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Abstract

A survival dataset describes a set of instances (e.g.,
patients) and provides, for each, either the time
until an event (e.g., death), or the censoring time
(e.g., when lost to follow-up – which is a lower
bound on the time until the event). We consider
the challenge of survival prediction: learning, from
such data, a predictive model that can produce an
individual survival distribution for a novel instance.
Many contemporary methods of survival predic-
tion implicitly assume that the event and censoring
distributions are independent conditional on the
instance’s covariates – a strong assumption that is
difficult to verify (as we observe only one outcome
for each instance) and which can induce significant
bias when it does not hold. This paper presents a
parametric model of survival that extends mod-
ern non-linear survival analysis by relaxing the
assumption of conditional independence. On syn-
thetic and semi-synthetic data, our approach signif-
icantly improves estimates of survival distributions
compared to the standard that assumes conditional
independence in the data.1

1 INTRODUCTION

Clinical and epidemiological investigations often want to
predict the time until the onset of an event of interest. As
examples, a clinical trial of a therapeutic cancer regimen
may compare the time-to-mortality in patients who received
an experimental therapy against the times of the patients in
the control arm [Emmerson et al., 2021, Zhang et al., 2011];
and a study developing a clinical risk score may want to
regress the time until patient mortality onto covariates of

*These authors contributed equally to this work.
†Correspondence to coopermj@cs.toronto.edu.
1Code available at this GitHub repository.

interest, in order to leverage the learned model parameters
in a predictive risk algorithm [Jia et al., 2019].

In such time-to-event prediction tasks, it is common to only
have a lower bound on the time-to-event for some instances
in the study cohort. Here, we focus on right censored in-
stances – e.g., patients who left the study prior to their time
of death (loss-to-follow-up), or patients who did not die
prior to the conclusion of the study (administrative cen-
soring) [Leung et al., 1997, Lesko et al., 2018]. Survival
prediction refers to the development of statistical models
that support time-to-event prediction when some training in-
stances are censored. Rather than discarding such censored
instances, methods in survival analysis instead leverage the
censoring time as a lower bound on that individual’s time-
to-event [Kalbfleisch and Prentice, 2011].

Let X(i) ∈ X refer to the covariates of the ith patient,
and let T (i)

obs ∈ R+ refer to their time of last observation,
taken to be the minimum of the event time T (i)

E ∈ R+

and censorship time T (i)
C ∈ R+. Because a patient can

be either censored or uncensored, but not both, we only
observe one of {TE , TC } for each patient. A common
assumption in survival analysis is conditionally independent
censoring [Kalbfleisch and Prentice, 2011]:

TE ⊥ TC | X (1)

i.e., onceX is known, knowing either the event or censoring
time does not provide additional information about the other
quantity; see Figure 1(left). This assumption does not always
hold. Figure 1 shows this assumption is violated when the
event time affects the censoring time, or in the presence of
unobserved confounding variables. When Equation 1 does
not hold, we say that the data features dependent censorship,
a common feature of survival data that is unaccounted, or
assumed to be absent, in modern survival prediction.

This is not a theoretical concern. Consider a study assessing
the survival outcomes of a cohort of chronic disease patients
treated with a certain type of medication. The study collects
basic demographic and medical information about each pa-
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Figure 1: Three graphical models of survival analysis, showcasing thedependencies between covariates X , event/censorship times TE
/ TC , time of last observation Tobs and event indicator δ. Shaded nodes represent variables whose values we can observe. Blue and
magenta arrows represent the event and censoring functions fE : X → R+, fC : X → R+, respectively, of arbitrary functional form.
Green arrows into a node T represent the function R2

+ → R+ defined bymin (te, tc). Orange arrows into a node δ represent the indicator
function R2

+ → {0, 1} defined by 1 [te < tc]. The leftmost graph demonstrates the case of conditionally independent censoring (or
censoring-at-random, CAR), because conditioning on X d-separates [Geiger et al., 1990] TE and TC . The center- and right-most graphs
represent cases in which the censoring and event times may be conditionally dependent (or censoring-not-at-random, CNAR): in the center
graph, this is through a direct dependency between TE and TC , while in the rightmost graph, this is via the unobserved confounding node,
U , that affects both TE and TC .

tient, their time-of-death or censorship, and an indicator
expressing whether the patient died or was censored.

Now imagine that sicker patients often remove themselves
from the study in order to explore alternative treatment op-
tions. This presents a form of selection bias: while we may
surmise that a patient who is censored is more likely to be
sicker than their uncensored counterpart, and therefore, may
have a lower time-of-death, a statistical model that does
not account for this will likely over-estimate each patient’s
survival time, which may have implications when assessing
the safety and utility of the medication in question. This
motivating example, characterized by the middle graph in
Figure 1, presents a scenario that contemporary approaches
to survival regression are often poorly equipped to accom-
modate.

Note that it is typically impossible to verify a dependency
in practice because we only observe one outcome (either
event or censorship) per instance, but never both. Also, this
dependency between TE and TC can be quite subtle if it
takes place by means of unobserved confounding variables.
The effect of variables U are highlighted in Figure 1 (right).

