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Abstract

Vision-Language Models (VLMs) excel at complex visual tasks such as VQA and
chart understanding, yet recent work suggests they struggle with simple perceptual
tests. We present an evaluation that tests vision-language models’ capacity for
nonlocal visual reasoning—reasoning that requires chaining evidence collected
from multiple, possibly distant, regions of an image. We isolate three distinct
forms of nonlocal vision: comparative perception, which demands holding two
images in working memory and comparing them; saccadic search, which requires
making discrete, evidence-driven jumps to locate successive targets; and smooth
visual search, which involves searching smoothly along a continuous contour.
Flagship models (e.g. GPT-5, Gemini 2.5 Pro, Claude Sonnet 4), even those that
perform well on prior primitive-vision benchmarks, fail these tests and barely
exceed random accuracy on two variants of our tasks that are trivial for humans.
Our structured evaluation suite allows us to test if VLMs can perform similar visual
algorithms to humans. Our findings show that despite gains in raw visual acuity,
current models lack core visual reasoning capabilities.

1 Introduction

Vision-Language Models (VLMs) have demonstrated impressive performance on complex multimodal
tasks. These models appear to possess a deep understanding of images and achieve over 90% accuracy
on benchmarks like AI2D and ChartQA [10, 14, 12]. Such high-level competence would suggest
these models have strong primitive visual skills. However, recent work such as VLMs are Blind [16]
or HallusionBench [6], shows that VLMs excel at answering high-dimensional questions that require
background context but fail at recognizing simple geometry. Yet newer models score higher on these
adversarial benchmarks, indicating that they possess stronger visual acuity.

While higher performance indicates stronger visual perception, these adversarial benchmarks do not
test sequential visual reasoning. Most tasks can be simulated as a series of independent extractions
from the image-space to text-space, where each look at the image content is independent and does
not require understanding relationships within the image itself. The actual reasoning can then occur
in text space, where Large Language Models (LLMs) excel.

This strategy works only when combined with known assumptions about an image. Graph compre-
hension questions are embedded with strong priors such as standardized layouts (e.g., axes, legends)
and may not require the model to reason over nonlocal regions. Models could instead learn to exploit
these learned commonalities and only superficially parse graphs. This reliance on convention over
direct visual evidence would stunt models from parsing images that defy these norms. Indeed, recent
literature supports the hypothesis that VLMs are not as proficient at reading graphs as benchmark
scores suggest [13]. For example, Masry et al. [13] showed that top models’ performance catastrophi-
cally declined on their novel ChartQAPro dataset compared to ChartQA, indicating a missing skill set
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for handling diverse, unseen charts. This, along with findings from benchmarks like HallusionBench
[6], suggests VLMs still prioritize background knowledge over the visual evidence presented to them.

We identify three core types of nonlocal visual reasoning. First, comparative perception is the
qualitative comparison of visual entities even when precise discrepancies are difficult to articulate
(e.g., recognizing that two complex shapes are not identical without explicitly itemizing every
differing feature). Second, saccadic search, named after the rapid eye movements humans make, is
the process of gathering and integrating information from different image regions. Each piece of
evidence informs the next step; for example, this process is used when consulting a chart’s legend,
then locating the corresponding line, then referencing an axis. Third, smooth visual search describes
the continuous tracing of visual elements, such as following the outline of an object or tracing a curve
to its conclusion. To systematically evaluate these capabilities, we introduce a procedurally-generated
evaluation set comprising three task categories designed to be trivial for humans and require minimal
prior knowledge. We present three task categories: Object Re-Identification, Visual Scavenger Hunt,
and Circuit Connections. Examples of these tasks appear in Figure 1.

We design our evaluation to answer the following questions:

1. When do VLMs err in basic perception or perceive correctly but fail at visual reasoning? Do
early perceptual mistakes compound or self-correct during reasoning?

2. Can VLMs perform comparative perception and saccadic search? If so, must these models
use natural language judgments to guide these processes, or can they execute these tasks
through direct visual analysis?

3. Can VLMs perform smooth visual search, an operation that involves tracing a continuous
contour or path not easily decomposable into natural language steps? If VLMs find this
continuous operation challenging, do they attempt to reframe it as a sequence of discrete
operations, or use a different heuristic?

All tested models perform poorly on at least one variant of a task that is trivial for humans. The
performance gradient on Object Re-Identification shows that modern models selectively choose
when to examine an image closely. Our work further shows that fuzzy vision interferes with visual
reasoning and the models seem unable to self-correct. They instead rely on their prior natural
language judgments over direct evidence in the image. VLMs struggle the most with smooth visual
search and our analysis of when they succeed suggests that most models cannot trace lines.

