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Abstract

Implicit reasoning is the ability of a language001
model to solve multi-hop reasoning tasks in a002
single forward pass, without chain of thought.003
We investigate this capability using GPT2-style004
language models trained from scratch on con-005
trolled k-hop reasoning datasets (k = 2, 3, 4).006
We show that while such models can indeed007
learn implicit k-hop reasoning, the required008
training data grows exponentially in k, and the009
required number of transformer layers grows010
linearly in k. We offer a theoretical explanation011
for why this depth growth is necessary. We012
further find that the data requirement can be013
mitigated, but not eliminated, through curricu-014
lum learning.015

1 Introduction016

Large language models (Brown et al., 2020;017

Achiam et al., 2023) have demonstrated strong ca-018

pabilities in complex reasoning tasks (Jaech et al.,019

2024; Guo et al., 2025). With chain-of-thought020

methods (Wei et al., 2023; Nye et al., 2021), lan-021

guage models (LMs) learn to explicitly generate022

the intermediate steps of the given problem before023

generating the final answer. However, such meth-024

ods incur long inference time (Chen et al., 2024b)025

and require costly annotations (Nye et al., 2021; Ze-026

likman et al., 2022). This raises the question: Can027

language models learn to reason effectively with-028

out explicit chain-of-thoughts, i.e., through implicit029

reasoning?030

There has been some research exploring implicit031

reasoning abilities of language models (Yang et al.,032

2024a; Biran et al., 2024; Wang et al., 2024). Such033

studies design their task in a two-hop question an-034

swering format, where the model is assumed to035

know individual facts like The father of A is B and036

The teacher of B is C, and then asked questions037

like Who is the teacher of the father of A?. Find-038

ings from these works suggest that LMs can learn039

implicit reasoning by combining individual factual040

train

2-hop task
Who is the instructor of the teacher
of Jennifer? 
Answer: _ 

testLM

train testLM

train testLM

3-hop task

Who is the instructor of the teacher
of the advisor of Jennifer? 
Answer: _ 

4-hop task

Who is the instructor of the teacher
of the advisor of the instructor of
Jennifer? 
Answer: _ 

Figure 1: Example to illustrate our finding.

knowledge. However, their reasoning tasks are 041

limited to questions that can be solved with two in- 042

termediate steps (i.e. 2-hop), leaving more difficult 043

k-hop (k > 2) reasoning questions alone. Hence, 044

it remains unclear whether language models can 045

learn to perform such k-hop reasoning or not. 046

In this paper, we study the capacity of lan- 047

guage models to learn k-hop reasoning tasks, where 048

k = 2, 3, 4. By training a randomly initialized 049

GPT2-style transformer (Vaswani et al., 2017; Rad- 050

ford et al., 2019) on knowledge (e.g. Jennifer ’s 051

instructor is Robert) and knowledge-based ques- 052

tions (e.g. Who is the instructor of the instructor 053

of Jennifer?), we study if such language models 054

learn to generalize to questions that require novel 055

combinations of learned facts. 056

Our study addresses three research questions. 057

• First, can LMs learn implicit k-hop reason- 058

ing, and if so, under what conditions? Our 059

findings suggest that LMs can indeed learn im- 060

plicit k-hop reasoning, but doing so requires 061

exponentially increasing data budgets as k 062

grows (see Figure 1), primarily due to the 063

explosion in the search space of fact combina- 064

tions. 065
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• Second, we investigate how models perform066

k-hop reasoning internally through mechanis-067

tic interpretability experiments. Our analysis068

reveals that models trained with sufficient data069

systematically derive intermediate hop entities070

in a layer-wise manner, progressing from shal-071

low layers to deeper layers in a step-by-step072

fashion, consistent with Biran et al. (2024);073

Wang et al. (2024). We further show a the-074

oretical lower bound (Theorem 5.1) suggest-075

ing that such a mechanism, with the required076

depth growing with k, may be unavoidable for077

the transformer architecture.078

• Third, motivated by the substantial data re-079

quirements for k-hop reasoning, we ask: How080

can we reduce the data budget for k-hop rea-081

soning? We explore the use of easier (m-hop,082

m < k) tasks as auxiliary training signals.083

Our findings show that curriculum learning084

(Elman, 1993; Bengio et al., 2009), which085

introduces tasks in a progressively harder or-086

der, significantly reduces the required training087

data, while simply mixing m-hop tasks with088

k-hop tasks provides only modest gains.089

Bringing our findings together, we answer the090

broader question Can language models learn im-091

plicit reasoning? with a "yes, but" response. Lan-092

guage models can solve k-hop reasoning; however,093

this capability comes at the cost of an exponential094

increase in training data and at least linear growth095

in model depth as k increases. Curriculum learning096

serves as a significantly effective mitigation strat-097

egy to reduce the training data requirement, but the098

data growth issue still persists.099

2 Related work100

Implicit reasoning. Many works have shown the101

power of explicit reasoning ability of language102

models (Wei et al., 2023; Saparov and He, 2022;103

Jaech et al., 2024). However, such powerful mod-104

els, even after heavy pretraining (Achiam et al.,105

2023), generally come with negative results on im-106

plicit reasoning tasks (Press et al., 2023; Dziri et al.,107

2023). Relevant studies can mainly be categorized108

into two groups according to the evaluation task:109

knowledge-based reasoning (Kassner et al., 2020;110

Press et al., 2023; Yang et al., 2024b), and mathe-111

matical reasoning (Nanda et al., 2023; Stolfo et al.,112

2023). In this paper, we study the former task, and113

we show that GPT2-style language models, are in-114

deed capable of multi-hop reasoning in the cost of 115

training data requirements. 116

Most previous work studies knowledge-based 117

reasoning with existing large language models 118

(Yang et al., 2024b; Biran et al., 2024; Press et al., 119

2023), where language models are assumed to gain 120

single-hop knowledge through pretraining and eval- 121

uated on multi-hop tasks. Our work instead trains 122

language models on synthetic datasets, which al- 123

lows us to accurately attribute the model behavior 124

to particular aspects like data and models. Wang 125

et al. (2024) also train a transformer on synthetic 126

datasets to evaluate 2-hop reasoning. By contrast, 127

we investigate this question across increasingly 128

complex tasks (e.g. 2, 3, 4-hop), and we shed light 129

on possible methods that can help under such chal- 130

lenging cases. 131

Memorization and generalization. To train 132

a language model to fit a training set, the model 133

could either memorize all training instances (i.e. 134

overfitting), or develop a generalizable solution 135

that solves the test set. Previous work studies this 136

in terms of grokking phenomenon (Power et al., 137

2022; Murty et al., 2023). Their findings suggest 138

that both memorized and generalizable solutions 139

exist as neural circuits in the learning process, and 140

increasing training set size encourages the efficient 141

one (i.e. generalizable solution) through weight de- 142

cay (Nanda et al., 2023; Varma et al., 2023; Zhu 143

et al., 2024). Compared to these work, our study 144

suggests that training data size needs to exponen- 145

tially grow according to the task difficulty, which 146

provides a possible explanation for the failure of 147

LLMs on complex implicit reasoning tasks. 148

3 Dataset 149

We introduce a k-hop reasoning dataset we created 150

to train and evaluate LMs in this section. We focus 151

on knowledge-based multi-hop reasoning, where 152

generating the correct answer requires combining 153

multiple known facts. Following previous work 154

(Wang et al., 2024; Allen-Zhu and Li, 2024), we 155

generate datasets according to synthetic knowledge, 156

which allows better control of the task difficulty 157

and attribution of model behaviors. 158

3.1 Task description 159

Definitions. The knowledge-based reasoning task 160

includes two main aspects: facts and queries. Fol- 161

lowing prior definitions (Yang et al., 2024a; Wang 162

et al., 2024), we represent a fact as a triple (e, r, e′), 163
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Instance 1: 
Jennifer 's instructor is Robert. Jennifer 's teacher
is William. Jennifer 's advisor is Miller. Jennifer 's
supervisor is Marie…

Instance     :
Robert 's instructor is Frank. Robert 's teacher is
Flora. Robert 's advisor is Lisa. Robert 's
supervisor is Joey...

