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ABSTRACT

To boost the robustness of a model against adversarial examples, adversarial train-
ing has been regarded as a benchmark method. However, it is commonly consid-
ered to be easily suffering from the trade-off dilemma between robustness and
generalization in practice. This paper tries to make an intuitive explanation for
this phenomenon in the perspective of model attention and provides an attention
expansion viewpoint to learn a reliable model. To be specific, we argue that ad-
versarial training does enable one model to concentrate on exact semantic infor-
mation of input, which is beneficial to avoid adversarial accumulation. But it also
easily make the model to cover fewer spatial region so that the model usually ig-
nores some inherent features of the input. This may be one main reason to result
in weak generalization on unseen inputs. To address this issue, we propose an
Attention-Extended Learning Framework (AELF) built on the cascade structure of
deep models. AELF advocates that clean high-level features (from natural inputs)
are used to guide the robustness learning rather than hand-crafted labels, so as
to ensure broad spatial attention of model to input space. In addition, we pro-
vide a very simple solution to implement AELF under the efficient softmax-based
training manner, which avoids checking the difference between high-dimensional
embedding vectors via additional regularization loss. Experimental observations
verify the rationality of our interpretation, and remarkable improvements on mul-
tiple datasets also demonstrate the superiority of AELF.

1 INTRODUCTION

Deep learning has achieved great success in many applications. However, its vulnerability to adver-
sarial examples has recently attracted wide attention (Szegedy et al., 2014; Ilyas et al., 2019; Bai
et al., 2021) in many security-sensitive scenarios. The studies in adversarial learning can be simply
categorized into adversarial attack and model defence. To mislead the network’s decision, the at-
tacks focus on how to produce imperceptible or deliberately crafted perturbations for natural inputs.
In contrast, model defence aims to eliminate the misleading caused by adversarial perturbations. To
make an effective model defence, this paper focuses on learning a reliable model.

For model defence, a variety of attempts have been made from different perspectives: 1) Adversar-
ial Training (AT). Empirical AT methods (Goodfellow et al., 2014; Kurakin et al., 2017) directly
use augmented adversarial examples to enhance the robustness of a model. To provide provable
robustness guarantees, certified AT methods (Wong & Kolter, 2018; Mirman et al., 2018) attempt
to optimize a model based on the upper bound of norm-bounded perturbations. 2) Model modifica-
tion. To eliminate the gradient source of optimization-based attacks, gradient masking methods such
as defensive distillation (Papernot et al., 2016) and thermometer encoding (Buckman et al., 2018)
modify a model to produce useless gradient information so that it is difficult to directly construct
adversarial examples. 3) Input transformation methods (Guo et al., 2018; Naseer et al., 2020) are
devoted to removing the perturbations from adversarial inputs, to indirectly mitigate attacks.

Overall, as one of the most effective defence techniques, empirical AT directly focuses on learning a
robust model and has become the standard practice owing to its convenience. However, augmented
adversarial examples introduce a minimax problem that leads to difficulties in convergence. Besides
the time-consuming cost (Shafahi et al., 2019; Wong et al., 2020), the other typical drawback is the
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Table 1: Architectures of one basic CNN model (CNNB).

Type\Layer 1th 2th 3th 4th 5th 6th

Conv(3× 3) 64 64 128 256 512 —

FC — — — — — 512× 64

Batch
Normlization Yes Yes Yes Yes Yes —

Activation
(LeakyReLU) Yes Yes Yes Yes Yes —

Pooling
(Average) — 2× 2 2× 2 2× 2 4× 4 —

3.2 ATTENTION-BASED EXPLORATION FOR THE TRADE-OFF

To study the trade-off issue, we start from the interesting area of a pre-trained model to the inherent
features of a natural input, such as the model’s attention to pixels of an image.

As we all know, for a natural input x, to generate its adversarial version x′=x + δ, the loss-based
gradient sign has been one baseline to characterize perturbation δ for optimization-based model.
Further, as Grad-CAM implied, gradient information actually also provides a source to check the
model’s attention to input. In this case, the observation of gradient information provides an intuitive
way to understand the internal mechanism of the trade-off phenomenon.

Overall, for a CNN model, we separately train it with ST and AT, and check its attention to test
inputs through observing the gradient information on inputs. To obtain reasonable observations, fair
preparation is needed. 1) For model, a basic CNNB model is firstly defined in Table 1. 2) For the data
set, two keys are that there is only a little trade-off between ST and AT and gradient visualizations
of inputs are intuitive for us, so we choose the MNIST data set. 3) For training, we use the popular
cross-entropy loss. Following Madry et al. (2018), we separately conduct ST with Eq.(1) and AT
with Eq.(3). Especially, for AT, the augmented examples are produced with PGD(0.3, 16, 0.02)2.
The more description of our training set has been detailed in footnote 3.

After sufficient training, we obtain standard result modelMST and adversarial result modelMAT .
Their baseline test results have been listed in Table 2. Here, we check their attention to natural inputs
via gradient visualization on test images. The visualization has been exhibited in Fig.3. Intuitively,
the gradient images show a similar situation with Tsipras et al. (2019), such as the gradients from
MAT describe the specific outline of character so that they are significantly more interpretable than
the gradients fromMST . Here, one new view is briefly discussed as follows.

Given a 2D image x to the pre-trainedM, the magnitude of gradientGx
i,j highlights the importance

of spatial location xi,j to the label y. In other words, to identify a natural input x, its gradient
Gx actually reflects M’s different interests to the inherent features of x. So, only to focus on the
pixel-level features of x, the identification process of both the models can be reinterpreted as

{
y =MST (x)⇒ x→ xS → y

y =MAT (x)⇒ x→ xA → y
, (6)

where, S and A separately denote the attentions ofMST andMAT to x. Here, we focus on the
size of attention. As shown in Fig. 3, an obvious observation is that S > A (S covers broader
foreground and background). So, it is easier to increase loss with gradient-based attack forMST
due to broader accumulation of effective perturbations.