Our major contributions are:

• We release three procedural generators for an evaluation suite. Each generator creates
synthetic image-question pairs for a minimal-context task to probe three distinct facets
of nonlocal visual reasoning: comparative perception, saccadic search, and smooth visual
search. Our generator, evaluation sets, and evaluation code are available here.

• We conduct a comprehensive evaluation of leading VLMs (including GPT-5, GEMINI 2.5
PRO, and CLAUDE SONNET 4) demonstrating that even flagship models lag far behind
humans on trivial visual reasoning tasks, despite advances in primitive vision.

• We create several variants of each task to determine why models fail to perform as well as
humans. We also determine under which circumstances they look carefully at images and
use their perception abilities.

2 Related Work

Benchmarks on Perception Primitives. VLMs achieve strong performance on many complex
tasks, including OCR, image captioning, and scene understanding [17, 2, 5, 22, 1, 15]. However,
this high-level competence contrasts with known deficiencies in low-level perception. For instance,
VLMs can struggle with recognizing basic shapes or performing simple visual arithmetic [16, 7,
20]. Research suggests these perceptual limitations may originate in the language decoder, even
with adequate image encoder representations [7, 16]. These foundational gaps raise questions about
whether VLMs’ success always stems from robust visual processing, and critically, when and how
they engage in visual algorithms.
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Figure 1: Object Re-Identification (top): Determine whether the same object that appears in Image 1
also appears in Image 2, up to a transform of the entire object but not individual component shapes.
Visual Scavenger Hunt (bottom-left): From the indicated shape, follow the written labels for the
specified count and report the final shape’s color. Circuit Connections (bottom-right): From a named
port on the central breadboard, trace the wire to its endpoint. The prompts here are abbreviated; full
instructions are in the appendix.

Benchmarks on Visual Reasoning. To probe the underlying algorithmic visual skills necessary for
robust image understanding, we take a different approach from existing visual reasoning benchmarks.
Evaluations like Bongard problems and ARC [3, 4] test complex reasoning and are constructed as
abstract puzzles that are challenging humans. Failing such a task does not distinguish between a failure
in high-level abstract reasoning and a failure in fundamental visual processing. Our evaluation isolates
these primitive visual skills by stripping away the puzzle-solving layer. While benchmark suites
like VisOnlyQA and HallusionBench evaluate specific visual weaknesses, such as hallucination and
illusion failures under controlled or adversarial settings [9, 6], we evaluate general visual algorithms.

Chart and Graph Understanding. The importance of visual data interpretation has motivated numer-
ous evaluations and benchmarks such as ChartQA and MultiChartQA, which expose VLMs to diverse
charts [12, 23, 8]. This area has also spurred the development of several models specifically trained
for chart understanding [14, 11]. However, VLMs’ underwhelming performance on more recent
benchmarks such as ChartQAPro suggests that they have yet to develop robust graph-understanding
capabilities [13].
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3 Evaluation Design

Our evaluation isolates three core capabilities of nonlocal visual reasoning, each grounded in prin-
ciples from classical human vision research. The first, comparative perception, draws on work in
perceptual organization and attention. Classic Gestalt principles such as proximity and connectedness
suggest that humans automatically group visual elements into coherent objects [21], while Treisman’s
Feature Integration Theory (FIT) [18] shows that attention serves to bind distributed features into
a unified representation. By comparing Object Re-Identification performance on the Unconnected
variant against the Standard variant (where components are contiguous), we directly test whether
models are sensitive to the Gestalt principle of connectedness. The second capability, saccadic
search, is motivated by Ullman’s theory of visual routines [19], which proposed that complex visual
operations are composed of primitive procedures such as shifting the focus of attention and indexing
marked locations. Specifically, it is based on systematic scanning, or using each observation to guide
the next. The third capability, smooth visual search, corresponds to the visual routine of boundary
and contour tracing within Ullman’s framework.

3.1 Object Re-Identification.

We use this task to test comparative perception: the model must hold two views in working memory
and compare them under allowed transformations. Each instance of the task involves two images,
‘Image 1’ and ‘Image 2’. 2–6 shapes are shown in ‘Image 1’. In ‘Image 2’, this entire object undergoes
a random transformation (i.e., rotation, translation, and scaling) and is always kept fully in-frame.

In half of the examples (the negative cases), one or more of the component shapes are also transformed
independently to create a structurally different object. We avoid nearly imperceptible transformations,
such as small rotations, translations, and re-scalings, as we do not aim to test pixel-level accuracy.
Additionally, we render distractor objects in ‘Image 2’ to reflect the human capacity to re-identify
objects across different environments. We restrict these distractor objects from occluding any
components of the original object. Examples of this task can be found in Figure 1.

