
Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency
for Tool Planning

Anonymous ACL submission

Abstract

The emergence of large language mod-001
els (LLMs) has opened up unprecedented pos-002
sibilities for automating complex tasks that are003
often comparable to human performance. De-004
spite their capabilities, LLMs still encounter005
difficulties in completing tasks that require006
high levels of accuracy and complexity due007
to their inherent limitations in handling mul-008
tifaceted problems single-handedly. This pa-009
per introduces ‘Smurfs’, a cutting-edge multi-010
agent framework designed to revolutionize the011
application of LLMs. By seamlessly trans-012
forming a conventional LLM into a synergistic013
multi-agent ensemble, Smurfs can enhance the014
model’s ability to solve complex tasks at no015
additional cost. This is achieved through inno-016
vative prompting strategies that allocate distinct017
roles within the model, thereby facilitating col-018
laboration among specialized agents and form-019
ing an intelligent multi-agent system. Our em-020
pirical investigation on both open-ended task of021
StableToolBench and closed-ended task on Hot-022
potQA showcases Smurfs’ superior capability023
in intricate tool utilization scenarios. Notably,024
Smurfs outmatches all the baseline methods in025
both experiments, setting new state-of-the-art026
performance. Furthermore, through compre-027
hensive ablation studies, we dissect the con-028
tribution of the core components of the multi-029
agent framework to its overall efficacy. This030
not only verifies the effectiveness of the frame-031
work, but also sets a route for future exploration032
of multi-agent LLM systems.033

1 Introduction034

Tool manipulation has traditionally been seen as035

a distinctive human characteristic, dating back ap-036

proximately 2.5 million years (Oakley and Mu-037

seum, 1972; Ambrose, 2001). For large language038

models (LLMs), access to external tools can equip039

them with broader capabilities beyond their fixed040

language modeling knowledge. For example, the041

search engine API empowers ChatGPT to access 042

real-time information (Zhao et al., 2023). However, 043

LLMs still encounter several challenges when us- 044

ing multiple tools to solve tasks. These challenges 045

include effective solution planning and adaptability 046

to new tools. (Hao et al., 2024; Guu et al., 2020; 047

Qin et al., 2024). 048

This paper addresses the critical research prob- 049

lem of enhancing the problem-solving capabilities 050

of LLMs through the adoption of a plug-and-play 051

multi-agent system (MAS) framework (Dorri et al., 052

2018; Van der Hoek and Wooldridge, 2008). We 053

posit that a MAS approach can significantly aug- 054

ment the efficacy of LLMs in handling tasks that 055

require a high degree of precision, adaptability, and 056

comprehensive knowledge integration. 057

Pass Rate ↑
(%)

Win Rate ↑
(%)

of Tokens
per request ↓

of Tokens
per query ↓

ReACT 44.4±1.1 base 1,424 6,479
DFSDT 55.4±2.0 60.4 1,743 20,714
Smurfs (ours) 57.4±1.1 62.4 459 8,096

Table 1: Comparison of token cost and performance
between tool planning methods over StableToolBench.
Existing methods, ReACT and DFSDT, have limitations
due to high token costs or poor performance. The results
are averaged over the subtasks within StableToolBench.

To this end, we introduce ‘Smurfs’ an innovative 058

MAS framework inspired by the collaborative and 059

versatile nature of its namesake cartoon characters. 060

The proposed framework is based on the principle: 061

synergistic collaboration among specialized agents 062

can overcome the limitations faced by individual 063

LLMs. Each agent within the Smurfs framework is 064

designed to perform specific sub-tasks, facilitating 065

a more nuanced and effective approach to complex 066

problem-solving. Our research delves into the ar- 067

chitectural design, coordination mechanisms, and 068

the operational dynamics of integrating specialized 069

agents into a cohesive system. The effectiveness 070

of Smurfs is validated through both open-ended 071

1

I need recommendations for
top Paris hotels with
breakfast included. Please
suggest ten, with ratings
and reviews.

Planning Agent
Subtask 2:
Ratings and reviews
of suggested hotels.

Subtask 1:
Ten hotels with
breakfast in Paris

xxxxxx
xxxxxx
xxxxxx

Executor Agent Answer Agent

Hotels:
1. xxx

....

TODO List

Verifier Agent

Reject & Redo

Accept & Continue

xxxxxx
xxxxxx
xxxxxx

Answer Agent

Review:
1. xxx

....

Verifier Agent

Reject & Redo

Max Try

Final Answer:
Here are the
hotels in Paris and
their reviews:…

WebPage

Booking

Accept & Answer

Executor Agent

Hint For Next Step

Hint For Next Step

Figure 1: Demonstration of the whole process of the Smurfs framework.