Inference: To identify an input, the ST model captures a broader pixel-level feature than the AT
model. In this case, it is easier to generate a loss-based gradient attack so that the ST model is
usually more vulnerable than AT model. On the contrary, the fewer attention area produced by AT
maybe hurts the standard generalization, such as AT model maybe cannot adapt itself to diverse
appearances of input data.

3 Training setting on MNIST: Without any data argumentation, ST and AT are uniformly conducted with
50 epochs under l2-norm=5e-4. The batch size is set to 128. The initial learning rate (lr) is set to 0.1, and lr
is separately changed to 0.01 and 0.001 after 20th epoch and 40th epoch. After 50 training epochs, their final
loss values on training set are separately 0.0021 and 0.099.
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Figure 1: The trade-off phenomenon of CNNB on CIFAR-10. Table.1 details one basic CNNB. For the CNNB,
we conduct ST, typical AT and JT (Joint AT with equivalent natural and adversarial inputs). Different trained
models are listed on the horizontal axis, where the mark ∗ : ∗ denotes the loss ratio between two kinds of data
during training. The vertical axis shows their test accuracy. The adversarial examples used for the training and
test sets are uniformly produced by PGD(0.031, 5, 0.01)2. Under the same training setting detailed in section
5.1, the histogram of test results reflects a clear trade-off tendency between generalization and robustness 1.

trade-off phenomenon1 (Tsipras et al., 2019; Mehrabi et al., 2021), where the augmented examples
usually cause performance degradation for natural inputs. Intuitively, one practical verification has
been given in Fig. 1. This trade-off issue has received some attention (Zhang et al., 2019; Aditi
et al., 2020; Yang et al., 2020) recently. This paper attempts to provide a more intuitive study from
the perspective of model attention to the input space and gives one simple solution to alleviate it.

Previous interpretations usually treat a deep model as one entire mapping function from input to
label. The separability of input data (Tsipras et al., 2019; Yang et al., 2020) plays a key role to
search for a smooth decision boundary such as TRADES (Zhang et al., 2019). In this paper, we
argue that the high-dimensional inputs are usually inseparable in the original data space. In fact, the
architecture of deep models provides one major promotion to achieve impressive success. As Grad-
CAM (Selvaraju et al., 2020) implied, CNN performs as a filter function to the input image so that
the interesting areas can be highlighted. In this case, the identification of the label is related to some
selective spatial features rather than the entire input. Herein, a better way to explain the trade-off
issue is to observe the attention difference between Standard Training (ST) and AT models.

To investigate the trade-off issue, we use gradient-based observations to check the model’s attention.
As shown in Fig. 2, AT enables a model to capture more discriminative pixel-level features, which
are semantically consistent with humans (Ilyas et al., 2019). This situation is the same as (Tsipras
et al., 2019). However, we argue that AT may also promote the model to ignore broader spatial
regions thus disregard some inherent features of the input more easily. In fact, the learned model
from ST covers broader regions, which has given some intuition to testify our argument. Besides,
one verification on the shifted MNIST test sets also provides strong supports for this judgment.

To address the trade-off issue, it is practical to conduct Joint network Training (JT) with natural
and adversarial examples, such as BIM (Kurakin et al., 2017). However, as shown in Fig. 1, the
simple regularization with natural data improves generalization but hurts robustness. In this paper,
we argue that the label is only a hand-crafted scalar without any prior knowledge. The global check
from adversarial inputs to labels may not gain enough smooth mapping from the input space to label
space. Inspired from our insight on trade-off, to enhance the robustness, the key should be ensuring
broad spatial attention of the model to the input space. Here, we advocate to append mapping
learning from adversarial input to clean high-level features of natural inputs rather than labels. This
is mainly derived from the following discussion. Since modern standard models have achieved
SOTA performance due to their broad spatial attention to inputs, the high-level representations of
natural inputs should be richer semantic integrations of broad input spaces. In this case, instead of
hand-crafted labels, this rich feature representation should be able to provide an effective constrain
to ensure the model’s attention to a broad spatial region of an input.

1In this paper, the term ‘generalization’ means the discrimination capability of a model to unseen natural
examples. It focuses on the model’s adaption to various appearances of inherent features. The term ‘robustness’
implies the ability in dealing with adversarial examples with extrinsic noise or perturbation.

2 PGD(ε, i, εi): ε is the limited radius of perturbation based on l∞-norm, the final perturbation is obtained
from i iterations with once perturbation scale εi according to (Madry et al., 2018).
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For a more detailed introduction to related work, please refer to Appendix A. The main contributions
of our work include:

• Attention-based explanation to the trade-off issue. We provide an intuitive insight for the
trade-off issue via an attention observation of the model to input space. To avoid the mis-
leading of adversarial perturbations. AT enables a model to capture some semantic pixel-
level features. This sparse spatial region is beneficial to avoid adversarial accumulation for
robustness. But this also yields that AT unrestrainedly forces the model to ignore some dis-
criminative features of the input so as to further avoid stronger adversarial accumulation.
This intuitive judgment inspires us to ensure the spatial attention of the model during AT.

• Attention-Extended Learning Framework (AELF). Given the cascaded structure of a neural
network, AELF does not treat a model as an integral function to construct a mapping be-
tween input and label. To enhance the robustness, it recommends directly appends mapping
learning from adversarial inputs to clean embeddings of natural inputs, so as to conduct an
attention expansion. Note that AELF is only a unidirectional mapping learning that avoids
misleading the learning from natural inputs to adversarial embeddings. In this case, we
treat perturbations as normal noises and train a model to ignore them.

• Simplified implementation of AELF (AELFs). Based on the back-propagation algorithm,
AELFs provides a clever solution to AELF under a traditional training manner. It achieves
attention expansion with a single softmax-based loss. This avoids the difficult optimization
to deal with embedding learning using additional losses. Given its simplicity, it is easy to
implement for model defence with a more efficient way.

2 EXPLORATION TO THE TRADE-OFF PHENOMENON

In this section, we briefly review model training about generalization and robustness. Further, we
give an explanation to the trade-off issue from the perspective of the model’s attention.