To disentangle VLM success conditions, we present three presentation variants. The Standard variant
renders objects with physically contiguous component shapes to test the most intuitive concept
of what an object is. The Unconnected variant removes this contiguity requirement to evaluate a
more abstract object concept and determine how connectedness affects VLM perception. In the
Pixel-Perfect variant, we do not apply any transformation to the object as a whole. Thus, positive
examples of ‘Image 2’ are pixel-for-pixel matches of ‘Image 1’ (except for the added distractors).
Examples of all three tasks can be found in the Appendix.

The examples are generated from a uniform distribution between “Yes” and “No”, so the random
guessing baseline is 50%.

3.2 Visual Scavenger Hunt.

This task tests saccadic search: the ability of the model to make discrete, evidence-driven jumps
across the image. In many real-world visual challenges, locating a pixel cluster with semantic content
is not enough. Instead, the task adapts as the agent gathers new clues. For example, an unlit gas stove
does not signal a gas leak unless the knob is in the on position. Humans use each observation to
decide where to look next, and this capability is vital to generalist agents.

We design our Visual Scavenger Hunt task to evaluate iterative visual search explicitly. The model is
presented with a grid of different-colored shapes, each labeled with a different color-shape pair. The
prompt provides a starting shape, and requires the model to follow a straightforward “scavenger hunt”
of shapes around the image for a specified number of steps (which we call the chain length). The
scene is randomly generated, so the entire scene must be searched to find a specific shape. A visual
example can be found in Figure 1.

We evaluate the models on chain-lengths of 2, 3, and 4 to test if their performance degrades over long
horizons. As we permute over 11 colors, the random chance baseline is approximately 9%.
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3.3 Circuit Connections.

We frame Circuit Connections as an instance of smooth visual search. The model is shown a
procedurally generated circuit diagram with a breadboard, several components, and wires. The task
is to specify which component a breadboard port is connected to; the model must trace a continuous
contour—a wire—from its source to its terminal point. An example of this appears in Figure 1.

Inspired by the “Subway Connection” task in BlindTest [16], we refine the task to directly evaluate
the ability to follow the wire. Our synthetic generator contains three variants: the Standard, Single
Color, and Unique Colors versions. On the Standard trial, each wire is one of five colors, selected
randomly. The Unique Colors variant is designed as a control; each wire has a unique color so that
the task is solvable by only looking at the ends of the wire. In the Single Color examples, all wires in
an image have the same color. This trial is designed to prevent the model from taking shortcuts—by
associating colors with locations or reasoning in natural language—rather than following the wire
manually.

Although our previous tasks are motivated by abilities necessary for real-world tasks, we design
Circuit Connections to mirror a practical skill: reading wiring diagrams. We adopt informal conven-
tions—wires hold their directions at crossings—to improve diagram clarity and emphasize the need
to trace the actual path. As we do not aim to test schematic-reading priors, we state these conventions
explicitly in the prompt.

The rendered image contains between 4-10 components, chosen from a uniform distribution. Thus, a
random guessing baseline is 14.29%.

4 Experiments

We evaluate GEMINI 2.5 PRO, CLAUDE SONNET 4, GPT-5, as well as other closed and open-source
models on our benchmark in a few-shot setting. All error bars represent standard error. The full
evaluation details, including prompts, can be found in the Appendix.

Before running our experiments, we manually self-evaluated 200 examples of each task’s main
category to find a human baseline. Our evaluators scored 100% on the Object Re-Identification and
Visual Scavenger Hunt tasks and 99.5% on the Circuit Connections trial.

4.1 Object Re-Identification

The results for Object Re-Identification are summarized in Figure 2. On the Standard variant, no
model significantly outperforms random chance, indicating that they cannot perform comparative
perception. However, on the other two trials, models such as GPT-5, GEMINI 2.5 PRO, and CLAUDE
SONNET 4 score between 12-24 percentage points higher. They remain over 20 percentage points
below the human baseline in all trials.

The F1 (positive) and F1 (negative) scores, displayed in Figure 3, subdivide the models into three
classes. Firstly, models that essentially ignore the input and almost always predict the same result
(MOLMO 7B and LLAMA 3.2 11B). The vast majority of models attempt to answer the question and
are not especially biased across all trials, but give poor predictions for both classes. The third class
consists of models that improve in the latter two variants.

