICA problem [46, 61]. On the other side, [10] has contributed

novel identification results for non-linear ICA based on indepen-

dent causal mechanisms of source signals. These works build up

the foundation of our work to identify and constrain the exogenous

noise for learning feasible algorithmic recourse.

4 Methods
4.1 Prior Assumptions, Problem and

Clarification
Assumptions and Problem.We put no restrictions on the form

of the underlying data generation mechanism, i.e., SCM of x: x𝑗 :=
𝑓𝑗 (xpa( 𝑗 ) , 𝜎 𝑗 ). We only assume the causal sufficiency of observed

x. Our target is to preserve the causal structures over x𝐹 , i.e.,
F = {𝑓𝑗 }𝑛𝑗=1, during the recourse process from x𝐹 to x𝑅 such that

features of x𝑅 follow the feasibility principle (shown in Fig. 1(c)). To

the best of our knowledge, our paper is the pioneer work to generate

feasible algorithmic recourse without prior structural knowledge.

3
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Clarifications. We clarify that different from [24], we do not

model the recoursed sample x𝑅 as traditional counterfactuals (with

hard interventions), but rather model x𝑅 as a tractable, special coun-

terfactuals named backtracking counterfactuals [53] by structure-

preserving (SP) interventions [4]. To be specific, prior researches

treat the recoursed sample x𝑅 as the result of the hard intervention

on x𝐹 . For instance, assuming the set of intervention values as 𝐴,

then x𝑅
𝑗
:= 𝐴 𝑗 for intervented variable 𝑗 , while x𝑅𝑘 := 𝑓𝑗 (x𝑅

pa(𝑘 ) , 𝜎𝑘 )
for those non-intervented variable 𝑘 . However, due to the lack of

both causal graph and SCM in our problem, such formulation is

not tractable to identify the variation of 𝑓 during the process of

recourse. Instead, we define the recoursed sample x𝑅 as the result

of SP interventions that do not vary structural functions {𝑓𝑗 }𝑛𝑗=1
but only manipulate exogenous noise variables {𝜎 𝑗 }𝑛𝑗=1. Combined

with the exogenous-aggregated representation x = 𝑓 (𝜎) stated in

Sec.2, the resulting recoursed sample and the factual sample can be

written as:
3

x𝑅 = 𝑓 (𝜎𝑅), x𝐹 = 𝑓 (𝜎𝐹 ). (2)

Remark 4.1. We note that the exogenous-aggregated form in (2)

and (2) implies that the structural relationship, i.e., 𝑓 , remains in-

variant during recourse, which is coherent to the feasibility goal.

4.2 Identification of the Exogenous Noise
Challenge Statement. However, as one can only access to x𝑅, x𝐹

without any knowledge on 𝑓 , 𝜎𝐹 , 𝜎𝑅 , it is impossible to identify 𝑓

and directly enforces identified 𝑓 to be invariant
4
. Alternatively,

we propose that identifying another core term in (2) and (2), i.e., the

exogeneous variables 𝜎 , and constraining the variation of identified

quantities should be beneficial to the preservation of 𝑓 . Essentially,

significant variability in 𝜎 closely resembles point-wise interven-

tion. To identify such variations of 𝜎 , we resort to advances of

non-linear ICA [15].

Relating Algorithmic Recourse to ICA. As we have assumed

the causal sufficiency, i.e., Markov SCMs, the exogenous noise el-

ements 𝜎 are mutually independent [36]. In an analog, the funda-

mental requirement of ICA is that source signals should be inde-

pendent from each other. Consequently, the exogenous-aggregated

formulation in (2) has natural connections to the formulation of the

non-linear ICA [14], i.e.,𝑇 = 𝑓 (𝑆), where the signal 𝜎𝑅 can be inter-

preted as the source signal 𝑆 , the aggregated function 𝑓 represents

the mixing process
˜𝑓 , and x𝑅 represents the mixed observations 𝑇 .

Identification of the exogenous noise. According to the the-

ory in [15], we can identify the exogenous noise to some degree by

introducing an observed auxiliary variable. Such auxiliary variables

could be historical observations, the time variables or the class

labels [14]. Specifically, we choose output label 𝑦 as the auxiliary

variable in this paper. Following the identifying strategy in [15],

we randomly permute the sample order of 𝑦 to eliminate correla-

tions with 𝜎 and construct the modified data D𝐴
using permuted

𝑦. Finally, we employ a discriminative model called the exogenous

3
We note that traditional counterfactuals with hard interventions cannot achieve such

forms.

4
We note that although some advances in learning SCM from observational data are

present [35], while some strict parametric constraints should be followed, e.g., additive

non-linear model (ANM).

regressor to distinguish between D𝐴
and D through a non-linear

regression system as follows:

min

𝜃

𝑀∑︁
𝑖=1

𝑙

(
1

1 + exp(−𝑟 (x𝑖 , 𝑦𝑖 ) )
, 𝑜𝑖

)
𝑠.𝑡 . 𝑟 (x, 𝑦) =

𝑛∑︁
𝑗=1

𝜓𝜃𝑗

(
𝜙𝜃𝑗 (x), 𝑦

)
,

(3)

where the binary labels o indicate the source of the data as either

D or D𝐴
. The functions 𝜓𝜃

𝑗
: R2 ↦→ R and 𝜙𝜃

𝑗
: R𝑛 ↦→ R are

non-linear representations parameterized by 𝜃 , implemented using

deep networks [15]. In this paper, we refer to 𝜙 as the exogenous
representations for simplicity. We then offer theoretical insights

into the behavior of the learned 𝜙𝜃 (x) to support the validity of

our exogenous regressor as follows:

Theorem 4.2 (Identification of 𝜎). Assume that:
(a) The exogenous noise 𝜎 is conditionally exponential of order

𝐾 of 𝑦.
(b) There exists𝑛𝑘+1 realizations of𝑦 as {𝑦}𝑛𝑘

𝑙=0
such that the dif-

ference matrix consists of {𝑦}𝑛𝑘
𝑙=0

with some transformations
is invertible.

(c) The trained (deep) logistic regression system in (3) has the
universal approximation capability to distinguish D from
D𝐴 .

Then, in the case of infinite samples, the representations 𝜙𝜃 (x) identi-
fies 𝜎 up to a linear transformation of point-wise statistics q̃:

q̃ (𝜎) = A𝜙𝜃 (x) + b, (4)

where A and b are fixed but unknown matrices.

Notably, although the above theorem provides the general case

for any 𝑘 ≥ 1, we will only treat the cases when 𝑘 = 1 throughout

the following parts.