and closed-ended tool planning benchmark experi-072

ments (Guo et al., 2024; Yang et al., 2018), where073

the proposed MAS system consistently outperform074

baseline methods on both benchmarks. An ablation075

study followed by a case study further investigates076

the underlying reasons for this effectiveness. These077

results not only establish a new state-of-the-art in078

the field but also offer concrete evidence of the079

multi-agent approach’s efficacy in enhancing LLM080

capabilities.081

The contributions of this paper can be summa-082

rized as follows:083

1. We introduce a novel plug-and-play MAS084

framework to enhance the tool planning capa-085

bilities of LLMs. Experiments demonstrate086

the effectiveness of this approach, which is087

also more cost-efficient compared to existing088

tool planning methods.089

2. Ablation studies further reveal the underly-090

ing reasons for the effectiveness of the MAS091

framework, providing valuable insights for092

future research.093

2 Motivation094

2.1 Multi-Tool Planning095

To augment LLMs to do multi-tool planning for096

solving complex problems, previous work has097

seen numerous attempts. Chain-of-Thought (Wei098

et al., 2023) was the first to propose the method of099

thought and answer chain reasoning. ReACT (Yao100

et al., 2022) further introduced the thought-action-101

observation format for tool chain reasoning, lead-102

ing to the development of various multi-tool plan- 103

ning methods (Chen et al., 2023a; Xu et al., 2023; 104

Shinn et al., 2023). The latest work, DFSDT (Qin 105

et al., 2024), was proposed to address the inher- 106

ent limitations of CoT and ReACT: error propa- 107

gation and limited exploration. Deep First Search 108

Decision Tree, denoted as DFSDT, is powerful in 109

addressing multi-tool planning problems. Its core 110

concept involves employing a depth-first search 111

(DFS) approach for multi-tool planning (for more 112

details, see Appendix A). When a tool fails or is 113

deemed inadequate for solving the current problem, 114

DFSDT backtracks to the previous solution state 115

and attempts to resolve the issue using a different 116

tool. However, several limitations were identified 117

with the mechanism of DFSDT: (1) instability of 118

the rollback mechanism, (2) redundant context, 119

and (3) premature termination. The following 120

sections will introduce these limitations in detail. 121

2.1.1 Instability of the Rollback Mechanism 122

The rollback mechanism in DFSDT is determined 123

by the model. The number of steps to roll back and 124

the selection of new tools after rollback are guided 125

using prompt containing the errors encountered in 126

the previous failed trajectory. When the model is 127

sufficiently robust, this rollback mechanism serves 128

as a highly flexible and efficient planning strategy. 129

However, when the model’s capability is insuffi- 130

cient, it will fail to execute the correct rollback 131

mechanism, i.e. retry the same error tools or roll 132

back too far. 133

2

2.1.2 Redundant Context134

In the process of planning with DFSDT, each tool135

plan is generated using the entire conversation his-136

tory (including all the thoughts, actions, action in-137

puts and tool responses) as context. However, in138

reality, each step of tool planning only requires a139

very small portion of the relevant history for effec-140

tive planning.141

The context redundancy not only increases com-142

putational overhead but also reduces the accuracy143

of model inference due to the inclusion of irrele-144

vant historical data. As highlighted by (Liu et al.,145

2024), redundant context become particularly no-146

ticeable in tasks requiring assimilation and process-147

ing of large inputs, like verbose tool documents and148

API responses. The situation worsens when LLMs149

are supplemented with external information, such150

as document retrieval or online searching (Petroni151

et al., 2020; Ram et al., 2023; Mallen et al., 2022).152

Although numerous language models capable of153

handling larger contexts are emerging (Dai et al.,154

2019; Dao et al., 2022), they often face significant155

performance degradation when the important in-156

formation is located at some positions (Liu et al.,157

2024; Shi et al., 2023), which is known as the ‘lost-158

in-the-middle’ problem.159

2.1.3 Premature Termination160

The termination mechanism set by DFSDT in-161

volves adding a termination tool to the model’s162

selectable toolkit. When the model selects this163

termination tool, DFSDT stops and provides an an-164

swer. However, in practical applications, this mech-165

anism often prematurely terminates when dealing166

with complex problems requiring multi-step rea-167

soning. We hypothesize that this issue arises due168

to the redundant interference of other tool infor-169

mation and history information, which disrupts the170

model’s ability to judge whether the original prob-171

lem should be terminated. Instead, the model fo-172

cuses on whether the current sub-problem requires173

termination, leading the mechanism to terminate174

after resolving the sub-problem.175

2.2 Multi Agent System176

To address the limitations inherent in DFSDT and177

to further enhance LLM’s multi-tool planning ca-178

pabilities, multi-agent system (MAS) has emerged179

as a natural solution. Inspired by human social180

division of labor and cooperation, MAS aim to en-181

able AI agents to accomplish more complex tasks182

more effectively and efficiently through the divi-183

Method Multi-Agent Training Generality Reflection Planning
REACT (Yao et al., 2022) ✗ ✗ ✔ ✗ Iterative
Reflexion (Shinn et al., 2023) ✗ ✗ ✔ ✔ Iterative
Chameleon (Lu et al., 2023) ✗ ✗ ✔ ✗ Global
HuggingGPT (Shen et al., 2023) ✗ ✗ ✔ ✗ Global
BOLAA (Liu et al., 2023) ✔ ✗ ✔ ✗ Iterative
AgentVerse (Chen et al., 2023b) ✔ ✗ ✔ ✗ Iterative
FIREACT (Chen et al., 2023a) ✗ ✔ ✗ ✔ Iterative
DFSDT (Qin et al., 2024) ✗ ✔ ✗ ✗ Iterative
RESTGPT (Song et al., 2023) ✔ ✗ ✔ ✗ Iterative
Lumos (Yin et al., 2024) ✔ ✔ ✗ ✗ Iterative or Global
AutoAct (Qiao et al., 2024) ✔ ✔ ✗ ✔ Iterative
Smurfs (Ours) ✔ ✗ ✔ ✔ Iterative and Global

Table 2: Comparison of related works.

sion of labor and collaboration. Previous works 184

(Song et al., 2023; Liu et al., 2023; Chen et al., 185

2023b; Yin et al., 2024; Qiao et al., 2024) has lever- 186

aged MAS to achieve this goal. Table 2 shows the 187

difference between them. Based on those works, 188

we further design the MAS named Smurfs to ad- 189

dress issues with DFSDT. By dividing tasks among 190

different agents, each agent can focus on a spe- 191

cific part of the DFSDT task, accessing only the 192

necessary history as context during task execution, 193

which effectively addresses the issue of redundant 194

context. The redesign of the rollback mechanism 195

to incorporate memory and tool list rollback mech- 196

anisms addresses the instability of the rollback 197

mechanism. Drawing on the concept of least-to- 198

most prompting (Zhou et al., 2023), the original 199

problem is first decomposed into sub-problems for 200

macro-level planning. Subsequently, DFSDT is 201

used to solve each sub-problem at the micro-level, 202

with macro-level planning guiding the micro-level 203

planning, thereby resolving the issue of premature 204

termination. 205

3 Smurfs: A framework with multiple 206

agents 207

The Smurfs, the beloved cartoon characters, sym- 208

bolize unity and resourcefulness, and are good at 209

using tools to overcome any challenge they en- 210

counter. 211

3.1 Framework Overview 212

Figure 1 illustrates the entire workflow for the 213

Smurfs framework. Initially, the Planning Agent 214

identifies the user’s complex request and breaks it 215

down into manageable sub-tasks. Executor Agents 216

are then tasked with collecting task specific infor- 217

mation, utilizing access to external tools. Answer 218

Agent compiles the findings into a cohesive re- 219

sponse, which is subsequently verified by the Veri- 220

fier Agent to ensure accuracy and relevance. Each 221

agent focus on its own task and only use the rel- 222

evant part of the conversation history to reduce 223

the Redundant Context. This process exempli- 224

3

Executor Agent

Answer Agent

Verifier Agent

hint

tool call

answer

answer

Answer Agent

Tool response normally

Tool Error:Delete tool at this step

Next Step:
Reset tool list

Backtrack when
tool list is empty

Won't restart

Reach max steps

Add history

Reject Accept

Tool Error: Restart this step

subtask local memory

global memory

tool list

Add history

Backtrack when
tool list is empty

Figure 2: Details of the subtask-solving process of the Smurfs framework. The dotted line represents that the agent
can see the memory and the full line stands for operation.

