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Abstract

Given a Banach space E consisting of functions, we ask whether there exists a reproducing kernel Hilbert
space H with bounded kernel such that E ⊂ H . More generally, we consider the question, whether for a given
Banach space consisting of functions F with E ⊂ F , there exists an intermediate reproducing kernel Hilbert
space E ⊂ H ⊂ F . We provide both sufficient and necessary conditions for this to hold. Moreover, we
show that for typical classes of function spaces described by smoothness there is a strong dependence on the
underlying dimension: the smoothness s required for the space E needs to grow proportional to the dimension
d in order to allow for an intermediate reproducing kernel Hilbert space H .
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1 Introduction
Reproducing kernel Hilbert spaces (RKHSs) are a powerful concept in various branches of mathematics and
applications such as numerical analysis [42, 10], stochastics [7], signal processing [17] analysis [30, 2, 18, 3],
and machine learning [31, 9, 39, 26]. In many of these applications, understanding RKHSs is central task and
the choice of suitable RKHSs is essential in numerous algorithms.

Given an RKHS H on some underlying space X , properties of its kernel k or its elements f ∈ H can often
be described in terms of a surrounding space F , that is, by an inclusion H ⊂ F . For example, it is well-known
that the kernel k is bounded, if and only if H ⊂ ℓ∞(X) holds, where ℓ∞(X) denotes the Banach space of
all bounded functions f : X → R equipped with the usual supremum norm. Bounded kernels do not only
play a central role in the statistical analysis of kernel-based learning algorithms, e.g. [39], but they are also
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key for kernel mean embeddings, see e.g. [36, 40]. Moreover, the kernel is bounded and continuous, if and
only if H ⊂ Cb(X), where Cb(X) denotes the space of all bounded, continuous functions f : X → R, and
generalizations of such inclusions to higher notion of smoothness are, of course, possible.

In machine learning applications one is usually interested in sufficiently large RKHSs. Here, one way
to describe the “size” of an RKHS H is by means of denseness in a surrounding space F . For example, a
continuous kernel on some compact metric space X is said to be universal [37], if H ⊂ C(X) is dense, where
C(X) denotes the space of all continuous functions f : X → R. Several papers have investigated universal
kernels, see e.g. [22, 35, 32, 40] and the various references mentioned therein. In addition, recall that basic
learning guarantees, such as universal consistency, can be established for kernel-based learning algorithms if
universal kernels are used, see e.g. [39]. Moreover, universal kernels are very closely related to characteristic
kernels, which play a central role for identifying probability distributions [36, 35], e.g. with the help of kernel-
based non-parametric two-sample tests [16, 15].

Of course, the size of an RKHS H could also be described by specifying a “lower bound” on H , that is,
a set, or vector space, of functions E it is supposed to contain. This is the focus of this paper. Namely, we
consider the question:

Question. Given two Banach spaces E ⊂ F of functions X → R, does there exist an RKHS H on X with

E ⊂ H ⊂ F ? (1)

Here, the Banach space of functions (BSF) F encodes additional properties an RKHS H with E ⊂ H is
supposed to satisfy. If no additional properties are needed, negative answers can thus be formulated by saying
that (1) is impossible for all BSFs F with E ⊂ F . For example, if X is an uncountable, compact metric
space such as X = [0, 1]d, then [38] has recently shown that for the BSF E := C(X) Question (1) has a
negative answer for all BSFs F . Besides [38], however, Question (1) has, to the best of our knowledge, not been
considered in the literature, yet. Nonetheless, having positive or negative answers to this question may have
various applications as we will discuss later in this introduction.

Let us now briefly summarize the results we obtain in this paper. Here, it seems fair to mention that for the
greatest part of this paper we investigate Question (1) under the additional assumption that the point evaluations
on E and F are continuous. This additional assumption is, however, at best a mild restriction as it is satisfied
for practically all BSFs, and by definition, for all RKHSs. Moreover, it turns out that under this additional
assumption the inclusion maps id : E → H and id : H → F are automatically continuous, see Lemma 23,
which in turn opens the door for tools from functional analysis. Accordingly, we can freely switch between (1)
and E ↪→ H ↪→ F , and in particular we will do so in this introduction.

Now, in the abstract setting of generic BSFs E and F , we show, among other results:

• Question (1) has a positive answer if and only if the inclusion map id : E → F is 2-factorable, that is
there exist an (abstract) Hilbert space H and bounded linear operators U : E → H and V : H → V with
id = V ◦ U , such that we have

E F

H

U

id

V ,

see Theorem 6. Of course, the inclusion (1) gives such a factorization, but the converse requires an explicit
construction of a suitable RKHS.
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• Question (1) has a positive answer if id : E → F is 2-summing, see e.g. [11, Ch. 2] for a definition and
key properties, or if E is of type 2 and F is of cotype 2, see Theorem 7. Here we note that these sufficient
conditions can be derived from general results on 2-factorable operators, see e.g. [28] and [11].

• If Question (1) has a positive answer, then id : E → F has both type 2 and cotype 2, see Corollary 9.

For concrete families of spaces, we provide negative and often also positive results in the following cases:

• For the spaces E = Hölαd (X) of bounded, α-Hölder continuous functions on some metric space, where
α ∈ (0, 1], we show in Theorem 12 that a positive answer to Question (1) with F = ℓ∞(X) implies
a strong upper bound on the covering, or packing numbers of X . As a consequence, for the open, k-
dimensional cube X := (0, 1)k and α < k/2 no positive answer is possible, while for α ∈ (k/2, 1)
we have a positive answer, see Theorem 22. In particular, for k ≥ 3, none of the spaces Hölα((0, 1)k)
can be embedded into an RKHS, while for k = 1 such an embedding is possible for all α ∈ (1/2, 1)
using a fractional Sobolev space H = Hu

2 ((0, 1)) for u ∈ (1/2, α). Moreover, in this case the inclusion
Höl1((0, 1)) ⊂ Höl1−ε((0, 1)), which holds for all 0 < ε < 1/2, shows that Höl1((0, 1)) can also be
embedded into the RKHS Hu

2 ((0, 1)) with bounded kernel for any u ∈ (1/2, 1).

• For Sobolev spaces E and F of integer (mixed) smoothness on some bounded domain X ⊂ Rd we show
that if Question (1) has a positive answer, then the difference of the involved smoothness parameters needs
to be sufficiently large, see Theorem 14 and Theorem 15. In the case of Sobolev spaces this difference
needs to grow linearly with the dimension d, while for Sobolev spaces with mixed smoothness, this is not
the case.

• For Sobolev-Slobodeckij spaces E and F on some bounded domain X ⊂ Rd we provide positive and
negative results that match to each other modulo some limit cases. In a nutshell, positive results are
possible if and only if the difference of the involved smoothness parameters is sufficiently large compared
to d, see Theorem 20 for details. The same is true if we consider F = ℓ∞(X), instead.

• The results for Sobolev-Slobodeckij spaces can be extended to spaces E and F from the Besov or Triebel-
Lizorkin family of spaces, see Theorem 21 and Theorem 22.

Here we note that our negative answers to Question (1) are always derived by showing that the inclusion map
id : E → F fails to have type 2 or cotype 2. On the other hand, we always construct positive results by
employing well-known embedding theorems for the involved spaces. Moreover, in some cases our positive and
negative results complement each other (modulo some limit cases), and therefore our type 2/cotype 2 technique
is at least sometimes sharp. In these cases, we further see (modulo limit cases) that (1) has a positive answer, if
and only if one already knows an RKHS H from the literature.

Let us finally illustrate the potential impact of positive and negative answers to Question (1). Here, our first
example considers kernel-based learning algorithms, see e.g. [9, 39]. For such learning algorithms, standard
(and fixed) RKHSs are sometimes viewed to be too small. To be specific, while the Gaussian kernel with width
γ is known to be universal for every single value of γ, it is also known that from a quantitative perspective
it only slowly approximates non-C∞-functions, see e.g. [34]. For this reason one either lets γ depend on the
sample (size), see e.g. [13], or considers e.g. so-called hyper-RKHS, see [25, 20]. Rather than employing such
approaches, one could, however, also look for e.g. tailored RKHSs: Namely, if we have a space E of target
functions for which we like to construct a kernel-based algorithm with “good” learning behaviour, an RKHS H
with E ⊂ H ⊂ F can be desirable. Indeed, E ⊂ H ensures a good approximation error during the analysis of
the resulting algorithm, while H ⊂ F can provide a strong eigenvalue or entropy number decay, see e.g. [39,
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Lem. 7.21 and Thm. 6.26] for the cases H ⊂ ℓ∞(X) or H ⊂ Cα(X), which in turn leads to a small estimation
error.

Here we note that recently, BSFs have attracted interest in the machine learning community since neural
networks define particular forms of such spaces, see e.g. [6] and the references mentioned therein. In addition,
[5, Sec. 2.3] compares the differences between neural network specific BSFs E and related (but unfortunately
smaller) RKHSs H in some detail. We provide sufficient requirements for the corresponding integral reproduc-
ing kernel Banach spaces E to be included in an RKHS H in Section 4.4.

Another possible application are so-called integral probability metrics, see e.g. [23] and the references men-
tioned therein. Given a measurable space (X,A) and a set F of measurable functions X → R, these metrics
are defined as

γF (P,Q) := sup
f∈F

∣∣∣∫
X

f dP −
∫
X

f dQ
∣∣∣

for all probability measures P and Q on (X,A) for which the integrals do exist. For example, if F = BL∞(X)

is the unit ball in the space L∞(X) of all bounded measurable functions X → R equipped with the supremum
norm, then γF equals the metric obtained from the total variation norm. In addition, if (X, d) is a separable
metric space equipped with the Borel σ-algebra and F is the unit ball in the space Höl1d(X) of all bounded
Lipschitz functions, then γF is known as the Dudley metric, which metrizes the weak convergence of probability
measures, see e.g. [12, Theorem 11.3.3]. Furthermore, if F is the set of all Lipschitz continuous functions with
Lipschitz constant ≤ 1 and (X, d) is a bounded metric space, then the famous Kantorovich–Rubinstein theorem
shows that γF equals the Wasserstein 1-distance, see e.g. [12, Theorem 11.8.2]. Finally, if F is the unit ball BH

of an RKHS H with bounded, measurable kernel, then γF is called H-maximum mean discrepancy (MMD), see
[16]. Moreover, it can be shown that having a bounded and measurable kernel is also necessary for the MMD
to be defined for all probability measures on (X,A), see e.g. [36, Prop. 2] in combination with [39, Lem. 4.23].
Finally, recall that, unlike many other integral probability metrics, MMDs can be both expressed in closed form
and estimated from data, see e.g. [15].

This raises the question of how powerful MMDs are compared to the general class of integral probability
metrics. To discuss this question, let us fix an RKHS H with bounded measurable kernel. Then γBH

(P,Q)
exists for all probability measures P and Q on X and we have

γBH
(P,Q) ≤ ∥ id : H → L∞(X)∥ · ∥P −Q∥TV .

Consequently, if an empirical estimate ensures that γBH
(P,Q) is “large” with high probability, then P and Q

are “rather distinct” in the sense of the total variation norm. However, if γBH
(P,Q) > 0 is “small”, then we

cannot guarantee that ∥P −Q∥TV is sufficiently small by the inequality above, see also [40] for a rigorous
negative result in this direction. To overcome this issue, the current MMD literature focuses on characteristic
kernels, that is, on kernels for which γBH

(P,Q) = 0 implies P = Q. To obtain a more quantitative result,
assume that we have a BSF E with unit ball BE and E ↪→ H . Then the inequality above can be extended to

∥ id : E → H∥−1 · γBE
(P,Q) ≤ γBH

(P,Q) ≤ ∥ id : H → L∞(X)∥ · ∥P −Q∥TV .

Consequently, γBH
(P,Q) > 0 is “small”, then P and Q are “similar” in the sense of the integral probability

metric γBE
. Depending on the space E, the integral probability metric γBE

might have a clear and intuitive
meaning, but it might be difficult or even infeasible to estimate γBE

from data. In this case, MMDs may still be
helpful. Indeed, if we have RKHSs H1 and H2 with H1 ↪→ E ↪→ H2 ↪→ L∞(X), then

∥ id : H1 → E∥−1 · γBH1
(P,Q) ≤ γBE

(P,Q) ≤ ∥ id : E → H2∥ · γBH2
(P,Q)
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holds for all probability measures P and Q on X . Consequently, if we know from data that γBH1
(P,Q) is

large with high probability, then, with the same probability, P and Q are rather distinct in the sense of γBE
.

Conversely, if we know from data that γBH2
(P,Q) is small with high probability, then with the same probability,

P and Q are rather similar in the sense of γBE
. In other words, using H1 and H2 we may gain a two-sided

quantitative control over γBE
.

In view of this discussion let us now illustrate the consequences of our findings for MMDs. To this end, let
X := (0, 1)k. If k = 1, we have already noted above that we have the inclusions

Höl1((0, 1)) ⊂ Hu
2 ((0, 1)) ⊂ L∞((0, 1))

for all u ∈ (1/2, 1). Consequently, we have MMDs that provide upper bounds for the Dudley metric, while
RKHS H with sufficiently smooth kernel satisfy H ⊂ Höl1((0, 1)), that is, they provide lower bounds for the
Dudley metric. On the other hand, in the case k ≥ 3, the well-established inclusions between Besov spaces do
not provide a fractional Sobolev space between Höl1((0, 1)k) and L∞((0, 1)k), and our results now show that
there is actually no RKHS H with Höl1((0, 1)k) ⊂ H ⊂ L∞((0, 1)k). As a consequence, we do not obtain an
MMD-based upper bound of the Dudley metric as soon as the dimension satisfies k ≥ 3, while a lower bound
is still possible by using sufficiently smooth kernels.

The examples on learning algorithms and integral probability metrics can be generalized. Namely, if we
wish to design an algorithm that deals with functions f ∈ E via their point evaluations, then having an RKHS
H with E ⊂ H could have significant algorithmic advantages: Indeed, the “kernel trick” [31] can simplify
the computation of inner products in H , which in turn makes it possible to use inner products in the algorithm
design by interpreting a function f ∈ E as an element of H . Similarly, if no such H exists, then we know that
no such algorithmic short-cut is possible.

The rest of this paper is organized as follows: In Section 2 we recall some notion and technical tools used
in this paper. In addition, most of the notation is fixed. Section 3 presents all our results in the abstract setting
and Section 4 contains all results related to concrete spaces. In addition, we discuss our general approach for
deriving negative results for two simple families of spaces. Finally, all proofs can be found in Section 5.