Instance           :
Who is the instructor of the instructor of Jennifer?
Answer: Frank

Instance               :
Who is the advisor of the instructor of Jennifer?
Answer: Lisa

Entity
Profiles

k-hop
Questions

...
...

Training instances for k-hop task

Held-out test instances for k-hop task

...

Instance 1:
Who is the teacher of the instructor of Jennifer?
Answer: Flora

Figure 2: Example of our training and test dataset. Here
we use 2-hop task as an example.

where e is the subject entity, r is a relation, and e′ is164

the object entity. Each relation r acts as a function165

mapping a subject to an object: r(e) → e′.166

A k-hop query corresponds to the com-167

position of k such functions, formalized as168

rk(rk−1(. . . r1(e))). Answering this query re-169

quires reasoning over a chain of k facts:170

(e1, r1, e
′
1), (e

′
1, r2, e

′
2), . . . , (e′k−1, rk, e

′
k). The in-171

termediate entities e′1, e
′
2, . . . , e

′
k−1 are referred to172

as bridge entities. In a k-hop query, we refer to173

the components (e′1, r1), (e
′
2, r2), and so on as the174

1-hop, 2-hop, and subsequent hops, respectively.175

We thus call e′1 the 1-hop entity, and r1 the 1-hop176

relation. While prior work has mostly focused on177

2-hop queries involving a single bridge entity, we178

construct datasets for k ∈ {2, 3, 4} to assess mod-179

els’ ability to handle increasingly complex reason-180

ing chains.181

Dataset format. We create one dataset for each182

k ∈ {2, 3, 4} task. Our dataset includes two com-183

ponents: (1) entity profiles encoding known facts,184

and (2) reasoning questions that query composi-185

tions of facts in natural language (see Figure 2).186

• An entity profile encodes all possible facts for187

a particular entity where the entity serves as188

the subject entity (e.g. Jennifer ’s instructor is189

Robert, Jennifer ’s teacher is William...).190

• The prompt for our reasoning question is as191

simple as “Who is the teacher of the instructor192

E1
(1) E2

(1) En
(1)......

En+1
(2) En+2

(2) E2n
(2)......

E2n+1
(3) E2n+2

(3) E3n
(3)......

instructor
teacher

......

Profile: Jennifer

instructor: Robert,
teacher: Williams,

ruler: John,
advisor: Miller,

supervisor: Marie...

Profile: Robert

instructor: Frank,
teacher: …,

ruler: …,
advisor: …,

supervisor: …
5

layers

Figure 3: Profile sampling process. We always use 5
layers, and hence n =|E|/5 (e.g. 100 for k-hoplarge).

of Jennifer? \n Answer: ”, where instructor, 193

teacher refer to relations and Jennifer refers 194

to the queried entity. 195

We introduce details for generating profiles and 196

questions in Section 3.2. To ensure the model 197

has access to all entity profiles, the training set in- 198

cludes all possible profiles together with randomly 199

selected reasoning questions, and we use the held- 200

out reasoning questions as the test set. 201

We construct two dataset variants by varying 202

the number of entities (|E|) and relations (|R|): a 203

larger dataset with |E|= 500, |R|= 20 (denoted k- 204

hoplarge), and a smaller one with |E|= 250, |R|= 205

10 (denoted k-hopsmall). 206

3.2 Data generation 207

Profile sampling. We use the same set of entity 208

profiles across k = 2, 3, 4 tasks to ensure fair com- 209

parison. Figure 3 illustrates the process to generate 210

profiles. We first sample |E| entity names (e.g. Jen- 211

nifer) from a predefined namespace and group them 212

into K disjoint hierarchical layers, where K is the 213

largest k + 1 value. Since we consider k < 5, K 214

is fixed at 5. Each entity is then linked to |R| ran- 215

domly selected entities in the upper layer through 216

distinct relations, with relation names reused across 217

layers for generality. This structure guarantees that 218

a composition of k ∈ {2, 3, 4} relations starting 219

from any entity in the bottom layer leads to a well- 220

defined target entity. More details are provided in 221

Appendix C.1. 222

Profile and question generation. Each fact 223

(e, r, e′) is mapped to a natural language sentence 224

using a simple template (e.g., {subj}’s {relation} is 225

{obj}). Following previous work (Allen-Zhu and 226

Li, 2024), all facts about a given subject entity are 227

concatenated into a single paragraph to form that 228

entity’s profile. To construct reasoning questions, 229

we sample entities from the bottom layer of the 230
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Training data budget
Dataset ×1 ×2 ×5 ×10 ×20 ×50 ×100

k-hopsmall

2-hop 99.8
3-hop 5.7 12.6 99.9 100
4-hop 4.3 6.2 6.7 9.2 96.4 100 100

k-hoplarge

2-hop 99.9
3-hop 2.5 3.1 4.9 94.6 100
4-hop 2.0 2.6 3.1 3.7 4.0 6.3 100

Table 1: Accuracy of GPT-2 on k-hopsmall and k-hoplarge datasets with different training data budgets. Empty cells
indicate that the data budget exceeds the number of questions possible to generate.