fies the framework’s capability to efficiently han-225

dle complex queries by leveraging the specialized226

roles of multiple agents, thereby ensuring both the227

precision of task execution and the quality of the228

output. In the following sections, the system mech-229

anism and functions of each agent will be detailed.230

More details of memory system can be seen at Ap-231

pendix B.232

3.2 Agent Components233

Tools The tool documents about the tools that234

Smurfs can utilize in the completion of a complex235

task are denoted as D = {ni, di, pi}|d|i=1, where n236

represents the tool name, d represents tool usage237

description, p represents parameter description and238

|d| represents the amount of the available tools. The239

available tool list is denoted as τ = {ni, di}|τ |i=1. τt240

denotes the tool list Smurfs can utilize at time t.241

Memory The memory of the agent system at242

time t is the history of the task-solving process243

before t, denoted as M = (m1,m2, ...,mt−1) and244

mi = (γi, ai), where mi represents memory ele-245

ment at time i and γi, ai represents thought and246

answer generated by the system at time i. There247

are two types of memory in Smurfs: local mem-248

ory and global memory. the local memory is used249

to record the ongoing solution trajectory and to250

generate the next action in the current trajectory.251

The global memory, meanwhile, records all trajec-252

tories and is used to generate the sub-problem’s253

answer by combining all trajectory records when254

the maximum number of retries is exceeded. This255

local-global combined memory system ensures that 256

the planning of the current solution trajectory is not 257

influenced by the context of erroneous trajectories. 258

It also generates an answer that combines all tra- 259

jectories when the verifier agent cannot determine 260

task completion within the maximum number of 261

planned steps. This memory system ensures con- 262

text efficiency during the task-solving process. 263

3.3 Macro Planning 264

Planning Agent The primary responsibility of 265

the Planning Agent is doing macro-level planning 266

through task decomposition to prevent premature 267

termination. The inference process of the Plan- 268

ning Agent is: 269

Plan P : (p1, p2, ...) = PA(q) (1) 270

Where pi represents sub-problem of the original 271

query q, PA represents the Planning Agent. After 272

the task decomposition, the agent system will use 273

Executor Agent, Answer Agent an Verifier Agent 274

to solve each sub-problem using DFSDT collabora- 275

tively in a sequential order. To utilize the answer of 276

the previous sub-problem when solving subsequent 277

sub-problem, the strategy known as least-to-most 278

prompting (Zhou et al., 2023) is used. 279

3.4 Subtask Solving Process 280

After introducing the function of plan agent, this 281

section outlines how the agents collaborate to solve 282

sub-tasks, as shown in Figure 2. 283

4

Stable Rollback To address the instability of284

the rollback mechanism in DFSDT, we propose285

a rollback mechanism based on rules. Whenever286

an error occurs while using a tool τt,i at time t, the287

tool list at t τt will pop τt,i out and reperform tool288

selection and tool planning (ensuring that the faulty289

tool is not selected again). If, at time t, the tool290

list becomes empty, it signifies that after the sys-291

tem choosing tool τt−1,j at time t-1, no subsequent292

trajectory can solve the problem. In this case, the293

agent system will roll back to time t-1, meaning294

that the local memory M will pop out the memory295

element mt−1 at time t-1, and the tool list at time296

t-1 τt−1 will pop out tool τt−1,j . The agent system297

will then set the time t=t-1 and continue planning.298

This rule-based rollback mechanism, compared to299

the original model-based rollback mechanism of300

DFSDT, is less flexible and might reduce rollback301

efficiency. However, it is more stable, ensuring302

the correctness of deep first search and enabling303

models with weaker capabilities to utilize DFSDT304

on tool planning.305

Executor Agent The Executor Agent is respon-306

sible for choosing and executing the tools to solve307

the sub-tasks. At each time t, the agent can invoke308

one tool to tackle the given task:309

γ = EA.gen_thought(p,M, τ, h) (2)310

α = EA.choose_tool(p, γ, τ) (3)311

β = EA.gen_arguments(p,M,D[α]) (4)312

r = EA.call_tool(α, β) (5)313

Where p is the sub-problem from Planning Agent,314

h is the hint from the Verifier Agent, τ is the tool315

list, M is local memory, D[α] means the tool doc-316

ument of tool α. The agent, using the ReACT317

format (Yao et al., 2022) to choose the tool and318

arguments, then execute the tool. Noticed that each319

inference process only uses the relevant part from320

the local memory and tool list to reduce the con-321

text redundancy. More detailed information of the322

Executor Agent can be found in Figure 6.323

Answer Agent To mitigate the performance324

degradation caused by lengthy contexts, we intro-325

duce the Answer Agent role, designed to extract326

crucial content for each step and sub-problem:327

Answer : a = AA(q, r,M) (6)328

Where q is sub-problem from the Planning Agent, r329

is response from the Executor Agent, M is the local330

memory (or global memory if max retry reaches). 331

As the ‘lost-in-the-middle’ theory described in sec- 332

tion 2.1, retaining all information may not always 333

be beneficial, particularly in cases where the so- 334

lution path is challenging to discern. Therefore, 335

the primary role of the Answer Agent is to suc- 336

cinctly summarize the generated answers and tool 337

responses to maintain the memory efficiency. 338

Verifier Agent The Verifier Agent serves as an 339

early-stopping and reflection mechanism, allowing 340

for a balance between effectiveness and efficiency 341

h, c = V A(q, a) (7) 342

Where q denotes the sub-problems from the Plan- 343

ning Agent, a denotes the answer from the answer 344

agent, h and c denotes hint and check status respec- 345

tively. If check status generated is 0, that means the 346

Verifier Agent thinks the sub-problem isn’t com- 347

pleted, the system will add the thought and an- 348

swer of this time to the local and global memory, 349

set t=t+1 and continue the inference procedure.If 350

check status is 1, the sub-problems is thought to 351

be solved and the system will start to deal with the 352

next sub-problem. 353

4 Experiments 354

To evaluate both the effectiveness and efficiency of 355

the Smurfs framework, in thie section, we carried 356

out two multi-tool planning tasks: (1) an open- 357

ended task, StableToolBench (Guo et al., 2024), 358

and (2) a closed-ended task, HotpotQA (Yang et al., 359

2018). In addition to these main experiments de- 360

signed to assess the entire framework, we con- 361

ducted an ablation studies followed by a case study 362

to test the capabilities of each component within 363

the multi-agent framework and investigate the un- 364

derlying reasons for its effectiveness. 365

4.1 Open-ended Task: StableToolBench 366

StableToolBench is a tool learning benchmark de- 367

rived from ToolBench (Qin et al., 2024), encom- 368

passing multi-step tool usage tasks across over 369

16,000 APIs. The benchmark employs two metrics 370

for evaluation: (1) Pass Rate measures the percent- 371

age of instructions successfully executed within 372

the allocated budget. (2) Win Rate represents the 373

preference selection by a ChatGPT evaluator when 374

presented with two solution paths. 375

Baselines Following the original paper that intro- 376

duced the benchmark, we adopt ReACT (CoT) (Wei 377

5

Backbone Method
StableToolBench

I1-Inst. I1-Cat. I1-Tool. I2-Cat. I2-Inst. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

GPT-3.5 Turbo ReACT 41.6±1.2 / 48.4±0.5 / 52.5±0.5 / 52.2±1.0 / 31.6±1.2 / 39.9±2.0 / 44.4±1.1 /
GPT-3.5 Turbo DFSDT 54.1±1.0 64.4 60.1±0.0 61.4 59.9±1.7 53.8 60.9±0.9 62.9 52.8±3.7 66.0 44.3±4.8 54.1 55.4±2.0 60.4
GPT-3.5 Turbo Smurfs 60.3±1.5 65.0 67.0±1.0 69.9 60.3±1.3 54.4 54.3±0.4 63.7 42.6±1.6 64.2 60.1±1.0 57.4 57.4±1.1 62.4
Mistral-7B ReACT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral-7B DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral-7B Smurfs 76.3±0.8 63.8 86.7±1.2 62.7 81.0±1.9 58.2 70.4±2.7 54.0 63.8±2.4 67.0 85.2±0.7 57.4 77.2±1.6 60.5
GPT-4 Turbo ReACT 41.1±1.5 60.1 53.2±1.3 62.1 42.2±1.1 48.1 50.0±0.7 57.3 38.7±0.8 65.1 37.7±1.3 47.5 43.8±1.1 56.7
GPT-4 Turbo DFSDT 52.7±1.4 69.9 58.2±0.9 66.0 59.7±1.2 58.2 59.3±0.7 62.1 52.2±2.3 67.9 61.5±1.8 65.6 57.3±1.4 65.0
GPT-4 Turbo Smurfs 59.3±1.4 71.2 73.3±1.3 72.5 67.4±0.7 69.6 66.7±1.9 73.4 55.5±1.4 66.0 70.5±0.0 72.1 65.5±1.1 70.8