Relaxing the conditional independence assumption of Equa-
tion 1 has been previously studied. However, existing ap-
proaches either do not permit the incorporation of covari-
ates (e.g., Zheng and Klein [1995], Rivest and Wells [2001],
de Uña-Álvarez and Veraverbeke [2013]), or make strict
assumptions over the form of the marginal distributions of
fTE and fTC (e.g., Escarela and Carriere [2003]). These
limitations mean it is difficult to apply these ideas to sur-
vival times modeled via nonlinear functions (such as neural
networks) that are increasingly being used. In this vein, our
work makes the following contributions:

1. We show how to leverage copulas to correct for depen-
dent censorship in neural network based models of survival
outcomes. We present a parameteric proportional hazards
model that leverages neural networks to relax assumptions
on the distributional form of the marginal event and cen-

soring functions, and employs a copulas to model the de-
pendence between event and censoring. We also present
a method to jointly learn the model and copula parameter
from right-censored survival data. To our knowledge, this
work represents the first neural network-based model of
survival analysis to account for dependent censoring.

2. We demonstrate that conventional survival metrics, like
concordance, are biased under dependent censoring, and we
highlight the general impossibility of unbiased evaluation
in this regime.

3. It is statistically impossible to determine whether TE
and TC are independent or dependent from data alone.
We show how the choice of copula can represent an as-
sumption (prescribed via domain knowledge) over the
relationship between the event and censoring distribu-
tions. Our paper cleanly characterizes the dependence as-
sumptions underlying two common families of copula
(the Clayton and Frank families), and provides guidance to
practitioners in choosing a copula to meet their needs. The
incorporation of the copula enables practitioners to improve
the resulting model on a variety of different benchmarks.

2 BACKGROUND AND PRELIMINARIES

For notation, we will use TE and TC where appropriate to
refer (respectively) to the random variables representing
time-of-event and censorship. When a time could refer to
either, we will instead simply use T . Realizations of each
random variable, such as the time-of-event for a specific
patient, will be denoted with a superscript (e.g., T (i)

E ).

2.1 SURVIVAL ANALYSIS PRELIMINARIES

Our work will use the following elementary quantities de-
fined by survival analysis: fT |X , FT |X , representing the
conditional density and cumulative distribution functions



over the time of an outcome of interest (e.g., event or cen-
sorship). Then, we have the following definitions.

Definition 1 (Survival Function). The survival function

ST |X(t|X) ≜ Pr(T > t |X ) = 1− FT |X( t |X ) (2)

represents the likelihood that event (or censorship) will take
place after a specifed time, t.

Definition 2 (Hazard Function). The hazard function,

hT |X(t|X) ≜ lim
ϵ→0

Pr(T ∈ [t, t+ϵ) |T ≥ t,X ) =
fT |X(t|X)

ST |X(t|X)
(3)

represents the probability that the event will take place
within an infinitesimal window in the future, given that
it has not yet occurred.

Definition 3 (Likelihood Function). The general likelihood
function for survival data D = {(X(i), T

(i)
obs , δ

(i))}Ni=1 is
the following 2

L(D) =

N∏
i=1

[∫ ∞

T
(i)
obs

fTE ,TC |X(T
(i)
obs , tc |X

(i)) dtc

]
︸ ︷︷ ︸

Pr
(
TE=T

(i)
obs , TC>T

(i)
obs |X(i)

)

δ(i)

(4)

[∫ ∞

T
(i)
obs

fTE ,TC |X(te, T
(i)
obs |X

(i)) dte

]
︸ ︷︷ ︸

Pr
(
TC=T

(i)
obs , TE>T

(i)
obs |X(i)

)

1−δ(i)

2.2 COPULAS AND SKLAR’S THEOREM

Definition 4 (Copula [Nelsen, 2007]). A copula
C(u1, ..., um) : [0, 1]m → [0, 1] is a function with the
following properties.

1. Groundedness: if there exists an i ∈ {1, ...,m} such that
ui = 0, then C(u1, ..., um) = 0.

2. Uniform Margins: for all i ∈ {1, ...,m}, if ∀j : j ̸=
i⇒ uj = 1, then C(u1, ..., um) = ui.

3. d-Increasingness: for all u = (u1, ..., um), v =
(v1, ..., vm) where ui < vi for all i = 1, ...,m, the fol-
lowing holds:∑
l∈{0,1}m

(−1)l1+...+lmC(ul11 v
1−l1
1 , ..., ulmm v1−lmm ) ≥ 0

2The standard presentation of the survival likelihood is the
survival likelihood under conditional independence (Equation 9),
which represents a special case of Equation 3. For a derivation of
Equation 3, refer to Appendix D.

Figure 2: Visualization of how Sklar’s Theorem (Survival) models
quantile dependency using a copula. (1) The observed event time,
T

(i)
E , is (2) mapped through the event survival function, STE |X , to

(3) obtain an event quantile, T (i),Quantile
E . (4) A censoring quantile

is sampled from the copula, T (i),Quantile
C ∼ Cθ(·|T (i),Quantile

E ); the
distributions to the left of the vertical axis show the probability
mass of Cθ(·|T (i),Quantile

E ) under no, weak, and moderate depen-
dence. Notice how as the dependence increases, the distribution
Cθ(·|T (i),Quantile

E ) concentrates mass around T (i),Quantile
E . (5) The

censoring quantile is then mapped through the inverse censoring
survival function, S−1

TC |X , to (6) obtain a corresponding time-of-

censorship, T (i)
C . The distributions below the horizontal axis show

the distribution of T (i)
C under no, weak, and moderate depen-

dence.