hierarchy (Figure 3) and recursively traverse k rela-231

tions to identify the correct answer. All valid k-hop232

queries are generated for each source entity. For233

example, for 2-hop queries on k-hoplarge, we can234

generate up to |R|2× |E|/5 = 40000 instances.235

4 LMs can learn k-hop reasoning, but at a236

large data cost237

Our first objective is to establish that language mod-238

els can learn implicit k-hop reasoning, but this re-239

quires the number of training instances (i.e. k-hop240

reasoning questions) grows exponentially as k in-241

creases. In this section, we empirically demonstrate242

this by training models on our k-hop datasets with243

k = 2, 3, 4.244

4.1 Experiment setup245

Model. We adopt the smallest GPT-2 architecture246

(Radford et al., 2019) as our model. Following247

recent studies (Allen-Zhu and Li, 2024), we re-248

place the original positional embeddings in GPT-2249

with Rotary Position Embedding (RoPE) (Su et al.,250

2024). We use the GPT-2 tokenizer (Radford et al.,251

2019) and extend its vocabulary by adding all pos-252

sible entity names from our dataset. The training253

objective is the causal language modeling loss cal-254

culated over all tokens in each prompt. In our main255

experiments, we train the model from scratch by256

randomly initializing all parameters. Additionally,257

we conduct experiments using the pretrained GPT-2258

and its larger variants (see Appendix B for results).259

Training. We set the training steps to 20k for all260

tasks except 4-hoplarge, where we extend the train-261

ing to 40k steps to ensure convergence. We apply262

a cosine learning rate scheduler with 1k warm-up263

steps. Each experiment is repeated across three264

runs using different random seeds, and we report265

the average performance. Details of hyperparam-266

eters for model architecture and training are pro-267

vided in Appendix D.268

Dataset. We utilize the k-hopsmall and k-hoplarge 269

datasets introduced in Section 3 for training and 270

evaluation, considering k = 2, 3, 4. This results in 271

six datasets in total. For the 2-hop task, we gener- 272

ate all possible reasoning questions and randomly 273

sample 50% for the 2-hoplarge training set and 80% 274

for 2-hopsmall. All entity profiles are included in 275

the training sets. The test set consists of 3,000 in- 276

stances randomly selected from the held-out ques- 277

tions, except for 2-hopsmall, which contains only 278

1,000 held-out questions. We report the details and 279

statistics of our datasets in Appendix C.1. 280

For 3-hop and 4-hop tasks, we find that the same 281

data size as the 2-hop training set results in ran- 282

dom guessing performance. Thus, we progres- 283

sively increase the training data size by defining 284

the base training budget bg as the number of rea- 285

soning questions in the 2-hop training set. We 286

create training sets by scaling bg with ratios from 287

the set {×1,×2,×5,×10,×20,×50,×100}. For 288

each ratio r, we randomly sample r × bg reason- 289

ing questions for training. The test set for each k- 290

hop task always includes 3,000 instances randomly 291

sampled held-out instances except for 2-hopsmall. 292

Evaluation. For each test instance, we provide 293

the language model with the prompt up to the an- 294

swer token (e.g., “Who is the instructor of the in- 295

structor of Jennifer? \n Answer: ”) and evaluate 296

the accuracy of the generated token against the gold 297

answer. Greedy decoding is used for evaluation. 298

4.2 Results 299

Language models can learn k-hop reasoning. Ta- 300

ble 1 reports the test accuracy of our models under 301

varying training data budgets. Our first observa- 302

tion is that GPT-2 models are capable of achieving 303

100% accuracy not only on 2-hop tasks but also on 304

more complex 3-hop and 4-hop tasks, given a suffi- 305

ciently large training data budget with the same k 306

as the test set. This is a significant finding, as each 307
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Figure 4: Model accuracy on 3-hoplarge and 4-hoplarge.

entity profile appears individually in the training308

set without any explicit instructions on how to com-309

bine them to solve multi-hop tasks. The perfect310

accuracy suggests that language models can learn311

the underlying reasoning process based solely on312

input-output pairs, even without explicit rationales.313

However, data requirements increase expo-314

nentially with k. We further observe that the base315

training data budget (×1) is insufficient for the316

model to effectively learn 3-hop and 4-hop tasks,317

as evidenced by test accuracy below 10%. As the318

training data budget increases, model performance319

improves correspondingly. We define a model as320

successfully learning the task if it achieves a test321

accuracy above 80%. On k-hopsmall datasets, a322

minimum budget of ×5 is necessary to learn the323

3-hop task, whereas the 4-hop task requires a bud-324

get of at least ×20. On k-hoplarge datasets, the data325

budget required for the 3-hop task is ×10, and for326

the 4-hop task, it escalates to ×100. These findings327

suggest that the training data budget grows in an328

exponential manner as the value of k increases.329

We also plot the test accuracy of one training330

run on k-hoplarge across training steps in Figure331

4 (For k-hopsmall results see Appendix E.1). The332

plots show that a larger training budget not only re-333

sults in higher accuracy but also accelerates model334

convergence. For instance, in Figure 4a, the ×20335

budget reaches 100% accuracy by step 5000, while336

the ×10 budget only achieves 10% accuracy at the337

same step. This finding is also consistent with338

Wang et al. (2024) reported in 2-hop reasoning339

tasks. We extend these observations by demonstrat-340

ing that the data budget becomes even more critical341

as the complexity of the reasoning task increases.342

4.3 Why data-hungry?343

Results so far highlight the substantial data require-344

ments for k-hop tasks, but the reason for this re-345

Number of possible 1-hop and 2-hop relations

M
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Figure 5: Case study on 4-hoplarge. x-axis denotes the
number of 1-hop and 2-hop relations, e.g. (1, 1) denotes
that 1-hop and 2-hop relations are fixed across all 4-hop
questions.

mains unclear. Increasing the value of k leads to 346

both an increase in the number of combined facts 347

(i.e., k facts for each entity) and a corresponding ex- 348

ponential increase of the search space (i.e., |R|k re- 349

lation combinations per entity). Our objective here 350

is to disentangle the effects of these two factors and 351

identify the primary source of data inefficiency. 352

Setup. To investigate this question, we conduct 353

a case study on the 4-hoplarge dataset, where we 354

vary the number of 1-hop and 2-hop relations while 355

holding the number of relations in the 3-hop and 356

4-hop positions constant. In the original dataset, 357

each hop position can take one of |R|= 20 possible 358

relations. For this study, we generate new training 359

and test sets by limiting the number of 1-hop and 2- 360

hop relations to values from the set {1, 2, 5, 10, 20}. 361

For each configuration, we train GPT-2 models 362

and determine the minimal data budget required to 363

achieve 80% test accuracy. 364

Figure 5 presents the results. We observe that 365

when the number of 1-hop and 2-hop relations is re- 366

stricted to a single relation, the model can success- 367

fully learn 4-hop task using the base data budget. 368

However, as the number of relations increases, the 369

required data budget rapidly increases. This result 370

suggests that the main source of data inefficiency 371
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in k-hop reasoning tasks is the exponential growth372

in the number of relation combinations, rather than373

the number of individual facts to be combined.374

5 LMs reason through layer-wise lookup,375

incurring the cost of depth376

The second objective is to understand the un-377

derlying mechanism by which language mod-378

els solve the k-hop task. We first demonstrate379

that language models solve such tasks by layer-380

wise lookup of bridge entities of a k-hop query381

rk(rk−1(. . . r1(e))) through empirical evidence382

(e.g. mechanistic interpretability). Building on this383

finding, we then establish a theoretical lower bound,384

showing that the model’s depth must grow with k385

to maintain such layer-wise lookup mechanism.386

5.1 Experiment setup387

We design two experiments to investigate the388

model’s internal reasoning process: probing and389

causal intervention. For both experiments, we se-390

lect the model trained on 4-hoplarge with a ×100391

budget, as it achieves strong performance.392

Probing. We use probing tasks (Belinkov and393

Glass, 2019; Liu et al., 2019) to assess whether394

information about intermediate bridge entities is395

encoded in the hidden representations. In this setup,396

we freeze the model parameters and train a linear397

probe classifier on top of the hidden states to pre-398

dict the correct entity. We train one probe classifier399

for each hop position, predicting the corresponding400

bridge entity in the query. The probe is trained401

across all transformer layers and all tokens in the402

prompt to identify where and when information403

about the bridge entities is encoded. We split the404

4-hoplarge test set into 80/20% training and evalua-405

tion sets for training the probe classifiers.406

Causal intervention. While probing shows407

whether information about bridge entities is en-408

coded in the hidden representations, it does not tell409

us whether the model actually relies on this infor-410

mation to generate the final answer. We further411

design activation patching (Vig et al., 2020; Meng412

et al., 2022) experiments to investigate it.413

The core idea of activation patching is to replace414

the residual stream (i.e., the output of a residual415

layer in a transformer block) at a specific layer Li416

and prompt token tj , and measure the resulting417

change in the output probability of the correct an-418

swer. For convenience, we call this residual stream419

res(Li, tj). In this section, we focus on the last420
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Figure 6: Probing results across tokens in the input
prompt. Each token is represented by four columns,
corresponding to 1-hop to 4-hop bridge entities.