Failure Modes A group of models—MOLMO (7B), LLAMA-3.2 VISION (11B), and PHI-4 MULTI-
MODAL (14B)— effectively ignore the input and almost always predict the same result, as evidenced
by their F1 scores being 0.00 for one class across multiple variants (Figure 3). This indicates they
either cannot perform comparative perception or do not attempt to do so across all trials.

The models highlighted in the orange box in Figure 3 fail in ways that show they have the ability to
selectively compare objects only in certain circumstances. On the Standard variant, their accuracy is
near random chance, with the highest score being 60%. However, their performance significantly
improves on both the Unconnected (GPT-5: 77%, GEMINI 2.5 PRO: 65%, CLAUDE SONNET 4:
79%) and Pixel-Perfect ( GPT-5: 71%, GEMINI 2.5 PRO: 65%, CLAUDE SONNET 4: 70%) variants.
In the Standard variant, the component shapes of the object are always physically contiguous.
According to Treisman’s Feature Integration Theory, humans bind basic features—color, shape,
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Figure 2: Accuracy on all variants of Object Re-Identification.

orientation—into unified object representations through focused attention. These models’ lower
accuracy on the Standard variant indicates they do not bind objects the same way humans do. More
specifically, their poor performance (<60%) suggests that these models struggle with fine-grained
inspection of connected entities. This contrasts with human perception, where Gestalt principles
of grouping (e.g., by proximity and connectedness) make connected objects easier to process and
compare. Because the Standard variant is a subset of the Unconnected variant, we suspect that
these models are capable of comparing different objects but engage this ability selectively. If two
Gestalt-grouped objects are similar enough the model does not inspect them closely. They appear to
bypass comparative attention when objects appear similar enough under Gestalt grouping cues.

Figure 3: F1 for positive and negative classes across all trials of Object Re-Identification. Some
models predict identically across the majority of trials (red box.) The strong models (orange box)
perform poorly on the standard variant, but become better at recognizing similar objects when tested
on the other two trials.

Natural Language Strategies The stronger models also perform slightly worse on the Pixel-
Perfect as they do on Unconnected. On this trial, GEMINI-2.5-PRO scored 100% accuracy on
the 11 responses in which it provided more than 10 tokens. We theorize that because the first and
second images are so similar, these problems are easier to convert to an instance of natural-language
comparison as any perturbation disqualifies the second object from being identical to the first.
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Taken together, these results indicate that VLMs are currently incapable of generalist comparative
perception and do not always examine the images carefully.

4.2 Visual Scavenger Hunt

The results for Visual Scavenger Hunt are shown in Figure 4. GEMINI 2.5 PRO, O4-MINI, and GPT-5
perform well above the random-guess baseline of 9%. O4-MINI shows a clear trend downward as
chain length increases.For all models except GPT-5, O4-MINI, and GEMINI 2.5 PRO, performance is
mostly static with respect to the length of the chain. CLAUDE 3.7 SONNET, PHI-4-MULTIMODAL,
O3, and GEMMA 3 27B perform a few percentage points above this baseline. The rest of the models
score at about the accuracy of random guessing.

Figure 4: Accuracy on the Visual Scavenger Hunt task. Only GPT-5, O4-MINI, and GEMINI 2.5
PRO significantly outperform random chance.

Failure Modes We manually observe the first 20 responses of all models. The weaker models
exhibit guessing behavior. They hallucinate paths even for a chain length of 2; an example of this
type of response can be found in Figure 5. Even with correct final colors, justifications often cite
non-existent shapes or paths. O4-MINI often claims it cannot read the text and refuses to answer
the question. We debunk this claim with an ad-hoc study; in isolation, O4-MINI was able to extract
text out of a randomly selected tile on 20 random examples from our dataset. However, it cannot
always accurately extract the entire grid, as shown in Figure 5. It successfully extracts every label,
but hallucinates when it transcribes the actual shapes and colors. In our empirical analysis, all of
GEMINI 2.5 PRO’s mistakes occurred mid-search and seemed to be due to confusion with a nearby
slot that had a similar color, label, or shape.

To determine if failures on this task stem from an inability to locate the shapes and text, or from a
breakdown in chaining these steps through saccadic search, we performed a follow-up experiment.
We decomposed the chain length 3 task into three sequential, single-step queries, where the model’s
answer for one step was used as the starting point for the next. The results are shown in Table 1. In
addition to overall accuracy on the three-step sequence, we report the Final-Step Error Rate. This
metric is calculated only on trials where the model correctly navigated the first two steps, thereby
isolating the error rate of the final jump. We use this conditional metric because grading intermediate
steps requires verifying both shape and color, whereas the final step, like our main task, only requires
identifying the correct color.