Table 3: The open-end tool planning task evaluation on the StableToolBench benchmark (Guo et al., 2024). The
most effective approach is highlighted in bold, while the second-best is underlined. Win rate is calculated by
comparing each model with ChatGPT-ReACT. A win rate higher than 50% means the model performs better than
ChatGPT-ReACT.

et al., 2023) and DFSDT (Touvron et al., 2023) as378

baseline methods for comparison. Additionally, we379

include the backbones used in the paper: gpt-3.5-380

turbo-0613 (GPT-3.5 Turbo) (OpenAI) and gpt-4-381

turbo-preview (GPT-4 Turbo). To explore the adapt-382

ability of the tool-planning methods, we also in-383

clude Mistral-7B-Instruct-v0.2 (Mistral-7B) (Jiang384

et al., 2023) as one of the selected backbones in385

our experiments.386

Settings To minimize the influence of varying387

tool APIs on experimental results, we conducted388

all experiments using the same API cache (Guo389

et al., 2024). For a fair comparison among the390

candidate methods and to reduce variability, each391

model was executed once and evaluated three times,392

with results averaged. Other settings follow those393

specified in the original benchmark paper.394

Results Table 3 displays the results on Stable-395

ToolBench. For the untrained LLM, Mistral-7B,396

existing agent frameworks did not improve its per-397

formance in tool planning tasks; Mistral-7B failed398

these tasks when integrated with the ReACT and399

DFSDT frameworks 1. However, Smurfs exhibited400

exceptional performance: when combined with401

Mistral-7B, Smurfs achieved competitive scores402

among the baselines. Through its task decomposi-403

tion mechanism, Smurfs transforms long-context404

tasks into simpler ones, enabling the untrained405

model to effectively utilize external tools for man-406

aging complex tasks. Regarding closed-source407

models, specifically GPT4 in these experiments,408

Smurfs also demonstrated outstanding performance409

on the benchmark compared to other agent frame-410

works and achieved state-of-the-art results on the411

benchmark. Its high success rate suggests that412

1Experiment results show that Mistral-7B failed to cor-
rectly execute the ‘finish’ action during inference, resulting in
invalid responses.

Smurfs is more effective at finding optimal solution 413

paths compared to ChatGPT. 414

Further Analysis We conducted a detailed anal- 415

ysis of the token costs associated with each tool 416

planning method for the tasks, a critical evaluation 417

aspect for multihop reasoning tasks. As shown in 418

Table 1 (detailed in Appendix E), the average token 419

costs per question and API request are evaluated 420

for ReACT, DFSDT, and Smurfs on StableTool- 421

Bench. The analysis reveals that DFSDT generally 422

requires about 20,000 tokens per question, encom- 423

passing both prompt and completion tokens. This 424

is nearly three times the token cost compared to 425

ReACT and twice as much as Smurfs. Despite 426

this higher token cost, DFSDT does not demon- 427

strate commensurate effectiveness improvements 428

over other methods. These findings underscore the 429

cost-efficiency of the proposed MAS framework, 430

Smurfs, which not only reduces token expenditure 431

in solving multihop planning tasks but also delivers 432

outstanding performance in evaluations. 433

4.2 Closed-ended Task: HotpotQA 434

Compared to open-ended tasks, closed-ended tasks 435

provide a more stable and robust evaluation. To this 436

end, we evaluate the methods on HotpotQA (Yang 437

et al., 2018) in addition to StableToolBench. Hot- 438

potQA is a multi-hop QA task that is challenging 439

due to the requirement for rich background knowl- 440

edge, with answers typically being short entities or 441

yes/no responses. 442

Baselines The compared baselines include CoT 443

(Wei et al., 2023), REACT(Yao et al., 2022), 444

Chameleon(Lu et al., 2023), Reflexion (Shinn 445

et al., 2023), BOLAA (Liu et al., 2023), ReWOO 446

(Xu et al., 2023), FIREACT (Chen et al., 2023a), 447

AutoAct(Qiao et al., 2024). 448

6

Backbone Method Single-Agent

² Multi-Agent

HotpotQA
Easy Medium Hard All

GPT-3.5
Turbo

u CoT 48.21 44.52 34.22 42.32
u Zero-Shot Plan 50.71 45.17 38.23 44.70

Mistral-7B
Instruct-v0.2

u CoT 33.70 22.38 22.14 26.07
u ReAct 38.09 27.57 22.05 29.24
u Chameleon 37.07 26.67 19.20 27.65
u Reflexion 40.78 35.02 28.36 34.72
u ² BOLAA 40.86 32.11 22.36 31.78
u ² ReWOO 38.42 31.89 25.98 32.10
u ² Smurfs (ours) 45.94 40.74 30.72 39.13
v FireAct 45.52 32.02 30.17 35.90
v ² AUTOACT 48.69 36.65 31.37 38.89

Llama-2
13B-chat

u CoT 37.90 25.28 21.64 28.27
u ReAct 28.68 22.15 21.69 24.17
u Chameleon 40.01 25.39 22.82 29.41
u Reflexion 44.43 37.50 28.17 36.70
u ² BOLAA 33.23 25.46 25.23 27.97
u ² ReWOO 30.09 24.01 21.13 25.08
u ² Smurfs (ours) 42.62 27.21 22.92 30.92
v FireAct 45.83 38.94 26.06 36.94
v ² AUTOACT 47.29 41.27 32.92 40.49

Llama-2
70B-chat

u CoT 45.37 36.33 32.27 37.99
u ReAct 39.70 37.19 33.62 36.83
u Chameleon 46.86 38.79 34.43 40.03
u Reflexion 48.01 46.35 35.64 43.33
u ² BOLAA 46.44 37.29 33.49 39.07
u ² ReWOO 42.00 39.58 35.32 38.96
u ² Smurfs (ours) 52.86 50.77 44.87 49.50
v FireAct 50.82 41.43 35.86 42.70
v ² AUTOACT 56.94 50.12 38.35 48.47

Table 4: The closed-end tool planning evaluation on
HotpotQA (Yang et al., 2018), with some results derived
from (Qiao et al., 2024). The most effective approach
for each group is highlighted in bold, while the second-
best is underlined. Methods marked with v require
model training.