token position in the input prompt (i.e., tj always 421

being the last input token, which is whitespace 422

<space>), as justified in Section 5.2. 423

Suppose we are given a k-hop test instance and 424

aim to measure the causal effect of res(Li, tj), 425

the residual stream at layer Li and token tj . For 426

clarity, we define three types of runs as follows. 427

Clean Run: The original forward pass of the test 428

instance, producing the output probability of the 429

correct answer as Pclean. Corrupted Run: A dis- 430

tinct k-hop instance selected to serve as the source 431

of the patched residual stream. Patched Run: The 432

modified run, where the residual stream res(Li, tj) 433

in the clean run is replaced with the corresponding 434

res(Li, tj) from the corrupted run, leaving other 435

layers unchanged. The output probability in the 436

patched run is denoted as Ppatched. The causal ef- 437

fect of the targeted residual stream is defined as 438

Pclean − Ppatched, where a larger effect indicates 439

greater reliance on the removed information. We 440

calculate the causal effect for each layer and report 441

the average effect across 3000 held-out instances. 442

The aim of our intervention experiment is to 443

measure the effect of bridge entity information at 444

different hop positions (e.g., 1-hop, 2-hop). Hence, 445

we define four types of corrupted runs for each 446

clean run: C1-hop, C2-hop, C3-hop, and C4-hop. In a 447

Ci-hop run, we select a corrupted instance where 448

the gold i-hop entity differs from the clean run, 449

while the entities of other hop positions remain 450

unchanged. This setup allows us to measure the 451

effect of perturbing a specific i-hop entity while 452

keeping other bridge entities unchanged. 453

5.2 Results 454

Bridge entities are encoded in the last token po- 455

sition. Figure 6 presents the probing results across 456

layers and token positions in the input prompt, e.g., 457

Who is the instructor of the teacher of the advisor 458

of the instructor of <Entity>? \n Answer:<space>. 459
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Figure 7: Results for causal intervention.

We report results only for tokens after the <En-460

tity> token, as preceding tokens cannot contain461

information about the target bridge entities. Since462

the vocabulary size of each i-hop entity is 100, a463

random baseline provides 1% accuracy.464

Notably, the hidden representation of the last465

input token encodes information about all neces-466

sary bridge entities for predicting the final answer.467

Instead, probe classifiers show low accuracy for468

other token positions, suggesting that the reasoning469

process likely occurs in the position immediately470

before generating the final answer. We confirm471

this by observing zero casual effects on preceding472

tokens with additional activation patching experi-473

ment (see Appendix F.1). We thus focus our causal474

intervention experiments on this <space> token.475

Output prediction relies on bridge entity infor-476

mation. Figure 7 shows the causal effects across477

layers in our intervention experiment. For each478

i-hop entity, we identify specific layers that the479

model relies on to generate the final answer. More-480

over, the model organizes the reasoning process481

in a layer-wise manner, with shallower layers han-482

dling lower-hop entities, and deeper layers han-483

dling higher-hop entities. This layer-wise lookup484

confirms that the model leverages bridge entity in-485

formation to perform multi-hop reasoning, which486

generalizes prior observations from 2-hop tasks487

(Biran et al., 2024; Wang et al., 2024).488

5.3 Theoretical Analysis489

We have found that language models perform the490

k-hop task by layer-wise lookup. This suggests that491

transformers may need depth linear in the number492

of reasoning steps. Here, we discuss how this result493

relates to the in-principle expressiveness of trans-494

formers. Formally, we consider a universe E of495

entities (e.g., {Jennifer,Frank, . . . }) and a set R496

of maps r : E → E (e.g., when r = instructor, 497

e = Jennifer, then r(e) denotes the instruc- 498

tor of Jennifer). We consider the task of map- 499

ping an input string “Who is the rk of the rk−1 500

. . . r2 of the r1 of e? Answer:” (as in Figure 2) 501

to the entity rk(. . . r1(e) . . . ) ∈ E (e.g., instruc- 502

tor(teacher(Jennifer))). We lower-bound the num- 503

ber of layers needed in the case where the attention 504

pattern does not depend on the query e. We con- 505

sider this a reasonable special case, as there is no 506

obvious way in which query-dependent attention 507

would help solve the k-hop task. In this case: 508

Theorem 5.1 (See Appendix A for proof). Con- 509

sider a causal transformer operating in p bits of 510

precision, with d hidden units, H heads and L lay- 511

ers. Assume it performs k-hop reasoning over E 512

and R as defined above. Assume further that the at- 513

tention pattern does not depend on e. If k ≤ |E|−2, 514

then, for some R, 515

L ≥ k

8pdH
(1) 516

We note that there are relation sets R for which 517

shortcuts with few layers may exist, but the result 518

shows that a linear number is needed in the worst 519

case. This statement expresses a width-depth trade- 520

off : the product of the number of layers, bits of 521

precision, width, and number of heads needs to 522

grow linearly in k. In particular, within a single 523

model (i.e., fixing d, H , and p), the analysis pre- 524

dicts that, as k grows, more and more layers need 525

to be involved in the hop-by-hop retrieval, as we 526

found empirically (Figure 7). We also note that ex- 527

isting results (Chen et al., 2024a) are not applicable 528

to our k-hop task (Appendix A.2). 529

6 Curriculum learning mitigates the data 530

requirement, but doesn’t solve it 531

Finally, we study training strategies to improve the 532

data budget issue. Models in Section 4 were trained 533

solely on k-hop task, but i-hop (i < k) questions 534

should also be available in realistic setups. By ex- 535

ploiting such easier questions as additional training 536

data for k-hop task, we demonstrate that curricu- 537

lum learning significantly mitigates the exponential 538

growth issue, though not eliminate the increase of 539

data budget as k increases. 540

6.1 Experiment setup 541

We use the same GPT-2 architecture as in Sec- 542

tion 4.1 and compare two strategies: mixed learn- 543

ing and curriculum learning (Bengio et al., 2009). 544
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Figure 8: Model performance on k-hoplarge datasets
with mixed learning and curriculum learning.