These results show that top-performing models are highly capable of executing the atomic unit of
the task when guided, whereas the other models cannot perceive well enough to perform the task.
However, their high single-step accuracy contrasts with their low accuracy over a multi-step search.
Simple error multiplication suggests O4-MINI should achieve 83% accuracy (0.943), far higher than
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Table 1: Performance on the decomposed Visual Scavenger Hunt task over 75 trials. Accuracy reflects
the success rate over the full three-step interactive sequence, while the Final-Step Error is conditioned
on the first two steps being correct.

Model Accuracy (%) Final-Step Error (%)
o4-mini 90.67 6
Gemini 2.5 88.00 8
Llama 3.2 Vision (11B) 24.00 85
Qwen 2.5 VL (32B) 16.00 86
Qwen 2.5 VL (7B) 14.67 85

the 44.5% observed in Figure 4. This discrepancy indicates that the primary bottleneck for the strong
models is not perception, but the inability to perform multiple steps autonomously. Conversely, the
other models’ poor performance suggests they lack the basic perceptive abilities required to perform
a single step correctly.

Heuristic Strategies The marginal success of the second group of models over random accuracy
likely results from simple heuristics, like choosing the most frequent color that appears in the image
(a strategy with 12% accuracy), not task capability. This is evidenced by the lack of clear trend in their
performance as chain length increases, which we would expect to decrease if they were performing a
lossy visual algorithm.

Figure 5: Example responses for Visual Scavenger Hunt from our qualitative analysis. Most models
can locate the first shape but have trouble extending the chain from there. O4-MINI and GEMINI 2.5
PRO are both high-performing but use different strategies.

Self Correction GEMINI 2.5 PRO and O4-MINI lack the ability to self-correct in this trial. Although
examples with longer chains have more opportunities for error, they also provide additional signal
that a mistake has been made. The other shapes in the image are labeled randomly, meaning about
30% of the time they lead to a shape that does not exist on the grid. For a human performing the task,
this would be a strong signal of a prior mistake, but we do not observe this process across any model.

Most models lack the capability to systematically search through a novel image type that requires iter-
ative visual grounding and evidence accumulation. Though the strongest models clearly outperform
random accuracy, they make frequent mistakes, have inconsistent perception, and cannot self-correct.
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4.3 Circuit Connections

Our results, summarized in Figure 6, indicate that all tested VLMs struggle with smooth visual search.
Every model both exceeded random chance on the Standard variant and improved on the Unique
Colors variant, with the exception of LLAMA-3.2. The hardest variant was Single Color, with a peak
accuracy of 27% by GEMINI 2.5 PRO.

Figure 6: Results on the Circuit Connections task. Performance rises drastically across the board
from Single Color to Unique Colors, suggesting that heuristics that do not involve tracing the line
play a large role in model success.

Table 2 presents the log odds coefficients for two key characteristics: the Euclidean distance of the
connecting wire and the number of times this wire crosses other wires. The log-odds analysis allows
us to interpret by what factor the odds of a binary outcome (e.g., success vs. failure) change for
each unit increase in a predictor variable, like the distance between the source and target port or the
number of wire-crossings.

Table 2: ∆ Log Odds and p-values for Distance (px) and Number of Crossings Effects for Circuit
Connections. The log odds coefficient, β, for a characteristic indicates that a one-unit increase in
that characteristic changes the logarithm of the odds of a correct model response by β. The null
hypothesis is that the log-odds coefficient of 0.

Model
Single Color Trial Standard Trial Unique Colors Trial

Distance Effect Crossings Effect Distance Effect Crossings Effect Distance Effect Crossings Effect

Log-odds p-value Log-odds p-value Log-odds p-value Log-odds p-value Log-odds p-value Log-odds p-value