2 Preliminaries
Given a number s ∈ R, we write ⌊s⌋ := max{k ∈ Z | k ≤ s} and (s)+ := max{0, s}, (s)− := max{0,−s}.

In the following, E and F denote Banach spaces with norms ∥ · ∥E and ∥ · ∥F and closed unit balls BE and
BF , respectively. Moreover, E′ and F ′ denote their dual spaces. In the case E ⊂ F , we write E ↪→ F , if the
corresponding inclusion map is continuous.

In this work, we are mostly interested in Banach spaces consisting of functions. The following definition
introduces these spaces formally.

Definition 1. Let X ̸= ∅. Then a Banach space E is called a Banach space of functions (BSF) on X , if all its
elements are functions mapping from X to R. Moreover, we say that E is a proper BSF, if for all x ∈ X , the
evaluation functional

δx : E → R
f 7→ f(x)

is continuous. A proper BSF with a Hilbert space norm is called reproducing kernel Hilbert space (RKHS).
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In the literature, Banach spaces of functions are also called reproducing kernel Banach spaces. These spaces
have been recently gained interest for the analysis of neural networks, see e.g. [6].

The usual sequence spaces c0 and ℓp for p ∈ [1,∞] are all proper BSFs. Moreover, the space of R-valued,
bounded continuous functions C0(X) on some metric space X is also a proper BSF, while the usual Lebesgue
spaces on e.g. the unit interval, that is, Lp([0, 1]), fail to be a BSF. Finally, the space ℓ∞(X) of all bounded
functions f : X → R equipped with the supremum norm is also a proper BSF.

Note that in all proper BSFs E on X norm-convergence implies pointwise convergence, that is, if (fn) ⊂ E
is a sequence converging to some f ∈ E in the sense of ∥fn − f∥E → 0, then fn(x) → f(x) for all x ∈ X .

RKHSs have been studied in great detail in the literature. For basic information we refer to e.g. [39, Chapter
4]. For reproducing kernel Hilbert spaces H on X , the corresponding (reproducing) kernel k : X×X → R can
be defined by

k(x, x′) := ⟨δx, δx′⟩H′ , x, x′ ∈ X.

It is well-known that various properties of the functions in H can be characterized by properties of k. For
example, all functions f ∈ H are bounded if and only if the kernel k is bounded, see e.g. [39, Lem. 4.23].
Consequently, if we have a proper BSF E and we seek a surrounding RKHS H with bounded kernel, we can
express this equivalently as

E ⊂ H ⊂ ℓ∞(X) . (2)

Note that in this case, the inclusion maps are automatically continuous, see Lemma 23.
Many results of this paper rely on the type and cotype of operators and spaces. For this reason, let us quickly

recall these notions. To this end, we fix a Banach space E and some n ≥ 1. Then we define a norm on the
n-fold product space En by

∥(x1, . . . , xn)∥ℓn2 (E) :=
( n∑
i=1

∥xi∥2E
)1/2

, x1, . . . , xn ∈ E,

which we sometimes call the sequence norm. Moreover, let ε = (εi) be a Rademacher sequence, that is, a
sequence of i.i.d. random variables fulfilling P(ε1 = 1) = P(ε1 = −1) = 1/2. Then

∥(x1, . . . , xn)∥Radn(E) := E
∥∥ n∑
i=1

εixi

∥∥
E
, x1, . . . , xn ∈ E (3)

defines another norm on En, which we sometimes call the Rademacher norm. Here we note that in the literature
one also considers p-norms on the right hand side, but due to Kahane’s inequality, see e.g. [11, Thm. 11.1], the
resulting norms are equivalent to (3) with constants independent of n.

Now, the basic idea of type and cotype is to compare sequence norms and Rademacher norms uniformly in
n. Namely, for an operator A ∈ L(E,F ) we define

∥A∥type2 := sup
n∈N

(x1,...,xn)∈En\{0}

∥(Ax1, . . . , Axn)∥Radn(F )

∥(x1, . . . , xn)∥ℓn2 (E)
. (4)

and we say that A is of type 2 if ∥A∥type2 < ∞. Analogously, we write

∥A∥cotype2 := sup
n∈N

(x1,...,xn)∈En\{0}

∥(Ax1, . . . , Axn)∥ℓn2 (F )

∥(x1, . . . , xn)∥Radn(E)
(5)
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and we say that A is of cotype 2, if ∥A∥cotype2 < ∞. It is straightforward to verify that ∥ · ∥type2 defines a
norm on the space of all type 2 operators A ∈ L(E,F ) and an analogous statement is true for ∥ · ∥cotype2 on
the space of all cotype 2 operators A ∈ L(E,F ). Moreover, if if we have Banach spaces E0 and F0, as well as
bounded linear operator S : E0 → E and T : F → F0, then some simple calculations show the following two
inequalities, which describe an ideal property of type and cotype 2 operators:

∥TAS∥type2 ≤ ∥T∥∥A∥type2∥S∥ , (6)
∥TAS∥cotype2 ≤ ∥T∥∥A∥cotype2∥S∥ . (7)

Finally, we say that a Banach space E is of type 2 or of cotype 2, if the identity map idE : E → E is of type 2,
respectively cotype 2. In this respect we also need to recall that Hilbert spaces H are of both type 2 and cotype
2. For more information on type and cotype we refer to [11, Chapter 11].

Let (X, d) be a metric space. Then, we denote the closed ball of radius δ with center x ∈ X by B(x, δ).
Moreover, given a δ > 0, a sequence x1, . . . , xn ∈ X is called a δ-packing in X , if d(xi, xj) ≥ δ holds for any
i ̸= j. The packing numbers of X are defined as

Npack(δ,X) := Npack
d (δ,X) := sup{n ∈ N | there exists a δ-packing x1, . . . , xn ∈ X}

for all δ > 0. It is well known that for bounded X ⊂ Rd with non-empty interior there exist constants 0 < c ≤ C
such that

cδ−d ≤ Npack
d (X, δ) ≤ Cδ−d , δ ∈ (0, 1]. (8)

3 General Results
In this section we present several results investigating the situation E ⊂ H ⊂ F , where E and F are proper
BSFs on X and H is an RKHS on X . In particular, we derive both sufficient and necessary conditions for the
existence of such an RKHS H . We begin with a simple characterization in the case that E is a closed subspace
of F . In a nutshell it shows that in this case, no work for finding an RKHS H is required.

Proposition 2. Let F be a proper BSF on X and E be a closed subspace of F . Then E is a proper BSF and
the following statements are equivalent:

i) There exists an RKHS H with E ⊂ H ⊂ F .

ii) E is isomorphic to a Hilbert space.

Moreover, in this case we have E ↪→ H ↪→ F .

Since neither c0 nor ℓ∞ are isomorphic to a Hilbert space we immediately conclude by (2) and Proposition
2 with F := ℓ∞ that there exists no RKHS H with bounded kernel such that c0 ⊂ H or ℓ∞ ⊂ H . Similarly, if
(X, d) is a compact metric space such that E := C(X) is infinite dimensional, then this space is not isomorphic
to a Hilbert space, and by considering F := ℓ∞(X) in Proposition 2, we conclude that there is no RKHS H
with bounded kernel and C(X) ⊂ H .

Given a proper BSF E on X and a non-empty subset Y ⊂ X , we can consider the restricted functions
f|Y : Y → R for all f ∈ E. The set E|Y of such restrictions is again a BSF, see Lemma 24 for a formal
statement. Moreover, we note that the restriction H|Y of an RKHS H on X with kernel k is again an RKHS.
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Its kernel is given by restricting k to Y × Y , that is by k|Y×Y . This is a direct consequence of the fundamental
theorem of RKHS, see [39, Thm. 4.21] and [39, Ex. 4.4].

The following proposition shows that inclusions E ⊂ F are preserved when applying the same restriction
operator to both spaces E and F .

Proposition 3. Let E and F be proper BSFs on X with E ⊂ F . Then for all non-empty Y ⊂ X we have

E|Y ↪→ F|Y

with ∥ id : E|Y → F|Y ∥ ≤ ∥ id : E → F∥.

To illustrate Proposition 3, we assume that we have two proper BSF E and F on X with E ⊂ F and we
seek an RKHS H with E ⊂ H ⊂ F . If there exists such an H , then Proposition 3 ensures

E|Y ↪→ H|Y ↪→ F|Y , (9)

and in addition, H|Y is an RKHS. In other words, if we find a non-empty Y ⊂ X , for which there is no RKHS
H̃ on Y with E|Y ⊂ H̃ ⊂ F|Y , then there is also no RKHS H on X with E ⊂ H ⊂ F . As a consequence, we
only need to consider our Question (1) on subsets Y that we can suitably control.

The following definition is crucial for deriving both positive and negative answers to our Question (1).

Definition 4. Let E,F be Banach spaces and A : E → F be a bounded linear operator. We say that A is
2-factorable if there exist a Hilbert space H and bounded linear operators U : E → H and V : H → F such
the following 2-factorization of A holds:

E F

H

U

A

V . (10)

Moreover, we define ∥A∥γ2
:= inf∥U∥∥V ∥, where the infimum runs over all 2-factorizations of A.

It can be shown that ∥ · ∥γ2 defines an operator ideal norm, see [11, Thm. 7.1 in combination with p. 155]
for details. Namely, if we have Banach spaces E0 and F0 and bounded linear operators S : E0 → E and
T : F → F0, and a 2-factorable operator A : E → F , then TAS : E0 → F0 is also 2-factorable and we have

∥TAS∥γ2
≤ ∥T∥∥A∥γ2

∥S∥ .

With this observation, we almost immediately obtain the following lemma, which will play a central role in our
analysis.

Lemma 5. Let E,F be Banach spaces and A : E → F be a bounded linear operator. If A is 2-factorable, then
it is both of type 2 and cotype 2.

Note that if we have BSFs E and F and an RKHS H with E ↪→ H ↪→ F , then the inclusion map id : E → F
is obviously 2-factorable. The following theorem shows that the converse implication is also true.

Theorem 6. Let E and F be BFSs on some set X with E ↪→ F . Then this inclusion map is 2-factorable if and
only if there exists an RKHS H over X such that

E ⊂ H ⊂ F .

In this case we also have E ↪→ H ↪→ F .
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In the following, we will derive both sufficient and necessary conditions that are in many cases easier to
check than an abstract 2-factorization. In particular, our sufficient conditions make it possible to avoid an explicit
construction of a 2-factorization, while our necessary conditions can be used to show that such a construction is
impossible. We begin with two sufficient conditions.

Theorem 7. Let E and F be BFSs on some set X with E ⊂ F . Then there exists an RKHS H over X such that

E ↪→ H ↪→ F

if one of the following two conditions are satisfied:

i) The inclusion map id : E → F is 2-summing.

ii) E is of type 2 and F is of cotype 2.

In view of i) recall that 2-summing, or more generally, p-summing operators have been extensively investi-
gated in the literature, see e.g. [11]. In particular, is is known that for certain pairs of Banach spaces E and F ,
every bounded linear operator A : E → F is 2-summing. Indeed, if, for example E is a L1-space and F is a
L2-space, see e.g. [11, p. 60] for a definition, then one can show with the help of Grothendieck’s inequality that
every bounded linear operator A : E → F is 1-summing, see e.g. [11, Thm. 3.1], and therefore also 2-summing,
see e.g. [11, Thm. 2.8]. Moreover, every Hilbert space is an L2-space, and since the 2-summing operators form
an operator ideal, we directly obtain the following result, which shows that i) of Theorem 7 is sharp in some
cases.

Lemma 8. Let E and F be BFSs on some set X with E ⊂ F . If E is an L1-space and there exists an RKHS H
over X with E ⊂ H ⊂ F , then the inclusion map id : E → F is 2-summing.

We note that a similar result holds, if E is an L∞-space thanks to another application of Grothendieck’s
inequality, see e.g. [11, Thm. 3.7]. In addition, if E is a subspace of an Lp-space for some p ∈ [1, 2], then every
bounded linear A : E → F that is q-summing for some q > 2 is also 2-summing. For such E, we can thus
replace i) of Theorem 7 by the q-summability of id : E → F . Similarly, if E is an Lp-space for some p ∈ [2,∞]
and 1/q ≥ 1/2− 1/p, then every q-summing operator A : E → F is 2-factorizing, see e.g. [11, p. 168].

The assumption in ii) of Theorem 7 can be slightly relaxed. Indeed, if both E′ and F have cotype 2 and
one of these spaces has the so-called approximation property, then [27], see also [28, Thm. 4.1] has shown that
every bounded linear operator A : E → F is 2-factorable. Here we also refer to [28, Thm. 8.17] for another
relaxation. Moreover, [28, Thm. 3.4] shows that every operator A that has a factorization A = V U , where U is
of type 2 and V is of cotype 2, is 2-factorable, and since Hilbert spaces are of type 2 and cotype 2, the converse
implication is obviously also true, using the ideal property of type 2 and cotype 2. In this direction we also
note that [19] has found examples of Banach spaces E and F such that neither E′ nor F have cotype 2, but
every bounded linear operator A : E → F is 2-factorable. However, these spaces are not BSFs. In addition, the
embeddings ℓ1 ↪→ ℓ2 ↪→ ℓ∞ show that these (co)type 2 assumptions on E and F are in general not necessary for
a positive answer to our Question (1). Moreover, our results on Hölder spaces, see Theorem 12 and Theorem 22,
show that in the absence of (co)type 2 assumptions on E and F both positive and negative results are possible
even for natural embeddings within the same scale of spaces. In contrast, the following straightforward corollary
shows that the type 2 and cotype 2 of id : E → F is a necessary condition for E ⊂ H ⊂ F .

Corollary 9. Let E and F be BFSs on some set X with E ⊂ F . If there exists an RKHS H over X with
E ⊂ H ⊂ F , then the inclusion map id : E → F is of both type 2 and cotype 2.
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4 Applications to Various Concrete Spaces
We have seen in Theorem 6 that our Question (1) is characterized by the 2-factorability of the embedding E ↪→
F . In this section, we thus investigate the 2-factorability of embeddings Eθ ↪→ Fθ′ in various parameterized
families of spaces of “functions”, establishing both positive and negative results. The positive results explicitly
state 2-factorizations given sufficiently well-behaved parameters θ, θ′, which we straightforwardly derive from
known embedding theorems. Negative results are derived from investigating type 2 and cotype 2, which are
required for 2-factorability as stated in Lemma 5.

4.1 Warm-up: ℓp-spaces and Lp-spaces
In this subsection, we quickly investigate inclusions between ℓp-spaces, respectively Lp-spaces. Here, our
focus lies on explaining the common strategy for deriving negative results rather than on deriving particularly
interesting new results. This common strategy will then applied to more interesting scenarios in the subsequent
subsections.

We begin with the most simple example of a family of spaces for which we investigate 2-factorability,
namely ℓp-spaces. Recall that these spaces are proper BSFs, and hence the following lemma also precisely
answers our Question (1) for this family of BSFs.