Mixed learning. We construct the training set545

by combining reasoning questions from both lower-546

hop and k-hop tasks. For instance, the 4-hop train-547

ing set contains a mix of 2-hop, 3-hop, and 4-hop548

questions, along with all relevant entity profiles.549

Lower-hop questions are generated using the same550

entity profiles as the target task. We vary the k-hop551

training budget using the same scaling factors as in552

Section 4.1, while keeping the amount of lower-hop553

data fixed (see Appendix C.2 for dataset details).554

Curriculum learning. Training in curriculum555

learning is split into multiple stages, where each556

stage progressively introduces harder reasoning557

tasks. For a k-hop task, training proceeds in k−1558

stages: the first stage uses only 2-hop questions,559

the second stage includes both 2-hop and 3-hop,560

and so on. We use the same lower-hop data as561

in the mixed learning setup and ensure that total562

training steps are equal across both strategies. See563

Appendix D.2 for training details.564

Test set. To avoid shortcut solutions (e.g., where565

lower-hop queries appear as subcomponents of the566

k-hop query), we generate test sets such that such567

overlaps do not exist using rejection sampling. The568

test set size remains 3000 instances, consistent with569

previous experiments.570

6.2 Results.571

Figures 8 shows the results for k-hoplarge, and the572

same pattern holds for k-hopsmall (see Appendix573

E.1 for results). We compare mixed learning, cur-574

riculum learning, and the baseline model trained 575

only on the target k-hop dataset from Section 4.1. 576

Curriculum learning significantly reduces 577

the required data budget. Notably, curriculum 578

learning yields the most significant improvement. 579

For example, perfect accuracy on 4-hop tasks is 580

achieved with only a ×5 budget, compared to ×100 581

in the baseline. In contrast, simply mixing all avail- 582

able data provides only modest gains. This demon- 583

strates that presenting easier reasoning tasks before 584

harder ones is a highly effective strategy for im- 585

proving data efficiency. 586

Curriculum learning builds circuits gradually. 587

We attribute this effectiveness of curriculum learn- 588

ing to a stepwise build-up of circuits: As we show 589

in Appendix F.2, mechanisms retrieving lower-hop 590

entities (e.g., 1-hop) emerge in the early training 591

stages; subsequent stages then build upon these es- 592

tablished circuits to learn more complex reasoning 593

tasks. While baseline models have to construct a 594

full circuit for k-hop reasoning at once, curricu- 595

lum learning enables 1-hop circuits to emerge in 596

shallower layers in the first stage, with later stages 597

developing circuits for 2-hop and 3-hop entities on 598

top of these. 599

Curriculum learning does not completely 600

solve the data growth issue. Despite the effec- 601

tiveness of curriculum learning strategy, it does not 602

completely eliminate the growth of data budget. 603

For example, curriculum learning requires ×2 bud- 604

get for 3-hop task and ×5 for 4-hop task, indicating 605

the challenge of k-hop implicit reasoning for LMs. 606

7 Conclusion 607

Our work investigates whether language models 608

can learn implicit multi-hop reasoning. We provide 609

a nuanced answer through controlled k-hop rea- 610

soning datasets using GPT2-style language models. 611

On the one hand, our findings demonstrate that lan- 612

guage models can indeed learn k-hop reasoning 613

through sequential lookup of intermediate bridge 614

entities layer by layer. However, this capability 615

comes at a cost: as k increases, the training data 616

budget grows exponentially, and the model depth 617

must scale linearly. Furthermore, while curricu- 618

lum learning mitigates the data budget growth, it 619

does not eliminate the growth trend. Together, we 620

present a comprehensive view of the potential and 621

limitations of LMs in implicit reasoning, underscor- 622

ing the inherent trade-offs between task complexity, 623

data requirements, and model depth. 624
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8 Limitations625

We limit our study to implicit reasoning tasks using626

synthetic datasets generated based on predefined627

templates. Applying the same analysis to realis-628

tic datasets is challenging due to the difficulty of629

collecting complex multi-hop questions (e.g. 4-hop630

questions) and corresponding facts. Due to com-631

putational budget constraints, we also restrict our632

experiments to k-hop tasks with k < 5.633

Additionally, our experiments primarily rely on634

randomly initialized small language models (GPT-635

2 small). While we also observe that the data bud-636

get issues persist for pretrained models (e.g. pre-637

trained GPT-2) and larger models (GPT-2 medium638

and large with up to 770M parameters), we do not639

extend our analysis to models with greater parame-640

ter sizes.641
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A Details for Theoretical Results871

A.1 Proof of Theoretical Bound872

Theorem A.1 (Restated from 5.1). Consider a873

causal transformer operating in p bits of preci-874

sion, with d hidden units, H heads and L layers.875

Assume it performs k-hop reasoning over E and R876

as defined above. Assume further that the attention877

pattern does not depend on e. If k ≤ |E| − 2, then,878

for some R,879

L ≥ k

8pdH
(2)880

Proof. Recall that the input has the form881

Who is the rk of the rk−1 . . . r2 of the r1 of e ?882

Answer :883

Our argument is based on communication complex-884

ity. We consider a communication game where885

Alice holds r1, . . . , rk, and Bob holds e. Due886

to causal masking, Alice can compute the trans-887

former’s activations on all tokens “Who is the rk888

of the . . . r1 of” without receiving any information889

from Bob. In order to compute activations on then890

final tokens “e ? Answer :” (and thus the predic- 891

tion), Bob requires access to the outputs of atten- 892

tion heads on these tokens. Because the attention 893

patterns are assumed to be independent of the query 894

e, Alice can simple, for each head at the four to- 895

kens “e ? Answer :” provide the activations within 896

the span known to Alice weighted with the atten- 897

tion weights. Thus, a total of 4HL such activation 898

vectors is sufficient. Furthermore, each of these 899

activations can be encoded with pd bits. Overall, 900

thus, Bob can compute the output with access to 901

only 4LpdH bits. 902

That is, there a way to compress the composed 903

function rk ◦ · · · ◦ r1 into 4LpdH bits. Hence, 904

24LpdH upper-bounds the cardinality of such possi- 905

ble functions: 906

4LpdH ≥ log2 |{rk ◦ · · · ◦ r1 : r1, . . . , rk ∈ R}|
(3) 907

We note that, in general, the right-hand-side could 908

be small: for instance, if R just contains the iden- 909

tity function, then the set of k-fold composed func- 910

tions will also just contain the identity function 911

(since its composition with itself again equals it- 912

self). To conclude the theorem, the remaining prob- 913

lem is now to show that there is a way of choosing 914

R for which the right-hand-side scales with k. 915

We arbitrarily label the elements of E as 916

{0, x0, x1, . . . , xn−1}, and define R = {f, g} 917

where: 918

f(0) =0 919

f(xi) =x(i+1)%n 920

g(0) =0 921

g(x0) =0 922

g(xi) =xi (i > 0) 923

Intuitively, (1) there is a special “sink” entity 0, 924

(2) f cyclically shuffles the non-sink entities, (3) g 925

maps the first entity in the order to the sink entity. 926

We now consider all words over f, g of length k 927

where gg does not occur (recall that, by assumption, 928

k ≤ |E|−2 = n−1). The number of such words is 929

exponential in k; indeed, it is at least
(
3
2

)k.1 Each 930

such word, interpreted as a composition, generates 931

a different transformation E → E .2 Indeed, to show 932

this, we simply note that such a composition maps 933

1Indeed, it equals the Fibonacci number Fk+2. For large
k, this is lower-bounded by

(
3
2

)k+2; to make it valid even for
small k, it is sufficient to instead lower-bound by

(
3
2

)k.
2We note the connection to the general fact that every finite

semigroup can be embedded into a finite semigroup generated
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xi to 0 if and only if g was applied immediately934

after the i + 1-th application of f . Thus, when935

k ≤ |E| − 2, we have lower-bounded the right-936

hand-side of (3) as k · log2 3
2 > k

2 . The theorem937

then follows by rearranging (3).938

A.2 Discussion939

Related Work Chen et al. (2024a) prove a lower940

bound on L for causal transformers solving a more941

complicated kind of composition task, which com-942

poses functions taking two arguments. The input943

provides both (i) a sequence of functions, and (ii)944

a sequence of entities serving as the second argu-945

ment, with the output946

zl+1(wl, zl(wl−1, zl−1(. . . z2(w1, i1)))) (4)947

where z1, . . . , zl1 are two-argument functions, i1948

can be viewed as an input entity (similar to949

the query in our k-hop task), and—crucially—950

w1, . . . , wl serve as additional arguments to the951

two-argument functions. For this more compli-952

cated task, Chen et al. (2024a) prove a depth-width953

tradeoff. Unlike our result, theirs does not make954

any assumption on the attention patterns, however,955

it is specifically proven for this more complicated956

task. Intuitively, separately presenting the func-957

tions z1, . . . , zl1 from the entities w1, . . . , wl serv-958

ing as their second argument might play a key role959

in making the task challenging enough to enable the960

theoretical analysis in Chen et al. (2024a). Hence,961

it appears to remains open if such a bound can962

also be proven for a task directly matching k-hop963

reasoning (Figure 2).964

Another line of work has shown limitations of965

one-layer transformers in performing function com-966

position (Peng et al., 2024; Kozachinskiy et al.,967

2025); this is consistent with our evidence that k-968

hop tasks require increasing numbers of layers, but969

does not bound how many layers are needed.970

Bounds from NC1-hardness As transformers971

can be simulated in TC0 (e.g. Merrill and Sabhar-972

wal, 2023; Strobl, 2023), some work has obtained973

bounds conditional on standard complexity con-974

jecture TC0 ̸= NC1. Assuming this conjecture,975

transformers generally cannot solve k-hop compo-976

sition unless the number of layers increases as k in-977

creases; as an example, consider E to be {1, . . . , 5},978

and R a generating subset of the alternating permu-979

tation group A5; then solving k-hop composition980

by an idempotent and a nilpotent (note that f is nilpotent
and g is idempotent), proven using a similar construction in
Theorem 1.1 of Higgins (2017).