2.1 REVIEW OF GENERALIZATION AND ROBUSTNESS

Given an underlying joint distribution D with inputs x ∈ X and their labels y ∈ Y, the classification
task aims to learn a predictorMθ to achieve the mapping X θ7→ Y. In practice, we usually learn θ by
accessing a labeled training set S = {(xi, yi)}ni=1. ST minimizes its empirical risk using

arg min
θ

E(x,y)∼S [L(θ;x, y)] , (1)

where L denotes a suitable loss function. Obviously, this conventional optimization only focuses on
the standard generalization ability of the predictorMθ for unknown inputs x /∈ S.

However, the model, Mθ, produced by ST is usually vulnerable to adversarial examples. In this
case, given a natural input x, we can modify it as adversarial x′ to misleadMθ.

x′ = x + δ, subject to ||δ||p ≤ ε, (2)

where, the perturbation δ provides adversarial information under the constraint of the lp-norm bound-
ary. To characterize δ, FGSM has been one of the most direct and effective way. Further, BIM and
PGD use its iterative version to generate more powerful x′.

To improve the robustness ofMθ against x′, AT directly use augmented x′ to empirically boost the
mapping ability ofMθ. The training manner is formalized as the following minimax problem.

arg min
θ

E(x,y)∼S [max
δ∈∆
L(θ;x + δ, y)] , (3)

where ∆={||δ||p ≤ ε} is the perturbation set, which covers the lp ball with radius ε. Incompletely,
it only focuses on the robustness but ignore generalization so as to yield the trade-off issue. To
promote both, it is natural to seek a moderation θ using x and x + δ. Therefore, the JT framework
solves the combination of the above two problems.

arg min
θ

E(x,y)∼S [L(θ;x, y) + λmax
δ∈∆
L(θ;x + δ, y)] . (4)

Actually, as the observation to data separation (Yang et al., 2020) demonstrated, flexible label-level
outputs in TRADES can provide more smooth regularization to robustness.

arg min
θ

E{L[Mθ(x), y]+λL∗[Mθ(x),Mθ(x
′)]} , (5)
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(a) Inputs (b) Gradient visualization ofMST (first two rows) andMAT (last two rows)
Figure 2: Exhibition of normalized gradient3 on inputs with respect to loss. (a) The natural input images; (b)
Gradients on inputs from MST and MAT . Overall, the color depth reflects the magnitude of the gradient.
Small gradient values present appearances close to the background. To make more clear observations, we sep-
arately use a white and black background to show them. In detail, red denotes positive gradient and green
denotes negative gradient on black background. The reverse marks are shown on white background. Over-
all, the most intuitive finding is thatMAT captures high-frequency shape information of character, which is
semantically consistent with humans but covers a fewer area of original input thanMST .

where L∗ is the KL-divergence loss. This global regularization provides more guarantee for the
upper bound of the gap between robust error and natural error. Besides, turn to data augmentation,
RLFAT (Song et al., 2020) and RST (Aditi et al., 2020) have demonstrated that local features of x′
and extra unlabeled data also can effectively improve this trade-off situation.

2.2 ATTENTION-BASED EXPLORATION FOR THE TRADE-OFF PHENOMENON

As we all know, for a natural input x, to generate its adversarial version x′, the loss-based gradient
sign has been one baseline to characterize an effective perturbation. Further, Grad-CAM also has
indicated that gradient information is a good source to understand the internal mechanism of deep
models. This motivates us to provides an intuitive explanation to the trade-off issue via the observa-
tion of gradient on inputs. Overall, to study the internal mechanism of the trade-off issue, we start
from the interesting area of a pre-trained model to the pixel-level features of natural inputs.

In detail, we separately train one CNN model with ST and AT, and check its attention to test inputs
through observing the gradient values on inputs. To obtain reasonable observations, one fair prepa-
ration is needed. 1) For model, a basic CNNB has been defined in Table 1. 2) For the data set, two
keys are that there is only a little trade-off between ST and AT and the gradient visualizations on in-
puts are intuitive for humans, so we choose the MNIST data set. 3) For training, we use the popular
cross-entropy loss. Following (Madry et al., 2018), we separately conduct ST with Eq. (1) and AT
with Eq. (3). Especially, for AT, the augmented examples are produced with PGD(0.3, 16, 0.02)2. A
more detailed description of the training settings is provided in Appendix C.

After sufficient training with 50 epochs, we obtain standard MST and adversarial MAT . Their
baseline test results are reported in Table 2. Here, we check their attention to the spatial region of a
natural input via gradient visualization3, as shown in Fig.2. Intuitively, the gradient images show a
similar situation with the visualization from (Tsipras et al., 2019). For example, the gradients from
MAT describe the specific outline of a character so that they are significantly more interpretable
than the gradients fromMST . Here, we briefly discuss the trade-off problem as follows.

As we known, the attention mechanism (Jaderberg et al., 2016; Hu et al., 2019) of modern models
plays a key activation role to capture effective input-level features from high-dimensional data. As
Grad-CAM revealed, given a 2-D image x to the pre-trained M, the magnitude of gradient Gx

i,j

highlights the importance of spatial location xi,j to the label y. In other words, to identify an input
x, its label only selectively focuses on part inherent features of x. In this case, the identification
process of our both models can be reinterpreted as{

y =MST (x)⇒ x→ xS → y

y =MAT (x)⇒ x→ xA → y
, (6)

3 Exhibition of gradient information: Given a 2-D input image x, its gradient value Gx is firstly normalized
as G̃x=Gx/‖Gx‖2. To give a clearer display, we show Ḡx

∗=G̃x/max{|G̃x|}.
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(a) Natural images and their transformations
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(b) Results ofMST andMAT on different test sets
Figure 3: (a) Some natural images and their transformation examples in the test set. The first row shows some
natural images. The nether four rows separately show result examples via left (L), right (R), up (U) and down
(D) shifts. (b) Comparison results betweenMST andMAT on different test sets. We apply the 4-direction
shifts transformation on natural test set, and generate 4 new test set (U, L, R and D). The right sub-figure shows
test results of both models. The test set (N) list their baseline accuracy on natural test set. The last 4 bar charts
check their generalization on 4 shift sets. As the verification showed, under almost equal ability on natural set
(N),MAT performs worse adaptation to shifts of characters thanMST , especially for the up and down shifts.

where, S and A separately denote the outstanding attentions ofMST andMAT to x. As shown in
Fig. 2, it is obvious that xA covers better semantic information. However, abundant studies indi-
cate that MAT achieves worse generalization than MST . This counter-intuitive situation reminds
whether MAT falls into an over-fitting state. Actually, turn to check the robustness, we find that
S>A (S covers broader foreground and background). This naturally makes sense that it is easier to
increase loss with gradient attack forMST due to broader accumulation of effective perturbations.
Meanwhile, the smaller size of xA is beneficial to avoid the perturbation accumulation. Therefore,
one natural inference to the trade-off issue can be drawn as follows.