Lemma 10. Let 1 ≤ p ≤ q ≤ ∞. Then the embedding

ℓp ↪→ ℓq

is 2-factorable if and only if p ≤ 2 ≤ q. In this case it 2-factorizes over the RKHS ℓ2 by ℓp ↪→ ℓ2 ↪→ ℓq .

Proof. Clearly, we only need to show that p ≤ 2 ≤ q is a necessary requirement for 2-factorability. To this end,
let e1, e2, . . . ∈ ℓp be the sequence of unit vectors. For n ≥ 1 we then have

∥(e1, . . . , en)∥Radn(ℓp) = Eε∼Rad

∥∥ n∑
i=1

εiei
∥∥
ℓp

= n1/p

and

∥(e1, . . . , en)∥ℓn2 (ℓq) =
( n∑
i=1

∥ei∥2ℓq
)1/2

= n1/2.

Now, if ℓp ↪→ ℓq is 2-factorable, then it is of type 2 by Lemma 5, and hence we obtain

∥ℓp ↪→ ℓq∥type2 ≥ sup
(x1,...,xn)∈ℓnp\{0}

∥(x1, . . . , xn)∥ℓn2 (ℓq)
∥(x1, . . . , xn)∥Radn(ℓp)

≥
∥(e1, . . . , en)∥ℓn2 (ℓq)

∥(e1, . . . , en)∥Radn(ℓp)
= n1/2−1/p

for all n ≥ 1. Since ∥ℓp ↪→ ℓq∥type2 < ∞, this implies p ≤ 2. Using ∥ℓp ↪→ ℓq∥cotype2 < ∞ we analogously
obtain q ≥ 2.

The next lemma investigates Lp-spaces, where for the sake of simplicity we only consider the domain [0, 1]d

and the Lebesgue measure. Here we note that these spaces are, of course, not BSFs, but the common strategy
becomes more visible than in the previous example.
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Lemma 11. Let Ω := [0, 1]d and 1 ≤ q ≤ p ≤ ∞. Then, the embedding Lp(Ω) ↪→ Lq(Ω) is 2-factorable if
and only if q ≤ 2 ≤ p. In this case we have Lp(Ω) ↪→ L2(Ω) ↪→ Lq(Ω).

Proof. Again, we only need to show that 2-factorability implies p ≥ 2 ≥ q. To this end, let n ∈ N and m := nd.
Moreover, let A1, . . . , Am be the partition of [0, 1]d into m cubes of side length 1/n. Then, we obtain

∥(1A1 , . . . ,1Am)∥Radm(Lp(Ω)) = Eε∼Rad

∥∥ m∑
i=1

εi1Ai

∥∥
Lp(Ω)

= 1

and

∥(1A1
, . . . ,1Am

)∥ℓm2 (Lq(Ω)) =

( m∑
i=1

∥1Ai
∥2Lq(Ω)

)1/2

= nd(1/2−1/q).

Now, if Lp(Ω) ↪→ Lq(Ω) is 2-factorable, then it is of type 2 by Lemma 5, and hence we obtain

∥Lp(Ω) ↪→ Lq(Ω)∥type2 ≥
∥(1A1 , . . . ,1Am)∥ℓm2 (Lq(Ω))

∥(1A1
, . . . ,1Am

)∥Radm(Lp(Ω))
= nd(1/2−1/q).

for all n ≥ 1. Since ∥Lp(Ω) ↪→ Lq(Ω)∥type2 < ∞, this implies q ≤ 2. Analogously, we obtain p ≥ 2 using
∥Lp(Ω) ↪→ Lq(Ω)∥cotype2 < ∞.

It is easy to generalize Lemma 11 to atom-free finite measure spaces (Ω, µ). Since Lemma 11 is mostly
stated to illustrate our common proof strategy, we omit the details.

4.2 Spaces of Hölder Continuous Functions
Let (X, d) be a bounded metric space. In this section, we establish necessary requirements for the existence of
an RKHS H on X that can be squeezed in between two fixed Hölder spaces over (X, d), that is

Hölαd (X) ↪→ H ↪→ Hölβd (X) ,

where 0 < β ≤ α ≤ 1. Here, our result will show that the existence of such an RKHS H implies an upper
asymptotic bound on the growth of the packing numbers Npack

d (X, δ) of (X, d). Moreover, we obtain a similar
result if we replace Hölβd (X) by ℓ∞(X).

Let us begin by recalling the definition of these spaces. To this end, we denote the α-Hölder norm of a
function f : X → R by

∥f∥Hölαd
:= max

{
sup

x ̸=y∈X

|f(x)− f(y)|
dα(x, y)

, sup
x∈X

|f(x)|

}
, (11)

where α ∈ (0, 1]. Clearly, we have ∥f∥Hölαd
< ∞ if and only if f is both α-Hölder continuous and bounded.

Moreover, we define the Hölder spaces by

Hölαd (X) := {f : X → R | ∥f∥Hölαd
< ∞} .

It is well-known and easy to verify that (Hölαd (X), ∥ · ∥Hölαd
) is a Banach space. In addition, since Hölder

spaces consist of bounded functions, we can quickly check that Hölαd (X) ↪→ Hölβd (X) holds for all 0 < β ≤
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α ≤ 1. Moreover, another routine check shows that it is also a proper BSF. By Theorem 6, the existence of an
intermediate RKHS H is therefore equivalent to the 2-factorability of an embedding Hölαd (X) ↪→ Hölβd (X).

Finally, let us recall that the diameter of a metric space (X, d) is diamX := sups,t∈X d(s, t) > 0. With
these preparations our result reads as follows.

Theorem 12. Let (X, d) be a metric space and 0 < β ≤ α ≤ 1. If X is connected and there exists an RKHS H
over X with

Hölαd (X) ↪→ H ↪→ Hölβd (X) , (12)

then there exists a constant C > 0 such that for all 0 < δ < min{1,diamX} we have

Npack
d (X, δ) ≤ Cδ−2(α−β) . (13)

Moreover, if there exists an RKHS H over X such that

Hölαd (X) ↪→ H ↪→ ℓ∞(X) , (14)

then there exists a constant C > 0, such that (13) holds for β := 0 and all 0 < δ < min{1,diamX}.

Let us consider a bounded X ⊂ Rd with non-empty interior. By Theorem 12 and the packing number
bound (8) we conclude that there is no RKHS H satisfying (12) if α − β < d/2. Moreover, there is no RKHS
H satisfying (14) if α < d/2. Hence, (1) is infeasible for d > 2 within the family of Hölder spaces. We
observe that the difference of the smoothness between the Hölder spaces in (12) needs to grow proportional to
the underlying dimension in order to enable (1).

In Section 4.5, (26) will generalize Hölder spaces over X , allowing arbitrarily large non-integer smoothness.
In Theorem 21 we will show that if α− β > d/2, then there exists an intermediate RKHS H such that we have

Hölα(X) ↪→ H ↪→ Hölβ(X)

and in Theorem 22 we will show that for α > d/2 there exists an intermediate RKHS H such that

Hölα(X) ↪→ H ↪→ C0(X)

holds. Hence, the bounds derived in Theorem 12 are tight up to the border cases α − β = d/2, respectively
α = d/2. For general metric spaces (X, d) however, we do not know any condition that implies the existence
of an RKHS H satisfying (12) or (14).

The requirement that X is a bounded subset of Rd is crucial to obtain positive answers to (1), as the following
theorem shows.

Theorem 13. Let Ω ⊂ Rd be open and unbounded. Then there exists no RKHS H on Ω with bounded kernel
such that C∞(Ω) ⊂ H .

By C∞(Ω) we denote the space of smooth functions, given by the norm ∥f∥C∞(Ω) = supα∈Nd
0
∥∂αf∥∞.

4.3 Spaces of (Generalized) Mixed Smoothness
In this section we investigate our Question 1 for a scale of spaces that generalize both classical Sobolev spaces
and Sobolev spaces of mixed smoothness, see e.g. [1], respectively [33]. Since some of these spaces are not BSFs,
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we will focus on the 2-factorability of embeddings between such spaces, where we recall that by Theorem 6
2-factorability is equivalent to our initial Question 1 if the involved spaces are BSFs.

To introduce these spaces, we fix a finite, non-empty set A of multi-indices, i.e. A ⊂ Nd
0. Then we say that

A is coherent, if for all α ∈ A and β ∈ Nd
0 with β ≤ α we have β ∈ A, where β ≤ α denotes the usual

element-wise partial order. Moreover, we write |A|1 := max{|α|1 : α ∈ A}, where |α|1 := α1 + · · · + αd

denotes the sum of the entries of α ∈ Nd
0.

Given a bounded domain Ω ⊂ Rd and a coherent A ⊂ Nd
0, we now define the set of A-times weakly

differentiable functions by

WA
aux(Ω) := {f ∈ L0(Ω) | the weak derivative ∂αf exists for all α ∈ A} , (15)

where L0(Ω) denotes the space of all measurable f : Ω → R. Moreover, we define the Sobolev space of
generalized mixed smoothness A as

WA
p (Ω) := {f ∈ WA

aux(Ω) : ∥f∥WA
p (Ω) < ∞},

where the mixed Sobolev norm of f is given by

∥f∥WA
p (Ω) := sup

α∈A
∥∂αf∥Lp(Ω). (16)

Note that for s ∈ N0 and A := {α ∈ Nd
0 : |α|1 ≤ s} the spaces WA

p (Ω) equal the classical Sobolev spaces
Hs

p(Ω) of integer smoothness s modulo an equivalent norm. Here we note that both our initial Question 1 and
2-factorability are invariant with respect to equivalent norms, and therefore these small differences between
WA

p (Ω) and Hs
p(Ω) do not affect our results. Finally note that we obviously have |A|1 = s.

If, for a fixed s ∈ N0, we define A := {α ∈ Nd
0 : α1, . . . , αd ≤ s}, then W s,mix

p (Ω) := WA
p (Ω) equals a

Sobolev space of mixed smoothness s, where again the latter spaces may have an equivalent norm. Note that
for such A we have |A|1 = sd.

In the following we provide necessary parameter requirements for 2-factorability of embeddings between
Sobolev spaces of generalized mixed smoothness.

Theorem 14. Let Ω ⊂ Rd be a bounded domain, A,B ⊂ Nd
0 be coherent sets, and 1 ≤ p1, p2 < ∞ such

that the embedding WA
p1
(Ω) ↪→ WB

p2
(Ω) exists. We write s := |A|1 and t := |B|1, and further assume that

s− t ≥ d(1/p1 − 1/p2) holds. If the embedding WA
p1
(Ω) ↪→ WB

p2
(Ω) is 2-factorable, then we have

s− t ≥ (d/p1 − d/2)+ + (d/2− d/p2)+ . (17)

Recall that for classical Sobolev spaces Hs
p1
(Ω) and Ht

p2
(Ω) of integer smoothness with s ≥ t, it is asserted

in [29, p. 82, Remark], see also the discussion in [1, p. 108ff], that the embedding Hs
p1
(Ω) ↪→ Ht

p2
(Ω) exists

if and only if s − t ≥ d/p1 − d/p2. Moreover, recall that for these spaces we have Hs
p(Ω) = WA

p (Ω), where
A := {α ∈ Nd

0 : |α|1 ≤ s}. Since this gives |A|1 = s, Theorem 14 shows that if Hs
p1
(Ω) ↪→ Ht

p2
(Ω) is

2-factorable then (17) holds.
In contrast, if we consider Sobolev spaces of mixed smoothness s respectively t as introduced above, then

the 2-factorability of the embedding W s,mix
p1

(Ω) ↪→ W t,mix
p2

(Ω) implies

s− t ≥ (1/p1 − 1/2)+ + (1/2− 1/p2)+

since the considered coherent sets A and B are of size |A|1 = sd and |B|1 = td. Note that compared to classical
Sobolev spaces, the dimension no longer appears in the necessary condition.
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The next theorem investigates the case in which WB
p2
(Ω) is replaced by ℓ∞(Ω), that is we consider

WA
p (Ω) ↪→ ℓ∞(Ω), where the embedding is understood in the usual sense of Sobolev’s embedding theorem.

Informally speaking this complements with the case Theorem 14 with B = {0} and p2 = ∞.

Theorem 15. Let Ω ⊂ Rd be a bounded domain, A ⊂ Nd
0 be a coherent set, and 1 ≤ p < ∞ such that the

embedding WA
p (Ω) ↪→ ℓ∞(Ω) exists. We define s := |A|1 and assume s ≥ d/p. If there exists an RKHS H with

WA
p (Ω) ⊂ H ⊂ ℓ∞(Ω), then we have

s ≥ (d/p− d/2)+ + d/2 .

We can generalize Theorem 14 to mixed fractional smoothness in the style of Slobodeckij spaces, which we
will use in Section 5.2.4. A space WA

p (Ω) of mixed fractional smoothness is given by an integration index p ≥ 1

and a coherent set of mixed smoothness A. The elements (α, θ) of A consist of a multi-index α ∈ Nd
0 which

ensures the coherent structure of A, and a parameter θ ∈ [0, 1) that refines the smoothness of the derivative ∂α
to a fractional smoothness as in (39). Defining |A|1 := max{|α|1 + θ | (α, θ) ∈ A} we obtain analogously to
Theorem 14 that for an embedding WA

p1
(Ω) ↪→ WB

p2
(Ω) the inequality

|A|1 − |B|1 ≥ (d/p1 − d/2)+ + (d/2− d/p2)+

is a necessary requirement for 2-factorability. For Slobodeckij spaces this result is sharp, as we will show in
Theorem 20.

4.4 Embedding Integral Reproducing Kernel Banach Spaces into RKHSs
Consider a single hidden layer neural network f : Rd → R with n hidden neurons, that is, f is of the form

f(x) =

n∑
i=1

αiσ(⟨x,wi⟩+ bi),

where σ : R → R is an activation function, wi ∈ Rd are weight vectors and bi ∈ R are biases. This network’s
outputs can be interpreted as integrals by observing that for the discrete signed measure

µ =

n∑
i=1

αiδ(wi,bi)

on Rd+1 the identity

f(x) =

∫
Rd+1

σ(⟨(x, 1), (w, b)⟩Rd+1)dµ(w, b)

holds for all x ∈ Rd, where we write (w, b) ∈ Rd+1 for the vector obtained by appending b ∈ R to w ∈ Rd.
This perspective motivates the theory of integral reproducing kernel Banach spaces (IRKBS), which can be
used to describe such networks and their limits, see e.g. [6, Section 3.5].