The utility of copulas as probabilistic objects stems pri-
marily from the application Sklar’s Theorem [Sklar, 1959],
which demonstrates that any joint cumulative density can be
written in terms of a copula over the quantiles of its marginal
cumulative densities.

In this work, we will place our emphasis on those copulas
that model joint survival functions. Such copulas are known
as survival copulas, and their own version of Sklar’s theorem
(Equation 5) applies.

Theorem 1 (Sklar’s Theorem (Survival Copulas) [Nelsen,
2007]). A survival copula3 is a copula that applies Sklar’s
Theorem to survival functions, as follows:

ST1,...,Tm(t1, . . . , tm ) = C(ST1(t1), . . . , STm(tm) ) (5)

A visualization of the way in which a copula induces depen-
dency between TE and TC via the quantiles of STE |X and
STC |X , is shown in Figure 2.

We will focus on two families of copulas, the Clayton [Clay-
ton, 1978] and Frank [Frank, 1979] families. Within these
families, the copula Cθ is parameterized by a single param-
eter, θ, interpreted as the degree of dependence between

3The copula that relates the joint cumulative distribution
FX1,...,Xm , with the marginal cumulative distribution functions
is typically not the same as that which relates the joint survival
function ST1,...,TM with the marginal survival functions, though
both are valid copulas [Nelsen, 2007].



the marginal distributions under Equation 5. A larger value
of θ implies greater dependency between the marginal dis-
tributions, and both families of copulas converge to the
independence copula as θ approaches 0. We additionally
restrict ourselves to bivariate survival copulas, although in
principle, these methods could be directly extended to ac-
commodate an arbitrary number of competing events. Such
uniparametric copulas provide a parameter-efficient means
of modeling the joint survival function: given that survival
analysis already provides tools to model the marginal sur-
vival functions STE , STC , a model that couples these distri-
bution functions via a uniparametric copulaCθ only requires
adding one additional parameter to the model.

3 RELATED WORK

Deep Learning in Survival Analysis: Linear models of
survival analysis make the (often unrealistic) assumption
that an individual’s time-to-event is determined by a lin-
ear function of his or her covariates. Faraggi and Simon
[1995] presented the first neural-network based model of
survival, by incorporating a neural network into a Cox Pro-
portional Hazards (CoxPH) model [Cox, 1972]. Although
subsequent experimentation found the Farragi-Simon model
unable to outperform its linear CoxPH counterpart [Mariani
et al., 1997, Xiang et al., 2000], DeepSurv [Katzman et al.,
2018] leveraged modern tools from deep learning such as
SELU units [Klambauer et al., 2017] and the Adam opti-
mizer [Kingma and Ba, 2014], to learn a practical neural
network-based CoxPH model that reliably outperformed
the linear CoxPH on nonlinear outcome data. Since then,
variations of neural network-based models of survival, such
as DeepHit [Lee et al., 2018] (and its extension to time-
varying data, Dynamic-DeepHit [Lee et al., 2019]), Deep
Survival Machines [Nagpal et al., 2021], SuMo-net [Rindt
et al., 2022], Transformer-based survival models [Hu et al.,
2021, Wang et al., 2022], and methods based off of Neural
ODEs [Tang et al., 2022] have been introduced to model
survival outcomes. Though these models successfully relax
assumptions around the functional form of marginal risk,
they do not jointly model the event and censoring times, a
limitation that does not allow them to appropriately account
for dependent censorship.

DeepSurv has enjoyed enduring success in part due to its
broad applicability and strong performance on clinical data
(e.g., Kim et al. [2019], Hung et al. [2019], She et al. [2020]).
Therefore, our investigation will focus on relaxing the con-
ditional independence assumption in a parameteric propor-
tional hazards model; we leave to future work the relaxation
of the conditional independence assumption in other classes
of neural network based survival models.

Missing/Censored-Not-At-Random Data and Identifica-
tion: Since we do not simultaneously observe TE and TC ,
we can treat the problem of survival analysis as one of

missing data. The standard taxonomy [Rubin, 1976, Tsi-
atis, 2006] of missing data partitions variables into one of
three classes: missing completely at random (MCAR) where
the missingness process is independent of the value of any
observed variable, missing at random (MAR) where the miss-
ingness process may depend on the value of one or more
observed covariates, and missing not at random (MNAR)
where the missingness process may depend on unobserved
variables (such as unobserved confounding or self-masking).
Similarly, censorship in survival analysis can take place
completely at random (CCAR), at random (CAR), or not at
random (CNAR) [Leung et al., 1997, Lipkovich et al., 2016].
The conditional independence assumption of Equation 1 is
equivalent to asserting CAR in the data.