is NC1-hard and predicted to not be feasible for 981

transformers. However, due to the difficulty of 982

proving lower bounds for TC0, this line of reason- 983

ing does not provide precise information about how 984

quickly exactly L needs to grow with k. 985

Role of attention pattern Theorem 5.1 applies 986

in the case where attention patterns do not depend 987

on the input entity e (in fact, they might still de- 988

pend on r1, . . . , rk). Our proof strategy makes use 989

of this assumption, because it limits the amount 990

of information that any individual attention head 991

at the final positions can obtain about r1, . . . , rk. 992

It remains open if this assumption can be relaxed. 993

Intuitively, it does not seem clear how changing 994

attention patterns could make the task easier. How- 995

ever, formally proving lower bounds for multi-layer 996

transformer without either constraining attention 997

patterns (as we do) or considering a more complex 998

task (as done in Chen et al. (2024a)) remains chal- 999

lenging; we expect that further technical tools will 1000

be needed to overcome these challenges. 1001

B Effect of more powerful models 1002

Section 4 only presents results for our randomly 1003

initialized GPT-2 small model. Would the training 1004

data budget still grows in an exponentially way as 1005

the k increases, even with more powerful language 1006

models? We investigate this question by applying 1007

the same experiments in Section 4.2 with two other 1008

model setups: finetuning and scaling up model 1009

parameters. We only report 1-run results for all 1010

experiments in this section. 1011

B.1 Finetuning 1012

For finetuning setup, we finetune a pretrained lan- 1013

guage model on the same training set in Section 4 1014

and evaluate it on the same test set. Here we start 1015

with the pretrained GPT-2 small model (Radford 1016

et al., 2019), and use the same hyperparameters as 1017

for our randomly initialized GPT-2. Note that the 1018

pretrained GPT-2 adopts a learned positional em- 1019

bedding (Vaswani et al., 2017) instead of RoPE (Su 1020

et al., 2024), and thus we cannot directly tell the 1021

effect of pretraining compared to non-pretrained 1022

model. Here we only use this experiment to con- 1023

firm that the significant increase of data budget still 1024

holds for pretrained models. 1025

Table 2 presents the results of pretrained GPT-2 1026

small models. Overall, the data budget still ex- 1027

ponentially grows as the k value increases. On 1028

k-hoplarge the model needs ×10 budget for 3- 1029
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Training data budget
Dataset ×1 ×2 ×5 ×10 ×20 ×50 ×100

k-hopsmall

2-hop 93.7
3-hop 6.6 8.2 45.4 100
4-hop 5.1 6.5 6.9 8.4 23.8 100 100

k-hoplarge

2-hop 100
3-hop 2.8 2.5 3.9 87.5 100
4-hop 2.3 3 4.1 4.2 3.9 24.6 100

Table 2: Accuracy of finetuned GPT-2 small models on k-hopsmall and k-hoplarge datasets with different training
data budgets.

hoptask and ×100 for 4-hop, which is the same1030

as our randomly initialized transformer. The1031

pretrained model achieves lower accuracy on k-1032

hopsmall datasets, e.g. only 93.7% accuracy on 2-1033

hop task. Nonetheless, the model still learns to1034

perfectly solve k-hopsmalldatasets with enough data1035

budget, e.g. for 3-hop, model accuracy gets signifi-1036

cantly improved accuracy at ×5 budget and reaches1037

100% at ×10 budget. We consider the lower accu-1038

racy here is likely due to the lack of hyperparameter1039

optimization and use of better position encoding.1040

B.2 Scaling up the model size.1041

We also evaluate setups where we scale up the1042

number of model parameters. Kaplan et al. (2020)1043

demonstrates that larger model size is crucial to1044

gain high performance, especially the depth of1045

transformer layers (Fagnou et al., 2024; Ye et al.,1046

2024), and we want to investigate if larger models1047

address the data budget issue. Here we experiment1048

with same architecture described in Section 4.1 (i.e.1049

GPT-2 with RoPE), and we set hyperparameters1050

of architectures (e.g. number of layers, attention1051

heads, etc.) according to the GPT-2 medium 3 and1052

large model 4 configurations. We randomly ini-1053

tialize the model and train and evaluate it on the1054

k-hopsmall datasets in Section 4.1 from scratch. Hy-1055

perparameters for training are the same as Section1056

4.1.1057

Table 3 reports the results of such larger models.1058

For both GPT-2 medium and large sized models,1059

the growth of data budget issue still persists.1060

C Dataset details1061

C.1 Datasets in Section 41062

Namespaces of entity and relation names. We1063

provide details on the entity and relation names-1064

paces used to generate the datasets in Section 3.1065

3https://huggingface.co/openai-community/gpt2-medium
4https://huggingface.co/openai-community/gpt2-large

Our dataset consists of |E| entities, each with a dis- 1066

tinct name and N relations. We use 600 unique 1067

single-token person names (e.g., Jennifer) and 20 1068

single-token relation names (e.g., instructor), gen- 1069

erated by ChatGPT5, as the namespaces for entities 1070

and relations, respectively. The complete vocab- 1071

ulary of relation and a subset of entity names are 1072

provided in Tables 5 and 6. Since our main experi- 1073

ments use a randomly initialized language model, 1074

the specific choice of vocabulary does not influence 1075

our conclusions. 1076

Top-hierarchy entity profiles. Entities in the 1077

top layer of Figure 3 are not linked to any targets, 1078

making it non-trivial to generate their profiles. Nev- 1079

ertheless, we include their profiles in the training 1080

set to maintain consistency across all k-hop tasks 1081

with k ∈ {2, 3, 4}. In both the 2-hop and 3-hop 1082

tasks, answer tokens (i.e., entity names) appear in 1083

the training set as subject entities in their own pro- 1084

files. To ensure the same holds for the 4-hop task, 1085

where answers correspond to top-layer entities, we 1086

generate profiles for these entities as well. Specifi- 1087

cally, we generate these profiles by concatenating 1088

facts in which the subject entity is the top-layer 1089

entity itself, the relation is one from Table 5, and 1090

the object entity is a single-token name sampled 1091

from an additional set of 100 person names. These 1092

object names are distinct from the ones used in Fig- 1093

ure 3. Since these facts are never used in any k-hop 1094

question in the training or test sets, including them 1095

does not affect our results or conclusions. 1096

Table 4 reports the training set sizes for each 1097

dataset configuration. To maintain consistency 1098

across data budget setups, we include the same 1099

set of |E| entity profiles (e.g., |E|= 250 profiles for 1100

k-hopsmall) in each training set. We partition the 1101

|E| entities into 5 disjoint subsets, each containing 1102

|E|/5 entities, and only generate reasoning ques- 1103

tions targeting one subset (e.g., entities in the bot- 1104

5https://chatgpt.com/

13



Model Dataset Training data budget

×1 ×2 ×5 ×10 ×20 ×50 ×100

GPT-2 Medium
2-hopsmall 100
3-hopsmall 5.6 13.9 99.9 100
4-hopsmall 5 5.8 8 10.2 99.8 100 100

GPT-2 Large
2-hopsmall 100
3-hopsmall 6.5 22.0 100 100
4-hopsmall 4.6 5.6 7.9 11.0 99.6 100 100

Table 3: Accuracy of GPT-2 Medium and Large on k-hopsmall datasets with different training data budgets. Empty
cells indicate that the data budget exceeds the number of available questions possible to generate.