Settings and Metrics Following the settings in449

(Qiao et al., 2024), we use open-source Llama-450

2 models (Touvron et al., 2023) and Mistral-7B451

(Jiang et al., 2023) as the backbones of each agent452

to evaluate the performance of Smurfs. The evalu-453

ation metrics is reward ∈ [0, 1], defined as the F1454

score grading between the prediction and ground-455

truth answer. For more details about the experi-456

ment, see Appendix C.457

Results Smurfs, as an untrained MAS system,458

not only comprehensively outperforms untrained459

agents but also achieves and even surpasses the460

accuracy of trained agents across most backbone461

models. This sufficiently demonstrates that the462

mechanism of smurfs ensures strong generalization463

capabilities while maintaining high effectiveness.464

Observations indicate that the performance of465

LLama-2-13b-chat on smurfs-related tasks is sub-466

optimal, likely due to its limited capabilities in467

tool arguments generation. Specifically, the pri-468

mary issue identified is that, when the Executor469

agent successfully selects relevant tool, it tends470

to produce hallucination arguments that can’t be471

used by the tools. This indicates that LLama-2-472

13b-chat may need further training for usage of473

tools. The experimental results may substantiate 474

this viewpoint, demonstrating that the untrained 475

methods of llama-2-13b-chat generally exhibit sig- 476

nificantly lower accuracy compared to the trained 477

methods. Nevertheless, Smurfs achieves the sec- 478

ond highest accuracy among the untrained methods, 479

only slightly behind reflexion, which still attests to 480

Smurfs’ capability. 481

I3-Inst.
Pass (%) Win (%)

GPT-3.5 Turbo with Smurfs 60.1±1.0 57.4
w/o Answer Agent 57.4±2.9 49.2
w/o Verifier Agent 54.1±2.7 42.6
w/o Planning Agent 35.5±3.3 42.6

GPT-4 Turbo with Smurfs 70.5±1.0 72.1
w/o Answer Agent 82.2±2.5 72.1
w/o Verifier Agent 79.2±0.8 63.9
w/o Planning Agent 71.9±2.8 63.9

Table 5: Ablation study on StableToolBench I3-Inst
subset to investigate the importance of each component
within the framework.

5 Ablation Study 482

5.1 Importance of each component in MAS 483

We performed an ablation study to investigate the 484

impact of each agent in our framework. We re- 485

moved each agent individually, except for the indis- 486

pensable Executor Agent, and compared the results 487

to the complete framework. Table 5 shows that 488

the Planning Agent is the most crucial component, 489

followed by the Verifier Agent, with the Answer 490

Agent being the least important. 491

(1) Verifier Agent Removal: Without verifi- 492

cation, the framework uses a general depth-first 493

search, leading to increased computational demand 494

and more tool invocations. 495

(2) Answer Agent Removal: Removing this 496

agent means the Executor Agent’s answers won’t 497

be summarized, risking the ’lost-in-the-middle’ 498

problem due to lengthy tool responses. As shown in 499

the results, a more intelligent model, GPT-4 Turbo, 500

can mitigate the negative impact of the Answer 501

Agent’s removal. We believe this is because the 502

more powerful model can leverage more informa- 503

tion effectively. 504

(3) Planning Agent Removal: Removing the 505

Planning Agent affects the global path-searching 506

strategy. Models with Smurfs may show reduced 507

performance without preliminary planning, as seen 508

in current frameworks like ReACT and DFSDT. 509

7

Subtask 1

Answer:
Based on the Star Wars Characters
tool, some character details have
been provided. For example, Luke
Skywalker is a character with blond
hair and fair skin. C-3PO is
...However, to provide the precise
details you're interested in, the name
of the specific Star Wars character is
needed. Once the specific
character's name is provided, more
detailed information including their
name, hair color and skin color can
be presented.

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Subtask 1:
Provide the details of a specific
Star Wars character, including...

Planner

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration.

Subtask 2:
Suggest some OTT platforms
that offer Star Wars movies.

Subtask 2

Answer:
Based on the results from the API
tool, several Star Wars themed
movies and series were identified.
These include 'Disney Gallery: Star
Wars: The Book of Boba Fett'...
However, the specific OTT platforms
offering these movies were not
identified. Therefore, to find out
which OTT platform the Star Wars
movies are available on, you will
need to manually check these
platforms. Depending on your region
and subscription, availability may
also vary.

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...]

Action input: {"title": "Star Wars"}

Action: search_for_ott_details Based on the information
provided, we have some details
about several Star Wars
characters. To name a few, we
have Luke Skywalker, who is a
character with blonde hair...Note
that these are general
descriptions, and for more specific
details about a particular
character, we would need the
name of that character. In terms of
finding inspiration from Star Wars
movies and series, we have
several options, such as 'Disney
Gallery: Star Wars: The Book of
Boba Fett',... However, we don't
have information on which OTT
platforms these movies and series
are offered. It would be best if you
manually check your preferred
OTT platforms as the availability
of these movies could vary
depending on your region and
subscription.

Final Answer

The details for the character 'Luke
Skywalker' are as follows:...For
your Star Wars-themed cosplay
event, Star Wars titles are
streaming on the following
platforms:\\n- Disney Gallery: Star
Wars: The Book of Boba Fett
(Documentary, 2022)\\n-
Doraemon the Movie: Nobita's
Little Star Wars 2021 (Action,
Adventure, Animation, 2022)\\n-
Star Wars Galactic Pals
(Animation, 2022)\\n- Revan: A
Star Wars Fan Film (Action,
Fantasy, Sci-Fi,
2022).\\n\\nPlease note that these
vary by region. You might want to
check them out for inspiration.
Enjoy your event!

Final AnswerAction 1

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Action 2

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...]

Action input: {"title": "Star Wars"}

Action: search_for_ott_details

Question

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration.

GPT4-
Smurfs

GPT4-
DFSDT

Figure 3: The illustration of how GPT4-Smurfs and GPT4-DFSDT solve long context problem. The two sub-
questions and their corresponding answers are marked in two colors.