MNAR data, in the general case, is non-identifiable [Nabi
et al., 2020]; but survival analysis imposes stronger assump-
tions on the data than general models of missing data, since
observed event time acts as a lower bound for unobserved
event time (in the case of censored data). Therefore, prior
work has focused on investigating the scenarios in which
model parameters of survival data can be uniquely iden-
tified. Tsiatis [1975] established that, in the general case,
the joint over M variables, Pr(T1, ..., TM ) is not gener-
ally identifiable from observations of the random variable
T = min (T1, ..., TM ); although if the joint distribution is
defined in terms of a known copula C, and the marginals
are continuous, then identifiability holds [Zheng and Klein,
1996, Carrière, 1995]. Crowder [1991] extended this line of
work and showed that even if all the marginal distributions
f1, ..., fM are known, the joint distribution remains non-
identifiable. Research in statistics has since defined tuples
of marginals and copulas for which the joint distribution is
identifiable. Notably, Schwarz et al. [2013] and prove that if
the marginals fE and fC are known, several sub-classes of
Archimedean copulas are identifiable in the bivariate case.
Zheng and Klein [1996], Carrière [1995] highlight condi-
tions for identifiability when the form and parameter of the
copula are known a priori. Schwarz et al. [2013] categorize
copulas into sub-classes wherein the ground-truth copula,
Cθ∗ , is identifiable. Our current analysis does not touch
upon the identifiability of the joint distribution in the con-
text of neural network based models of survival outcomes
though the success of our method does highlight this as
an important area for future study. Many machine learning
models remain non-identified [Bona-Pellissier et al., 2021]
while remaining useful as predictive and descriptive models.
We consider our method a similar approach in this respect.

Copula-Based Models of Dependent Censoring: Prior
literature has leveraged copulas to model the relationship
between the event and censoring distributions in order to
account for the effect of dependent censoring Emura and
Chen [2018]. To our knowledge, the first such work was
that of Zheng and Klein [1995] and Rivest and Wells [2001],
whose development of the nonparametric Copula-Graphic



Estimator extended the Kaplan-Meier Estimator [Kaplan
and Meier, 1958] to cases where the dependence between
TE and TC takes the form of an assumed copula (both C, θ
assumed to be known). Though parametric estimators for
this problem have been proposed in prior literature, they
tend to make strict assumptions over the distributional form
of fT |X (e.g., that it is a linear-Weibull function [Escarela
and Carriere, 2003]4). Proposed semi-parametric estimators
[Chen, 2010, Emura et al., 2017, Deresa and Van Keile-
gom, 2022] suffer from much the same problem, as both
of these approaches assume that the hazard is a linear func-
tion of the instance covariates. To our knowledge, no such
copula-based model exists to accommodate more complex
relationships between covariates and risk while also account-
ing for dependent censoring. This is the gap our research
aims to fill.

4 MODEL AND OPTIMIZATION

We now present our extension of the Weibull CoxPH
model [Barrett, 2014], and discuss the problem of learn-
ing nonlinear models of survival outcomes under dependent
censorship. Our approach entails modeling each outcome –
event and censorship – independently with an extension of
the Weibull CoxPH model, and linking them via a copula in
the likelihood function during training. Our approach makes
the following assumptions.

Assumption 1 (Known Form of the Copula). We assume
prior knowledge of the functional form of the copula (e.g.,
that Cθ∗ , the copula associated with the data-generating
process, is a Clayton copula).5

Assumption 2 (Proportional Hazards [Cox, 1972]). The
hazard for each outcome (event/censorship) can be decom-
posed into some baseline hazard λ0, dependent only on
time, and some covariate hazard g, dependent only on the
covariates X . That is, there exists some appropriate λ0, g
for which hT |X(t|X) = λ0(t) exp( g(X) ).

4.1 THE WEIBULL COXPH MODEL

Let λ0(t) =
(
ν
ρ

)(
t
ρ

)ν−1

denote the baseline hazard of the
Weibull CoxPH model, and let gψ denote a neural network
with parameters ψ mapping the covariate space X to the real
line. Then, leveraging the proportional hazards assumption,
we define our model in terms of its hazard:

ĥT |X( t|X ) =

(
ν

ρ

)(
t

ρ

)ν−1

exp ( gψ(X) ) (6)

4Although Escarela does not directly model dependent censor-
ing, but rather dependent competing events, the approach can be
directly extended to this domain.

5In some experiments, we weaken this assumption, and we
will explicitly note where this is the case.

Let ϕ = {ν, ρ, ψ} denote the complete set of model pa-
rameters, and observe that the Weibull CoxPH model is
fully parametric model over these marginal parameters ϕ.
By rearranging Equation 6, this class of models readily
admits ŜT |X , the estimated survival function over each out-
come, and f̂T |X , the correponding probability mass function.
These two quantities will allow us to perform maximum
likelihood estimation – their derivations are provided in
Appendix C.4.1 and C.4.2.