In this section we investigate Question (1) for IRKBS, which are a certain class of proper BSF. Let us begin
by recalling the definition of IRKBS.
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Definition 16. Let (X,A) be a measurable space, Ψ : X × X → R be a measurable function, and M be
a Banach space of finite signed measures on X . We call a bounded and measurable function β : X → R a
normalizing function of Ψ, if

sup
y∈X

|Ψ(x, y)β(y)| < ∞ (18)

holds for all x ∈ X . In this case, we define fµ,Ψ,β : X → R by

fµ,Ψ,β(x) :=

∫
X

Ψ(x, y)β(y)dµ(y) , x ∈ X (19)

for each µ ∈ M. Then the set EM,Ψ,β := {fµ,Ψ,β | µ ∈ M} equipped with the norm

∥fµ∥EM,Ψ,β
:= inf{∥ν∥M | ν ∈ M, fν = fµ}

is called an integral reproducing kernel Banach space.

In the following, M(X) denotes the space of finite signed measures on X equipped with the total variation
(TV) norm. The next result, which is a variant of [6, Prop. 3.3], shows that under natural conditions EM,Ψ,β

becomes a proper BSF.

Proposition 17. Let X be a measurable space, Ψ : X × X → R be a measurable function and β : X → R
be a normalizing function of Ψ. Let M be a Banach space of finite signed measures on X with M ↪→ M(X).
Then, (EM,Ψ,β , ∥ · ∥EM,Ψ,β

) is a proper BSF.

In the following, we would like to reduce our considerations to the case β = 1 without loosing generality.
To explain this, let (X,A) be a measurable space, β : X → R be bounded and measurable, and M be a Banach
space of signed measures on X . For µ ∈ M, we define a new finite, signed measure βµ on X by

(βµ)(A) :=

∫
A

β(y)dµ(y) , A ∈ A.

Moreover, we write βM := {βµ | µ ∈ M} and

∥µ∥βM := inf{∥ν∥M | ν ∈ M, µ = βν} .

It can be quickly verified, that (βM, ∥·∥βM) is a Banach space of finite signed measures. Moreover, the
embedding M ↪→ M(X) and the boundedness of β : X → R imply βM ↪→ M(X). Under the assumptions
of Proposition 17 we further have

fµ,Ψ,β = fβµ,Ψ,1 (20)

and also

∥fµ,Ψ,β∥EM,Ψ,β
= inf{∥ν∥M | ν ∈ M, fν,Ψ,β = fµ,Ψ,β} = inf{∥ν∥M | ν ∈ M, fβν,Ψ,1 = fβµ,Ψ,1}

= inf{∥βν∥βM | fβν,Ψ,1 = fβµ,Ψ,1}
= ∥fβµ,Ψ,1∥EβM,Ψ,1

. (21)

15



In other words, (20) and (21) make it possible to work with the constant normalizing function β = 1 by adapting
the considered Banach space of signed measures.

Having introduced IRKBSs, our next goal is to investigate under which assumptions these spaces can be
embedded into an RKHS. To this end, we assume that Ψ : X × X → R is a symmetric function that can be
written as a difference of two kernels k1 and k2 on X , that is

Ψ = k1 − k2 .

In the literature, this is known as a positive decomposition of Ψ and it is discussed in e.g. [8] and the references
mentioned therein. Moreover, positively decomposable functions are the foundation of reproducing kernel Krein
spaces (RKKSs), a generalization of RKHSs, see e.g. [24].

The following lemma investigates Question (1) for IRKBS EM,Ψ,1 in cases where Ψ is positively decom-
posable.

Lemma 18. Let X be a measurable space and M be a Banach space of finite signed measures on X with
M ↪→ M(X). Moreover, let k1, k2 be measurable kernels on X with RKHSs H1, H2, such that Ψ := k1 − k2
is bounded. Then, the IRKBS EM,Ψ,1 is a proper BSF. If, in addition, we have

H1, H2 ⊂ L1(µ) (22)

for all µ ∈ M, then the RKHS H = H1 +H2 of the kernel k := k1 + k2 fulfils

EM,Ψ,1 ↪→ H.

An easy way to check (22) is provided by [39, Thm. 4.26], which shows that if k is a measurable kernel on
X with RKHS H and µ is a finite signed measure on X with

∥k∥L1(µ)
:=

∫
X

√
k(x, x) d|µ|(x) < ∞ ,

where |µ| := µ+ − µ− denotes the total variation of µ, then H ⊂ L1(µ) follows.
To adapt this to our situation, we first note that (22) is obviously equivalent to H1 + H2 ⊂ L1(µ) for all

µ ∈ M. Since k1 + k2 is the kernel of H1 +H2, we thus see that (22) is satisfied if∫
X

√
k1(x, x) + k2(x, x)dµ(x) < ∞ , µ ∈ M. (23)

For example, if k1 and k2 are bounded, (23) holds, and thus also (22). As a consequence, we then have the
embeddings EM,Ψ,1 ↪→ H1 +H2 ↪→ ℓ∞(X).

To illustrate Lemma 18 and its crucial assumption (22) in a concrete setting, we fix a real sequence (λi)i≥0

and consider the power series

σ+(t) :=

∞∑
i=0

(λi)+ ti ,

σ−(t) :=

∞∑
i=0

(λi)− ti

as well as their convergence radii R+ and R−. Moreover, we write R := min{R+, R−} and assume R > 0.
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For X ⊂ B̊(0,
√
R) we define k1, k2 : X ×X → R by k1(x, y) := σ+(⟨x, y⟩) and k2(x, y) := σ−(⟨x, y⟩).

Then, k1 and k2 are continuous and [39, Lemma 4.8.] shows that k1 and k2 are kernels on X since all coefficients
are non-negative. We further define Ψ : X ×X → R by Ψ := k1 − k2, that is,

Ψ(x, y) =

∞∑
i=0

λi ⟨x, y⟩i , x, y ∈ X.

Let us assume for simplicity that Ψ is bounded, so that we may choose β ≡ 1 as a normalizing function of Ψ.
Then, Lemma 18 shows that the IRKBS EM(X),Ψ,1 is a proper BSF. To obtain a positive answer to Question

(1) from Lemma 18 it remains to check (22). Here we first note that the sufficient condition (23) for (22) reads
as √√√√ ∞∑

i=0

|λi|∥ · ∥2i ∈ L1(µ) , µ ∈ M.

Unfortunately, this condition is not necessary. To derive a necessary condition, we first note that (22) implies
ki( · , x) ∈ L1(µ) for all x ∈ X , µ ∈ M, and i = 1, 2. In our situation, the latter reads as

∞∑
i=0

|λi| ⟨ · , x⟩i ∈ L1(µ) (24)

for all x ∈ X and µ ∈ M.
Finally, the following example shows that the condition (18) ensuring that EM,Ψ,1 is a proper BSF is in

general substantially weaker than the condition (22) ensuring a surrounding RKHS.

Example 19. Let X = Rd, σ : R → R be given by

σ(t) = cos(t) =

∞∑
i=0

(−1)i
t2i

(2i)!
,

and Ψ : X × X → R be given by Ψ(x, y) = σ(⟨x, y⟩). Then, Ψ is bounded and for M := M(X) we know
by Lemma 18 that the IRKBS EM,Ψ,1 is a proper BSF. Moreover, our discussion above shows that a positive
decomposition of Ψ is given by the kernels

k1(x, y) =

∞∑
i=0

t4i

(4i)!
and k2(x, y) =

∞∑
i=0

t4i+2

(4i+ 2)!
.

By (24) we thus see that we need at least

cosh(⟨ · , x⟩) ∈ L1(µ)

for all µ ∈ M, x ∈ X in order to apply Lemma 18. Consequently, we can only find an RKHS H with EM,Ψ,1 ↪→
H with the help of Lemma 18, if we substantially reduce the space M of considered measures.
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4.5 Triebel-Besov-Lizorkin spaces
In this section we consider Triebel-Lizorkin spaces and Besov spaces. To quickly introduce those spaces, let
us fix a bounded domain Ω ⊂ Rd with smooth boundary [29, Sect. 2.4.1, Def. 1]. We denote Triebel-Lizorkin
spaces by F s

p,q(Ω), where s ≥ 0 is the smoothness, p ∈ [1,∞) is the integration index, and q ∈ [1,∞] is the
fein index. Moreover, Besov spaces are denoted as Bs

p,q(Ω) where s ≥ 0 and p, q ∈ [1,∞].
In the following, we say that Xs

p,q(Ω) is a Besov-Triebel-Lizorkin space, if either Xs
p,q(Ω) = F s

p,q(Ω) with
p < ∞ or Xs

p,q(Ω) = Bs
p,q(Ω) with p ∈ [1,∞].

Recall from e.g. [29, Sect. 2.2.4] that for s > d/p, the spaces F s
p,q(Ω) and Bs

p,q(Ω) can be continuously
embedded into C0(Ω) and consequently, they are proper BSFs. Nonetheless, we will also investigate the case
s ≤ d/p, where we can still sharply answer the question of 2-factorability. Finally, some additional embedding
theorems for Besov-Triebel-Lizorkin spaces are recalled in Theorem 32.

Many well known function spaces are special cases of Besov-Triebel-Lizorkin spaces [41, Prop. 2.3.5],
especially the following identities hold up to norm-equivalence:

The fractional Sobolev spaces Hs
p(Ω), which are sometimes also referred to as Bessel potential spaces, can

be identified via

Hs
p(Ω) = F s

p,2(Ω) , s ≥ 0, p ∈ (1,∞). (25)

Here we recall that Hs
2(Ω) is a Hilbert space which can be quickly inferred from their definition with the help

of the Fourier transformation, see e.g. [29, p. 13]. Combining this with the above mentioned embedding into
C0(Ω), the spaces Hs

2(Ω) are RKHSs whenever s > d/2.
For s > 0 with s ̸∈ N, the Hölder spaces Höls(Ω) of ⌊s⌋-times differentiable, bounded functions, for which

all these derivatives are bounded and the derivatives of order ⌊s⌋ are s−⌊s⌋-Hölder continuous, can be identified
via

Höls(Ω) = Bs
∞,∞(Ω). (26)

Note that for s ∈ (0, 1), these spaces coincide with the Hölder spaces discussed in Section 4.2. In contrast to
Section 4.2, however, we can now also deal with smoothness s > 1.

For s > 0 and p ∈ [1,∞), the Slobodeckij spaces W s
p (Ω), whose definition is recalled in Section 5.2.4 can

be identified via

W s
p (Ω) = F s

p,q(Ω), where q =

{
2, if s ∈ N and p > 1,
p, if s ̸∈ N.

(27)

Besov spaces and Triebel-Lizorkin spaces coincide when their integration and fein index are equal, that is

Bs
p,p(Ω) = F s

p,p(Ω), p < ∞. (28)

This is the only scenario in which Besov spaces and Triebel-Lizorkin spaces are equal, see [41, 2.3.9].
Our first result in this section investigates 2-factorability of embeddings between Slobodeckij spaces. Mod-

ulo limiting cases, it provides a characterization.

Theorem 20. Let Ω ⊂ Rd be a bounded domain with smooth boundary, and let 0 ≤ t < s < ∞ and
1 ≤ p1, p2 < ∞. If s ∈ N, let p1 > 1 and if t ∈ N0, let p2 > 1. Furthermore, let s− t ≥ d(1/p1 − 1/p2) hold.
Then, the embedding W s

p1
(Ω) ↪→ W t

p2
(Ω) exists and the following statements hold true:
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i) Sufficient requirement. If s− t > (d/p1 − d/2)+ + (d/2− d/p2)+ , then the embedding 2-factorizes as

W s
p1
(Ω) ↪→ Hu

2 (Ω) ↪→ W t
p2
(Ω) (29)

for any u ∈ (t+ (d/2− d/p2)+ , s− (d/p1 − d/2)+ ).

ii) Necessary requirement. If the embedding W s
p1
(Ω) ↪→ W t

p2
(Ω) is 2-factorable, then we have

s− t ≥ (d/p1 − d/2)+ + (d/2− d/p2)+ .

Lemma 33, a result showing that Slobodeckij spaces are “dense” in the Besov-Triebel-Lizorkin spaces in a
suitable way, allows analyzing 2-factorability of embeddings of Besov-Triebel-Lizorkin spaces based on Theo-
rem 20, yielding a central result which is our strongest answer to (1).

Theorem 21. Let Ω ⊂ Rd be a smooth bounded domain and let 0 ≤ t < s. Let Xs
p1,q1(Ω) and Y t

p2,q2(Ω) be
spaces1 of Triebel-Lizorkin type F s

p,q(Ω) or of Besov type Bs
p,q(Ω). If both spaces are of Triebel-Lizorkin type,

assume s− t ≥ d/p1 − d/p2, and otherwise let s− t > d/p1 − d/p2. Then, the embedding

Xs
p1,q1(Ω) ↪→ Y t

p2,q2(Ω)

exists and the following statements hold true:

i) Sufficient requirement. If s− t > (d/p1 − d/2)+ + (d/2− d/p2)+ , then the embedding 2-factorizes as

Xs
p1,q1(Ω) ↪→ Hu

2 (Ω) ↪→ Y t
p2,q2(Ω) (30)

for any u ∈ (t + (d/2 − d/p2)+ , s − (d/p1 − d/2)+ ). If both spaces are of Triebel Lizorkin type, then
the 2-factorization in (30) even exists for all u ∈ [t+ (d/2− d/p2)+ , s− (d/p1 − d/2)+ ] \ {s, t}.

ii) Necessary requirement. If t > 0 and the embedding Xs
p1,q1(Ω) ↪→ Y t

p2,q2(Ω) is 2-factorable, then we
have

s− t ≥ (d/p1 − d/2)+ + (d/2− d/p2)+ .

Finally, we answer Question (1) for F = ℓ∞(Ω), characterizing of the existence of an encompassing RKHS
H consisting of bounded functions for Besov-Triebel-Lizorkin spaces modulo border cases.

Theorem 22. Let Ω ⊂ Rd be a smooth bounded domain and let s > 0. Let Xs
p,q(Ω) be a space of Triebel-

Lizorkin type F s
p,q(Ω) or of Besov type Bs

p,q(Ω). Let s > d/p. Then, the embedding

Xs
p,q(Ω) ↪→ C0(Ω)

exists and the following statements hold true:

i) Sufficient requirement. If s > (d/p− d/2)+ + d/2, then the embedding 2-factorizes as

Xs
p,q(Ω) ↪→ Hu

2 (Ω) ↪→ C0(Ω)

for any u ∈ (d/2, s− (d/p− d/2)+ ).

1Mixed cases, such as for example Xs
p1,q1

(Ω) = Bs
p1,q1

(Ω) and Y t
p2,q2

(Ω) = F t
p2,q2

(Ω), are possible.
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ii) Necessary requirement. If the embedding Xs
p,q(Ω) ↪→ C0(Ω) is 2-factorable, then we have

s ≥ (d/p− d/2)+ + d/2.