Inference: To avoid broad perturbation accumulation, AT trends to produce a model which uses few
inherent features to achieve mapping learning from training inputs to labels. Moderately this enables
the model to capture some exact semantic information. But the continuous internal maximization
of Eq. (3) can force the model to overly ignore some discriminative features. This yields that AT
model usually concentrates on more sparse spatial regions and ignores relatively global checks to
input space. This naturally reduces the model’s adaptability to unseen changes of inputs.

To verify the above inference, we apply different shift transformations on the MNIST test set to
check the well-known shift-invariant of CNN. For the original set, we generate 4 direction-based
shift sets to test them. Fig. 3 shows some examples with 8/32 pixel shift on 4 directions and lists test
results on different shift sets. Obviously,MST shows stronger adaptation to various appearances of
the test images. It is noteworthy that we don’t use any data argumentation (such as random cropping)
during both trainings and there are without remarkable trade-off situations on the original test set.

An acknowledgement can be reached from the above investigation. AT usually promote one model
to achieve mapping learning via capturing fewer pixel-level features, so that the model ignores some
discriminative information of inputs. This is certainly adverse to deal with potential variations of
inputs. Actually, this over-fitting judgment is also indirectly supported with the effectiveness of local
features in (Song et al., 2020) and dropout improvement in (Yang et al., 2020). Empirically, both
operations can prevent the model from overly focus on the local region of input during training.

3 ATTENTION-EXTENDED LEARNING VIEW FOR AT

As discussed in Section 2, AT easily compels the model to ignore part spatial region of an input so
that it hurts the standard generalization. In general, the claimed joint learning x,x′ 7→ y of JT can
improve this issue. However, as Fig. 1 shown, the simple regularization with normal x also redraws
a new trade-off to hurt the adversarial robustness.

3.1 ATTENTION-EXTENDED LEARNING FRAMEWORK(AELF)

In this section, we attempt to achieve a reinforced AT. Its definition is clear to enhance the model’s
robustness to adversarial data under the guarantee of its discrimination for natural data. Inspired
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Algorithm 1 Attention-Extended Learning Framework
Initialize:M( , c, w), L1,L2 and hyperparameter λ
Input: Natural training set S = {(xi, yi)}
Output: c and w
1: for each mini-batch set do
2: Randomly select example set: {x, y} ← S
3: Generate adversarial examples: x′ = x + δ

4: Forward Compute: x c→ f
w→ ŷ;

5: Compute loss L1: L1(ŷ; y)

6: Update parameter w: w = w − ∂L1
∂w

7: Forward Compute: x′ c→ f ′

8: Compute loss L2: L2(f̂ ′; f̄), where f̄ ← f

9: Update parameter c: c = c− ∂(L1+λL2)
∂c

10: end for
We summarize an alternating parameter update strategy. One key is that
feature f̄ is treated as constant vector taken from f in each iteration.

Algorithm 2 Simplified implementation to AELF
Initialize:M( , c, w), L and hyperparameter λ
Input: Natural training set S = {(xi, yi)}
Output: c and w
1: Initialize c and w with standard training on S
2: for each mini-batch set do
3: Randomly select example set: {x, y} ← S
4: Generate adversarial examples: x′ = x + δ

5: Forward Compute: x,x′ c→ f , f ′
w→ ŷ, ŷ′

6: Compute L: Lx(ŷ; y), Lx′(ŷ′; y)
7: Update parameter:

c = c− α ∂(Lx+λLx′ )
∂c

8: end for
The w is not updated during AELFs. α is the learning rate. In gen-
eral, AELFs does not suggest using one network with ReLU activa-
tion, which sometimes causes some parameters to be locked after the
initialization of standard training.

from our insight to trade-off, the main idea is to conduct one JT without reducing the model’s
attention to input space. As we all know, the label y is only a man-made scalar, which cannot
provide any additional information to ensure broad spatial attention of the model. In this paper,M
is no longer simply treated as an entire mapping function like Eq. (4) and Eq. (5). Turn to consider
the cascaded structure ofM, we further divided both mapping of Eq. (6) into{

x 7→ y ⇒ x→ xS → fx → y

x′ 7→ y ⇒ x′ → x′A → f ′x → y
, (7)

where fx, fx
′ separately denote high-level features from M. As reminded in Section 2.2, since ST

producesMST that captures broader region of the input x. fx should be a richer semantic integration
to pixel-level features. In this case, fx provides a good constrain to carry out x,x′ → fx → y rather
than direct x,x′ 7→ y. Here, we use feature embedding to conduct the constrain.

Taking CNN model as an example, Mθ can be divided into the feature extraction moduleMc and
label mapping module Mw. In this view, the mapping learning x

θ7→ y can be recognized as x
c→

fx
w→ y, where fx is feature embedding derived from natural x. To boost the robustness, we suggest

to append fitting learning x′
c7→ fx. This optimization problem can be simply formalized as

arg min
c,w

E
{
L1{Mw[Mc(x)], y

}
+λL2{Mc(x

′),Mc(x)}
}

(8)

where Mc(x) andMc(x
′) separately produce inherent fx and adversarial fx′. L1 is one label loss,

L2 is a loss to characterize the difference between fx and fx
′, such as commonly used ‖fx−fx′‖1,2.