Dataset Hop ×1 ×2 ×5 ×10 ×20 ×50 ×100

small
2-hop 4 250
3-hop 4 250 8 250 20 250 40 250
4-hop 4 250 8 250 20 250 40 250 80 250 200 250 400 250

large
2-hop 20 500
3-hop 20 500 40 500 100 500 200 500 400 500
4-hop 20 500 40 500 100 500 200 500 400 500 1 000 500 2 000 500

Table 4: Statistics of the number of training instances in each setup.

instructor teacher ruler advisor
supervisor leader manager director
patron mentor administrator coordinator
tutor predecessor sponsor financier
backer overseer employer boss

Table 5: Vocabulary of relation names.

Emil Gavin Chad Flora
Adam Addie Bobby Edwin
Gabby Helen Jeffery Joel
Kris Kristen Lisa Liam
Eva Emma Dylan Isabella

Table 6: Subset of vocabulary of entity names.

tom hierarchy of Figure 3). Each entity profile in-1105

cludes |R| relations (e.g., |R|= 10 for k-hopsmall),1106

allowing us to generate |R|2× |E|/5 = 5000 ques-1107

tions for 2-hopsmall, of which 80% are randomly1108

selected as training instances.1109

C.2 Datasets for mixed and curriculum1110

learning1111

In mixed learning, we introduce lower-hop rea-1112

soning questions as auxiliary training instances to1113

facilitate learning more complex reasoning tasks.1114

For the 3-hop task, we add 2-hop instances, and1115

for the 4-hop task, we add both 2-hop and 3-hop1116

instances. For k-hopsmall, we include 4k 2-hop1117

instances as auxiliary data for 3-hopsmall, and 4k1118

2-hop and 20k 3-hop instances for 4-hopsmall. For1119

k-hoplarge, we include 32k 2-hop instances for 3-1120

hoplarge, and 32k 2-hop and 100k 3-hop instances1121

for 4-hoplarge. Due to computational constraints,1122

we did not specifically tune the size of auxiliary1123

data. The curriculum learning setup uses the same1124

auxiliary instances as mixed learning. 1125

D Training details 1126

D.1 Baseline 1127

This section provides the model architecture and 1128

training setup used in Section 4. Unless stated 1129

otherwise, the same configuration is applied across 1130

all experiments in this paper. 1131

Model architecture. We adopt the GPT-2 small 1132

architecture6, consisting of 12 transformer layers 1133

with 12 attention heads. The input embedding di- 1134

mension is 768, and the context window is limited 1135

to 1024 tokens. Instead of absolute position embed- 1136

dings used in the original Transformer (Vaswani 1137

et al., 2017), we employ Rotary Position Embed- 1138

ding (RoPE) (Su et al., 2024) to encode positional 1139

information. We use the default GPT-2 tokenizer 1140

and extend the vocabulary to include all entity pro- 1141

file names (e.g., Jennifer), resulting in a vocabulary 1142

size of |V | = 50, 740. 1143

Training. The batch size is set to 512 with gra- 1144

dient accumulation steps of 4. We use the AdamW 1145

optimizer (Kingma and Ba, 2015; Loshchilov and 1146

Hutter, 2019) with the following hyperparameters: 1147

learning rate of 5e − 4, ϵ = 1e − 6, β1 = 0.9, 1148

β2 = 0.999, and weight decay of 0.1. Training 1149

begins with a 1k-step warm-up phase, followed by 1150

a cosine learning rate scheduler (Loshchilov and 1151

Hutter, 2016), with a minimum learning rate set to 1152

0.1× the initial learning rate. 1153

6https://huggingface.co/openai-community/gpt2
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Figure 9: Model accuracy on 3-hopsmall and 4-hopsmall. x-axis refers to the number optimization steps.
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Figure 10: Model performance on k-hopsmall datasets
with mixed learning and curriculum learning.

Experiments are run on Nvidia A100 and H1001154

GPU cards (80GB). Each experiment is conducted1155

on one single GPU, which takes about 8 hours1156

for 20k optimization steps. The implementation1157

is based on Huggingface (Wolf et al., 2019) and1158

Pytorch (Paszke, 2019). GPT-2 is released under1159

the MIT License by OpenAI.1160

D.2 Setup for mixed and curriculum learning1161

The model architecture for mixed and curriculum1162

learning experiments remains the same as the base-1163

line configuration described in Section D.1. The1164

training setup for mixed learning also follows the 1165

baseline training setup without any modifications. 1166

Training in curriculum learning is divided into 1167

multiple stages, where each stage progressively 1168

introduces harder reasoning tasks. For a k-hop 1169

task, training consists of k−1 stages: The first stage 1170

includes only 2-hop questions. The second stage 1171

adds 3-hop questions. The third stage adds 4-hop 1172

questions to the training set (only applicable for 1173

4-hop tasks). Hence we have 2 training stages for 1174

3-hop task and 3 training stages for 4-hop task. 1175

The maximum number of training steps for each 1176

stage across different target tasks is reported in 1177

Table 7. Each stage employs the same learning 1178

rate scheduler and warm-up steps as in the baseline 1179

training setup to maintain consistency. The batch 1180

size and gradient accumulation steps remain the 1181

same as in the baseline setup. 1182

Task Stage 1 Stage 2 Stage 3 Total

3-hopsmall 10000 10000 - 20000
4-hopsmall 5000 5000 10000 20000
3-hoplarge 10000 10000 - 20000
4-hoplarge 10000 10000 20000 40000

Table 7: Training steps for each training stage of cur-
riculum learning

E Detailed results 1183

E.1 Results for LMs on k-hopsmall 1184

We plot the test accuracy of LMs on k-hopsmall 1185

across training steps in Figure 9. The pattern is 1186

similar to the one observed in Figure 4. Models 1187

trained with small budgets only give modest im- 1188

provement over random baseline (i.e. 2% for k- 1189

hopsmall). Larger budgets not only lead to higher 1190

accuracy, but also achieves this with much less 1191

training steps. 1192
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Figure 11: Minimal data budget to solve k-hop tasks.