The results demonstrate that the impact of remov-510

ing the Planning Agent is significant, as it directly511

influences the multihop reasoning ability of the512

MAS.513

5.2 Case Study514

As shown in Figure 3, although GPT4-DFSDT and515

GPT4-Smurfs use the same tool calls to solve the516

problem, GPT4-DFSDT only answers the first sub-517

question correctly while GPT4-Smurfs answers518

both sub-questions accurately. In the process of ad-519

dressing the second sub-question, it is notable that520

the tool response only mentions titles of film and521

television products related to "Star Wars", without522

addressing OTT platforms. GPT-4-DFSDT erro-523

neously interprets these titles as responses to the524

question, while GPT-4-Smurfs adeptly identifies525

this discrepancy and provides a more appropriate526

response. This case highlights that in situations527

where tool responses are lengthy and questions are528

complex, the single agent framework like DFSDT529

may be susceptible to distractions from irrelevant530

information, leading to erroneous answers. Con-531

versely, the context-efficient Smurfs framework532

demonstrates a reduced susceptibility to irrelevant533

information, thereby generating more accurate an-534

swers. 535

6 Conclusion 536

In this study, we present a novel MAS framework, 537

‘Smurfs’, tailored to enhance the planning and rea- 538

soning capabilities of LLMs in handling complex 539

tasks that involve lengthy contexts and tools. We 540

conduct experiments on the multi-step tool usage 541

benchmark, StableToolBench and HotpotQA, and 542

the results demonstrate the overall effectiveness 543

and efficiency of the Smurfs framework compared 544

to baseline methods. 545

In conclusion, this research contributes to the ex- 546

panding field of study focused on enhancing LLM 547

capabilities, particularly for multi-step tool usage 548

tasks. It emphasizes the importance of task de- 549

composition, preliminary planning, and efficient 550

verification for improving task execution perfor- 551

mance. For future work, we believe incorporating 552

more dedicated and specific roles within the system 553

may further enhance effectiveness and efficiency, 554

based on the ‘Smurfs principle’: synergistic col- 555

laboration among specialized agents can overcome 556

the limitations faced by individual LLMs. 557

8

7 Limitations558

Model Size Constraints: Due to computational559

constraints, our experiments did not include larger560

and more diverse types of LLMs.561

Agent Component Scale-Up: Although we se-562

lected the most common and intuitive agent roles563

for the proposed MAS, there are many possibili-564

ties for researchers to explore. Investigating more565

well-designed agent roles may help improve the566

effectiveness of the agent system, and developing567

automated methods to identify these roles could568

facilitate effective scaling.569

Acknowledging these limitations, future re-570

search should aim to address these gaps to provide571

a more comprehensive understanding of the Smurfs572

framework’s capabilities and potential areas for im-573

provement.574

References575

Stanley H Ambrose. 2001. Paleolithic technology and576
human evolution. Science, 291(5509):1748–1753.577

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,578
Karthik Narasimhan, and Shunyu Yao. 2023a. Fire-579
act: Toward language agent fine-tuning. Preprint,580
arXiv:2310.05915.581

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,582
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi583
Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin584
Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and585
Jie Zhou. 2023b. Agentverse: Facilitating multi-586
agent collaboration and exploring emergent behav-587
iors. Preprint, arXiv:2308.10848.588

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-589
bonell, Quoc V Le, and Ruslan Salakhutdinov.590
2019. Transformer-xl: Attentive language mod-591
els beyond a fixed-length context. arXiv preprint592
arXiv:1901.02860.593

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and594
Christopher Ré. 2022. Flashattention: Fast and595
memory-efficient exact attention with io-awareness.596
Advances in Neural Information Processing Systems,597
35:16344–16359.598

Ali Dorri, Salil S Kanhere, and Raja Jurdak. 2018.599
Multi-agent systems: A survey. Ieee Access,600
6:28573–28593.601

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,602
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and603
Yang Liu. 2024. Stabletoolbench: Towards stable604
large-scale benchmarking on tool learning of large605
language models. Preprint, arXiv:2403.07714.606

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 607
pat, and Mingwei Chang. 2020. Retrieval augmented 608
language model pre-training. In International confer- 609
ence on machine learning, pages 3929–3938. PMLR. 610

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 611
2024. Toolkengpt: Augmenting frozen language 612
models with massive tools via tool embeddings. Ad- 613
vances in neural information processing systems, 36. 614

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 615
sch, Chris Bamford, Devendra Singh Chaplot, Diego 616
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 617
laume Lample, Lucile Saulnier, et al. 2023. Mistral 618
7b. arXiv preprint arXiv:2310.06825. 619

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 620
jape, Michele Bevilacqua, Fabio Petroni, and Percy 621
Liang. 2024. Lost in the middle: How language mod- 622
els use long contexts. Transactions of the Association 623
for Computational Linguistics, 12:157–173. 624

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, 625
Shelby Heinecke, Rithesh Murthy, Yihao Feng, 626
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, 627
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, 628
and Silvio Savarese. 2023. Bolaa: Benchmarking 629
and orchestrating llm-augmented autonomous agents. 630
Preprint, arXiv:2308.05960. 631

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 632
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and 633
Jianfeng Gao. 2023. Chameleon: Plug-and-play 634
compositional reasoning with large language models. 635
Preprint, arXiv:2304.09842. 636

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, 637
Daniel Khashabi, and Hannaneh Hajishirzi. 2022. 638
When not to trust language models: Investigating 639
effectiveness of parametric and non-parametric mem- 640
ories. arXiv preprint arXiv:2212.10511. 641

Kenneth Page Oakley and London British Museum. 642
1972. Man the tool-maker. 538. British Museum 643
(Natural History) London. 644

OpenAI. ChatGPT. https://openai.com/blog/ 645
chatgpt. 646

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim 647
Rocktäschel, Yuxiang Wu, Alexander H Miller, and 648
Sebastian Riedel. 2020. How context affects lan- 649
guage models’ factual predictions. arXiv preprint 650
arXiv:2005.04611. 651

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, 652
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei 653
Lv, and Huajun Chen. 2024. Autoact: Automatic 654
agent learning from scratch for qa via self-planning. 655
Preprint, arXiv:2401.05268. 656

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 657
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 658
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 659
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li, 660
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM: 661

9

https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2401.05268
https://arxiv.org/abs/2401.05268
https://arxiv.org/abs/2401.05268
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr

Facilitating large language models to master 16000+662
real-world APIs. In The Twelfth International Con-663
ference on Learning Representations.664

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,665
Amnon Shashua, Kevin Leyton-Brown, and Yoav666
Shoham. 2023. In-context retrieval-augmented lan-667
guage models. Transactions of the Association for668
Computational Linguistics, 11:1316–1331.669

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,670
Weiming Lu, and Yueting Zhuang. 2023. Hugging-671
gpt: Solving ai tasks with chatgpt and its friends in672
hugging face. Preprint, arXiv:2303.17580.673

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan674
Scales, David Dohan, Ed Chi, Nathanael Schärli,675
and Denny Zhou. 2023. Large language models can676
be easily distracted by irrelevant context. Preprint,677
arXiv:2302.00093.678

Noah Shinn, Federico Cassano, Edward Berman, Ash-679
win Gopinath, Karthik Narasimhan, and Shunyu Yao.680
2023. Reflexion: Language agents with verbal rein-681
forcement learning. Preprint, arXiv:2303.11366.682

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,683
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,684
Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 2023.685
Restgpt: Connecting large language models with real-686
world restful apis. Preprint, arXiv:2306.06624.687

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier688
Martinet, Marie-Anne Lachaux, Timothée Lacroix,689
Baptiste Rozière, Naman Goyal, Eric Hambro,690
Faisal Azhar, et al. 2023. Llama: Open and effi-691
cient foundation language models. arXiv preprint692
arXiv:2302.13971.693

Wiebe Van der Hoek and Michael Wooldridge. 2008.694
Multi-agent systems. Foundations of Artificial Intel-695
ligence, 3:887–928.696

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten697
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and698
Denny Zhou. 2023. Chain-of-thought prompting elic-699
its reasoning in large language models. Preprint,700
arXiv:2201.11903.701

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata702
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.703
Rewoo: Decoupling reasoning from observations704
for efficient augmented language models. Preprint,705
arXiv:2305.18323.706

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-707
gio, William W. Cohen, Ruslan Salakhutdinov, and708
Christopher D. Manning. 2018. HotpotQA: A dataset709
for diverse, explainable multi-hop question answer-710
ing. In Conference on Empirical Methods in Natural711
Language Processing (EMNLP).712

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak713
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.714
React: Synergizing reasoning and acting in language715
models. arXiv preprint arXiv:2210.03629.716