GPT-5 -0.0106 0.00131 -1.0008 0.00238 -0.0063 0.00225 +0.0028 0.982 -0.0026 0.299 -0.3477 0.0742
Gemini 2.5 Pro -0.0084 0.00546 -0.5349 0.0244 -0.0086 6.45× 10−5 -0.1656 0.204 -0.0055 0.0333 -0.2761 0.151
o4-mini -0.0186 7.81× 10−5 -0.7154 0.0312 -0.0102 1.1× 10−5 -0.3925 0.0142 -0.0033 0.189 -0.0519 0.782
Claude Sonnet 3.7 -0.0106 0.00328 -0.9305 0.0102 -0.0092 4.62× 10−5 -0.2021 0.153 -0.0097 6.94× 10−4 -0.1130 0.561
Claude Sonnet 4 -0.0134 6.94× 10−4 -0.5653 0.0561 -0.0123 7.65× 10−7 -0.0420 0.749 -0.0097 0.00106 -0.7260 0.00853
InternVL3 (14B) -0.0053 0.114 -0.0587 0.798 -0.0062 0.00363 +0.0727 0.567 -0.0121 1.95× 10−4 -0.3154 0.191
Phi-4 Multimodal (14B) +8× 10−4 0.791 −4× 10−6 0.999 -0.0070 0.0082 -0.0935 0.595 -0.0015 0.594 +0.0193 0.931
Qwen2.5VL (32B) -0.0053 0.114 -0.0587 0.798 -0.0137 2.63× 10−6 -0.1847 0.291 -0.0080 0.0129 -0.8284 0.0209
Qwen2.5VL (7B) -0.0065 0.0692 -0.2718 0.308 -0.0042 0.0839 +0.0236 0.878 -0.0083 0.0084 -0.2162 0.386
Mistral Small 3.1 (24B) -0.0160 0.00103 -0.2182 0.449 -0.0108 4.53× 10−5 -0.2331 0.188 -0.0081 0.00918 -0.2546 0.309
Gemma 3 (27B) -0.0133 0.00321 -0.5133 0.136 -0.0165 5.01× 10−7 -0.1152 0.509 -0.0121 8.13× 10−4 -0.4617 0.139
Molmo (7B) +0.0035 0.343 -0.4027 0.21 -0.0046 0.107 +0.2088 0.188 -0.0030 0.368 +0.0790 0.746
Llama-3.2 Vision (11B) -0.0020 0.521 -0.4820 0.0868 -0.0141 6.07× 10−5 -0.2813 0.252 -0.0079 0.0303 -0.1177 0.683

The statistics in Table 2 also suggest that these models are not performing human-like tracing. The
strongest predictor of model performance across all trials is distance, with high confidence (p ≤ 0.05)
across almost all models on the Standard and Unique Colors trials. The crossings effect is strongest
in the highest-performing models.

Failure Modes Across all Circuit Connections trials, the models’ success rates and our log odds
analysis indicate that no model performs contour tracing. They cluster into two groups— one
which does slightly better than random on Unique Colors and Standard, and the three models which
significantly beat random accuracy.
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Most models we tested show a complete inability to perform line tracing. These models perform at or
below random chance (14.29%) across all three variants of the Circuit Connections task (Standard,
Single Color, Unique Colors), as depicted in Figure 6.

This widespread low accuracy suggests these models cannot trace lines, and our log-odds analysis in
Table 2 supports this assertion. Many models in this group show a significant correlation between
Euclidean Distance and success in the Standard or Unique Colors trials when they beat random
accuracy. However, the statistical significance of this effect disappears in the Single Color variant
(e.g., MOLMO (7B) p=0.343) The wire-crossings effect for this group remains largely insignificant
across all variants. This general lack of sensitivity to crossings is evidence they do not perform
human-like line tracing— intuitively, the task of line-tracing is hardest when two lines interfere. We
hypothesize they are able to exceed random accuracy by using color-cues and proximity heuristics.

Top performing models, such as GEMINI 2.5 PRO, CLAUDE 3.7 SONNET, and O4-MINI, form
a second group that performs better but still demonstrates significant limitations in tracing. Their
accuracy drops significantly when color cues are removed or made uniform. For example, GEMINI
2.5 PRO’s accuracy falls from 48% on Unique Colors to 27% on Single Color. While tracing is
expected to be harder when wires of the same color interfere, this low performance suggests either a
lack of, or severely limited, tracing ability. The Euclidean distance of the connecting wire remains a
significant negative predictor for these models across all trials. However, what distinguishes them
from the first group is that these models do exhibit a statistically significant negative crossing effect
in the challenging Single Color trial, where wires often cross other wires of the same color (e.g
CLAUDE 3.7 SONNET shows a log-odds coefficient of -0.9305 (p=0.0102) for the crossings effect in
this variant.) This behavior is consistent with a tracing algorithm, where crossings represent visually
ambiguous points. However, because these models also do poorly in Unique Colors compared to
humans, we suspect these models are possibly performing choppy, saccadic movements to find
successive points on the wire rather than a smooth trace. This strategy aligns with the statistics: in
the Single Color variant, models get caught in wire crossings and struggle to accurately jump to the
next segment, impacting performance.

5 Conclusion

We introduce a suite of targeted tasks to distill nonlocal visual reasoning into three components:
comparative perception, saccadic search, and smooth visual search. Most VLMs tested fail each
benchmark, even those designed to deal with structured data. Closed-source VLMs achieved the
highest accuracy but performed wildly differently under slight permutations of the underlying task.
The task with the lowest performance ceiling was Circuit Connections, which requires smooth visual
search. This suggests a principal limitation of these models is their difficulty with tasks that resist
natural language reformulation.