ŜT |X( t|X ) = exp

(
−
(
t

ρ

)ν
gψ(X)

)
(7)

f̂T |X( t|X ) = hT |X( t|X ) ŜT |X( t|X ) (8)

4.2 MAXIMUM LIKELIHOOD LEARNING
UNDER DEPENDENT CENSORSHIP

Let D = {(X(i), T
(i)
obs , δ

(i))}Ni=1 represent a dataset compris-
ing N i.i.d. draws from some data-generating distribution.
Let X(i) ∈ X refer to a set of baseline covariates collected
about each individual i. Let T (i)

obs ∈ R+ refer to their time
of last observation, taken to be the minimum of latent vari-
ables T (i)

E ∈ R+, T (i)
C ∈ R+, representing the event and

censoring times, respectively. Finally, let δ(i) ∈ {0, 1} rep-
resent an event indicator taking on the value 1[T (i)

E < T
(i)
C ].

Let C represent a survival copula. Given D, we learn by
maximizing the likelihood of the observed data.

Under conditional independence, Equation 4 factorizes and
simplifies into the familiar form of the survival likelihood.

L(D) =
N∏
i=1

[
fTE |X(T

(i)
obs |X

(i))STC |X(T
(i)
obs |X

(i))
]δ(i)

(9)

[
fTC |X(T

(i)
obs |X

(i))STE |X(T
(i)
obs |X

(i))
]1−δ(i)

However, when TE , TC are no longer conditionally inde-
pendent, we can no longer rely on this clean decomposition
of the log-likelihood. Instead, we make use of the following
lemma.

Lemma 2 (Conditional Survival Function Under
Sklar’s Theorem (Survival)). If STE ,TC |X(te, tc|x) =

C(u1, u2)

∣∣∣∣∣u1=STE |X(te|x)
u2=STC |X(tc|x)

, then,

∫ ∞

tc

fTC |TE ,X(tc|te, x) =
∂

∂u1
C(u1, u2)|u1=STE |X (te|x)

u2=STC |X (tc|x)
.

Applying Lemma 2 to Equation 4 yields the log-likelihood



for survival models under dependent censorship.

ℓ(D) =
N∑
i=1

δ(i) log
[
fTE |X(T

(i)
obs |X

(i))
]
+ (10)

δ(i) log

 ∂

∂u1
C(u1, u2)

∣∣∣∣∣∣∣u1=STE |X (T
(i)
obs |X(i))

u2=STC |X (T
(i)
obs )|X(i)

+

(1− δ(i)) log
[
fTC |X(T

(i)
obs |X

(i))
]
+

(1− δ(i)) log

 ∂

∂u2
C(u1, u2)

∣∣∣∣∣∣∣u1=STE |X (T
(i)
obs |X(i))

u2=STC |X (T
(i)
obs )|X(i)

 .
In this expression, the first term corresponds to the log like-
lihood of observing the event at time T (i)

obs . The second term
corresponds to the conditional probability of observing the
censorship time after the event time, given that the event
time is T (i)

obs . The third and fourth terms, by symmetry, rep-
resent the same quantities for the censorship time. Despite
the visual complexity of Equation 10, the partial deriva-
tives of the Clayton and Frank copulas admit closed form
solutions, so the log likelihood function has a closed form
and can be maximized via gradient-based methods. Algo-
rithm 1 details the optimization procedure used to jointly
optimize the marginal and copula parameters. Empirically,
we find that scaling the gradient of θ̂ by a large constant
factor K, and then clipping it prior to taking each update
step, supports stable optimization in this regime (K = 1000
in our experiments). Additional implementation details and
hyperparameters are discussed in Appendix E.2.

5 EVALUATION

5.1 METRICS ARE BIASED UNDER
DEPENDENCE

Standard metrics such as the concordance index [Harrell
et al., 1982, Uno et al., 2011], time-dependent concordance
(TDCI) [Gerds et al., 2013], and Brier score [Brier et al.,
1950] cannot effectively evaluate models learned under de-
pendent censoring. To demonstrate this, we generate sur-
vival data under a copula, and compare the performance of
the data-generating event model, fTE |X , on censored and
uncensored data as the dependency increases. The results of
this experiment are shown in Table 1. As the dependence
increases, both the concordance and Brier score under cen-
soring deviate from their values without censoring. This
suggests that the utility of these metrics decreases as the de-
pendence in censoring increases. This challenges previous
results that use these measures as the primary statistics of
interest when assessing the performance of models under
dependent censoring.

By way of analogy, we describe the connection be-

Algorithm 1: Learning Under Dependent Censorship
Input: D: survival dataset of the form

{(X(i), T
(i)
obs , δ

(i))}Ni=1; Cθ: a bivariate copula,
parameterized by θ;M, a class of survival model
parameterized by ϕ that can produce Ŝ(M)

T |X (t|X),

f̂
(M)

T |X (t|X), for each X(i) ∈ D; α: learning rate for
event model, censoring model, and copula parameter;
M : number of training epochs; K: large constant
factor; θmin: small positive number.

Result: θ̂, ϕ̂E , ϕ̂C : learned parameters of the copula and each
marginal survival model.