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy- 717
athi Chandu, Kai-Wei Chang, Yejin Choi, and 718
Bill Yuchen Lin. 2024. Agent lumos: Unified and 719
modular training for open-source language agents. 720
Preprint, arXiv:2311.05657. 721

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 722
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 723
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 724
survey of large language models. arXiv preprint 725
arXiv:2303.18223. 726

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 727
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 728
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. 729
2023. Least-to-most prompting enables complex 730
reasoning in large language models. Preprint, 731
arXiv:2205.10625. 732

A Details of DFSDT 733

See Figure 5. 734

B Details of the Smurfs 735

See Figure 6 for executor working process and 736

Figure 4 for memory and tool library of Smurfs. 737

C Experiment Settings for Hotpot QA 738

Following settings in (Qiao et al., 2024), which 739

is randomly select 300 dev questions divided into 740

three levels for evaluation, with 100 questions in 741

each level. For tool library that can be used in 742

HotpotQA see Table 6 743

D Prompts for multi-agent 744

implementation 745

Prompts used by each agent and their example out- 746

puts are shown in Figure 7 to 13. 747

E Token Cost on StableToolBench 748

Evaluation 749

We analyzed the token cost for the StableTool- 750

Bench experiments. As shown in Table 7, the 751

total token cost for each subtask within the Sta- 752

bleToolBench is compared across three candidate 753

tool-planning methods. The data demonstrates that, 754

across all tasks from easy to hard, DFSDT con- 755

sistently incurs high token costs, while the other 756

two methods maintain relatively low token costs. 757

This verifies the context-efficiency of the proposed 758

method. 759

10

https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

thought 1
answer 1

global memory

thought 2
answer 2

thought 3
answer 3

...

tool name 1
tool description 1

tool list

tool name 2
tool description 2

tool name 3
tool description 3

...

thought 1
answer 1

local memory

thought 2
answer 2

thought 3
answer 3

...

tool name

tool description

required parameters

optional parameters

tool doc

Figure 4: Demonstration of the memory of the Smurfs framework.

Normal

Normal

Error

Fail

···

Success

Error

Thought: I will first get some information

about Hailee Steinfeld.

API Name: get_extra_character_details

Arguments: {“name”: “Hailee Steinfeld”}

CoT / ReACT DFSDT (ours)

Instruction

···

Instruction

Reasoning Chains of Different Methods

···

User: I want to give my friend a birthday surprise. I know her

favorite actress is Hailee Steinfeld. Help me please!

Observation: {“age”: 28, “recent

movies”: [“Spider-Man: Across the

Spider-Verse”, …]}

API Name: Finish with Final Answer

Arguments: {“Final Answer”: Hailee Steinfeld

recently voiced Spider-Woman in "Spider-

Man: Across the Spider-Verse”. You could

buy a Spider-Woman mask as a gift, and she

would probably like it.}

API Name: Finish by Giving Up

or

Observation: {“message”: “server

is not available.”}

API Call with Normal Response

API Call with Error

Final Answer

Give Up

1

Fail Fail

Error

Normal

Normal

Normal

Error Fail

Success

Normal

Normal Error

···

2

3

4

5

1

2

3

4

5

8

9

6 7

or

Selected Path

x N

Figure 5: A comparison of our and conventional CoT or ReACT during model reasoning (left) (Qin et al., 2024). We show part
of the solution path annotation process using (right).

Executor Agent

thought action action input
subtask

Executor Agent Executor Agent

hint

tool list tool doc

local memory

Figure 6: Details of the executor agent working process

11

Name Definition Usage
BingSearch BingSearch engine can search for

rich knowledge on the internet
based on keywords, which can
compensate for knowledge fal-
lacy and knowledge outdated.

BingSearch[query], which
searches the exact detailed query
on the Internet and returns the
relevant information to the query.
Be specific and precise with your
query to increase the chances
of getting relevant results. For
example, Bingsearch[popular
dog breeds in the United States]

Retrieve Retrieve additional background
knowledge crucial for tackling
complex problems. It is espe-
cially beneficial for specialized
domains like science and mathe-
matics, providing context for the
task

Retrieve[entity], which retrieves
the exact entity on Wikipedia and
returns the first paragraph if it ex-
ists. If not, it will return some
similar entities to retrieve. For
example, Retrieve[Milhouse]

Lookup A Lookup Tool returns the next
sentence containing the target
string in the page from the search
tool, simulating Ctrl+F function-
ality on the browser.

Lookup[keyword], which returns
the next sentence containing the
keyword in the last passage
successfully found by Retrieve
or BingSearch. For example,
Lookup[river].

Table 6: Tool library for HotpotQA.

Backbone Method
StableToolBench

I1-Inst. I1-Cat. I1-Tool. I2-Cat. I2-Inst. I3-Inst. Average
Total Avg. Total Avg. Total Avg. Total Avg. Total Avg. Total Avg. Total Avg.

GPT-3.5 Turbo ReACT 1,010,304 6,198 824,676 5,390 1,010,514 6,396 900,855 7,265 824,510 7,778 461,121 7,559 838,663 6,764
GPT-3.5 Turbo DFSDT 3,303,062 20,264 2,745,667 17,945 3,152,532 19,953 2,560,297 20,648 3,098,365 29,230 1,390,787 22,800 2,708,452 21,807
GPT-3.5 Turbo Smurfs 1,090,404 7,127 1,917,348 11,763 1,464,535 9,269 957,088 7,638 1,096,162 10,341 632,084 10,362 1,191,270 9,417

Table 7: Token costs for various candidate tool-planning methods on the StableToolBench benchmark (Guo et al.,
2024). ‘Total’ indicates the total number of tokens used to complete each subtask, including both prompt and
completion tokens. ‘Avg.’ represents the average number of tokens used per question within the subtasks. Higher
token counts imply greater costs for solving the same task.

12

Planning Agent

Prompt:
You need to decompose a complex user’s question into some simple sub-tasks and let the model execute it step by step.
Please note that:
1. You should only decompose this complex user’s question into some simple sub-tasks which can be executed easily by
using a single tool.
2. Each simple subtask should be expressed into natural language.
3. Each subtask should contain the necessary information from the original question and should be complete, explicit and
self-consistent.
4. You must ONLY output in a parsible JSON format. An example output looks like:
”’
{"Tasks": ["Task 1", "Task 2", ...]}
”’

This is the user’s question: I’m planning a trip to Turkey and need information about postal codes in Istanbul.
Can you provide me with the postal code and district for Istanbul province with plate number 34? Additionally, I would like
to know if there are any transit agencies available in Istanbul. Please fetch their names and contact numbers.
Output: "Tasks": ["Find the postal codes and districts for plate number 34 in Istanbul.", "Search for transit agencies and their
contact numbers in Istanbul."]

This is the user’s question: I recently moved to a new address and I need to update my information. Can you
retrieve my address details using the postal code 75094080? Additionally, I would like to know the companies that offer
shipping services.
Output: {"Tasks": ["retrieve the address details using the postal code 75094080", "search for companies that offer shipping
services to my address"]}

This is the user’s question: {question}

Output:

Example Output:
{"Tasks": ["Determine the postal code and district for Istanbul province with plate number 34.", "Find out if there are any

transit agencies in Istanbul.", "Get the names of the transit agencies in Istanbul.", "Obtain the contact numbers for the transit

agencies in Istanbul."] }

Figure 7: An example prompt for task decomposition in the framework.