Theorem 22 i) shows that over a bounded smooth domain Ω ⊆ Rd, we find a space E consisting of suf-
ficiently smooth functions of finite smoothness such that for F = C0(Ω) our Question (1) allows a positive
answer. This is a strong contrast to an unbounded domain Ω ⊆ Rd, where Theorem 13 shows that (1) is not
even feasible for E = C∞(Ω) ⊂ ℓ∞(Ω) = F , which stresses the necessity of the boundedness assumption.

5 Proofs

5.1 Proofs for Section 3
For the following results recall that a BSF E on a set X is called proper if the point evaluation δx : E → R, f 7→
f(x) is continuous for all x ∈ X , see Definition 1.

Lemma 23. Let F be a proper BSF on X and E be a BSF on X with E ⊂ F . Then the following statements
are equivalent:

i) E is proper.

ii) We have E ↪→ F .

In this case we further have ∥δx∥E′ ≤ ∥ id : E → F∥ · ∥δx∥F ′ for all x ∈ X .

Proof of Lemma 23: ii) ⇒ i). We write c := ∥ id : E → F∥ and fix an x ∈ X . Then we have BE ⊂ cBF , and
hence we obtain

∥δx∥E′ = sup
f∈BE

|δxf | ≤ sup
f∈cBF

|δxf | = c sup
f∈BF

|δxf | = c∥δx∥F ′ ,

and in particular δx : E → R is continuous.
i) ⇒ ii). We will apply the Closed Graph Theorem, see e.g. [21, Theorem 1.6.11]. To this end let us fix a

sequence (fn) ⊂ E with fn → f in E and fn → g in F . This yields both fn → f pointwise and fn → g
pointwise, and hence we conclude f = g, that is id f = g. The Closed Graph Theorem then gives the continuity
of id : E → F .

Proof of Proposition 2: Let us write ∥f∥E := ∥f∥F for all f ∈ E. Then (E, ∥ · ∥E) is complete since E ⊂ F
is closed, and consequently E is a BSF on X . Moreover, we obviously have E ↪→ F , and hence E is proper by
Lemma 23.

i) ⇒ ii). Since E, H , and F are proper BSFs an application of Lemma 23 yields E ↪→ H ↪→ F . Our next
goal is to show that E is a closed subspace of H . To this end, let us fix a sequence (fn) ⊂ E and an f ∈ H with
∥fn − f∥H → 0. Since H ↪→ F , we then have ∥fn − f∥F → 0, and in particular, (fn) is a Cauchy sequence
with respect to ∥ · ∥F . However, we have ∥f∥E = ∥f∥F for all f ∈ E, and therefore (fn) is also a Cauchy
sequence in E. Since (E, ∥ · ∥E) is complete, there thus exists a g ∈ E with ∥fn − g∥E → 0. Moreover, since
both H and E are proper, we additionally have fn(x) → f(x) and fn(x) → g(x) for all x ∈ X , and therefore
f = g. This shows f ∈ E.

Finally, since E is a closed subspace of H , we see that (E, ∥ · ∥H) is a Hilbert space, and in particular
complete. In addition, E ↪→ H shows that id : (E, ∥ · ∥E) → (E, ∥ · ∥H) is continuous, and obviously, it is
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also bijective. The Open Mapping Theorem then guarantees that the inverse is also continuous, see e.g. [21,
Cor. 1.6.6].

ii) ⇒ i). If E is isomorphic to a Hilbert space, we can define a Hilbert space norm on E that is equivalent to
∥ · ∥E . Then E equipped with this Hilbert space norm is an RKHS H that satisfies E = H .

Lemma 24. Let E be a proper BSF on X and Y ⊂ X be non-empty. Then

E|Y :=
{
f|Y : f ∈ E

}
equipped with the norm

∥g∥E|Y := inf
{
∥f∥E : f ∈ E and f|Y = g

}
, g ∈ E|Y

is a proper BSF on Y with

∥δy∥(E|Y )′ ≤ ∥δy∥E′ , y ∈ Y. (31)

Moreover, the restriction operator · |Y : E → E|Y is linear and continuous with ∥ · |Y : E → E|Y ∥ ≤ 1.

Proof of Lemma 24: Obviously, E|Y is a vector space consisting of functions Y → R and the restriction
operator is linear.

To verify that ∥ · ∥E|Y is a norm, we first note that ∥ · ∥E|Y ≥ 0 and ∥0∥E|Y = 0 are obvious. Moreover, if

g ∈ E|Y satisfies ∥g∥E|Y = 0, then there exists a sequence (f (n)) ⊂ E with f
(n)
|Y = g and ∥f (n)∥ → 0. The

latter gives f (n)(x) → 0 for all x ∈ X , and hence we find

g(y) = f
(n)
|Y (y) = f (n)(y) → 0 , y ∈ Y.

This shows g = 0. In addition, the homogeneity follows from

∥αg∥E|Y = inf
{
∥f∥E : f ∈ E and f|Y = αg

}
= inf

{
∥αf∥E : f ∈ E and f|Y = g

}
= α∥g∥E|Y .

To verify the triangle inequality, we fix some g1, g2 ∈ E|Y . Since for all f (1), f (2) ∈ E with f
(i)
|Y = gi we have

(f (1) + f (2))|Y = g1 + g2 we then obtain

∥g1 + g2∥E|Y ≤ inf
{
∥f (1) + f (2)∥E : f (i) ∈ E and f

(i)
|Y = gi

}
≤ inf

{
∥f (1)∥E + ∥f (2)∥E : f (i) ∈ E and f

(i)
|Y = gi

}
= ∥g1∥E|Y + ∥g2∥E|Y .

Let us now show that restriction operator · |Y : E → E|Y is continuous. To this end, we fix an f ∈ E. Then
we easily find

∥f|Y ∥E|Y = inf
{
∥f̃∥E : f̃ ∈ E and f̃|Y = f|Y

}
,≤ ∥f∥E .

and hence we have the desired continuity with ∥ · |Y : E → E|Y ∥ ≤ 1.
Next, we show that the norm is complete. To this end, let (gn) ⊂ E|Y be a sequence with

∞∑
n=1

∥gn∥E|Y < ∞.
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By a well-known characterization of complete normed spaces, see e.g. [21, Thm. 1.3.9], it suffices to show that∑∞
n=1 gn converges in E|Y . To this end, we choose f (n) ∈ E with f

(n)
|Y = gn and ∥f (n)∥E ≤ ∥gn∥E|Y + n−2

for all n ≥ 1. This gives

∞∑
n=1

∥f (n)
|Y ∥E < ∞,

and since E is complete, we see with the help of [21, Thm. 1.3.9] that f :=
∑∞

n=1 f
(n) exists with convergence

in E. Using the already established continuity of the restriction operator · |Y : E → E|Y we conclude that( ∞∑
n=1

f (n)

)
|Y

=

(
lim

m→∞

m∑
n=1

f (n)

)
|Y

= lim
m→∞

( m∑
n=1

f (n)

)
|Y

= lim
m→∞

m∑
n=1

f
(n)
|Y =

∞∑
n=1

gn ,

where the convergence in the last three expressions take place in E|Y by the continuity of the restriction operator.
Finally, to check that E|Y is proper, we fix an y ∈ Y . For g ∈ E|Y and an f ∈ E with f|Y = g we then

obtain

|δyg| = |g(y)| = |f|Y (y)| = |δyf | ≤ ∥δy∥E′ · ∥f∥E ,

and by taking the infimum over all f ∈ E with f|Y = g we then see that |δyg| ≤ ∥δy∥E′ · ∥g∥E|Y . The latter
also shows (31).

Proof of Proposition 3: We first show that E|Y ⊂ F|Y . To this end, we fix some g ∈ E|Y . Then there exists an
f ∈ E with f|Y = g. We then know that f ∈ F , which in turn implies g = f|Y ∈ F|Y . Moreover, we find

∥g∥F|Y = inf
{
∥f̃∥F : f̃ ∈ F and f̃|Y = g

}
≤ ∥f∥F ≤ ∥ id : E → F∥ · ∥f∥E ,

and by taking the infimum over all f ∈ E with f|Y = g we then find ∥g∥F|Y ≤ ∥ id : E → F∥ · ∥g∥E|Y .

Proof of Lemma 5: Let us fix a 2-factorization (10). Then we can expand this to

E F

H H

U

id

idH

V

Since H is of type 2, so is idH , and therefore (6) shows that A is of type 2, too. Analogously, we find that A is
of cotype 2.

Proof of Theorem 6: If we have an RKHS H with E ⊂ H ⊂ F , then Lemma 23 shows E ↪→ H0 ↪→ F , and
this in turn directly provides a 2-factorization. To show the converse, assume a 2-factorization

E F

H0

U

id

V .

We define the feature map ϕ : X → H0 by

ϕ(x) := V ∗δx,F ,
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where δx,F ∈ F ′ denotes the evaluation functional at x acting on F and V ∗ : F ′ → H0 is the adjoint operator
of V that is uniquely determined by

⟨V ∗f ′, h⟩H0
= ⟨f ′, V h⟩F ′,F , h ∈ H0, f

′ ∈ F ′.

The corresponding kernel k : X ×X → R is

k(x, x′) := ⟨ϕ(x), ϕ(x′)⟩H0

and by [39, Thm. 4.21] its RKHS is given by

H =
{
⟨h, ϕ(·)⟩H0

∣∣h ∈ H0

}
. (32)

Our next goal is to show H = ranV . To this end, we first observe that for h ∈ H0 and x ∈ X we have

⟨h, ϕ(x)⟩H0
= ⟨h, V ∗δx,F ⟩H0

= ⟨V ∗δx,F , h⟩H0
= ⟨δx,F , V h⟩F ′,F = (V h)(x) .

Now, if choose an f ∈ H , then by (32) there exists an h ∈ H0 with f = ⟨h, ϕ(·)⟩H0
, and hence our observation

yields f = V h ∈ ranV . Conversely, if we fix an f ∈ ranV , then there exists an h ∈ H0 with V h = f , and
our observation gives f = ⟨h, ϕ(·)⟩H0

∈ H by (32). We conclude that H = ranV , which in particular implies
H ⊂ F .

To establish E ⊂ H , we simply observe that the 2-factorization together with H = ranV yields E =
V UE ⊂ ranV = H .

Proof of Theorem 7: i) By Pietsch’s factorization theorem, see e.g. [11, Cor. 2.16], we know that id : E → F
is 2-factorable, and hence the assertion follows by Theorem 6.

ii) By Kwapien’s theorem, see e.g. [11, Thm. 12.19], we know that id : E → F is 2-factorable, and
therefore the assertion again follows by Theorem 6.

Proof of Corollary 9: By Theorem 6 we know that id : E → F is 2-factorable, and hence the assertion follows
by Lemma 5.

5.2 Proofs for Section 4
5.2.1 Proofs for Section 4.2

Before we present the proofs of Section 4.2, we recall that given a metric space (X, d) and some α ∈ (0, 1], the
map dα : X ×X → [0,∞) is another metric on X , which generates the same topology as d does. Moreover,
an f : X → R is α-Hölder continuous with respect to d, if and only if f is 1-Hölder continuous with respect to
dα, and we have

∥f∥Hölαd
= ∥f∥Höl1

dα
. (33)

Finally, an elementary calculation shows Npack
dα (X, δ) = Npack

d (X, δ1/α) for all δ > 0.
We construct suitable functions with disjoint support, for which in this section a cotype 2 argument yields

the results. To this end, consider, for fixed center t ∈ X , radius δ > 0, and α ∈ (0, 1] the bump function
ft,δ,α : X → R defined by

ft,δ,α(s) := (δ − dα(t, s))+ , s ∈ X. (34)

Now, the basic idea is to consider centers t1, . . . , tn and a radius δ, for which the corresponding functions fti,δ,α
have disjoint support, since in this case the Rademacher norms can be suitably controlled as the following result
shows.
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Proposition 25. Let (X, d) be a metric space and 0 < β ≤ α ≤ 1. Moreover, let t1, . . . , tn ∈ X and 0 < δ ≤ 1.
Then the following statements hold true for the bump functions fti,δ,α defined in (34):

i) We have supp fti,δ,α ⊂ B(ti, δ
1/α) and ∥fti,δ,α∥∞ = δ.

ii) If dα(ti, tj) ≥ 3δ holds for all i ̸= j, then, for all ε1, . . . , εn ∈ {−1, 1}, we have∥∥∥ n∑
i=1

εifti,δ,α

∥∥∥
Hölαd

≤ 1 .

iii) If there exist s1, . . . , sn ∈ X with d(si, ti) = δ1/α, then ∥fti,δ,dα∥Hölβd
≥ δ(α−β)/α for all i = 1, . . . , n.

Proof of Proposition 25. i) The construction of fti,δ,α gives {fti,δ,α ̸= 0} ⊂ B(ti, δ
1/α), and since the latter

ball is closed, we obtain the first assertion. The second assertion is trivial.
ii) To emphasize the role of the metric in the definition of the bump function, we write fti,δ,α,d := fti,δ,α

for a moment. By switching to the metric dα we then have fti,δ,α,d = fti,δ,1,dα . Consequently, Eq. (33) shows∥∥∥ n∑
i=1

εifti,δ,α

∥∥∥
Hölαd

=
∥∥∥ n∑

i=1

εifti,δ,α,d

∥∥∥
Hölαd

=
∥∥∥ n∑

i=1

εifti,δ,1,dα

∥∥∥
Höl1

dα

.

Without loss of generality, it thus suffices to investigate the case α = 1 for

f :=

n∑
i=1

εifti,δ,1 .

Here we first note that i) together with our assumption on t1, . . . , tn implies d(supp fti,δ,1, supp ftj ,δ,1) ≥ δ
for all i ̸= j. This gives ∥f∥∞ ≤ δ ≤ 1 by i). It remains to show

|f(x)− f(y)| ≤ d(x, y) , x, y ∈ X . (35)

To this end, we define the “center identifying function” ι : X → {0, . . . , n} by

ι(x) =

{
i , if there exists an i ∈ {1, . . . , n} such that d(x, ti) < δ

0 , if d(x, ti) ≥ δ for all i ∈ {1, . . . , n}.

With the help of this notation we can express f by

f(x) =

{
ει(x)

(
δ − d(tι(x), x)

)
, if ι(x) > 0,

0 , if ι(x) = 0.

In the following we thus investigate (35) for the possible values of ι(x), ι(y).
Case ι(x) = ι(y) = 0. Trivial.
Case ι(x) = ι(y) > 0. Here we have |f(x)− f(y)| =

∣∣d(tι(x), x)− d(tι(x), y)
∣∣ ≤ d(x, y).

Case ι(y) ̸= ι(x) and ι(x) = 0. Here, ι(x) = 0 implies δ ≤ d(x, tι(y)) ≤ d(x, y) + d(y, tι(y)), and hence
we find |f(x)− f(y)| = δ − d(y, tι(y)) ≤ d(x, y) as desired.