ME ← Instantiate(M; ψ̂
(0)
E ) ;

MC ← Instantiate(M; ψ̂
(0)
C ) ;

Cθ ← Instantiate(C; θ̂(0)) ;
for i = 1, ... , M do
Li ← ℓ

[
D; f̂ (ME)

T |X , f̂
(MC)

T |X , Ŝ
(ME)

T |X , Ŝ
(MC)

T |X , Cθ̂(i)
]
;

ψ̂
(i)
C ←AdamUpdate(Li, ψ̂C , α) ;

ψ̂
(i)
E ←AdamUpdate(Li, ψ̂E , α) ;
∇θ̂(i) ← ∇θ̂(i) ×K;
∇θ̂(i) ← ∇θ̂(i)|[−0.1,0.1];
θ̂(i) ←AdamUpdate(Li, θ̂, α) ;
θ̂(i) ← min(θ̂(i), θmin) # Constrain theta > 0

end
return θ̂(i), ψ̂(i)

E , ψ̂(i)
C

C-Index (↑) Brier Score (↓)
τ Uncensored Censored Abs. Diff. (↓) Uncensored Censored Abs. Diff. (↓)

0.01 0.6151 0.6187 0.0037 0.0719 0.0859 0.0140
0.2 0.6144 0.6140 0.0004 0.0757 0.0909 0.0152
0.4 0.6170 0.6164 0.0006 0.0726 0.0943 0.0217
0.6 0.6172 0.6342 0.0170 0.0733 0.0963 0.0230
0.8 0.6125 0.6873 0.0748 0.0744 0.1054 0.0310

Table 1: The results of an experiment comparing the concordance
index and Brier score on an uncensored population, against that on
a population experiencing dependent censoring. The full details of
this experiment are provided in Appendix E.1.

tween evaluation under dependent censoring and the po-
tential outcomes framework from causal inference. In
the case where censoring takes place completely at ran-
dom, metrics like concordance and Brier score are suit-
able means of evaluation, akin to how a randomized con-
trolled trial produces an unbiased estimate of the aver-
age treatment effect. Under observed confounding, weight-
ing schemes like inverse-propensity censorship weighting
Uno et al. [2011], Graf et al. [1999] leverage a censoring
model to produce an unbiased estimator of the evaluation
statistic. But confounding of the form in survival analysis
does not readily admit a censoring model that can be used
to perform weighting adjustment since the covariates re-
quired for such a model remain unobserved. Consequently,
unbiased model evaluation under dependent censoring is
fundamentally a problem of counterfactual analysis and not
feasible to solve using observational data alone.



Figure 3: The Survival-ℓ1 metric, CSurvival-ℓ1(S, Ŝ), for event
and censoring distributions. Dashed lines represent the predicted
survival curves, ŜTE |X , and ŜTC |X , while solid lines repre-
sent the corresponding ground-truth survival curves, STE |X , and
STC |X . The black horizontal line represents the normalizing
quantile, Q∥·∥, which is used to standardize the duration of the
survival curve across patients when calculating the Survival-ℓ1.
The area of the hatched blue region above Q∥·∥ is the value of
CSurvival-ℓ1(STE |X , ŜTE |X), while that of the hatched pink region
is the value of CSurvival-ℓ1(STC |X , ŜTC |X).

The Survival-ℓ1 Metric: We introduce the Survival-ℓ1 as
a means of quantifying bias in survival analysis due to de-
pendent censoring on synthetic data. The Survival-ℓ1 met-
ric CSurvival-ℓ1 : S × S → R+, is the ℓ1 distance between
the ground-truth survival curve, ST |X , and the estimate
achieved by a survival model, ŜT |X (Figure 3), over the
lifespan of the curves.

However, the scale of the naive ℓ1 measure between survival
curves is proportional to the total amount of elapsed time
under each survival curve. To ensure that survival curves
over longer lifespans do not contribute proportionally more
to the evaluation metric than those over shorter lifespans,
we define the small constant normalizing quantile, Q∥·∥ (in
our experiments, Q∥·∥ = 0.01). We can loosely think of
the time when each survival curve reaches the normalizing
quantile as the “end time” of that survival curve. By normal-
izing the area between the survival curves by the temporal
normalization value T (i)

max = S−1
T |X(i)

(
Q∥·∥

)
, we ensure that

the duration spanned by a patient’s survival curve does not
influence that patient’s contribution to CSurvival-ℓ1 relative to
other patients.

Our Survival-ℓ1 metric therefore takes the following form:

CSurvival-ℓ1(S, Ŝ) =

N∑
i=1

1

N × T (i)
max

∫ ∞

0

(11)∣∣∣ST |X(t|X(i))− ŜT |X(t|X(i))
∣∣∣ dt

6 EXPERIMENTS AND RESULTS

Synthetic Data: The Survival-ℓ1 metric places strong as-
sumptions on our knowledge of the data-generating process
by assuming access to the ground-truth survival functions

for each outcome. For this reason, we predominantly make
use of synthetic data to evaluate the merits of our approach.

Algorithm 2 provides a means of generating synthetic data
under a specified copula C with Weibull CoxPH margins.
For the Linear-Risk experiment shown in Figure 4, we
generate data according Algorithm 2 with X ∈ RN×10 ∼
U[0,1], ν∗E = 4, ρ∗E = 14, ψ∗

E(X) = βTE(X), ν∗C = 3, ρ∗C =
16, ψ∗

C(X) = βTC(X), where βE , βC ∈ [0, 1]10 ∼ U[0,1].
For the Nonlinear-Risk experiment, we run Algorithm
2 with X ∈ RN×10 ∼ U[0,1], ν∗E = 4, ρ∗E = 17, ψ∗

E(X) =∑10
i=1X

2
i /8, ν∗C = 3, ρ∗C = 16, ψ∗

C(X) = βTCX
2/5,

where βC ∈ [0, 1]10 ∼ U[0,1]. Each synthetic experiment
was performed on 20, 000 train, 10, 000 validation, and
10, 000 test samples.