4.3 Constraining the variation of the exogenous
noise

Although the exogenous representations 𝜙𝜃 (x) learned in (16) does

not directly identify 𝜎 , we show that constraining the variation of

𝜙𝜃 (x) still governs that of𝜎 . We first establish a connection between

the variation of exogenous representations 𝜙𝜃 (x) and exogenous

noise 𝜎 as follows:

A
(
𝜙 (x𝐹 ) − 𝜙 (x𝑅)

)
= q̃(𝜎𝐹 ) − q̃(𝜎𝑅) . (5)

We then construct the variation of 𝜙𝜃 (x) on a batch of samples as

H:
H = {𝜙 (x𝐹

1
) − 𝜙 (x𝑅

1
), . . . , 𝜙 (x𝐹𝑀𝑏 ) − 𝜙 (x

𝑅
𝑀𝑏

)}, (6)

where𝑀𝑏 refers to the batch sample size. Consequently, we further

demonstrate that constraining the sparsity and magnitude of H
adequately restricts the corresponding characteristics of 𝜎𝐹 − 𝜎𝑅 ,
respectively. For the clarity to distinguish H from H0

, we have:{
H0 = {𝜎𝐹

1
− 𝜎𝐶𝐹

1
, 𝜎𝐹

2
− 𝜎𝐶𝐹

2
, . . . , 𝜎𝐹𝑀𝑏

− 𝜎𝐶𝐹𝑀𝑏
},

H = {𝜙 (x𝐹
1
) − 𝜙 (x𝐶𝐹

1
), 𝜙 (x𝐹

2
) − 𝜙 (x𝐶𝐹

2
), . . . , 𝜙 (x𝐹𝑀𝑏 ) − 𝜙 (x

𝐶𝐹
𝑀𝑏

)},
As one can not access to the original variation of the exogeneous

noise, i.e. H0
, we then propose two strategies to design indirect

constraints on H0
via the accessible and learnable H. We note that

all designed optimization process only updates the generated XR

while keeping 𝜙 and factual input x𝐹 fixed.
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Figure 2: Overall illustration of our framework, where exogenous regressor constrains the generation of the algorithmic
recourse model.

Sparsity Constraint. The intuition behind the sparsity con-

straint is that we expect the number of perturbed input features

to be small. To this end, we propose the algorithmic recourse with

Nuclear Norm (AR-Nuc) by optimizing the nuclear norm of H as

∥H∥∗:
min

XR
: Lnuc = ∥H∥∗ .

To theoretically justify the validness of our proposed AR-Nuc, we

show that the sparsity of H, i.e., L0 (H), is further constrained by

the nu-clear norm of 𝐻 :

Theorem 4.3 (Connection between H and H0
). Assuming that the

transformed exogeneous noise is bounded, i.e., 𝜖 ≤ ∥𝐻𝜎
𝑖 𝑗
∥, the sparsity

of H0 is governed by that the nu-clear norm H:

L0 (𝐻0) ≤ 𝑐𝑛3/2

𝜖
L𝑛𝑢𝑐 (𝐻 ), (7)

where 𝑐 is the element-wise upper-bound of 𝐴.

Magnitude Constraint. Beyond the sparsity constraint, we

restrict the exogenous noise to vary in a small magnitude as well.

To this end, we design another method named the algorithmic

recourse with L2 norm (AR-L2). More specifically, we first provide

the following theorem to argue that optimizing the L2 norm of the

variation of exogenous representations, 𝜙 (x𝐹 ) − 𝜙 (x𝑅), is enough
to constrain that of 𝜎𝐹 − 𝜎𝑅 :

Theorem4.4. Assume the sufficient statistics q̃ (k=1) is a bi-Lipschitz
function of 𝜎 , then ∥𝜎𝐹 − 𝜎𝑅 ∥2 is governed by ∥𝜙 (x𝐹 ) − 𝜙 (x𝑅)∥2,
where ∥ · ∥2 is the L2 norm.

We then propose the algorithmic recourse with L2 Norm (AR-

L2) by optimizing the L2 norm of H onminXR : Lmag = ∥H∥2 . (see
Appendix F for proofs).

4.4 Choice of Recourse Backbone
As the conditional variational autoencoder (CVAE) provides a flexi-

ble and reliable approach [31, 34], we adopt the previous proposed

CFVAE model [31] as the algorithmic recourse model M in this

paper. More specifically, we achieve this by maximizing the log-

likelihood of 𝑃 (x𝑅 | x𝐹 , 𝑦′), where 𝑦′ refers to the target prediction
altered from the original decision 𝑦. Following previous protocol

[31], we instead maximize the evidence lower bound (ELBO) of

𝑃 (x𝑅 | x𝐹 , 𝑦′) by following:

E𝑞(z |x𝐹 ,𝑦′) log𝑝 (x
𝑅 | z, 𝑦′, x𝐹 )−KL

(
𝑞(z | x𝐹 , 𝑦′) ∥ 𝑝 (z | 𝑦′, x𝐹 )

)
.

(8)

where we first arrive the latent representations z via the encoder
𝑞(z | x𝐹 , 𝑦′) and then generate the counterfactual x𝑅 via the de-

coder 𝑝 (x𝑅 | z, 𝑦′, x𝐹 ). Meanwhile, the prior conditional density of

z is sampled from a normal distribution: 𝑝 (z | 𝑦′, x𝐹 ) ∼ 𝑁 (𝜇𝑦′ , 𝜎2
𝑦′ )

to achieve a closed form of the KL-divergence. For realizations, we

adopt the L1 norm to measure the reconstruction loss, with an

additional Hinge loss to force the ML model ℎ to alter the prediction

from 𝑦 to y′:

Lrecon (x𝐹 , x𝑅) = log 𝑝

(
x𝑅 | z, 𝑦′, x𝐹

)
= ∥x𝑅 − x𝐹 ∥1,

L
hinge

(ℎ(x𝑅), 𝑦′, 𝛽) = max(ℎ𝑦 (x𝑅) − ℎ𝑦′ (x𝑅),−𝛽),

where ℎ𝑦 (x𝑅) refers to the predicted score (e.g., a probability in

[0, 1]) from ℎ at class 𝑦, 𝛽 is the hyper-parameter to control the

margin. Finally, by performing the monte-carlo approximation and

sampling from the encoder 𝑞(z | x𝐹 , 𝑦′), we express the original
loss for optimizing M on a batch sample with size𝑀𝑏 as follows:

Lori =

𝑀𝑏∑︁
𝑖=1

Lrecon + L
hinge

+ KL(𝑦′𝑖 , z𝑖 , x
𝐹
𝑖 ), (9)

where KL(𝑦′
𝑖
, z𝑖 , x𝐹𝑖 ) refers to the empirical estimation of:

KL
(
𝑞(z | x𝐹 , 𝑦′) ∥ 𝑝 (z | 𝑦′, x𝐹 )

)
.

Overall Loss. Lnuc and Lmag can be incorporated into the above

objective to preserve the causal relationships. Therefore, the overall

objective function can be written as Lori + 𝛼nucLnuc and Lori +
𝛼magLmag, where 𝛼nuc and 𝛼mag are hyper-parameters (see Appen-

dix E for details).

Remark 4.5 (Manipulation Issue). Besides the feasibility issue, an-

other critical issue of causal algorithmic recourse, i.e., the manipu-

lation issue, should be satisfied during the recourse process. More

formally, manipulation requires that the generated sample will not

change variables which are under protection, e.g., gender or race.
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Table 2: Results of the distribution and proximity scores on synthetic and German Loan data: Metrics are Mean±STD over 5
repeated experiments, with the best Dist_score highlighted.