Noticeably, here L2 only checks the fittingMc(x
′)→Mc(x) rather thanMc(x

′)
Mc(x)4.

To make a clearer description, we outline the workflow of AELF in Algorithm 1. Clearly, 1) The
parameter w with respect to label y is only updated with the backbone loss L1. This implies that
only fx is learned to identify y. 2) To achieve feature extraction of both x and x′, fx is used as a
constant flag to guide the update of feature extraction module c.

Overall, to ensure generalization, attention view claims to enable the model to capture broader inher-
ent features. Technically, we suggest learning a clean embedding distribution, in which features are
only derived from natural inputs. This latent constrain to an embedding space implies: i) Adversarial
perturbations are only treated as normal noises; ii) Model is trained to filter or ignore them.

3.2 SIMPLIFIED IMPLEMENTATION TO AELF (AELFS)

AELF provides a clear process to conduct an attention expansion concept. But the claimed fitting
f ′ → f is required to characterize the difference between high-dimensional embeddings f ′ and f .
The usual approach is to add a new loss L2. However the advised ‖f − f ′‖2 provides different

4 Eq. (8) cannot be directly used to optimize θ={c, w}. Because, the mapping x′
c7→ f claims to unidirec-

tional fitting f ′→ f . But L2[Mc(x
′);Mc(x)] actually checks bidirectional learning f 
 f ′ like contrastive

loss (Hadsell et al., 2006). This interactive way cannot avoid the misleading from perturbations due to f → f ′.
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Table 2: Comparison results on MNIST with CNNB, which is trained with total 50 epochs.

Method | Natural test | Adversaria test A∗(0.3, 16, 0.02)

Test set | N N(L) N(R) N(U) N(D) | N N(L) N(R) N(U) N(D)

ST | 99.54 98.48 96.91 94.87 95.36 | 0.0 0.0 0.0 0.0 0.0
AT | 99.37 92.95 90.33 64.86 66.49 | 93.36 68.01 67.15 27.08 29.62
JT | 99.38 92.50 91.32 69.10 65.19 | 92.72 65.32 68.77 27.03 29.97

AELFs | 99.29 95.77 93.85 75.33 77.85 | 94.06 78.48 76.50 45.82 44.65

Table 3: Comparisons with CNNB on CIFAR-10.

Method N A∗(5) A∗(10) Note | Method (Ours) N A∗(5) A∗(10) Note

AT 81.16 42.07 41.39 AT(Madry) | ST 92.08 0.0 0.0 Ours

JT
83.27 40.26 39.60 Normal JT

(Kurakin)

| JT∗

β=0.5

0.4:0.6 83.63 43.60 42.99 JT with our
two actions84.38 38.77 38.01 | 0.5:0.5 84.63 42.08 41.35

84.85 37.86 37.14 | 0.6:0.4 86.10 40.37 39.63

TR−λ=1
83.04 40.28 39.66 TRADES

(Zhang)

| AELFs
β=0.5

0.4:0.6 83.77 45.90 45.45 Implement
of AELFTR−λ=2

81.18 43.98 43.55 | 0.5:0.5 85.77 43.85 43.25
TR−λ=3

79.14 44.93 44.63 | 0.6:0.4 86.75 40.90 40.07

characteristics with softmax-based loss, resulting in the difficult tuning of λ and slow convergence
due to its smoothness in the interval of small values.

To give a convenient implementation, we attempt to provide a simpler solution. Complying with
conventional training manner, the main idea is to unify L1 and L2 as a single softmax-based L

arg min
c,w

E
{
Lx{Mw[Mc(x)]; y}+λLx′{Mw[Mc(x

′)]; y}
}

(9)

where Lx and Lx′ are from the single label-level loss L. Overall, Eq. (9) is consistent with Eq. (4)
of JT. But the separated description {c, w} provides the chance for attention expansion. Following
AELF in Algorithm 1, we provide a simplified AELFs, which is shown in Algorithm 2. Firstly, Lx

is used to conduct ST with the natural set S. In this case, w is only related to inherent f . To boost
the robustness ofM, we directly conduct JT to update c. This simple operation is derived from our
analysis for sofmax-based network, which has been discussed in Appendix B.1.

In practice, AELFs is very convenient to implement. It only needs to train the feature exaction
module c in JT after a complete ST. In this paper, we minimize

arg min
c,w̄

E[λ1L(c;x, y)+λ2L(c;x′, y)+β(‖f‖2+‖f ′‖2)] (10)

where w̄ denotes the pre-trained constant w that does not need to be updated here. To give a more
intuitive description, the balance parameter λ is decomposed to λ1 and λ2 (0 ≤ λ1, λ2 ≤ 1 and
λ1+λ2 =1). Particularly, f and f ′are feature embeddings fromMc(x) andMc(x

′), their l2-norm are
simply appended to prevent over-fitting.

Note that tuning parameter β can be separately set to f and f ′ for better test performance in practice.
In this paper, we only use a single β to verify the effectiveness of attention expansion. To give one
rough range of β, we set λ1, λ2=0.5 and conduct a sensitivity analysis about β in Appendix B.2.

4 EXPERIMENTS AND ANALYSIS

As revealed in a recent study (Pang et al., 2021), some training tricks can override the potential
promotion of the proposed method. In this paper, we select a regular setting for all the experiments
to verify the attention expansion viewpoint, which has been detailed in Appendix C.

4.1 VERIFICATION AND INSIGHT ON MNIST

In this subsection, to examine the mitigation of AELFs to trade-off, we compare AELFs with typical
AT and JT on MNIST. As section 2.2 explored, although there are no obvious trade-off on the
original test set, AT destroys strongly the shift-invariant of CNN. Here, we test them with CNNB on
the four shift test sets described in Fig. 3. The training adapts the setting in Appendix C.
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Figure 4: Exhibition of gradient signs on natural inputs. To observe attention difference of different models.
We display their gradient signs5 on test character ’0’ and ’2’ according to original magnitude of gradient.
Corresponding to Table 2, the 4 rows separately show gradient signs from ST, AT, JT and AELFs. The bottom
’∗ <’ denotes that gradient signs are displayed only when its absolute value is bigger than ∗. The color
distinguishes ’+’ and ’-’ of gradient. Overall, the big gradient values of AT and JT are very sparse. This
implies that: To avoid the misleading of perturbation, AT and JT may be easier to ignore the some potential
changes of inputs. In contrast, AELFs captures shape of character with bigger gradient values. Further, it covers
broader spatial region of input space in the similar gradient interval with ST.