The network gψ in the model we train on the
Linear-Risk data consists of a single linear layer,
while the network gψ in the model we train on the
Nonlinear-Risk data consists of a three-layer fully-
connected neural network with ELU activations and hid-
den layers consisting of [10, 4, 4, 4, 2, 1] dimensions, respec-
tively.

Semi-Synthetic Data: To investigate the promise of our
approach on non-synthetic data, we artificially censor re-
gression datasets according to a various degrees of depen-
dence. We choose two datasets (STEEL) [Asuncion and
Newman, 2007] and AIRFOIL [Brooks et al., 2014] from
the UCI Machine Learning Repository. We induce censor-
ing in the data according to Algorithm 4 in Appendix D.2.
We then train a linear version of our method on the artifi-
cially censored dataset and evaluate our performance via
the R2 statistic6. In this experiment, we compare our ap-
proach against two baselines: a linear Weibull CoxPH model
trained on the regression data without censoring, and a linear
independence-assuming Weibull CoxPH model.

Our results highlight three properties of our framework.
First, our model is capable of reducing the bias in the learned
individual survival curve (as measured by the Survival-ℓ1
metric). Second, the learning algorithm does, in many cases,
recover the ground truth coefficient associated with the cop-
ula when parameterizing the prediction of the event and cen-
soring time with neural networks. Finally, our framework
opens up new avenues to learning more complex forms of
dependence between event and survival time.

Reducing Bias in Survival Outcomes: Figure 4 (left col-
umn) plots the model bias as measured by the Survival-ℓ1,
and how it behaves across datasets (in rows of plots).

We highlight that our approach of modeling the depen-
dence structure between event and censorship times reduces
the bias in the model’s estimation of survival curves. The

6Note that a method like Survival-ℓ1 does not apply to this con-
text, as semi-synthetic data does not provide ground-truth survival
curves.
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Figure 4: Left: Plot of the bias, CSurvival-ℓ1 , as a function of the dependence (Kendall’s τ ), for both independence-assuming and copula-
based models on synthetic data. Going from left to right on the x-axis denotes stronger dependence between the survival and event time in
the data generating process. The y-axis is overloaded; the scales on the left hand side of each y-axis correspond to bias incurred in the
prediction of the event times and the scales on the right hand side correspond to bias incurred in the prediction of the censoring times.
Dotted lines represent the bias in the event and censoring survival curves incurred by independence-assuming models, while solid lines
represent the bias incurred by our copula-based approach. The copula-based approach yields a lower line for each event, indicating a
better approximation of the ground-truth survival function.The shaded region represents the standard deviation of the Survival-ℓ1 across
10 instantiations of the model with different random seeds. Right: For each value of τ in the left plot, we plot the recovered value of
Kendall’s τ , τ̂ , as a function of the true dependence, τ∗. The dashed diagonals line, representing τ̂ = τ∗, is plotted for reference. Points
close to the line indicate that the learned dependence parameter was close to that of the data-generating process.

Algorithm 2: Generating Synthetic Dependent Survival Data

Input: X ∈ RN×d: a set of covariates, gψ : RN×d → R: a
class of risk function parameterized by ψ, Cθ: a class
of copula parameterized by θ,
(ν∗E , ρ

∗
E , ψ

∗
E), (ν

∗
C , ρ

∗
C , ψ

∗
C), θ

∗: data-generating
parameters associated with each outcome model and
the copula, respectively.

Result: D, a survival dataset with the desired dependence.

D = ∅;
for i = 1, ... , N do

u
(i)
1 , u

(i)
2 ∼ Cθ∗ ;

T
(i)
E ←

(
− log(u1)

gψ∗
E

(X(i))

) 1
ν∗
E
ρ∗E ;

T
(i)
C ←

(
− log(u2)

gψ∗
C

(X(i))

) 1
ν∗
C
ρ∗C ;

D ← D ∪ {(X(i),min(T
(i)
E , T

(i)
C ),1[T

(i)
E < T

(i)
C ])};

end
return D

bias is substantially lower under our approach for all val-
ues of τ > 0, and we note that the improvements are
more pronounced for larger values of τ indicating that
the improvements in our approach are larger as the depen-
dence between censorship and event time is stronger. We
see consistent results holding for both the Linear-Risk
and Nonlinear-Risk data-generating processes, and for

both the Frank and Clayton families of copula. In the special
case where τ = 0, we observe that our approach correctly
recovers the independence copula, and learns an unbiased
survival curve.