Setting In-sample Out-of-sample

Metric Proximity D-Score Proximity D-Score

Benchmark: Synthetic

Vanilla

CEM 4.82 ± 0.85 -369.74 ± 8.9 3.79 ± 0.62 -372.50 ± 10.2

CFVAE 2.12 ± 0.51 2.31 ± 0.26 2.09 ± 0.55 2.30 ± 0.25

Partial

CFA-a 2.24 ± 0.07 -4.76 ± 2.10 - -

CFA-p 2.18 ± 0.11 -2.53 ± 1.15 - -

Ours

AR-Nuc 2.38 ± 0.26 3.26 ± 0.28 2.37 ± 0.15 3.08 ± 0.22
AR-L2 2.06 ± 0.44 3.03 ± 0.12 2.07 ± 0.22 3.12 ± 0.05

Oracle AR-SCM 2.11 ± 0.32 3.58 ± 0.21 2.28 ± 0.27 3.66 ± 0.08
Benchmark: German

Vanilla

CEM 4.67 ± 0.51 0.68 ± 0.27 4.67 ± 0.44 0.49 ± 0.25

CFVAE 6.14 ± 0.13 1.02 ± 0.14 6.15 ± 0.15 1.03 ± 0.10

Partial

CFA-a 6.04 ± 0.20 0.99 ± 0.05 - -

CFA-p 6.10 ± 0.18 0.83 ± 0.19 - -

Ours

AR-Nuc 5.95 ± 0.14 3.42 ± 0.10 5.80 ± 0.13 3.45 ± 0.13
AR-L2 6.02 ± 0.10 3.35 ± 0.08 6.01 ± 0.11 3.40 ± 0.07

Oracle AR-SCM 6.18 ± 0.27 3.49 ± 0.17 6.19 ± 0.26 3.51 ± 0.09

We argue that different kinds of interventions, i.e., point interven-

tion, soft intervention, or structure-preserving intervention, happen

on different levels, while manipulation only becomes meaningful

on 𝑋 . Hence, when considering the issue of manipulation, we only

have to add constraints on the input-output reconstruction loss of

the underlying VAE backbone, i.e., enforcing the corresponding

feature not to be changed during the recourse.

Remark 4.6 (Implicitly Estimation of Counterfactual Components).
We would like to clarify that our method provides implicitly estima-

tion of counterfactuals, i.e., through quantifying and constraining

the variation of exogenous variables, to achieve feasible AR. Instead

of estimating full SCM and designing constraints, we focus on the

exogenous components.

5 Experiments
In this section, we first introduce the baselines we compared, to-

gether with the evaluation metrics. Then we provide experimental

results on a synthetic dataset, a semi-synthetic dataset, and a real-

world dataset. Notably, our experimental data are not generated
from linear SCMs.

Baselines with their implementations. Our baselines can be

divided into three levels:

• Vanilla algorithmic recourse methods without any prior

knowledge. Such methods include (1) the CFVAE model we

introduced before [31] and (2) the CEM model, which mod-

els the perturbation using the auto-encoder structure [7];

• Recourse methods with partial prior causal knowledge.

We choose the minimal-intervention framework proposed

in [24] with two instantiations: (1) CFA-a: Which allows all

input features can be intervented when computing coun-

terfactuals; (2) CFA-p: Which allows partial features can be

intervented when computing counterfactuals. To be spe-

cific, both CFA-a and CFA-p requires the full graph as input,

and deploy conditional variational encoders to estimate the

underlying SCM;

• Oracle baselines, which refers to the methods with the

whole SCMmodel as a prior. Such a method is implemented

on the basis of the CFVAE regularized by the causal distance

proposed in [31], which we call the AR-SCM method.

We implement the CFA method in two versions: CFA-All (CFA-a)

and CFA-Partial (CFA-p), allowing interventions on all features or

only a subset, respectively (see Appendix G for details). Meanwhile,

we note that both CFA-a and CFA-p methods do not support
out-of-sample validation, as their recourse process performs
separately on each sample rather than a training-then-testing
paradigm [23]. On the real-world dataset, due to the lack of prior

causal graph, we refer to the CFA method with all nodes allowed to

be intervented as CFA-Discover, as we pre-train a causal discovery

model [61] to learn the prior causal graph from data in prior.

Details on Implementation of our models We implemented

the CFVAE algorithmic recourse model in our work. The encoder

has two branches: one for estimating 𝜇𝑦′ and another for 𝜎2𝑦′.
Both branches have 5 MLP layers with ELU activation and batch

normalization, but 𝜎2𝑦′ uses a Sigmoid function in the final layer to

constrain variance. The decoder mirrors this structure. We use BCE

loss for training since the domain label is binary. The black-box

model ℎ consists of 2 MLP layers with ELU activations. Our meth-

ods (AR-Nuc and AR-L2) share the same architecture and training

settings as CFVAE. For regression, we use a neural network with
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Figure 3: Feasibility and valid scores for the synthetic data and the German Loan data.

Table 3: High-dimensional Performance, where Time is the running time for recoursing per sample.

Methods Proximity D-Score Validity (%) Feasibility (%) Time (s)

Vanailla

CEM 5.61±1.24 <-500 99 <10 -

CFVAE 2.68±0.88 1.52±0.36 100 35.6 0.12

Partial

CFA-a 3.21±0.04 -5.37±2.28 100 34.7 Over 1h

CFA-p 2.72±0.13 -2.62±1.93 100 52.8 Over 1h

Ours

AR-Nuc 2.54±0.30 3.61±0.30 100 73.1 0.15

AR-L2 1.97±0.14 3.38±0.08 100 78.4 0.14
Oracle CF-SCM 2.28±0.35 3.78±0.11 99 82.0 0.17

three MLP layers and ReLU activation, optimized with Adam (learn-

ing rate = 0.001). Hyperparameters 𝛽 , 𝛼𝑛 , and 𝛼𝑚 are set to 0.2, 2,

and 2, respectively, for all experiments.

Metric. We evaluate the quality of generated algorithmic re-

course using the following metrics [24, 31]:

• Feasibility Score (%): Percentage of individuals whose al-
gorithmic recourse satisfy the prior monotonic constraints,

indicating feasibility;

• Distribution Score: Log-likelihood ratio of generated al-

gorithmic recourse compared to the given causal edges,

indicating compliance with the SCM model, which equals

to log𝑝 (x𝑅
𝑗
| x𝑅

𝑃𝑎 ( 𝑗 ) )/log𝑝 (x
𝐹
𝑗
| x𝐹

𝑃𝑎 ( 𝑗 ) );
• Validity (%): Percentage of individuals with favorable pre-

dictions from algorithmic recourse;

• Proximity: Average L1-distance between counterfactual

and original features for continuous features, and number

of mismatches for categorical features.