For adversarial data, all the training and test data are from PGD(0.3, 16, 0.02). For AELFs, we simply
fix λ1, λ2=0.5 and β=0.5. After 50 training epochs, we list all comparison results in Table.2.

Further, for different result models, we observe the difference of their gradient information by visu-
alizing their gradient signs5, which have been shown in Fig. 4.

To avoid that the setting of 50 epochs is a special case, we provide more verifications in Appendix D.
Overall, two conclusions are reached. 1) For natural test, AELFs can better adapt to the 4 shift sets
than JT and AT. For adversarial test, it also achieves remarkable improvements over other methods.
2) Insight to gradient, AT and JT ignore broad spatial region of inputs in terms of gradient value.
This insight provides possible evidence for the improvements of AELFs on shift test sets.

4.2 ABLATION STUDY WITH CNNB ON CIFAR-10

In this part, besides some regular comparisons with CNNB on CIFAR-10, we mainly check whether
the attention expansion conception is valid. Actually, our implementation of AELFs contains two
additional operations: parameter initialization with ST, and l2-norm penalty to embedding features.
So we improve the normal JT with the above additional actions to examine the effect of fixed w̄.

Under an unified training setting in Appendix C, all test results of different models are listed in
Table.3, where JT∗ is our improved version of JT. For adversarial examples, all augmented data is
produced by PGD(0.031, 5, 0.01) during training. Test data are seperately from PGD(0.031, 5, 0.01)
and PGD(0.031, 10, 0.005), which are separately denoted as A∗(5) and A∗(10).

Overall, 1) Methods, JT performs the same situation with Fig.1, it is effective to improve natural
test but negative to adversarial test. 2) The proposed two actions plays a positive influence to JT
on all the tests. 3) AELFs achieves more outstanding accuracy with different examinations of λ.
This indicates that fixed w̄ is really useful to conduct the attention constrain. Besides, Note that
AELFs hasn’t achieved some surprising improvements like Mnist, this may be mainly derived from
the small size of model and the using of data augmentation in training setting.

4.3 GENERAL COMPARISONS WITH RELATED WORKS

Following the latest studies, we use wide residual networks WRN (Zagoruyko & Komodakis, 2016)
to conduct two comparisons on CIFAR-10 and CIFAR-100. For different models, we separately use
ReLU and LeakyReLU to examine our methods with the uniform training setting in Appendix C.
For the comparisons with recent SOTA methods, we directly report their results to avoid that our
training epochs are adverse for them.

5 Exhibition of gradient sign: Initially, we directly visualize its gradient Ḡx following Fig. 2, but find that
Ḡx

AELFs is similar with Ḡx
AT. Finally, we check their difference with gradient sign Ḡx

∗ from original values Gx
∗ .

8
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Table 4: Comparisons with WRN-40 on CIFAR-10 (TR− denotes TRADES method).

Method Natural A∗(0.031) Note | Method Natural A∗(0.031) Note

LLR 91.44 22.05 (Qin et al., 2019) | ST 95.33 0.11/0.10 ReLU (Our)
AT 83.51 43.51 (Madry et al., 2018) | ST∗ 95.71 0.16/0.15 LeakyReLU (Our)

RSTλ=0.5 85.11 39.58 JT with RST without
extra unlabeled data
(Aditi et al., 2020)

| TR−λ=1 84.96 43.66 (Zhang et al., 2019)
reported from

(Yang et al., 2020)
RSTλ=1.0 84.61 40.89 | TR−λ=3 85.55 46.63
RSTλ=2.0 83.87 41.75 | TR−λ=6 84.46 48.58

TR−λ=3 86.43 49.01 Dropout improved
by (Yang et al., 2020)

| AELFs 90.42 55.39/55.46 λ1, λ2 =0.5
TR−λ=6 84.69 52.32 | AELFs∗ 90.04 56.86/56.80 β=0.2

Table 5: Comparisons on CIFAR-100 (TR− and RL− separately denotes TRADES and RLFAT method).

Method Natural A∗(0.03) Note(WRN-32) | Method Natural A∗(0.03) Note(WRN-28)

AT 55.86 23.32 (Madry et al., 2018) | ST 80.27 0.14 ReLU (Our)

TR−λ=6 52.13 27.26 (Zhang et al., 2019) | ST∗ 80.20 0.11 LeakyReLU (Our)

RL−+AT 56.70 31.99 (Song et al., 2020) | AELFs 65.08 26.69 λ1, λ2 =0.5
RL−+TR− 58.96 31.63 | AELFs∗ 65.17 27.11 β=0.2

1) Following (Yang et al., 2020), the first comparison is conducted with WRN-40 (dropout=0.2) on
CIFAR-10. We train and test the model with PGD(0.031, 10, 0.0062). The results are reported in
Table 4, where ∗/∗ report two test rates separately from PGD without initial noise and PGD with
random noise. According to the results, AELFs obtains remarkable improvements for typical AT on
both tests. Further, it also gains much higher accuracy than other advanced methods.

2) Following RLFAT (Song et al., 2020), the second comparison is conducted on CIFAR-100. Note
that the original study used an irregular network, WRN-32. We use a regular WRN-28 to test
AELFs. We adapt the claimed PGD(0.03, 7, 0.0075) for evaluation. The results are reported in
Table 5. Overall, although we use the smaller WRN-28, AELFs performs much better than the
others for generalization. For robustness, AELFs performs better than AT but slightly worse than
TRADES, particularly in combinations of RLFAT and TRADES.