Case ι(x) ̸= ι(y) and ι(x), ι(y) > 0. Here we first note that d(x, y) ≥ δ. If ει(x) = ει(y), we thus find

|f(x)− f(y)| =
∣∣d(y, tι(y))− d(x, tι(x))

∣∣ ≤ max{d(y, tι(y)), d(x, tι(x))} ≤ δ ≤ d(x, y) .
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Moreover, if ει(x) ̸= ει(y), we obtain

|f(x)− f(y)| = δ − d(x, tι(x)) + δ − d(y, tι(y)) ≤ 3δ − d(x, tι(x))− d(y, tι(y)) ≤ d(x, y) ,

where in the last step we used 3δ ≤ d(tι(x), tι(y)) ≤ d(x, tι(x)) + d(x, y) + d(y, tι(y)).
iii) For simplicity, we write s := si and t := ti. Then we have

∥ft,δ,α∥Hölβd
= ∥ft,δ,α∥Höl1

dβ
≥ |ft,δ,α(t)− ft,δ,α(s)|

dβ(s, t)
=

|δ − (δ − dα(s, t))|
dβ(s, t)

=
δ

δβ/α
= δ(α−β)/α ,

where in the first step we used (33).

Lemma 26. Let (X, d) be a connected metric space, δ0 > 0, and t ∈ X . If there exists an s0 ∈ X with
d(s0, t) > δ0, then for all δ ∈ (0, δ0] there there exists an s ∈ X with d(s, t) = δ.

Proof of Lemma 26. Let δ ∈ (0, δ0) and assume that for all s ∈ X we have d(s, t) ̸= δ. Then we obtain a
partition

X = {s ∈ X | d(s, t) < δ} ∪ {s ∈ X | d(s, t) > δ}

of X into two non-empty, open sets. This contradicts the connectedness assumption.

Proof of Theorem 12. If X has only one element, the claim is trivial. Hence, we assume that X has at least two
elements, which in turn implies diamX > 0. We define δ0 := min{1, (diamX)α}/3.

For 0 < δ < δ0 there then exist s, t ∈ X with dα(s, t) > 3δ, and hence we obtain n := Npack
dα (X, 3δ) ≥ 2.

Let us fix a 3δ-packing t1, . . . , tn ∈ X . For a fixed i ∈ {1, . . . , n} and all j ∈ {1, . . . , n} with j ̸= i we
then have dα(tj , ti) ≥ 3δ > δ, where we note that n ≥ 2 ensures that there actually exists such a j ̸= i.
Consequently, Lemma 26 gives an si ∈ X with dα(si, ti) = δ. For 1 ≤ i ≤ n, we write fi := fti,δ,α, where
fti,δ,α is the bump function defined in (34). Then, by Proposition 25 we have

∥(f1, . . . , fn)∥Radn(Hölαd (X)) = Eε∼Rad

∥∥∥ n∑
i=1

εifi

∥∥∥
Hölα,d

≤ 1

and

∥(f1, . . . , fn)∥ℓn2 (Hölβd (X)) =
( n∑
i=1

∥fi∥2Hölβd

)1/2

≥ n1/2δ(α−β)/α .

Combining both estimates yields

C := ∥Hölαd (X) ↪→ Hölβd (X)∥cotype2 ≥
∥(f1, . . . , fn)∥ℓn2 (Hölβd (X))

∥(f1, . . . , fn)∥Radn(Hölαd (X))
≥ n1/2δ(α−β)/α.

Now Corollary 9 shows C < ∞, and using the definition of n we get

Npack
d (X, (3δ)1/α) = Npack

dα (X, 3δ) = n ≤ C2δ2(α−β)/α ,

where the first identity was already mentioned around (33). A simple variable transformation then yields the
assertion for all δ < min{1,diamX}.
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To establish the second assertion, we note that even without the connectivity assumption

∥(f1, . . . , fn)∥ℓn2 (ℓ∞(X)) =
( n∑
i=1

∥fi∥2ℓ∞(X)

)1/2

= n1/2δ

holds. Repeating the cotype 2 argument used above with β = 0 then yields the second assertion.

Proof of Theorem 13. Since Ω is unbounded we have Npack(Ω, δ) = ∞ for all δ > 0: Indeed, if we had
Npack(Ω, δ) < ∞, then there would be a maximal, finite δ-packing x1, . . . , xn ∈ Ω. For every x ∈ Ω there
would thus exist an xi with d(x, xi) < δ and Ω ⊂ B(x1, δ)∪· · ·∪B(xn, δ) would be bounded, which contradicts
our assumption. We now set δ := 3 and choose an infinite δ-packing x1, · · · ∈ Ω. Moreover, we consider the
bump function f ∈ C∞(Rd) from Eq. (36) and define fi : Ω → R by fi(x) := f(x− xi). For every n ∈ N we
observe

∥(f1, . . . , fn)∥Radn(C∞(Ω)) ≤ ∥f∥C∞(Rd) < ∞

as the supports of f1, . . . , fn are disjoint by construction and f ∈ S(Rd). Furthermore, we have ∥fi∥∞ =
f(0) = 1 for all i = 1, . . . , n, and hence we obtain ∥(f1, . . . , fn)∥ℓn2 (ℓ∞(Ω)) = n1/2. We observe

∥C∞(Ω) ↪→ ℓ∞(Ω)∥cotype2 ≥
∥(f1, . . . , fn)∥ℓn2 (ℓ∞(Ω))

∥(f1, . . . , fn)∥Radn(C∞(Ω))
≥ n1/2

∥f∥C∞(Rd)

for all n ≥ 1. This implies ∥C∞(Ω) ↪→ ℓ∞(Ω)∥cotype2 = ∞ and by Corollary 9, there cannot exists an RKHS
H with C∞(Ω) ⊂ H ⊂ ℓ∞(Ω), that is, there is no RKHS H with bounded kernel and C∞(Ω) ⊂ H .

5.2.2 Proofs for Section 4.3

The proofs of Sections 4.3 and 4.5are based on the same bump function f : Rd → R given by

f(x) :=

{
1
e exp

(
− 1

1−∥x∥2

)
, if x ∈ B(0, 1),

0, otherwise.
(36)

Obviously, we have supp(f) ⊂ B(0, 1). Moreover, we have f ∈ S(Rd), that is, f is a Schwartz function [1].
Finally, for all multi-indices α ∈ Nd

0 it holds ∂αf ̸= 0.

Lemma 27. Let Ω ⊂ Rd be open such that B(0, 1) ⊂ Ω. Let α ∈ Nd
0, and p ∈ [1,∞). Moreover, for

δ ∈ (0, 1/2] and suitable n ≥ 1 let x1, . . . , xn ∈ B(0, 1/2) be a 3δ-packing. We define fi : Ω → R by fi(x) :=
f(δ−1x− δ−1xi), where f : Rd → R is the bump function from Eq. (36). Moreover, for ε1, . . . , εn ∈ {−1, 1}
we define h : Ω → R by

h(x) :=

n∑
i=1

εifi(x) .

Then the functions f1, . . . , fn have disjoint support and the function h fulfills

∥∂αh∥Lp(Ω) = n1/pδd/p−|α|1∥∂αf∥Lp(Ω) .
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Proof. We define zi := δ−1xi. For x ∈ B(0, 1) we then have ∥x+ zi∥ ≤ ∥x∥+ ∥zi∥ ≤ 1+ δ−1/2 ≤ δ−1, that
is B(0, 1) ⊂ B(−zi, δ

−1). Moreover, we observe the identity

(∂αh)(x) = δ−|α|1
n∑

i=1

εi∂αf
(
δ−1x− zi

)
, x ∈ Ω.

We define Di := supp
(
x 7→ ∂αf

(
δ−1x− zi

))
. By supp(∂αf) ⊂ supp(f) ⊂ B(0, 1) and our construction we

have Di ⊂ B(xi, δ), and especially the sets D1, . . . , Dn are pairwise disjoint. This directly yields

∥∂αh∥pLp(Ω) = δ−p|α|1
∫
Ω

∣∣∣ n∑
i=1

εi∂αf
(
δ−1x− zi

)∣∣∣p dx =

n∑
i=1

δ−p|α|1
∫
Ω

∣∣∣εi∂αf(δ−1x− zi
)∣∣∣p dx .

Moreover, using the substitution y := δ−1x− zi, that is x = δ(y + zi) = δy + xi, we find∫
Ω

∣∣∣εi∂αf(δ−1x− zi
)∣∣∣p dx = δd

∫
Rd

1Ω(δy + xi)|∂αf(y)|p dy = δd
∫
−zi+δ−1Ω

|∂αf(y)|p dy

= δd
∫
B(0,1)

|∂αf(y)|p dy

= δd
∫
Ω

|∂αf(y)|p dy ,

where in the last two steps we used the inclusions supp(∂αf) ⊂ supp(f) ⊂ B(0, 1) and B(0, 1) ⊂
B(−zi, δ

−1) ⊂ −zi+δ−1Ω as well as B(0, 1) ⊂ Ω. Combining both calculations then yields the assertion.

Lemma 28. Let Ω ⊂ Rd be open such that B(0, 1) ⊂ Ω and let p ∈ [1,∞). Moreover, for δ ∈ (0, 1/2] and
suitable n ≥ 1 let x1, . . . , xn ∈ B(0, 1/2) be a 3δ-packing, and let fi : Ω → R be defined by

fi(x) := f(δ−1x− δ−1xi) ,

where f is the bump function from Eq. (36). Then for all coherent A ⊂ Nd
0 and α0 ∈ A with s := |α0|1 = |A|1

we have

∥∂α0
f∥Lp(Ω) · n1/pδd/p−s ≤ ∥(f1, . . . , fn)∥Radn(WA

p (Ω)) ≤ sup
α∈A

∥∂αf∥Lp(Ω) · n1/pδd/p−s , (37)

and

∥∂α0f∥Lp(Ω) · n1/2δd/p−s ≤ ∥(f1, . . . , fn)∥ℓn2 (WA
p (Ω)) ≤ sup

α∈A
∥∂αf∥Lp(Ω) · n1/2δd/p−s .

Proof. From Lemma 27 we directly obtain

∥(f1, . . . , fn)∥Radn(WA
p (Ω)) = Eε∼Rad∥ε1f1 + · · ·+ εfn∥WA

p (Ω) = sup
α∈A

n1/pδd/p−|α|1 · ∥∂αf∥Lp(Ω) .

Now the lower bound on ∥(f1, . . . , fn)∥Radn(WA
p (Ω)) is obvious, and the upper bound quickly follows by re-

membering δ ≤ 1/2.
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Moreover, applying Lemma 27 in the case n = 1 shows ∥∂αfi∥Lp(Ω) = δd/p−|α|1∥∂αf∥Lp(Ω) for all
i = 1, . . . , n, which in turn implies

∥fi∥WA
p (Ω) = sup

α∈A
δd/p−|α|1∥∂αf∥Lp(Ω) .

Hence we obtain

∥(f1, . . . , fn)∥ℓn2 (WA
p (Ω)) = n1/2 sup

α∈A
δd/p−|α|1∥∂αf∥Lp(Ω) .

The rest of the proof is analogous to the proof of (37).

Proof of Theorem 14. By a simple translation and scaling argument we may assume without loss of generality
that B(0, 1) ⊂ Ω. Let us fix a 0 < δ ≤ 1/2. We write n := Npack(B(0, 1/2), 3δ) and choose a 3δ-packing
x1, . . . , xn ∈ B(0, 1/2). Moreover, we define f1, . . . , fn as in Lemma 28. By Lemma 28 there then exists a
constant C that is independent on n and δ such that

∥WA
p1
(Ω) ↪→ WB

p2
(Ω)∥type2 ≥

∥(f1, . . . , fn)∥Radn(WB
p2

(Ω))

∥(f1, . . . , fn)∥ℓn2 (WA
p1

(Ω))

≥ Cn1/p2−1/2δs−t+d(1/p2−1/p1) .

Using the packing number bound (8) we thus find some constant Ĉ > 0 such that

∥WA
p1
(Ω) ↪→ WB

p2
(Ω)∥type2 ≥ Ĉδs−t+d(1/2−1/p1) .

holds for all δ ∈ (0, 1/2]. Now Lemma 5 implies that s− t ≥ (d/p1−d/2)+ holds. Using a cotype 2 argument,
we analogously obtain the requirement s− t ≥ (d/2− d/p2)+ .

It remains to show that s − t ≥ (d/p1 − d/2)+ + (d/2 − d/p2)+ . However, if (d/p1 − d/2)+ = 0 or
(d/2 − d/p2)+ = 0, then the claim immediately follows from our previous considerations. Moreover, if both
are positive, we have

(d/p1 − d/2)+ + (d/2− d/p2)+ = d(1/p1 − 1/p2) ,

and the claim holds by assumption.

Proof of Theorem 15. Recall that if there exists an RKHS H with WA
p (Ω) ⊂ H ⊂ ℓ∞(Ω), then WA

p (Ω) ↪→
ℓ∞(Ω) is 2-factorable, and therefore of type 2 and cotype 2.

By a simple translation and scaling argument we may assume without loss of generality that B(0, 1) ⊂ Ω.
Let us fix a 0 < δ ≤ 1/2. We write n := Npack(B(0, 1/2), 3δ) and choose a 3δ-packing x1, . . . , xn ∈
B(0, 1/2). For the functions f1, . . . , fn considered in Lemma 27 we then have

∥(f1, . . . , fn)∥Radn(ℓ∞(Ω)) = Eε∼Rad∥ε1f1 + · · ·+ εnfn∥ℓ∞(Ω) = ∥f1∥∞ = 1,

since the functions f1, . . . , fn are disjointedly supported translated copies of each other. Lemmas 27 and 28
yield

∥WA
p (Ω) ↪→ ℓ∞(Ω)∥type2 ≥

∥(f1, . . . , fn)∥Radn(ℓ∞(Ω))

∥(f1, . . . , fn)∥ℓn2 (WA
p (Ω))

≥ Cn−1/2δs−d/p

for some suitable constant C > 0, and using the packing number bound (8) Lemma 5 gives s ≥ (d/p− d/2)+ .
Analogously, a cotype 2 argument shows s ≥ d/2. We conclude the claim by considering the cases (d/p1−

d/2)+ = 0 and (d/p1 − d/2)+ = d(1/p− 1/2).
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5.2.3 Proofs for Section 4.4

Proof of Proposition 17. Let µ ∈ M and denote |µ| := µ+ − µ− for its total variation. For x ∈ x we define
cx := supy∈X |Ψ(x, y)β(y)| < ∞ and observe

|fµ(x)| ≤
∫
X

|Ψ(x, y)β(y)|d|µ|(y) ≤ cx∥µ∥TV ≤ cx∥µ∥M∥id : M → M(X)∥ < ∞. (38)

Clearly, EM,Ψ,β is a vector space of functions X → R and ∥ · ∥EM,Ψ,β
defines a norm on EM,Ψ,β . We

show that (EM,Ψ,β , ∥ · ∥EM,Ψ,β
) is complete. To this end, define the subspace N := {ν ∈ M | fν = 0} ⊂ M

and observe that N is closed in M as

N =
⋂
x∈X

kerϕx

holds. Therefore, the quotient space M/N is a Banach space. By construction, the operator A : M/N →
EM,Ψ,β given by [µ]∼ 7→ fµ is well-defined and bijective. Furthermore, A is an isometry since for all µ ∈ M
we have

∥fµ∥EM,Ψ,β
= inf{∥ν∥M | ν ∈ M, fν = fµ} = inf{∥ν∥M | ν ∈ M, ν − µ ∈ N} =

∥∥[µ]M/N
∥∥
M/N .