Intuitively, the validity score and the Proximity score are commonly

adopted metrics to measure how AR methods achieves target ac-

curacy with little cost [21, 34, 54]. Meanwhile, Feasibility Score

and Distribution Score are common metrics to quantify how each

AR method achieves feasibility principle [24, 31]. We note that

these four metrics exists widely in previous studies. We conduct

experiments and compute metrics in two settings: in-sample, test-

ing the model on training samples, and out-of-sample, testing on

samples outside the training dataset without output labels. In our

experiments, we mainly answer two questions:

• How does our method perform on preserving the causal rela-
tionship?

• Does our method sacrifice other metric (e.g., the Proximity or
Validity) to improve the feasibility?

Synthetic dataset.We simulate a synthetic dataset with three

features as (x1, x2, x3) and one outcome variable (𝑦). To incorporate

a monotonically increasing causal relationship between x1, x2 and
x3, we follow [31] to adopt the structural equations:

x1 ∼ 𝑁 (𝜇1, 𝜎1) , x2 ∼ 𝑁 (𝜇2, 𝜎2)
x3 ∼ 𝑁 (𝑘1 ∗ (x1 + x2)2 + 𝑏1, 𝜎3),
𝑦 ∼ Bernoulli (𝑘2 ∗ (x1 ∗ x2) + 𝑏2 − x3) ,

(10)

where we set 𝜇1 = 𝜇2 = 50, 𝜎1 = 15, 𝜎2 = 17, 𝜎3 = 0.5, 𝑘1 =

0.0003, 𝑘2 = 0.0013, and 𝑏1 = 𝑏2 = 10 as in [31]. Obviously, the

causal relationship embodied in this dataset is x1, x2 increase⇒ x3
increases; and x1, x2 decrease⇒ x3 decreases. Thus the feasibility
set 𝐶 equals to the above two constraints. For method CFA-a, we

allow x1, x2 and x3 to be intervented, while only x1 and x2 are

allowed to be intervented for CFA-p.

Table 2 and Figure 3 demonstrate the effectiveness of our method,

AR-Nuc and AR-L2. It achieves significant improvements in the fea-

sibility and distribution scores. Compared to the vanilla CFVAE, our

feasibility score improves by over 15%. AR-Nuc and AR-L2 perform

competitively with the ground truth approach (AR-SCM) on fea-

sibility and distribution scores. Notably, our methods outperform

CFA-a and CFA-p, even with prior causal graph.

German Loan Dataset. A semi-synthetic dataset including 7

variables called "German Loan" was created based on the German

Credit UCI dataset [24] (see appendix for the causal graph with

SCMs). For the German Loan dataset, the CFA-p method was imple-

mented with non-interventive features (age, gender, and duration),

and a constraint set (C) was used to measure feasibility, following
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Figure 4: Stability of of our methods across different hyper-parameter selection protocols.
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Figure 5: Feasibility and validity scores on Diabetes.

three rules: (1) Loan amount (L) increases ⇒ loan duration (D)

increases; (2) Age (A) increases ⇒ income (I) increases; (3) A in-

creases⇒ education-level (E) increases. As shown in Table 2 and

Figure 3, our AR-Nuc and AR-L2 outperform others in feasibility

and distribution scores while maintaining 100% validity at a low

proximity cost.

Diabetes Dataset. The Diabetes dataset [21], collected by Smith

[47], consists of medical records for Pima Indians with and without

diabetes. It includes 8 input features such as pregnant status, blood

pressure, with the class label indicating diabetic conditions. To

discover the causal structure, we use the CFA method [24] with

the NOTEARS method [60] (https://github.com/xunzheng/notears).

Based on prior knowledge [21, 47], the constraint set 𝐶 includes

three rules: (1) Blood Pressure → BMI, (2) Glucose → BMI, and (3)

Skin thickness → BMI.

As shown in Table 4 and Figure 5, real-world experimental results

entail that our approaches effectively constrain the variation of the

exogenous noise, which further preserves the effect of the structural

functions in generated examples. Besides, the first-discover-then-

generation approach is difficult for realistic cases, as the error of

discovery and approximation will accumulate together.

Towards High-Dimensional Data. We test the high dimen-

sional capability of our method by involving a synthetic dataset

with 80 features in our study (see Appendix (G) for details). As

shown in Table 3, our methods, AR-Nuc and AR-L2, offer improved

scalability in high-dimensional settings. By contrast, the need to

consider every possible subset of the total feature set for conducting

interventions in CFA-a and CFA-p results in exponential complexity

relative to the total feature set.

Table 4: Proximity score of the Diabetes dataset.

Setting In-sample Out-of-sample

Vanilla

CEM 7.42±0.11 7.43±0.08
CFVAE 16.49±0.52 16.19±0.47

Partial CFA-Discover 6.67±0.26 -

Ours

AR-Nuc 6.43±0.18 6.40±0.16
AR-L2 6.48±0.19 6.50±0.11

Ablations and Parameter Stability. We note that ablation

studies are already provided by comparing CFVAEwith out AR-Nuc

and AR-L2. Finally, we have tested the stability of our methods, AR-

L2 and AR-Nuc, by varying the hyper-parameters 𝛼𝑚𝑎𝑔 and 𝛼𝑛𝑢𝑐 .

The in-sample prediction results in Fig 4 show that (a) our methods

have weak effects on the feasibility when 𝛼 ≤ 0.1; (b) our AR-L2

and AR-Nuc does not ruin other metrics such as proximity when

improving the feasibility; (c) the feasibility achieved by our methods

does not rely on the sophisticated tuning of hyper-parameters 𝛼𝑚𝑎𝑔

and 𝛼𝑛𝑢𝑐 (only require the hyper-parameter not to be too small).

6 Discussion and Future Work
Conclusion. To protect the vulnerable end-users toward the de-

cision models, we enhance the feasibility of algorithmic recourse

such that the users can obtain both interpretable and feasible rec-

ommendations. We achieve this by identifying and constraining the

variability of the exogenous noise. Extensive experimental results

have verified the effectiveness of our methods.

Limitations and Future Work. However, one limitation re-

mains to be addressed in future work, as our method assumes

causal sufficiency with no unobserved features. Such a case might

exist in a wide of real-world scenes, and previous work including

ours [23, 24] might fail when relaxing the assumption of causal suf-

ficiency. To overcome this gap, one possible solution is to introduce

auxiliary information (e.g., instrumental variables or proxy vari-

ables [45]). Finally, to remove the unobserved confounding effect,

one can allow the partial DAG is given as a prior (bi-directed edges

representing the hidden confounders), and a min-max optimization

framework [62] might be designed to support the computation of

backtracking counterfactuals.
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A Broader Impacts
This paper studies on learning feasible algorithmic recourse with-

out prior causal graph or Structural Causal Models (SCMs) with a

novel algorithm, which identifies and constrains the variation of

exogenous noise during the recourse process. This advancement in

Machine Learning enhances decision-making processes in various

fields such as medicine, finance, and social science. For instance,

financial institutes often provide recommendations to their clients,

by presenting possible and valid suggestions, i.e., recoursed exam-

ples, leading to positive decisions, e.g., accepted loan applications.