5 CONCLUSION

Given the cascaded structure of a deep model, we recognize the CNN module as a feature extraction
item that conducts feature selection and reconstruction for an input. In this view, to check the trade-
off issue, the separability of inputs in the original space is not important. Because the global mapping
should be from embedding to label. Instead, the spatial attention of the model to input space plays a
key role in feature selection. Intuitively, more broad spatial attention can produce more pixel-level
feature references to deal with potential variations of unseen inputs.

To study the trade-off issue, we provide an attention-based comparison between ST and AT. This
insight reveals that AT usually learns the mapping from training inputs to labels with less spatial
attention. In fact, the original minimax construction has decided that the initial motivation of AT
is to achieve the mapping learning with as little spatial features as possible. This certainly avoids
the perturbation accumulation. However, due to the ceaseless internal maximization during training,
AT usually discards some discriminative information of inputs, thus ignores relatively global spatial
attention. This seems to be one most straightforward inducement to hurt the generalization.

Overall, AT naturally yields an over-fitting situation according to the view of attention. The experi-
ment verification on the shifted MNIST test sets confirms our argument. In practice, we present the
AELF to ensure the model’s attention to input space. To boost robustness, it advocates to append
mapping from adversarial inputs to clean embedding (from natural inputs) under a standard training
setting. Further, we provide a clever AELFs approach to give a convenient implementation. The
evaluation results provide strong supports for the rationality of our method.
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A RELATED WORK

A.1 ADVERSARIAL TRAINING

Empirical adversarial training, to alleviate the vulnerability of a model to adversarial examples,
empirical AT uses natural examples x to generate their adversarial versions x′ for parameter update.
One main line is how to generate adversarial perturbations δ for natural input x.

The pioneering FGSM (Goodfellow et al., 2014) directly used loss-based gradient sign to character-
ize the adversarial effects of δ. This gradient sign has been the foundation of various optimization-
based attacks. 1) To overcome more powerful attacks, stronger BIM and PGD (Madry et al., 2018)
iteratively applied FGSM under a bound constrain ε. However, multiple iterations increase the com-
putational cost. 2) To improve efficiency, the transferability (Haizhong et al., 2019) of δ between
neighbor training epochs is leveraged. For example, (Shafahi et al., 2019) re-modified the training
process to combine the iteration of parameter update and perturbation generation. Even (Haizhong
et al., 2019) achieved reasonable accumulation of δ across epochs. Actually, as shown in (Wong
et al., 2020), it does not need to conduct iterative gradient accumulation. One random noise initial-
ization is enough to enable FGSM to produce strong perturbations.

Certified adversarial training, to give provable guarantees on robustness, certified AT attempts to
conduct AT under the upper bound of the perturbations instead of empirical perturbations. Typi-
cally, the convex outer adversarial polytope method (Wong & Kolter, 2018) used a dual-network to
optimize a convex outer bound of perturbations thus provided a safe region . Further, (Mirman et al.,
2018) bridged abstract interpretation and gradient-based optimization to conduct training.

Certified ATs are often limited to shallow networks with the ReLU activation and run slowly due to
the slow bound propagation process. Thus recent works (Weng et al., 2018; Zhang et al., 2020) are
proposed to improve training efficiency for a large model (Wong et al., 2018), and one study (Zhang
et al., 2018) extended ReLU activation to general activation functions. Besides, randomized smooth-
ing (Cohen et al., 2019; Zhai et al., 2020) have proved to induce l2-norm based certifiable robustness.

Overall, empirical AT has provided one simple but effective way to boost the robustness. However,
its empirical supply of perturbations be only viewed as lower bound of inner max, so it is often crit-
icized for the lack of formally certified guarantees. Certified AT provides provable guarantees, but
it is usually limited to shallow models and ReLU activation due to difficult parameter optimization.

A.2 STUDIES OF THE TRADE-OFF ISSUE

AT has been the most successful approach to build a robust model. However, both empirical AT
and certified AT have shown the trade-off issue. Pioneering work (Tsipras et al., 2019) argued the
trade-off might be inevitable due to different goals of robustness and generalization. Theoretically,
TRADES (Zhang et al., 2019) decomposed the robust error as the sum of the natural and the bound-
ary error to characterize the trade-off, and provide a differentiable upper bound using the theory
of classification-calibrated loss. Further, (Yang et al., 2020) presented that they can be achieved
together by rounding a locally Lipschitz function for an r-separated dataset. Besides, (Kou et al.,
2020) focused on the trade-off issue on transformation-based techniques.

To address the trade-off issue, the most natural idea is to use natural data to append a regularization
such as JT in BIM. Further, instead of the rigid label mapping from adversarial inputs, TRADES
checked label-level vector output between natural and adversarial input to boost robustness. This
pushes the smoothness of output. Besides, by investigating the relationship between generalization
and local features, RLFAT (Song et al., 2020) presented a random block shuffle transformation
technique to provide robust local features for AT. (Aditi et al., 2020) proved that robust self-training
with extra unlabeled data also can improve this issue.

In this paper, we no longer consider a deep model as one entire mapping function from global input
to label. We focus on the model’s interesting area to input space. This approach provides a new
view to understanding the trade-off issue.
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B THE ANALYSIS OF THE PROPOSED AELFS

B.1 WHY CAN AELFS CONDUCT THE ATTENTION EXPANSION CONCEPTION OF AELF

As section 3.1 claimed, for a modelMθ, AELF recognizes global mapping learning x
θ7→ y as split

x
c→ fx

w→ y. To boost robustness, AELF suggests to conduct x,x′
c→ fx

w→ y. The key is to
append a mapping training x′

c→ fx to avoid the misleading from adversarial perturbations. To give
a convenient solution, AELFs directly fixed the pre-trained parameter w to implement the idea of
AELF under single softmax-based loss. This is mainly derived from following discussion.