Since M/N is a Banach space, we hence conclude that (EM,Ψ,β , ∥ · ∥EM,Ψ,β
) is a Banach space, too.

Finally, we show that EM,Ψ,β is a proper BSF: Let x ∈ X and fµ ∈ EM,Ψ,β . By (38) we then have

|fµ(x)| ≤ cx∥id : M → M(X)∥ · ∥ν∥M

for all ν ∈ M with fν = fµ. This leads to

|fµ(x)| ≤ cx∥id : M → M(X)∥ · ∥fµ∥EM,Ψ,β

by the definition of the norm ∥ · ∥EM,Ψ,β
, namely ∥fµ∥EM,Ψ,β

= inf{∥ν∥M | ν ∈ M, fν = fµ}.

Proof of Lemma 18. Since Ψ is measurable and bounded, Proposition 17 shows that EM,Ψ,1 is a proper BSF.
By [4, Sect. I.6], the kernel k = k1 + k2 indeed corresponds to the RKHS H1 +H2.

For i ∈ {1, 2} and µ ∈ M, our assumption (22) ensures that the map x 7→ ki( · , x) is weakly µ-integrable
with Pettis-integral

∫
ki( · , y)dµ(y) ∈ Hi, see [40, Section 2] for details. For all x ∈ X , this yields(∫

ki( · , y)dµ(y)
)
(x) =

〈
ki( · , x),

∫
ki( · , y)dµ(y)

〉
Hi

=

∫
⟨ki( · , x), ki( · , y)⟩Hi

dµ(y)

=

∫
ki(x, y)dµ(y)

= fµ,ki,1(x) ,

and hence we find fµ,ki,1 ∈ Hi. We conclude fµ,Ψ,1 = fµ,k1,1 − fµ,k2,1 ∈ H1 +H2 = H and EM,Ψ,1 ⊂ H .
Since both EM,Ψ,1 and H are proper BSF, Proposition 3 yields the continuous embedding EM,Ψ,1 ↪→ H .
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5.2.4 Proofs for Section 4.5

For the definition of Slobodeckij spaces, we essentially follow [29, 2.1.2], but we note that our version of the
Slobodeckij norm is actually only norm-equivalent to the norm given there. As discussed previously, neither our
Question (1) nor 2-factorability is affected by switching to equivalent norms.

To begin with, let Ω ⊂ Rd be a domain with smooth boundary and let s ≥ 0, p ≥ 1. For the coherent set of
multi-indices A := {α ∈ Nd

0 | |α|1 ≤ ⌊s⌋}, let W s
aux(Ω) be the set of A-times weakly differentiable functions

defined in Eq. (15). If s ∈ N, then we define for f ∈ W s
aux(Ω) the Sobolev norm just as in Eq. (16), that is

∥f∥W s
p (Ω) := sup

α∈Nd
0 ,|α|1≤s

∥∂αf∥Lp(Ω) .

Recall that the classical Sobolev norm considers the p-sum of the involved terms ∥∂αf∥Lp(Ω) instead. Our
definition gives, of course, an equivalent norm.

Moreover, if s ̸∈ N, we write θ := s− ⌊s⌋ ∈ (0, 1) and define, for f ∈ W s
aux(Ω), the Slobodeckij norm by

∥f∥W s
p (Ω) := max

{
sup

α∈Nd
0 ,|α|1≤⌊s⌋

∥∂αf∥Lp(Ω), sup
α∈Nd

0 ,|α|1=⌊s⌋
∥∂αf∥θ,p,Ω

}
,

where for a measurable function g : Ω → R the semi-norm ∥g∥θ,p,Ω is defined as

∥g∥θ,p,Ω :=
(∫

Ω

∫
Ω

|g(x)− g(y)|p

∥x− y∥θp+d
dydx

)1/p

. (39)

In both cases, we define the Slobodeckij space by

W s
p (Ω) :=

{
f ∈ W s

aux(Ω) : ∥f∥W s
p (Ω) < ∞

}
.

To bound the semi-norm ∥g∥θ,p,Ω, the following well-known formula, see e.g. [14, Satz 14.8], which holds
for all measurable functions f : [0,∞) → [0,∞) and all 0 ≤ a < b ≤ ∞, turns out to be useful:∫

Rd

1[a,b](∥x∥)f(∥x∥)dx = dVd

∫ b

a

f(r)rd−1 dr . (40)

Here Vd := vol(B(0, 1)) is the Volume of the d-dimensional unit ball. For later use we further note that for
z ∈ Rd and a ≥ 1, β > 0 this formula yields∫

B(z,a)

∫
Rd\B(z,a+1/2)

1

∥x− y∥β+d
dydx =

∫
B(0,a)

∫
Rd\B(0,a+1/2)

1

∥x− y∥β+d
dydx

≤
∫
B(0,a)

∫
Rd\B(0,a+1/2)

∣∣∥x∥ − ∥y∥
∣∣−β−d

dydx

≤
∫
B(0,a)

∫
Rd\B(0,a+1/2)

(
∥y∥ − a

)−β−d
dydx

≤ addV 2
d

∫ ∞

a+1/2

(r − a)−β−drd−1 dr

<
2β+da2ddV 2

d

β
, (41)

where in the last step we used r < 2a(r − a) for all r ≥ a+ 1/2.
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Lemma 29. For all d ≥ 1, p ∈ [1,∞), and θ ∈ (0, 1), there exists a constant cd,p,θ ≥ 0 such that for all open
and bounded Ω ⊂ Rd and all f : Ω → R that are continuously differentiable with bounded derivative, we have

∥f∥θ,p,Ω ≤ cd,p,θ|f |1(vol(Ω))1/p(diamΩ)1−θ .

Proof. Since the derivative of f is bounded, f is Lipschitz continuous with constant |f |1 < ∞. We write
δ := diamΩ. For fixed x ∈ Ω we then have ∥x− y∥ ≤ δ for all y ∈ Ω, that is Ω ⊂ B(x, δ). This yields

∥f∥pθ,p,Ω =

∫
Ω

∫
Ω

|f(x)− f(y)|p

∥x− y∥θp+d
dydx ≤ |f |p1

∫
Ω

∫
Ω

1

∥x− y∥(θ−1)p+d
dydx

≤ |f |p1
∫
Ω

∫
B(x,δ)

1

∥x− y∥(θ−1)p+d
dydx

= |f |p1
∫
Ω

∫
B(0,δ)

1

∥z∥(θ−1)p+d
dz dx .

Moreover, with the help of (40) we obtain∫
B(0,δ)

1

∥z∥(θ−1)p+d
dz = dVd

∫ δ

0

r−1+(1−θ)p dr = dVd
δ(1−θ)p

(1− θ)p
,

and inserting this into the previous estimate then yields the assertion since Ω is bounded.

Analogous to Lemma 27, we establish the foundation for estimating the type 2 norm and cotype 2 norm of
embeddings W s

p1
(Ω) ↪→ W t

p2
(Ω).

Lemma 30. Let Ω ⊂ Rd be open such that B(0, 1) ⊂ Ω, and let α ∈ Nd
0, θ ∈ (0, 1), and p ∈ [1,∞). Moreover,

for δ ∈ (0, 1/2] and suitable n ≥ 1 let x1, . . . , xn ∈ B(0, 1/2) be a 3δ-packing, and ε1, . . . , εn ∈ {−1, 1}. We
define h : Ω → R by

h(x) :=

n∑
i=1

εif(δ
−1x− δ−1xi) ,

where f is the bump function from Eq. (36). Moreover, we write s := θ+|α|1. Then we have ∥∂αf∥θ,p,B(0,1) > 0
and there exists a constant cd,p,θ > 0 only depending on d, p, θ, such that

∥∂αf∥θ,p,B(0,1)n
1/pδd/p−s ≤ ∥∂αh∥θ,p,Ω ≤ cd,p,θ

(
1 + ∥∂αf∥θ,p,B(0,3/2)

)
n1/pδd/p−s .

Proof of Lemma 30. Before we begin with the actual proof, we note that for any suitable set Θ ⊂ Rd and any
sufficiently differentiable function a : Θ → R one has supp(∂αa) ⊂ supp(a), for any suitable α ∈ Nd

0. This
inclusion will be used several times.

Just as in the proof of Lemma 27 we define zi := δ−1xi ∈ B(0, δ−1/2) ⊂ δ−1Ω. Note that we have
∥zi − zj∥ ≥ 3 for i ̸= j as well as the identity

(∂αh)(x) = δ−|α|1
n∑

i=1

εi∂αf
(
δ−1x− zi

)
.
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We define fi := εi∂αf( · − zi) and g :=
∑n

i=1 fi. For later use we note that supp fi ⊂ B(zi, 1), and in
particular the functions f1, . . . , fn have mutually disjoint support. Moreover, by substitution we obtain

∥∂αh∥pθ,p,Ω =

∫
Ω

∫
Ω

|∂αh(x)− ∂αh(y)|p

∥x− y∥θp+d
dydx

= δ−p|α|1
∫
Ω

∫
Ω

∣∣∑n
i=1 εi∂αf

(
δ−1x− zi

)
−
∑n

j=1 εj∂αf
(
δ−1y − zj

)∣∣p
∥x− y∥θp+d

dydx

= δ2d−p|α|1
∫
δ−1Ω

∫
δ−1Ω

∣∣g(x)− g(y)
∣∣p

∥δx− δy∥θp+d
dydx

= δd−ps

∫
δ−1Ω

∫
δ−1Ω

∣∣g(x)− g(y)
∣∣p

∥x− y∥θp+d
dydx . (42)

Our first goal is to establish the upper bound on ∥∂αh∥pθ,p,Ω. To this end, we write H(x, x) := 0 and

H(x, y) :=
|g(x)− g(y)|p

∥x− y∥θp+d
, x, y ∈ Rd with x ̸= y.

Moreover, we write Bi := B(zi, 3/2). Then, we have supp fi ⊂ Bi and λd(Bi ∩ Bj) = 0 for all i ̸= j.
Finally, we define B0 := Rd \ (B1 ∪ · · · ∪ Bn). Since we have H(x, y) = H(y, x) ≥ 0 for all x, y ∈ Rd and
H(x, y) = 0 for all x, y ∈ B0 we then obtain∫

Rd

∫
Rd

H(x, y)dydx =

n∑
i=0

n∑
j=0

∫
Bi

∫
Bj

H(x, y)dydx

=

n∑
i=1

∫
Bi

∫
Bi

H(x, y)dydx+

n∑
i=0

∑
j ̸=i

∫
Bi

∫
Bj

H(x, y)dydx

= n∥∂αf∥θ,p,B(0,3/2) +

n∑
i=0

∑
j ̸=i

∫
Bi

∫
Bj

H(x, y)dydx ,

where in the last step we used∫
Bi

∫
Bi

H(x, y)dydx =

∫
B(zi,3/2)

∫
B(zi,3/2)

|∂αf(x− zi)− ∂αf(y − zi)|p

∥x− y∥θp+d
dydx

=

∫
B(0,3/2)

∫
B(0,3/2)

|∂αf(x)− ∂αf(y)|p

∥x− y∥θp+d
dydx

= ∥∂αf∥pθ,p,B(0,3/2) .

To treat the double sum, we first observe
n∑

i=0

∑
j ̸=i

∫
Bi

∫
Bj

H(x, y)dydx =

n∑
j=1

∫
B0

∫
Bj

H(x, y)dydx+

n∑
i=1

∑
j ̸=i

∫
Bi

∫
Bj

H(x, y)dydx

≤
n∑

j=1

∫
Rd\Bj

∫
Bj

H(x, y)dydx+

n∑
i=1

∫
Bi

∫
Rd\Bi

H(x, y)dydx
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= 2

n∑
i=1

∫
Bi

∫
Rd\Bi

H(x, y)dydx .

In addition, we have∫
Bi

∫
Rd\Bi

H(x, y)dydx =

∫
B(zi,1)

∫
Rd\Bi

H(x, y)dydx

+

∫
Bi\B(zi,1)

∫
Rd\B(zi,2)

H(x, y)dydx

+

∫
Bi\B(zi,1)

∫
B(zi,2)\Bi

H(x, y)dydx .

In the following, we estimate these three double integrals. The first one can be estimated by∫
B(zi,1)

∫
Rd\Bi

H(x, y)dydx =

∫
B(zi,1)

∫
Rd\B(zi,3/2)

|g(x)− g(y)|p

∥x− y∥θp+d
dydx

≤
∫
B(zi,1)

∫
Rd\B(zi,3/2)

2p∥g∥p∞
∥x− y∥θp+d

dydx

≤ 2p(1+θ)+ddV 2
d

θp
,

where we used ∥g∥∞ = ∥f∥∞ = 1 and (41). The second double integral can be analogously estimated by∫
Bi\B(zi,1)

∫
Rd\B(zi,2)

H(x, y)dydx =

∫
Bi\B(zi,1)

∫
Rd\B(zi,2)

|g(x)− g(y)|p

∥x− y∥θp+d
dydx

=

∫
Bi\B(zi,1)

∫
Rd\B(zi,2)

|g(y)|p

∥x− y∥θp+d
dydx

≤
∫
B(zi,3/2)

∫
Rd\B(zi,2)

1

∥x− y∥θp+d
dydx

≤ 2θp+3ddV 2
d

θp
.

For the third double integral we observe that for x ∈ Bi \B(zi, 1) we have g(x) = 0 and for y ∈ B(zi, 2) \Bi

we also have g(y) = 0. This shows∫
Bi\B(zi,1)

∫
B(zi,2)\Bi

H(x, y)dydx = 0 .

Combining these considerations, we find

∥∂αh∥pθ,p,Ω ≤ δd−psn∥∂αf∥pθ,p,B(0,3/2) + 2δd−psn
(2p(1+θ)+ddV 2

d

θp
+

2θp+3ddV 2
d

θp

)
.