However, the access to prior causal graph or SCMs is difficult for

the institute, and our proposed method can bridge such realistic

problem when deploying algorithmic recourse models. The limita-

tion of our RATIV algorithm is that it relies heavily on the causal

sufficiency assumption, i.e., no unobserved confounders exist. In

the case of hidden confounder, our algorithm may not accurately

provide valid recoursed samples.

B More related work on causally inspired
interpretability of ML models

Recently, an extensive body of work has applied causal inference

methods to a variety of scenarios relating to the interpretability

of ML models, including counterfactual generation [8, 37, 40, 57],

counterfactual explanation [12, 25, 27, 38, 39, 55], counterfactual

harm [28, 42], interpretable time series prediction [58], causally

interpretable Large LanguageModels (LLMs) [18, 19, 48], root-cause

analysis [4, 17, 20, 49, 50]and data valuation [30], etc.

C Difference between traditional
counterfactuals and backtracking
counterfactuals

Traditional Counterfactuals. For a subset of endogenous variables
X̃ ⊆ X and a realisation x̃ thereof, the submodel Mx̃ of M is the

model Mx̃ = (X, Fx̃, 𝑃𝜎 ) where Fx̃ =
{
𝑓𝑖 : 𝑉𝑖 ∉ X̃

}
∪ {X̃ := x̃}. The

effect of interventing𝑑𝑜 (X̃ = x̃) onM is given by the submodelMx̃.
The potential outcome of the recoursed sample 𝑋 in our paper to

action 𝑑𝑜 (X̃ = x̃) in world𝑤 = (M, 𝑃𝜎 ), denotedXx̃ (𝜎), is the solu-
tion for X of the set of equations Fx̃, that is, Xx̃ (𝜎) = XMx̃ (𝜎). The
counterfactual sentence "given that we factually observed 𝑋 = X𝐹

,

how X would be (in situation 𝜎), had X̃ been x̃" is then interpreted

as the equality Xx̃ (𝜎) = x, where the part "had X̃ been x̃" is called
the (counterfactual) antecedent. To compute counterfactuals, the

three-step procedures include abduction, action, and prediction:

(1) Abduction: Given the evidence, i.e., the factual sample X𝐹
,

update 𝑃𝜎 by the evidence X𝐹
to obtain 𝑃𝜎 |X𝐹 .

(2) Action: Modify M by the action 𝑑𝑜

(
X̃ = x̃

)
to obtain the

submodelMx̃.
(3) Prediction: Compute 𝑃X

𝑑𝑜 (X̃=x̃) |𝑥𝐹
with modifiedMx̃ and

updated 𝑃𝜎 |X𝐹 .

Backtracking Counterfactuals. Different from traditional coun-

terfactuals, backtracking counterfactuals define interventions as a

structure preserving process, i.e., the modifications only happens on

the exogenous variables 𝜎 and the functional relationships F is pre-

served [16]. Instead of �̃� , the core of backtracking counterfactuals

stands on the definition of �̃� with a new conditional term 𝑃 (�̃� | 𝜎),
i.e., �̃� as the modified exogenous variable and 𝑃 (�̃� | 𝜎) as the quan-
tification of the likelihood of each counterfactual world �̃� given

factual world 𝜎 [53]. Then given the factual sample X𝐹
, the proba-

bility of backtracking counterfactuals, i.e., 𝑃𝐵 (𝑋𝑅 = 𝑥𝑅,X𝐹 = X𝐹 )
can be computed as follows [53]:

𝑃𝐵

(
𝑥𝑅,X𝐹

)
:= 𝑃𝐵

(
𝑋𝑅 = 𝑥𝑅,X𝐹X𝐹

)
=

∑︁
(𝜎,�̃� )

𝑃𝐵 (𝜎, �̃�) 1{𝑋𝑅 (�̃� )=𝑥𝑅}1{X𝐹 (𝜎 )=X𝐹 } .
(11)

Then the three steps to compute counterfactuals can be formalized

to answer the question “given that we factually observed 𝑋 = X𝐹
,

how X would be (in situation 𝜎), had X̃ been x̃”:

(1) Cross-world Abduction: Compute 𝑃 (�̃�, 𝜎) = 𝑃 (𝜎)𝑃 (�̃� | 𝜎),
where the prior 𝑃 (𝜎) is assumed to be known. Then update

𝑃 (�̃�, 𝜎 | x̃, 𝑥𝐹 );
(2) Marginalisation: Marginalise out 𝜎 to obtain the counter-

factual posterior 𝑃𝐵

(
�̃� | x̃, 𝑥𝐹

)
;

(3) Prediction: Use the model (M, 𝑃𝐵

(
�̃� | x̃, 𝑥𝐹

)
) to predict

𝑋𝑅
.
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We refer more detailed illustration of backtracking counterfactuals

to [53]. To be specific, in our paper, as the resulting 𝑋𝑅
is deter-

ministically produced by algorithmic recourse models, we judge

the conditional term 𝑃𝐵 (�̃� | 𝜎) as a point mass. Besides, we note

that the uncertainty from 𝜎 to �̃� can be supported by consider-

ing algorithmic recourse models with uncertainty [24]. Hence, the

three steps above, i.e., Cross-world Abduction, Marginalisation and

Prediction, can be deduced to the equation (2). Meanwhile, we note

that such formalization in (2) coincides with the struture-preserving

interventions defined in [4, 16].

D Exogeneous-Aggregated Formulation

By recursively resolving the parents in terms of their parents,

i.e., using x𝑗 := 𝑓𝑗 (xpa( 𝑗 ) , 𝜎 𝑗 ), one can easily obtain the form that

x = 𝑓 (𝜎). For instance, considering the SCM consisting of three

variables:

x1 = 𝑓1 (x2, x3, 𝜎1),
x2 = 𝑓2 (x3, 𝜎2),
x3 = 𝜎3 .

(12)

Then one can easily reads that

x1 = 𝑓1 (𝑓2 (𝜎3, 𝜎2), 𝜎3, 𝜎1),
x2 = 𝑓2 (𝜎3, 𝜎2),
x3 = 𝜎3 .

(13)

By letting the first output of 𝑓 to be 𝑓1 (𝑓2 (𝜎3, 𝜎2), 𝜎3, 𝜎1), the
second of 𝑓 to be x2 = 𝑓2 (𝜎3, 𝜎2) and the final output of 𝑓 to be

x3 = 𝜎3, then one can re-write x as:

x = 𝑓 (𝜎) .
We note that the crucial part of such form is that the SCM is non-

recursive.

E Detailed Algorithm
We put detailed illustration of our algorithm in Alg. 1. To be specific,

the algorithmic recourse model M, i.e., the CVAE model, serves as

both the input and output of our algorithm, as our ultimate goal

is to instructM to output feasible recoursed samples. We putM𝑙

as the input to entail that M𝑙 is untrained and initialized at the

beginning, whileM𝑙 will be trained using D and D𝐴
in Line 4.