This suggests that despite gains on other visual benchmarks, VLMs lack a reliable framework to
analyze images. Without these capabilities, the vision of VLMs will remain fundamentally less robust
than human vision.

Limitations. While our synthetic setting isolates primitives, it does not capture the complete gamut
of natural images, which may only require visual skims to parse correctly. Additionally, we evaluate
on only 200 or 125 examples per variant for cost-efficiency reasons.
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A Task Details: Examples and Prompts

This section provides visual examples for each task category, its variants, and the prompts used.

A.1 Object Re-Identification

In this task the model must determine if an object in ‘Image 1’ is identical to an object in ‘Image
2’ under allowed transformations, possibly with distractor shapes present. For clarity, we provide
examples for its three variants.
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Figure 7 shows examples for the Standard variant where object components are contiguous. Figure 8
illustrates the Unconnected variant where object components are not necessarily connected. Figure 9
displays the Pixel-Perfect variant, where positive examples have no rigid transformation applied to
the object between ‘Image 1’ and ‘Image 2’ (though distractors may be present in Image 2).

(a) Standard Variant (Positive Example - Objects are the same)

(b) Standard Variant (Negative Example - Objects are different)

Figure 7: Examples of the Object Re-Identification (Standard Variant) task. Prompt: “The first image
shows an object made of connected geometric shapes, which together form an object. Does this
SAME object appear in the second image? For example, if a component shape were to be rotated or
translated separately from the entire composite-object, it would be a different object. Respond with
{yes} or {no} (inside the curly brackets). There may be extra shapes in Image 2 that are not part of
the original object; as long as the object from Image 1 is present, the answer is yes even if there are
other shapes present.” [Two examples with answers would precede this.]

A.2 Visual Scavenger Hunt

In Visual Scavenger Hunt, the model is presented with a grid of different-colored shapes, each labeled
with a different color-shape pair, as shown in Figure 10. The image generation procedure for the grid
is identical across variants; the only change is the chain length (number of steps) the model must
follow.
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(a) Unconnected Variant (Positive Example)

(b) Unconnected Variant (Negative Example)

Figure 8: Examples of the Object Re-Identification (Unconnected Variant) task. Prompt: “The first
image shows an object made of geometric shapes, which together form an object. Does this SAME
object appear in the second image up to a rigid translation, rotation, and scale of the ENTIRE object
as a whole? Respond with {yes} or {no}. There may be extra shapes in Image 2 that are not part of
the original object; as long as the object from Image 1 is present, the answer is yes even if there are
other shapes present.” [Two examples with answers would precede this.]

A.3 Circuit Connections

The Circuit Connections task (Section 3.3) assesses smooth visual search, requiring the model to
trace a wire from a specified port on a central breadboard to its connected component. Examples for
its three variants, based on wire coloring, are shown in Figure 11: the Standard Variant (Figure 11a),
where multiple wires can share colors; the Single Color Variant (Figure 11b), where all wires are the
same color; and the Unique Colors Variant (Figure 11c), where each wire has a distinct color.

B Evaluation Methodology and Supplementary Information

B.1 Evaluation Parameters

Certain models—specifically MOLMO (7B) and LLAMA 3.2 VISION (11B)—technically accept
multiple images as input, although their documentation advises against this practice. Accordingly,
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(a) Pixel-Perfect Variant (Positive Example)

(b) Pixel-Perfect Variant (Negative Example)

Figure 9: Examples of the Object Re-Identification (Pixel-Perfect Variant) task. Prompt:“The first
image shows an object made of geometric shapes, which together form an object. Does this SAME
object appear in the second image? For example, if a component shape were to be rotated or translated,
it would be a different object. Respond with {yes} or {no} (inside the curly brackets). There may be
extra shapes in Image 2 that are not part of the original object; as long as the object from Image 1 is
present, the answer is yes even if there are other shapes present.” [Two examples with answers would
precede this.]

we ran each of these models twice in the few-shot setting: once with the image-based demonstrations
and once without. We report the higher score of the two runs in every case. For LLAMA 3.2 VISION
(11B) the inclusion of additional example images yielded higher accuracy on every run. MOLMO
(7B) attained the best performance when the demonstrations were omitted.

Secondary metrics for o3 were captured incorrectly due to a bug in the evaluation code. They are
thus omitted from Figure 3 and Table 2.