13

Tool Check

Prompt:
As a powerful language model, you’re equipped to answer user’s question with accumulated knowledge.
However, in some cases, you need to use external APIs to answer accurately.
Thus, you need to check whether the user’s question requires you to call an external API to solve it.
Here are some tips to help you check:
1. If the user’s question requires real-time information, since your knowledge base isn’t updated in real-time, any such
question will demand an API call.
2. If you need to obtain information (e.g., ID, name, phone number, geographical location, rank, etc.), you need to call the
database APIs if you are not sure.
3. If the question demand a database search or internet research to generate an answer, this is another situation where an API
call is necessary.
If need, please output ’YES’; If not, please output ’NO’
You need to give reasons first and then decide whether to keep it or not. You must only output in a parsible JSON format.
Two example outputs look like:
Example 1: {"Reason": "The reason why you think you do not need to call an external API to solve the user’s question",
"Choice": "No"}
Example 2: {"Reason": "The reason why you think you need to call an external API to solve the user’s question", "Choice":
"Yes"}
This is the user’s question:
{question}

Output:

Example Output:
{"Reason": "To determine the postal code and district for a specific location based on a plate number, we would typically

need to access a combination of databases, including vehicle registration databases and postal code databases. Since we do

not have direct access to these databases, we will need to call external APIs to retrieve this information. Therefore, the user’s

question requires an API call.", "Choice": "Yes"}

Figure 8: An example prompt for tool check in the framework.

Executor Agent: Thought

Prompt:
You need to analyse the previous execution history and generate your internal reasoning and thoughts on the task, and how
you plan to solve it based on the current attempts.

Do not output thought that is too long. Output in 2-3 sentences is OK.

This is the user’s task:
{task}

This is the Tool List:
{functions}

This is the previous execution history:
{messages}

This is the hint comes from the evaluator:
{hint}

Output:

Example Output:
Looking at the task, the user wants to find the postal codes and districts for the number plate 34 in Istanbul. I have a tool that

provides Turkish plates, and since Istanbul is in Turkey, this tool might provide the needed information. I will proceed to use

the ’Logistics:Turkey Postal Codes:il’ tool to accomplish the task.

Figure 9: An example prompt for tool check in the framework.

14

Executor Agent: Action

Prompt:
This is the user’s question:
{question}
These are the tools you can select to solve the question:
Tool List:
{Tool_list}

Please note that:
1. You should only chooce one tool from the Tool List to solve this question.
2. You must ONLY output the ID of the tool and your reason for choosing it in a parsible JSON format. An example output
looks like:
”’
Example: {"ID": ID of the tool, "Reason": The reason for choosing the tool}
”’

Output:

Example Output:
{’ID’: ’1’, ’Reason’: ’This tool provides information about Turkish plates and postal codes, which can be applied to the given

task of finding the postal codes and districts for the number plate 34 in Istanbul.’}

Figure 10: An example prompt for action generation in the framework.

Executor Agent: Action Input

Prompt:
Given a user’s question and a API tool documentation, you need to output parameters according to the API tool documentation
to successfully call the API to solve the user’s question.
Please note that:
1. The Example in the API tool documentation can help you better understand the use of the API.
2. Ensure the parameters you output are correct. The output must contain the required parameters, and can contain the
optional parameters based on the question. If no paremters in the required parameters and optional parameters, just leave it as
{}
3. If the user’s question mentions other APIs, you should ONLY consider the API tool documentation I give and do not
consider other APIs.
4. The question may have dependencies on answers of other questions, so we will provide logs of previous questions and
answers for your reference.
5. You must ONLY output in a parsible JSON Format. The example output looks like:
”’
Example: {"keyword": "Artificial Intelligence", "language": "English"}
”’

There are logs of previous questions and answers:
previous_log

This is the current user’s question: question

This is API tool documentation: api_dic

Output:

Example Output:
{"il": 34}

Figure 11: An example prompt for action input generation in the framework.

15

Answer Agent

Prompt:
You should answer the question based on the response output by the API tool.
Please note that:
1. Answer the question in natural language based on the API response reasonably and effectively.
2. The user cannot directly get API response, so you need to make full use of the response and give the information in the
response that can satisfy the user’s question in as much detail as possible.
3. Do not output answer that is too long. Output in 3-6 sentences is OK.

This is the user’s question:
{question}
This is the API response:
{call_result}

Output:

Example Output:
The postal codes and districts for the plate number 34 in Istanbul include: Adalar district with postal code 34975 for

Burgazada area, 34970 for Büyükada area, 34973 for Heybeliada area and 34977 for Kınalıada area. There is also the

Arnavutköy district with postal code 34275 for areas like Anadolu, Arnavutköy Merkez, İmrahor, İslambey, Mustafa Kemal

Paşa, Nenehatun, and Yavuz Selim. Another area in Arnavutköy district is Baklalı with postal code 34277.

Figure 12: An example prompt for Answer Agent in the framework.

Verifier Agent

Prompt:
An agent is trying to solve the query proposed by the user.
You need to evaluate whether the given query has been completed reasonably and accurately. If so, summarize the solution to
the user. If not, summarize the current progress, and propose what is missing.

You response contains following elements:
Speak: (your words to the agent if the task is pending, or a complete answer based on the full execution log to the user if the
task is finished)
Status: (0 or 1. 0 for pending and 1 for finished)

You must only output in a parsible JSON format. Two example outputs look like:
Example 1: {"Speak": "answer based on the full execution log to the user", "Status": "1"}
Example 2: {"Speak": "your words to the group if the task is pending", "Status": "0"}

This is the answer from the previous execution result:
{answer}

This is the original question: {question}

Output:

Example Output:
{"Speak": "The postal codes and districts for plate number 34 in Istanbul include: Adalar district with postal code 34975 for

Burgazada area, 34970 for Büyükada area, 34973 for Heybeliada area and 34977 for Kınalıada area. In addition, Arnavutköy

district has postal code 34275 for areas such as Anadolu, Arnavutköy Merkez, İmrahor, İslambey, Mustafa Kemal Paşa,

Nenehatun, and Yavuz Selim. Another part of Arnavutköy district, Baklalı, has the postal code 34277.", "Status": "1"}

Figure 13: An example prompt for Verifier Agent in the framework.

16

	Introduction
	Motivation
	Multi-Tool Planning
	Instability of the Rollback Mechanism
	Redundant Context
	Premature Termination

	Multi Agent System

	Smurfs: A framework with multiple agents
	Framework Overview
	Agent Components
	Macro Planning
	Subtask Solving Process

	Experiments
	Open-ended Task: StableToolBench
	Closed-ended Task: HotpotQA

	Ablation Study
	Importance of each component in MAS
	Case Study

	Conclusion
	Limitations
	Details of DFSDT
	Details of the Smurfs
	Experiment Settings for Hotpot QA
	Prompts for multi-agent implementation
	Token Cost on StableToolBench Evaluation