F Proofs
Throughout our appendix, we use the subscript 1 ≤ 𝑗 ≤ 𝑛 to index

the feature, the subscript 1 ≤ 𝑖 ≤ 𝑀 to index the sample, and

the subscript 1 ≤ 𝑘 ≤ 𝐾 to index the order in the conditional

exponential distribution.

Theorem 3.2 (Restated). Assume that:

(a) The exogenous noise 𝜎 is conditionally exponential of order
𝐾 of 𝑦. Consequently, the conditional probability density of
𝜎 given 𝑦 can be written for each feature 1 ≤ 𝑗 ≤ 𝑛:

𝑝
(
𝜎 𝑗 | 𝑦

)
=
𝑄 𝑗

(
𝜎 𝑗

)
𝑍 𝑗 (𝑦)

exp

[
𝐾∑︁
𝑘=1

�̃� 𝑗𝑘
(
𝜎 𝑗

)
𝜆𝑗𝑘 (𝑦)

]
, (14)

Algorithm 1 Illustrations of AR-Nuc and AR-L2

Require: The collected observational dataset D = {x𝐹
𝑖
, 𝑦𝑖 }𝑀𝑖=1, the

algorithmic recourse model (CVAE)M, the regression model

M𝑙 = {𝜓, 𝜙}, the size of input features n, the batch size ofM
as𝑀𝑏 .

Ensure: The trained modelM.

1: Extracting the exogenous representations:
2: Randomly shuffle {𝑦𝑖 }𝑀𝑖=1 and obtain the permuted 𝑦;

3: Construct the augmented dataset D𝐴 = {x𝐹
𝑖
, 𝑦𝑖 }𝑀𝑖=1;

4: Optimize the regression modelM𝑙 as in (3) by discriminating

between D and D𝐴
.

5: Training the algorithmic recourse model:
6: Arrive the latent representation {z𝑖 }𝑀𝑏𝑖=1

through the encoder

from the input {x𝐹
𝑖
}𝑀𝑏
𝑖=1

with target labels {𝑦′
𝑖
}𝑀𝑏
𝑖=1

;

7: By sampling from {z𝑖 }𝑀𝑏𝑖=1
, compute the reconstructed {x𝑅

𝑖
}𝑀𝑏
𝑖=1

from the decoder with {𝑦′
𝑖
}𝑀𝑏
𝑖=1

;

8: Compute the original objective Lori of M with

{z𝑖 , x𝑅𝑖 , x
𝐹
𝑖
, 𝑦𝑖 , 𝑦

′
𝑖
}𝑀𝑏
𝑖=1

;

9: AR-Nuc: Optimize the total objective as Lori + 𝛼𝑛𝑢𝑐Lnuc.

10: AR-L2: Optimize the total objective as Lori + 𝛼𝑚𝑎𝑔Lmag.

where 𝑄 𝑗 , 𝑍 𝑗 , 𝑞 𝑗𝑘 and 𝜆 𝑗𝑘 as scalar-valued functions. Mean-
while, for each 𝑗 , the sufficient statistics 𝑞 𝑗𝑘 are assumed
linearly independent over 𝑘 .

(b) There exists 𝑛𝑘 + 1 realizations of 𝑦 as {𝑦}𝑛𝑘
𝑙=0

such that the
matrix with size 𝑛𝑘 × 𝑛𝑘 :

L =

©­­­«
𝜆11 (𝑦1 ) − 𝜆11 (𝑦0 ) , . . . , 𝜆11 (𝑦𝑛𝑘 ) − 𝜆11 (𝑦0 )

.

.

.

𝜆𝑛𝑘 (𝑦1 ) − 𝜆𝑛𝑘 (𝑦0 ) , . . . , 𝜆𝑛𝑘 (𝑦𝑛𝑘 ) − 𝜆𝑛𝑘 (𝑦0 )

ª®®®¬ (15)

is invertible.
(c) The trained (deep) logistic regression system in (3) has the

universal approximation capability to distinguish D from
D𝐴 .

Then, in the case of infinite samples, the representations 𝜙𝜃 (x) identi-
fies 𝜎 up to a linear transformation of point-wise statistics q̃:

q̃ (𝜎) = A𝜙𝜃 (x) + b, (16)

here A and b are fixed but unknown matrices.

Proof for Theorem 3.2. Overall, our techniques in this proof

are inspired by the previous results in [15]. First, with the prop-

erties that 𝜎 𝑗1 is statistically dependent on 𝑦, but conditionally

independent of the other 𝜎 𝑗2, we have the following expression:

log𝑝 (𝜎 | 𝑦) =
𝑛∑︁
𝑗=1

𝑞 𝑗
(
𝜎 𝑗 , 𝑦

)
. (17)

Furthermore, based on previous well-known results [11], the uni-

versal approximation capability assumption in our theorem implies

that the regression function 𝑟 will equal the difference of the log-

densities in the two classes (namely D and D𝐴
):∑𝑛

𝑗=1𝜓 𝑗

(
𝜙 𝑗 (x), 𝑦

)
= log 𝑝 (𝜎, u) + log |𝑑𝑒𝑡Jg(x) | − log𝑝 (𝜎)

− log𝑝 (𝑦) − log |𝑑𝑒𝑡Jg(x) |,
(18)
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where the term 𝑑𝑒𝑡Jg(x) refers to the determinant of the Jacobian

matrix of 𝑔, and the equality holds due to the fact that the 𝑝 (𝜎,𝑦) =
𝑝 (𝜎)𝑝 (𝑦) in D𝐴

. Meanwhile, based on the conditional-exponential

assumption, the left side of the above equation can be simplified

into the following expression:∑︁
𝑗

log𝑄 𝑗

(
𝜎 𝑗
)
+
[∑︁
𝑘

𝑞 𝑗𝑘
(
𝜎 𝑗
)
𝜆 𝑗𝑘 (𝑦)

]
− log𝑍 𝑗 (𝑦) − log𝑝 (𝜎) . (19)

Consequently, a linear solution of

∑𝑛
𝑗=1𝜓 𝑗

(
𝜙 𝑗 (x), 𝑦

)
can be written

as follows: ∑︁
𝑗𝑘

˜𝜙 𝑗𝑘 (x)𝑣 𝑗𝑘 (𝑦) + 𝑠 (x) + 𝑡 (u), (20)

where

˜𝜙 𝑗𝑘 (x) = 𝑞 𝑗𝑘 (𝜎 𝑗 )
𝑣 𝑗𝑘 (𝑦) = 𝜆 𝑗𝑘 (𝑦)

𝑠 (x) =
∑︁
𝑗

log𝑄 𝑗

(
𝜎 𝑗
)
− log 𝑝 (𝜎)