We also report k-hopsmall results of models1193

trained with mixed learning and curriculum learn-1194

ing in Figure 10. Still, we observe that curriculum1195

learning gives the best result compared to the base-1196

line and mixed learning.1197

E.2 Standard deviation1198

For each experiment reported in Section 4 and 6,1199

we made 3 runs based on different random seeds.1200

We report the mean and standard deviation of the1201

test accuracy for each model in Table 8. For most1202

results we do not observe a large standard deviation,1203

indicating that our conclusion is robust to the ran-1204

domness. For particular runs there is a large devia-1205

tion, especially when the data budget is not enough1206

(e.g. model trained with curriculum learning on 4-1207

hoplargewith ×2 budget), which gets smaller when1208

we further add more data into the training set.1209

E.3 Log scale of data budget1210

We plot the minimal data budget required to solve1211

k-hop tasks on a log scale as k increases. The data1212

points are based on numbers in Table 1. Figure 111213

shows the results, confirming that the required data1214

budget grows exponentially with k.1215

F Additional mechanistic interpretability1216

experiments1217

F.1 Patching preceding prompt tokens1218

Figure 6 suggests that only the last token (e.g. the1219

whitespace <space>) includes information about1220

all bridge entities, and hence the reasoning process1221

likely occurs at this position. In this section, we use1222

activation patching to further demonstrate that the1223

reasoning process of our language model only oc-1224

curs at the last token position instead of preceding1225

prompt tokens.1226

Our activation patching still addresses three 1227

types of runs: clean run, corrupted run and patched 1228

run. For each clean run, we randomly select a dis- 1229

tinct instance as the corrupted run. For each layer 1230

and each token position in the input prompt, we cre- 1231

ate a patched run by replacing the residual stream 1232

of the clean run with that of the corrupted run at 1233

the corresponding position. The causal effect is 1234

calculated as Pclean −Ppatched, where Pclean denotes 1235

the output probability of the correct answer in the 1236

clean run, and Ppatched denotes the probability in 1237

the patched run. We report the average causal effect 1238

over 1000 held-out instances. 1239

Figure 12 presents the activation patching results 1240

across token positions. Noticeably, no significant 1241

causal effects are observed in any token positions 1242

following the <Entity> token, except for the last 1243

<space> token. Since the <Entity> token is the 1244

first position where the model can access complete 1245

query information (i.e., relations and source entity), 1246

this result supports our claim that the reasoning 1247

process primarily occurs at the last token position. 1248

We also observe large causal effects on relation 1249

tokens when patching deeper layers (e.g., the 4th 1250

layer for the <r4> token). We consider this ef- 1251

fect is because the model only start to read the 1252

information of <r4> relation since the 4th layer 1253

when predicting the answer. Hence, deeper layers 1254

of <r4> position should not involve any reasoning- 1255

related computation. To show this, we also perform 1256

the same activation patching experiment by replac- 1257

ing only the output of each MLP layer. As shown 1258

in Figure 13, the relation tokens only show causal 1259

effects in the first layer, further supporting our hy- 1260

pothesis that deeper layers do not reprocess relation 1261

information. 1262

F.2 Causal effects across training steps 1263

In Section 5, we observed that LMs learn to solve k- 1264

hop tasks through a layer-wise lookup process, with 1265

specific layers responsible for producing bridge 1266

entities from 1-hop to k-hop. A key question is 1267

whether these circuits (i.e., layers) are developed 1268

sequentially from 1-hop to k-hop or simultaneously 1269

across multiple hop positions during training. To 1270

investigate this, we apply the activation patching 1271

experiment described in Section 5 at every check- 1272

point of the training process. 1273

We focus on the model trained on 4-hoplarge with 1274

a ×100 budget, following the setup in Section 5. 1275

Checkpoints are saved every 1k training steps, and 1276

we apply activation patching at the last input token 1277
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Figure 12: Results for activation patching replacing the residual stream of a particular layer across prompt tokens.
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Figure 13: Results for activation patching replacing the MLP output of a particular layer across prompt tokens.

position. For each checkpoint, we measure the1278

causal effect of each layer for bridge entities at1279

each hop position.1280

LMs tend to build circuits of different i-hop1281

bridge entities simultaneously. Figure 14 shows1282

the causal effect of each layer across training steps.1283

We observe that circuits responsible for 1-hop, 2-1284

hop, and 3-hop bridge entities emerge simultane-1285

ously at around the 17000th training step, with1286

each circuit appearing in distinct layers (e.g., the1287

1st layer for 1-hop entity). This pattern indicates1288

that the model tends to develop circuits for different1289

hop positions at once rather than sequentially from1290

easier (e.g., 1-hop) to more complex (e.g., 3-hop)1291

entities.1292

Curriculum learning gradually build circuits1293

on existing ones. We further analyze the develop-1294

ment of circuits in the curriculum learning model1295

trained on the 4-hop task with a ×5 budget (Section1296

6). Training this model includes 3 stages. Check-1297

points are saved every 1k steps, and causal effects1298

are calculated at each stage. For each stage, we1299

calculate the causal effects using the following cor-1300

rupted runs:1301

• C1-hop: Assesses 1-hop circuits across stage 1,1302

2 and 3.1303

• C2-hop: Assesses 2-hop circuits across stages1304

2 and 3. 1305

• C3-hop: Assesses 3-hop circuits in stage 3. 1306

Figure 15 presents the results with our curricu- 1307

lum learning model. During stage 1, the model 1308

establishes circuits for 1-hop entities. In stage 2, 1309

the 2-hop circuit emerges, building upon the exist- 1310

ing 1-hop circuit. Stage 3 follows the same pattern, 1311

with the 3-hop circuit extending the prior circuits. 1312

This layer-by-layer construction supports our hy- 1313

pothesis that curriculum learning encourages pro- 1314

gressive circuit development, allowing higher-hop 1315

circuits to build upon existing lower-hop circuits, 1316

explaining the observed effectiveness in Section 6. 1317

Curriculum learning has also been explored in 1318

prior work (Deng et al., 2024; Hao et al., 2024), 1319

where the focus is on internalizing explicit rea- 1320

soning abilities. These studies start from chain-of- 1321

thought (CoT) rationales and train language models 1322

to reason with progressively fewer prompt tokens. 1323

In contrast, our setup does not rely on any explicit 1324

rationales. Instead, we study how curriculum learn- 1325

ing affects the data budget required for training 1326

and provide an explanation for why such strate- 1327

gies improve sample efficiency from a mechanistic 1328

interpretability perspective. 1329
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Figure 14: Causal effects calculated by corrupting 1-hop, 2-hop and 3-hop bridge entity in our baseline model.
x-axis refers to checkpoints across training steps.

10
00

50
00

90
00

13
00

0
17

00
0

21
00

0
25

00
0

29
00

0
33

00
0

37
00

0

Checkpoint

1
2
3
4
5
6
7
8
9

10
11
12

Stage 1 Stage 2 Stage 3
Corrupt 1-hop entity

10
00

50
00

90
00

13
00

0
17

00
0

21
00

0
25

00
0

29
00

0
33

00
0

37
00

0

Checkpoint

Stage 1 Stage 2 Stage 3
Corrupt 2-hop entity

10
00

50
00

90
00

13
00

0
17

00
0

21
00

0
25

00
0

29
00

0
33

00
0

37
00

0

Checkpoint

Stage 1 Stage 2 Stage 3
Corrupt 3-hop entity

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Ca
us

al
 E

ffe
ct

La
ye

r

Figure 15: Causal effects calculated by corrupting 1-hop, 2-hop and 3-hop bridge entity in our curriculum learning
model. x-axis refers to checkpoints across training steps. Gray regions indicate stages where causal effects are
not calculated for certain entities, e.g., stage 1 does not include 3-hop bridge entities in the training data, so the
rightmost figure omits these effects in stage 1.

Model Size Task ×1 ×2 ×5 ×10 ×20 ×50 ×100
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

baseline

small
2-hop 99.8 0.1
3-hop 5.7 0.0 12.6 2.6 99.9 0.1 100.0 0.0
4-hop 4.3 0.4 6.2 0.5 6.7 0.2 9.2 0.4 96.4 3.1 96.4 0.0 100.0 0.0

large
2-hop 99.9 0.0
3-hop 2.5 0.3 3.1 0.1 4.9 1.6 94.6 9.4 100.0 0.0
4-hop 2.0 0.3 2.6 0.3 3.1 0.1 3.7 0.3 4.0 0.4 6.3 1.0 100.0 0.0

mix

small
2-hop 100.0 0.0
3-hop 29.2 3.0 88.1 8.6 99.9 0.1 100.0 0.0
4-hop 16.4 1.8 29.3 1.8 71.3 41.4 99.8 0.1 100.0 0.0 100.0 0.0 100.0 0.0

large
2-hop 100.0 0.0
3-hop 8.3 1.4 11.2 3.8 38.7 18.1 100.0 0.0 100.0 0.0
4-hop 2.1 0.2 2.7 0.1 3.7 0.2 3.4 0.1 4.3 0.6 7.2 1.9 100.0 0.0

curriculum

small
2-hop 100.0 0.0
3-hop 56.1 1.5 96.0 0.7 100.0 0.0 100.0 0.0
4-hop 29.3 2.7 68.7 5.4 99.6 0.2 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

large
2-hop 100.0 0.0
3-hop 35.3 1.5 96.3 1.2 100.0 0.0 100.0 0.0 100.0 0.0
4-hop 9.4 1.9 36.1 14.8 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Table 8: Accuracy (mean ± std) for 2-/3-/4-hop tasks under varying data budgets. Blank cells denote that the data
budget exceeds the number of available questions.
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