Our results on the artificially censored STEEL and
AIRFOIL datasets suggest that our method also shows
promise on non-synthetic data. On the STEEL dataset, our
method achieves an R2 of 0.508 under high dependence
(τ = 0.8), compared to the R2 of 0.341 achieved by the
independence-assuming model. Likewise, on the AIRFOIL
dataset, our method achieves an R2 of 0.484 under high de-
pendence (τ = 0.8), compared to the R2 of 0.330 achieved
by the independence-assuming model. Across different de-
grees of dependence, our approach reliably outperforms the
independence-assuming baseline, and often approaches the
performance of the model trained on the uncensored version
of the data. The complete table of results can be found in
Appendix G.1 (STEEL) and G.2 (AIRFOIL).

Empirical Recovery of the Copula Parameter: How close
are the recovered parameters of the copula to the true param-
eters used in the data-generating process? Although we do
not have a formal proof of identifiability, we nevertheless
study this question empirically on the two datasets in Figure
4 (right column). Here, we find that our approach is able
to reliably recover a θ̂ that is close to θ∗ across different
datasets and families of copula.
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Figure 5: Plot of the bias (CSurvival-ℓ1 ) as a function of depen-
dence (Kendall’s τ ), for independence-assuming and copula-based
Weibull CoxPH models on synthetic data with linear margins
drawn from a convex combination of copulas. In this experiment,
we optimize over a mixture of two copulas (one Frank, one Clay-
ton), rather than a single uniparametric copula. As in Figure 4, the
dashed lines represent the bias incurred by independence-assuming
models, while the solid lines represent the bias incurred by our
approach. This figure highlights that our method is capable of re-
laxing Assumption 1 by way of a convex combination of copulas.

Relaxating Assumption 1: Next, we showcase the flexi-
bility of our framework via a relaxation of Assumption 1.
Specifically, rather than parameterizing our model with Cθ,
a single copula of an assumed functional form, we instead
parameterize it with a convex combination of Clayton and
Frank copulas. During optimization, we learn θFrank, θClayton,
and κ, a mixing parameter. Because the Clayton and Frank
copulas are both Archimedean, we know that their convex
mixture is also a valid Archimedean copula [Bacigal et al.,
2010, Bacigál et al., 2015]. Figure 5 shows the results of an
experiment on synthetic data with Linear-Risk margins
and a dependency produced by a convex combination of cop-
ulas: CMix.(u, v) = κCFrank(u, v)+(1−κ)CClayton(u, v). In
this experiment, we fix κ = 0.5. As in the case where the
functional form ofC was known, the mixture model reduces
bias in estimation of the event and censoring distributions.

7 DISCUSSION

7.1 DEPENDENT CENSORING IN PRACTICE

Evaluating Survival Models on Observational Data:
Given the impossibility of evaluation from observational
data alone, how should a practitioner apply our method?
We propose that practitioners adopt simulation – the
present gold standard of evaluation from the causal in-
ference literature – as a primary means to test the perfor-
mance of survival models under dependent censoring. Such
methods as Parikh et al. [2022] and Mahajan et al. [2022]
present means of generating counterfactual synthetic data
that is similar to the available observational data. Then,

evaluating model performance on the simulated data us-
ing counterfactual metrics (like Survival-ℓ1) is treated as a
viable proxy of model performance on the downstream data.

The Assumptions Encoded by the Clayton and Frank
Copulas: Given that we only observe either the time of
event or censorship, identifying the joint distribution be-
tween these variables is generally not possible. Therefore,
the choice of copula represents a assumption over the data.
How can a practitioner leverage domain knowledge in or-
der to select the right copula to use within our framework?
Consider how the copula parameter, θ, relates the event and
censoring curves under three different circumstances. (1) If
the censoring and event curves are identical, then θ grows
with the probability that the time of event and censorship
are the same. (2) If the censoring curve decays faster than
the survival curve, θ grows with the probability that the time
of censorship precedes the time of event. (3) If the survival
curve decays faster than the censoring curve, θ grows with
the probability that the time of event precedes the time of
censorship. For a fixed θ, the Clayton copula expresses this
dependency as stronger at later times (lower quantiles), and
weaker at earlier times (higher quantiles). The Frank cop-
ula expresses strength of the dependency at more uniform
strength across all time periods. A visualization of these
three cases, and of the quantile densities expressed by the
Clayton and Frank copulas, can be found in Appendix B.3.

8 CONCLUSION

The method of using copulas to couple marginal survival
distributions is a general one. As future work, we consider
extending this approach to other classes of neural survival
models, such as those that do not assume either proportional
hazards or a Weibull baseline hazard. Though the Survival-
ℓ1 metric is a sufficient metric to demonstrate the promise
of our approach, it relies on knowledge of the complete sur-
vival curve for each instance; this is typically not available
in real-world data. The careful study of the behaviour of
conventional evaluation metrics under dependence, and the
design of strategies to more faithfully ascertain the perfor-
mance of a model from observational data alone remain
open avenues for future work.

Modern statistical methods in survival analysis increasingly
rely on complex, nonlinear functions of risk; however, ex-
isting applications of deep learning to survival analysis do
not accommodate dependent censoring that may be present
in the data. This work relaxes this key assumption, and
presents the first neural network-based model of survival
to accommodate dependent censoring. Our experimental re-
sults demonstrate the promise of our method: our approach
significantly reduces the Survival-ℓ1 (bias) in estimation and
our optimization technique is reliably able to recover the
underlying dependence parameter in survival data across
datasets of varying feature sizes.
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