𝑡 (𝑦) =
∑︁
𝑗

− log𝑍 𝑗 (𝑦),

(21)

where the representations
˜𝜙 (x) identifies exactly the 𝑞(𝜎) in this

special solution. Moreover, we show that the above solution for

the regressor is the only solution up to the A, b given in the theo-

rem (namely,
˜𝜙 identifies 𝑞 up to a linear transformation). To this

end, we collect the following equations for the points 𝑦𝑛𝑘+1
𝑙=1

in the

assumption 2 in our theorem:∑︁
𝑗𝑘

˜𝜙 𝑗𝑘 (x)𝑣 𝑗𝑘 (𝑦𝑙 ) + 𝑠 (x) + 𝑡 (u)

=
∑︁
𝑗

log𝑄 𝑗

(
𝜎 𝑗
)
+
[∑︁
𝑘

𝑞 𝑗𝑘
(
𝜎 𝑗
)
𝜆 𝑗𝑘 (𝑦𝑙 )

]
− log𝑍 𝑗 (𝑦) − log 𝑝 (𝜎),

(22)

then the following matrix expression is obtained:

W𝑇 ˜𝜙 (x) = L𝑇 q̃(𝜎) − z + 1

∑︁
𝑗

log𝑄 𝑗

(
𝜎 𝑗
)
− 𝑞0 (𝜎) − 𝑎(x)

 , (23)
where W ∈ R𝑛𝑘×(𝑛𝑘+1)

is the matrix expression of the vectors

W(𝑦𝑙 ) (1 ≤ ł ≤ 𝑛𝑘), L ∈ R𝑛𝑘×(𝑛𝑘+1)
is the matrix form of 𝜆 𝑗𝑘 (𝑦𝑙 )

with 𝑗 ∗𝑘 as the row index and 𝑙 as the column index, q̃(𝜎) ∈ R𝑛𝑘
is

the collection of 𝑞 𝑗𝑘
(
𝜎 𝑗
)
,
˜𝜙 (x) ∈ R𝑛𝑘

is the representation vector,

z ∈ R𝑛𝑘+1
is the collections of all 𝑡 (𝑦𝑙 ) +

∑
𝑗 log𝑍 𝑗 (𝑦𝑙 ) for different

𝑙 , and 1 ∈ R𝑛𝑘+1
is a vector of ones. Moreover, we subtract the

first row of the above equation from its rest rows, and derive the

following equation:

Ŵ𝑇 ˜𝜙 (x) = L̂𝑇 q̃(𝜎) − ẑ, (24)

where Ŵ and L̂ are differences of the rows of W and L (and like-

wise for ẑ). Finally, since the matrix L̂ coincides with invertible

assumption (b) in our theorem, we obtain the identification results

as follows:

A ˜𝜙 (x) = q̃(𝜎) − b, (25)

where A = L̂−1Ŵ and b = L̂−1ẑ. Notably, the unknown matrices A
and b only depend on the support points 𝑦. □

Proof for Theorem 3.3. First, we list the expression ofH𝜎
and

H0
and H for convenience:


H𝜎 = {q̃(𝜎𝐹

1
) − q̃(𝜎𝐶𝐹

1
), q̃(𝜎𝐹

2
) − q̃(𝜎𝐶𝐹

2
), . . . , q̃(𝜎𝐹𝑀𝑏 ) − q̃(𝜎𝐶𝐹𝑀𝑏

)},

H0 = {𝜎𝐹
1
− 𝜎𝐶𝐹

1
, 𝜎𝐹

2
− 𝜎𝐶𝐹

2
, . . . , 𝜎𝐹𝑀𝑏

− 𝜎𝐶𝐹𝑀𝑏
},

H = {𝜙 (x𝐹
1
) − 𝜙 (x𝐶𝐹

1
), 𝜙 (x𝐹

2
) − 𝜙 (x𝐶𝐹

2
), . . . , 𝜙 (x𝐹𝑀𝑏 ) − 𝜙 (x

𝐶𝐹
𝑀𝑏

)},

Combinin with the fact that 𝐴𝐻 = 𝐻𝜎
, q̃ is point-wise, we have

L0 (𝐻0) ≤ L0 (𝐻𝜎 ). Then we have to prove that 𝜖L0 (𝐻𝜎 ) ≤
L0 (𝐻 ) ≤ 𝑐𝑛L𝑛𝑢𝑐 (𝐻 ). Based on the assumption that the trans-

formed exogeneous noise is bounded, i.e., 𝜖 ≤ ∥𝐻𝜎
𝑖 𝑗
∥, we have

𝜖L0 (𝐻𝜎 ) ≤ L0 (𝐻 ). Then by Cauchy’s Inequality and 𝐴𝐻 = 𝐻𝜎
,

we assume that the matrix 𝐴 is bounded by some constant 𝑐:

L1 (𝐻𝜎 ) = max

𝑗∈[𝑀𝑏 ]

∑︁
𝑖∈[𝑛]

|
∑︁
𝑗

𝐴𝑖 𝑗𝐻 𝑗 |

≤ max

𝑗∈[𝑀𝑏 ]

∑︁
𝑖∈[𝑛]

∑︁
𝑗

|𝐴𝑖 𝑗 | |𝐻 𝑗 |

≤ 𝑐𝑛L1 (𝐻 ),

(26)

By invoking the Cauchy’s inequality again, we have:

𝑐𝑛L1 (𝐻 ) = 𝑐𝑛 max

𝑗∈[𝑏 ]

∑︁
𝑖∈[𝑛]

|𝐻 𝑗𝑖 |

≤ 𝑐𝑛
√
𝑛 max

𝑗∈[𝑏 ]

√︄∑︁
𝑖

𝐻2

𝑖 𝑗

= 𝑐𝑛
√
𝑛Trace

√︁
𝐻𝑇𝐻,

(27)

where the term Trace

√
𝐻𝑇𝐻 equals to L𝑛𝑢𝑐 (𝐻 ). Then our claim

follows.

□

Proof for Theorem 3.4. First, we show that the term ∥q̃(𝜎𝐹 )−
q̃(𝜎𝐶𝐹 )∥2 is bounded by ∥𝜙 (x𝐹 ) − 𝜙 (x𝐶𝐹 )∥2 as follows:

∥q̃(𝜎𝐹 ) − q̃(𝜎𝐶𝐹 )∥2 = ∥A𝜙 (x𝐹 ) − 𝜙 (x𝐶𝐹 )∥2
≤ ∥A∥∥𝜙 (x𝐹 ) − 𝜙 (x𝐶𝐹 )∥2,

(28)

where the first equality is due to the results of identification, and the

second inequality is due to the definition of the norm of the operator

A. Moreover, as A maps between finite-dimensional Hibert spaces

and A is a continuous operator, A itself is bounded (e.g., ∥A∥ ≤ 𝐶
holds). Meanwhile, recalling our assumption that q̃ is a bi-lipschitz

function, we have:

𝐾1∥𝜎𝐹 − 𝜎𝐶𝐹 ∥2 ≤ ∥q̃(𝜎𝐹 ) − q̃(𝜎𝐶𝐹 )∥2 ≤ 𝐾2∥𝜎𝐹 − 𝜎𝐶𝐹 ∥2, (29)

where 𝐾1 and 𝐾2 are Lipschitz constants. Notably, such assumpion

implies that the variation of q̃ is compactly correlated to that of 𝜎 ,

which is common for exponential families [14]. Hence, ∥𝜎𝐹 −𝜎𝐶𝐹 ∥2
is governed by ∥𝜙 (x𝐹 ) − 𝜙 (x𝐶𝐹 )∥2:

∥𝜎𝐹 − 𝜎𝐶𝐹 ∥2 ≤ 1

𝐾1
∥A∥∥𝜙 (x𝐹 ) − 𝜙 (x𝐶𝐹 )∥2, (30)

where minimizing ∥𝜙 (x𝐹 ) −𝜙 (x𝐶𝐹 )∥2 is enough to constrain ∥𝜎𝐹 −
𝜎𝐶𝐹 ∥2. □

G Experimental Details
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Details on Implementation of baselines. TheCFVAE baseline serves
as the underlying algorithmic recourse model for our AR-Nuc and

AR-L2methods.We follow the implementations in [31], usingMulti-

layer-perception (MLP) layers to estimate 𝜇𝑦′ and𝜎2
𝑦′ in the encoder

branches. The black box ML model ℎ is also an MLP classifier. We

use the Adam optimizer [2] with an initial learning rate of 0.01

for ℎ and M. The batch size𝑀𝑏 is set to 64 in all our experiments.

The original implementations of AR-SCM and CFVAE in Pytorch

by [31] are publicly available
5
. The CEM

6
and CFA

7
methods are

also open-source on GitHub.

Computing Resources. All of our experiments are conducted on a

GPU server with 8 Nvidia 3090, Pytorch 1.12, Cuda 12.1.

Details on Dataset. We then detail the simulation on the German

Loan dataset, with the same protocols in [21] as follows:

𝐺 : 𝑈𝐺 , 𝑈𝐺 ∼ Bernoulli(0.5)
𝐴 := −35 +𝑈𝐴, 𝑈𝐴 ∼ Gamma(10, 3.5)

𝐸 := −0.5 + ©­«1 + 𝑒
−
(
−1+0.5𝐺+

(
1+𝑒−0.1𝐴

)−1
+𝑈𝐸

)ª®¬
−1

, 𝑈𝐸 ∼ N(0, 0.25)

𝐿 := 1 + 0.01(𝐴 − 5) (5 − 𝐴) +𝐺 +𝑈𝐿, 𝑈𝐿 ∼ N(0, 4)
𝐷 := −1 + 0.1𝐴 + 2𝐺 + 𝐿 +𝑈𝐷 , 𝑈𝐷 ∼ N(0, 9)
𝐼 := −4 + 0.1(𝐴 + 35) + 2𝐺 +𝐺𝐸 +𝑈𝐼 , 𝑈𝐼 ∼ N(0, 4)
𝑆 := −4 + 1.5I{𝐼>0}𝐼 +𝑈𝑆 , 𝑈𝑆 ∼ N(0, 25) .

(31)

Meanwhile, we generate the class label 𝑦 following [24]:

𝑦 ∼ Bernoulli

((
1 + 𝑒−0.3(−𝐿−𝐷+𝐼+𝑆+𝐼𝑆 )

)−1)
. (32)

Besides, we provide details on the sample number for each

dataset. For the synthetic dataset and semi-synthetic German Load

dataset, we set𝑀 = 10000 as the number of samples. For the real-

world Diabetes dataset, we have𝑀 = 768 samples. Such variation

on the samples size also verifies that our methods does not rely

on huge data samples. To report the out-of-sample prediction re-

sults, we randomly split the each dataset into the training/testing

domains with ratio as 0.7/0.3.
Details on generating the high-dimensional Dataset. The ratio-

nale behind employing synthetic data is twofold: (a) most widely

used, realistic datasets possess relatively small feature dimensions;

(b) real-world data with high dimensions lacks an underlying SCM,

rendering it difficult to evaluate the feasibility.

We have augmented our research by incorporating additional ex-

periments involving a synthetic dataset in our study. The synthetic

dataset is designed with a feature dimension of 80. The rationale

behind employing synthetic data is twofold: (a) most widely used,

realistic datasets possess relatively small feature dimensions; (b)

real-world data lacks an underlying structural causal model (SCM),

rendering it infeasible to verify whether generated explanations

align with the SCM model. Specifically, we extend the synthetic

setting in our paper to encompass a high-dimensional scenario with

5
https://github.com/divyat09/AR-feasibility

6
https://github.com/IBM/Contrastive-Explanation-Method

7
https://github.com/amirhk/recourse

80 dimensions:

x1 ∼ 𝑁 (𝜇1, 𝜎1) ;
x2 ∼ 𝑁 (𝜇2, 𝜎2) ;
x3 ∼ 𝑁 (𝜇1, 𝜎1) ;
x4 ∼ 𝑁 (𝜇2, 𝜎2) ;

· · · ,
x8 ∼ 𝑁 (𝜇2, 𝜎2) ;

x9 ∼ 𝑁
(
𝑘1 ∗ (x1 + x2 + x3 + x4)2 + 𝑏1, 𝜎3

)
;

x10 ∼ 𝑁
(
𝑘1 ∗ (x5 + x6 + x7 + x8)2 + 𝑏1, 𝜎3

)
.

(33)

In order to augment the original dataset 𝑋 𝐹
and create a more com-

plex structure, additional variables x𝑖∗10+1 to x𝑖∗10+10 are generated
for 1 ≤ 𝑖 ≤ 7, following the same procedure as 𝑖 = 0. Subsequently,

a random permutation is applied to shuffle the variables x1 to x80.
This permutation aims to challenge the preservation of the original

structure in 𝑋 𝐹
.

To ensure the integrity of the modified dataset, a feasibility check

is performed. Specifically, for each sample, the following conditions

are validated: - If x𝑖 , x𝑖+1, x𝑖+2, x𝑖+3 increase, then x𝑖+9 must also

increase for 𝑖 = 10𝑘 + 1, where 0 ≤ 𝑘 ≤ 7. - If x𝑖 , x𝑖+1, x𝑖+2, x𝑖+3
decrease, then x𝑖+9 must also decrease for 𝑖 = 10𝑘 + 1, where

0 ≤ 𝑘 ≤ 7. - Similarly, for each sample, if x𝑖 , x𝑖+1, x𝑖+2, x𝑖+3 increase,
x𝑖+5 should also increase, and if they decrease, x𝑖+5 should also

decrease, for 𝑖 = 10𝑘 + 5, where 0 ≤ 𝑘 ≤ 7.

Details on the Regression System. Moreover, we perform extra

experiments to illustrate the behaviour of our regression system for

extracting the exogenous representations. To be specific, we report

the training process on the Diabetes dataset in Figure 6, where the

convergent training loss indicates that the model indeed achieves

nearly the universal approximation capability (which is critical for

identifying the exogenous noise in our theorem).

Figure 6: The training curve of our regression system.
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