The label mapping layer w of one deep model is usually a linear structure without activation func-
tion. Given the clean feature embedding fx from natural x. Its label usually identifies it via the
matrix mapping w = (w,b) and the softmax operation. This can be formalized as

y =
ew̄

T
y fx∑K

k=1 e
w̄T

k
fx
. (11)

where, we use w̄ to replace (w,b), and w̄T
k is the kth column of matrix w̄. For one-hot coding of

y, w̄ maps feature fx into the softmax space, in which the label vector lk ∈ RK is represented by
lk(k=y) = 1 and lk(k 6=y) = 0. To ignore the constant operation of softmax, this reveals fx is linearity
relevance to w̄T

y and irrelevance (even negatively relevance) to w̄T
k(k 6=y) when the loss→ 0. In this

case, a inference can be concluded as that w dominates the distribution of embedding fx.

Further, for the optimization of L{Mw[Mc(x)]; y} = L[softmax(w̄T·f); y], we can obtain the gradi-
ent as ∂L

∂c
⇒ ∂L

∂f
∂f
∂c
⇒L′ · w̄T · ∂f

∂c
under the chain rule of back propagation, where f =Mc(x). As an

intermediate variable, w (w̄) is multiplicatively related to the gradient ∂L
∂c

. In other word, w plays as
a guidance to update the fronted feature extraction module c.

Thus a conclusion is reached, under the situation that w dominates the distribution of embeddings,
Lx of Eq. (9) produces a clean wf by inherent fx of natural x. This clean label mapping parameter
wf enables Lx′ indirectly achieve x′ 7→f during the update of feature extraction module c.

B.2 SENSITIVITY ANALYSIS ON HYPER-PARAMETER β

In this subsection, to give one rough range of β in our implementation using Eq. (10), we fix λ1, λ2 =
0.5 to conduct an experiment with CNNB on CIFAR-10. Fig. 5 shows its result tendency.

Figure 5: Sensitiveness test of β with CNNB on CIFAR-10.

Overall, as β being increased, both accuracies are in upward tendency before 0.6. When β >0.8, it
yields a negative effect. In this study, β is suggested to [0.1, 0.5] for CNNB. For other models with
higher embedding dimensions, we suggest setting smaller β to avoid non-convergence. Actually,
because the model parameter is from standard training, the big constrain β(∗) can limit them to flee
the minimum region of initialization. In practice, we find that higher embedding dimension usually
needs to smaller β value, to avoid that feature norm ‖∗‖2 controls entire loss.
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C TRAINING SETTING

We conduct all trainings with pytorch under random seed=8. All adversarial data are produced by
PGD based on l∞-norm without initial noise. To avoid the overlay of training tricks, we select a
normal setting from (Pang et al., 2021). Note that our training settings don’t adapt early stopping
tricks (Leslie et al., 2020) like TRADES (Zhang et al., 2019).

Uniform settings for all experiments: 1) Inputs are normalized to [0, 1], batch size is uniformly set
to 128. For different JT ways, the second half inputs (64) are used to generate adversarial data and
combined with rest of natural data. 2) For all models, we adapt eval mode during the generation
of adversarial data. 3) All trainings adapt SGD optimizer with initial learning rate lr=0.1 and l2
regularization 5e-4. Exceptionally, because CNNB is very small to deal with CIFAR-10, we apply
weight decay 2e-4 to its training steming from (Madry et al., 2018). Besides, all adversarial data are
produced by PGD based on l∞-norm.

Setting on MNIST: 1) Inputs are resized as 32 ∗ 32 and not applied with any data argumentation
before feeding to the network. 2) The initial lr=0.1 is changed to 0.01 and 0.001 after 20th and 40th
epoch. We conduct 50 epochs for all methods. To avoid special case from single epoch setting, more
results from total 30 epoch are listed in Appendix D

Setting on CIFAR-10 and CIFAR-100: 1) Inputs adapt random flips and cropping (padding=2). 2)
ST is conducted with 100 epochs, lr is changed into 0.01 and 0.001 after 40th and 80th epoch. All
other methods are trained with 160 epochs, lr is equivalently changed after 50th and 100th epochs.
To avoid customized settings for different models, this setting is applied to all models in this paper.

D MORE INVESTIGATION AND COMPARISONS ON MNIST

In this section, we provide additional results to further support the viewpoint in the main text.

1) The first comparison is to reduce the total training epoch. The main motivation is avoid that we
provide a special case in main text, such as the 50 epochs facilitate an over-training or make an over-
fitting situation. In this subsection, we adapt uniform settings following section 4.2. Exceptionally,
we only train the CNNB with 30 epochs, and the initial lr=0.1 is changed to 0.01 and 0.001 after 10th
and 20th epoch. The test results on natural and shift test sets have been listed in Table 6.

Table 6: Comparison results on MNIST with CNNB, which is trained with total 30 epochs.

| Natural test | Adversaria test

Method | N N(L) N(R) N(U) N(D) | N N(L) N(R) N(U) N(D)

ST | 99.60 98.57 96.07 94.55 93.04 | 0.0 0.0 0.0 0.0 0.0
AT | 99.31 92.33 90.87 60.32 64.22 | 93.35 67.66 67.75 24.43 30.40
JT | 99.29 92.79 93.99 68.28 67.68 | 92.97 68.80 72.93 27.05 32.67

AELFs | 99.27 95.67 93.52 77.18 80.89 | 93.39 77.19 74.40 48.68 45.12

2) The second comparison is to further observe the difference of gradient signs between different
trained models. Here, following Fig. 4, we provide more exhibitions about another characters ’1’
and ’3’ based on our two result models CNNB(50) and CNNB(30). Fig. 6 shows their comparison
results between CNNB(50) and CNNB(30).

Overall, according to above two comparisons, we can find that: In terms of test performance,
there was no significant changes between CNNB(50) and CNNB(30). Further, Fig. 6 shows similar
situation about gradient signs. This imply that AT maybe inherently yields a over-fitting tendency
in perspective of spatial attention.
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(a) Gradient signs exhibition of natural character ’1’ and ’3’ from CNNB(50).

(b) Gradient signs exhibition of natural character ’1’ and ’3’ from CNNB(30).

Figure 6: Comparison of gradient signs on natural character ’1’ and ’3’ between CNNB(50) and CNNB(30).
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