B.1.1 Computational Resources

Experiments were conducted using a combination of local high-performance computing resources
and commercially available model APIs. For the open-source models, we evaluated locally on
a system equipped with three NVIDIA A6000 GPUs (48GB VRAM each) and dual Intel(R)
Xeon(R) Gold 5220R CPUs @ 2.20GHz. For other models, we accessed them via API. We
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Figure 10: Example of the Visual Scavenger Hunt task. For a chain length of 4, the prompt would be:
“Starting at the blue triangle, follow the labels for 4 steps. (For instance, in a different example of 4
steps, you might start at a blue triangle, then go to a red square, then a blue circle, then a magenta
triangle, then a green circle. The answer would be green.) After those steps, what color are you on?
Answer with the color in curly braces, e.g. {red}.” [A single example tracing a path (accompanied by
an image) would precede this, e.g: “We start at the blue square, and then go to the purple triangle, and
then go to the yellow square, and then go to the red square, and then end at the gray square. {gray}” ]

(a) Standard Variant (b) Single Color Variant (c) Unique Colors Variant

Figure 11: Examples of the Circuit Connections task variants. The prompt: “Which component does
the wire from port 7 on the breadboard, which is the gray rectangle with numbered ports, connect to?
A wire is a series of connected, same colored lines that go from the center of a port, represented on
the screen as a white circle, to another port. Each wire only connects two ports, one at either end. A
wire will NEVER turn at the same spot that it intersects another wire, and wires do not change colors.
Answer with the component label in curly braces, e.g {C0}.” [Two examples would precede this.]

evaluated CLAUDE 3.7 SONNET, GEMINI 2.5 PRO, and CLAUDE SONNET 4 via OpenRouter at
model codes anthropic/claude-3.7-sonnet:thinking, google/gemini-2.5-pro-preview,
and anthropic/claude-sonnet-4, respectively. These OpenRouter models were evaluated
between May 1, 2025 and May 15, 2025 (for CLAUDE 3.7 SONNET and GEMINI 2.5 PRO)
and between September 17, 2025 and September 20, 2025 (for CLAUDE SONNET 4). The
OpenAI models were evaluated via the OpenAI API at model codes o4-mini-2025-04-16,
o3-2025-04-16, and gpt-5-2025-08-07. We gathered model responses for these evaluations
between April 28, 2025 and May 14, 2025 for o4-mini-2025-04-16, between July 24, 2025 and
July 27, 2025 for o3-2025-04-16, and between September 17, 2025 and September 20, 2025 for
gpt-5-2025-08-07.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the paper’s focus on evaluating
nonlocal visual reasoning in VLMs, the specific capabilities tested (comparative perception,
saccadic search, smooth visual search), and the main findings of model underperformance,
all of which are substantiated by the experimental results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a Limitations paragraph at the end of Section 5, acknowledging
the synthetic nature of the dataset and the limited number of examples per variant.
Guidelines:The paper includes a “Limitations” paragraph at the end of Section 5, acknowl-
edging the synthetic nature of the dataset and the limited number of examples per variant.

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is primarily an empirical evaluation of Vision Language Models
and does not introduce new theoretical results or mathematical proofs requiring formal
assumptions and derivations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release our generator, evaluation sets, and evaluation code in the Introduc-
tion, and will provide all evaluation details not currently in the paper in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The Experiments section and the Appendix specify the evaluation settings for
the tested VLMs, including temperature, few-shot examples, and the number of examples
per task variant. We also provide access to our generator and the specific examples we tested.
Our data is fully reproducible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We list some evaluation details in the Experiments section and the rest in the
supplemental Appendix. We do not train any models as part of our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Figures 2 and 4 include error bars in the accuracy plots. Table 2 reports
p-values for log odds coefficients, indicating statistical significance of certain effects.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this information in the supplemental Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research involved evaluating existing AI models on procedurally generated
synthetic data and focused on model capabilities and limitations. None of this appears to
present ethical concerns conflicting with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discusses the potential harms of VLMs that rely more on vision in
the Limitations section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The assets we release are procedural generators for synthetic evaluation tasks
involving abstract visual elements, which do not inherently pose a high risk for misuse in
the manner of large pre-trained models or datasets with sensitive information.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We only use external model assets, and cite them all properly.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release a procedural generator and some data in Section 1, and document it
at that repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not crowdsource or conduct an experiments with outside human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The human performance baseline was established through self-evaluation by
an author and lab-mates, not research with external human subjects that would typically
require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research evaluates Vision Language Models (VLMs), which inherently
contain LLM components. LLMs are the object of the study, not a methodological tool used
by the authors in an original or non-standard way to develop the research itself.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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