Finally we establish the lower bound for the Slobodeckij norm of h using the fact that f1, . . . , fn have
mutually disjoint support:∫

δ−1Ω

∫
δ−1Ω

|g(x)− g(y)|p

∥x− y∥θp+d
dydx ≥

n∑
i=1

∫
B(zi,1)

∫
B(zi,1)

|g(x)− g(y)|p

∥x− y∥θp+d
dydx
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=

n∑
i=1

∫
B(zi,1)

∫
B(zi,1)

|εi∂αf(x− zi)− εi∂αf(y − zi)|p

∥x− y∥θp+d
dydx

=n

∫
B(0,1)

∫
B(0,1)

|∂αf(x)− ∂αf(y)|p

∥x− y∥θp+d
dydx

=n∥∂αf∥pθ,p,B(0,1).

Moreover, since ∂αf is continuous and not constant, we have ∥∂αf∥θ,p,B(0,1) > 0.

Now, we are able to estimate the Rademacher sequence norm and the ℓ2-sequence norm for bump functions
in Slobodeckij spaces.

Lemma 31. Let Ω ⊂ Rd be open such that B(0, 1) ⊂ Ω and let s ≥ 0, p ∈ [1,∞). For δ ∈ (0, 1/2] and
suitable n ≥ 1, let x1, . . . , xn ∈ B(0, 1/2) be a 3δ-packing and define fi : Ω → R by

fi(x) := f(δ−1x− δ−1xi),

where f is the bump function considered in Eq. (36). Then, there exist constants c > 0 and C > 0 that are
independent of δ and n such that we have

cn1/pδd/p−s ≤∥(f1, . . . , fn)∥Radn(W s
p (Ω)) ≤ Cn1/pδd/p−s

and

cn1/2δd/p−s ≤∥(f1, . . . , fn)∥ℓn2 (W s
p (Ω)) ≤ Cn1/2δd/p−s .

Proof. In the case s ∈ N, the assertion has already be shown in Lemma 28. In the following we thus assume
s ̸∈ N and define θ := s− ⌊s⌋. Finally, we fix some α0 ∈ Nd

0 with |α0|1 = ⌊s⌋.
Now Lemma 30 directly yields the lower bound on the Rademacher norm

∥∂α0
f∥θ,p,B(0,1)n

1/pδd/p−s ≤ Eε∼Rad∥ε1f1 + · · ·+ εnfn∥W s
p (Ω) = ∥(f1, . . . , fn)∥Radn(W s

p (Ω)).

For the corresponding upper bound we write Cα,d,p,θ := cd,p,θ(1+∥∂αf∥θ,p,B(0,3/2)) From Lemmas 27 and 30
we then obtain

∥(f1, . . . , fn)∥Radn(W s
p (Ω)) = Eε∼Rad∥ε1f1 + · · ·+ εnfn∥W s

p (Ω)

≤ max{ sup
|α|1≤⌊s⌋

∥∂αf∥Lp(Ω)n
1/pδd/p−|α|1 , sup

|α|1=⌊s⌋
Cα,d,p,θn

1/pδd/p−s}.

Since δ ≤ 1/2, we see that the asserted upper bound for the Rademacher norm holds for sufficiently large
C > 0.

Moreover, applying Lemmas 27 and 30 in the case n = 1 shows for all i = 1, . . . , n the estimate

∥∂α0f∥θ,p,B(0,1)δ
d/p−s ≤ ∥fi∥W s

p (Ω) ≤ max{ sup
|α|1≤⌊s⌋

∥∂αf∥Lp(Ω)δ
d/p−|α|1 , sup

|α|1=⌊s⌋
δd/p−sCα,d,p,θ}

≤ Cδd/p−s .

From this we easily obtain the bounds on the ℓ2-sequence norms.
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The following theorem relates different spaces of Besov-Triebel-Lizorkin type to each other and is at the
heart of the constructive statement in Theorem 20.

Theorem 32. Let Ω ⊂ Rd be a bounded domain with smooth boundary and let s, t ≥ 0, p, p1, p2 ∈ [1,∞], and
q, q1, q2 ∈ [1,∞]. Then the following statements hold true:

i) Lowering the smoothness to increase the integration index. If s > t, then we have

F s
p1,q1(Ω) ↪→ F t

p2,q2(Ω) , if s− t ≥ d

p1
− d

p2
and p1, p2 < ∞,

Bs
p1,q1(Ω) ↪→ Bt

p2,q2(Ω) , if s− t >
d

p1
− d

p2
.

ii) Lowering the integration index. If p1 ≥ p2, then we have

F s
p1,q(Ω) ↪→ F s

p2,q(Ω) , if p1, p2, q < ∞,

Bs
p1,q(Ω) ↪→ Bs

p2,q(Ω) .

iii) Changing the fein index. If q1 ≤ q2, then for all ε > 0 we have

F s
p,q1(Ω) ↪→ F s

p,q2(Ω) , if p < ∞,

F s+ε
p,∞(Ω) ↪→ F s

p,q(Ω) , if p < ∞,

Bs
p,q1(Ω) ↪→ Bs

p,q2(Ω),

Bs+ε
p,∞(Ω) ↪→ Bs

p,q(Ω).

iv) Changing between Besov and Triebel spaces. If s > t and s− t > d(1/p1 − 1/p2), then we have

F s
p1,q1(Ω) ↪→ Bt

p2,q2(Ω), if p1 < ∞,

Bs
p1,q1(Ω) ↪→ F t

p2,q2(Ω) if p2 < ∞.

Proof. i) See e.g. [41, Parts (i) and (ii) of the theorem on p. 196/7].
ii) See e.g. [41, Part (iii) of the theorem on p. 196/7].
iii) In the case Ω = Rd, these embeddings can be found in e.g. [41, Prop. 2 on p. 47]. The restriction to

bounded domains is discussed in e.g. [29, Sec. 2.4.4].
iv) We only show F s

p1,q1(Ω) ↪→ Bt
p2,q2(Ω), the other embedding can be proven analogously.

Recall the identity F s
p,p(Ω) = Bs

p,p(Ω) for p < ∞, see Eq. (28). We set ε := s− t− d(1/p1 − 1/p2) > 0.

By i) we obtain F s
p1,q1(Ω) ↪→ F

s−ε/2
p1,p1 (Ω) = B

s−ε/2
p1,p1 (Ω) as well as Bs−ε/2

p1,p1 (Ω) ↪→ Bt
p2,q2(Ω).

Proof of Theorem 20. We first note that Part i) of Theorem 32 together with Eq. (27) gives

W s
p1
(Ω) = F s

p1,q1(Ω) ↪→ F t
p2,q2(Ω) = W t

p2
(Ω) , (43)

where q1 and q2 are defined according to Eq. (27).
i) Let us fix a u ∈ (t+ (d/2− d/p2)+ , s− (d/p1 − d/2)+ ). Then Part i) of Theorem 32 shows

F s
p1,q1(Ω) ↪→ Fu

2,2(Ω) ↪→ F t
p2,q2(Ω) .
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Combining this with (43) and (25) yields the assertion.
ii) By a translation and scaling argument, we can assume B(0, 1) ⊂ Ω without loss of generality. Let us fix

a 0 < δ ≤ 1/2. We define n := Npack(B(0, 1/2), δ) and choose f1, . . . , fn as in Lemma 31. Then Lemma 31
gives

∥W s
p1
(Ω) ↪→ W t

p2
(Ω)∥type2 ≥

∥(f1, . . . , fn)∥Radn(W s
p1

(Ω))

∥(f1, . . . , fn)∥ℓn2 (W t
p2

(Ω))
≥ Ĉn1/p2−1/2δs−t−d(1/p1−1/p2))

for constant Ĉ > 0 that is independent of δ and n. Using the packing number bound (8) we thus find a constant
C̄ > 0 such that

∥W s
p1
(Ω) ↪→ W t

p2
(Ω)∥type2 ≥ C̄δs−t+d(1/2−1/p1)

holds for all δ ∈ (0, 1/2]. Now, Lemma 5 in combination with s > t implies s− t ≥ (d/p1 − d/2)+ . Using a
cotype 2 argument, we analogously obtain the requirement s− t ≥ (d/2− d/p2)+ .

It remains to show that s − t ≥ (d/p1 − d/2)+ + (d/2 − d/p2)+ holds. If (d/p1 − d/2)+ = 0 or
(d/2 − d/p2)+ = 0, this follows directly from our previous considerations. Moreover, if both expressions are
positive, we have

(d/p1 − d/2)+ + (d/2− d/p2)+ = d(1/p1 − 1/p2),

and the claim holds by assumption.

The following lemma shows that Slobodeckij spaces are dense in the family of Besov-Triebel-Lizorkin
spaces in a suitable way.

Lemma 33. Let Ω ⊂ Rd be a bounded domain with smooth boundary, s > 0, and let Xs
p,q(Ω) be a Besov-

Triebel-Lizorkin space. Then, for any ε1, ε2 > 0 such that min{1, s} > ε1 > ε2 there exist non-integer
smoothness parameters 0 < š < s < ŝ and integration parameters p̂, p̌ ∈ [1,∞) fulfilling

W ŝ
p̂ (Ω) ↪→ Xs

p,q(Ω) ↪→ W š
p̌ (Ω), (44)

and

ε1 ≥ max{ŝ− s, s− š} ≥ min{ŝ− s, s− š} ≥ ε2 ≥ max
{
|d/p− d/p̂|, |d/p− d/p̌|

}
. (45)

Proof. We choose ŝ ∈ (s+ ε2, s+ ε1) \ N and š ∈ (s− ε1, s− ε2) \ N which gives ŝ > s > š.
In the case p < ∞ we define p̂ = p̌ = p. Then, (45) is fulfilled and (27) provides the identities W ŝ

p̂ (Ω) =

F ŝ
p̂,p̂(Ω) and W š

p̌ (Ω) = F š
p̌,p̌(Ω). Now, in the Triebel-Lizorkin case, part i) of Theorem 32 yields

F ŝ
p̂,p̂(Ω) ↪→ F s

p,q(Ω) ↪→ F š
p̌,p̌(Ω) .

Analogously, in the Besov case, part iv) of Theorem 32 gives F ŝ
p̂,p̂(Ω) ↪→ Bs

p,q(Ω) ↪→ F š
p̌,p̌(Ω).

In the case p = ∞ we have Xs
p,q(Ω) = Bs

∞,q(Ω). Define p̂ = p̌ := 2d/ε2 ∈ [2,∞). Then, (45) is fulfilled
and (44) follows from part iv) of Theorem 32, namely F ŝ

p̂,p̂(Ω) ↪→ Bs
∞,q(Ω) ↪→ F š

p̌,p̌(Ω).

Proof of Theorem 21. By Theorem 32 i) and iv), the assumption s− t > d(1/p1 − 1/p2) or, if both spaces are
of Triebel-Lizorkin type the assumption s − t ≥ d(1/p1 − 1/p2), ensures that the embedding Xs

p1,q1(Ω) ↪→
Y t
p2,q2(Ω) exists.

i) The existence of embeddings Xs
p1,q1(Ω) ↪→ Hu

2 (Ω) and Hu
2 (Ω) ↪→ Y t

p2,q2(Ω) constituting the 2-
factorization follows directly from Theorem 32 i) and iv), using the identity Hu

2 (Ω) = Fu
2,2(Ω), see Eq. (25).

ii) Let the embedding Xs
p1,q1(Ω) ↪→ Y t

p2,q2(Ω) be 2-factorable as
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Xs
p1,q1(Ω) Y t

p2,q2(Ω)

H

U

id

V ,

where H is a Hilbert space and U and V are bounded linear operators.
Choose t > ε > 0. We apply Lemma 33, where we set ε1 := ε and ε2 := ε/2, to find Slobodeckij

spaces W ŝ
p̂1
(Ω) ↪→ Xs

p1,q1(Ω) ↪→ W š
p̌1
(Ω) and W t̂

p̂2
(Ω) ↪→ Y t

p2,q2(Ω) ↪→ W ť
p̌2
(Ω) with non-integer smoothness

parameters 0 < ť ≤ t < s ≤ ŝ and integration parameters 1 ≤ p̂1, p̌2 fulfilling

ε ≥ max{ŝ− s, t− ť} ≥ min{ŝ− s, t− ť} ≥ max{|d/p1 − d/p̂1|, |d/p2 − d/p̌2|}. (46)

We obtain the embedding W ŝ
p̂1
(Ω) ↪→ W ť

p̌2
(Ω), which can be 2-factorized as

W ŝ
p̂1
(Ω) Xs

p1,q1(Ω) Y t
p2,q2(Ω) W ť

p̌2
(Ω)

H

id

U◦id
U

id id

V

id ◦V
.

Now, we estimate

ŝ− ť− d(1/p̂1 − 1/p̌2) = ŝ− s+ t− ť+ d/p1 − d/p̂1 + d/p̌2 − d/p2 + s− t− d(1/p1 − 1/p2)

≥ ŝ− s+ t− ť− |d/p1 − d/p̂1| − |d/p2 − d/p̌2|+ s− t− d(1/p1 − 1/p2)

≥ s− t− d(1/p1 − 1/p2),

using (46) in the last step. The assumption s− t ≥ d(1/p1 − 1/p2) yields

ŝ− ť ≥ d(1/p̂1 − 1/p̌2) ,

and hence Theorem 20 shows ŝ − ť ≥ (d/p̂1 − d/2)+ + (d/2 − d/p̌2)+ . We now leverage from the general
estimate (a+ b)+ ≤ a+ + |b|, which holds for all a, b ∈ R, and the inequalities in (46) to estimate

s− t− (d/p1 − d/2)+ − (d/2− d/p2)+

≥ ŝ− ť− (d/p̂1 − d/2)+ − (d/2− d/p̌2)+ − |s− ŝ| −
∣∣ť− t

∣∣− |d/p1 − d/p̂1| − |d/p2 − d/p̌2|
≥ ŝ− ť− (d/p̂1 − d/2)+ − (d/2− d/p̌2)+ − 4ε

≥ − 4ε .

Since ε > 0 is arbitrarily small, the claim follows.

Proof of Theorem 22. We choose ŝ ∈ (0, s− d/p). Then (26) states Bš
∞,∞(Ω) = Hölš(Ω) and we clearly have

Hölš(Ω) ↪→ C0(Ω). Parts i) and iv) of Theorem 32 yield the existence of the embedding

Xs
p,q(Ω) ↪→ Bŝ

∞,∞(Ω) ↪→ C0(Ω).

i) Let u ∈ (d/2, s − (d/p − d/2)+ ) and choose ŝ := (u − d/2)/2 > 0. Then, by Hu
2 (Ω) = Fu

2,2(Ω), see
(25), and Theorem 21 we have

Xs
p,q(Ω) ↪→ Hu

2 (Ω) ↪→ Bŝ
∞,∞(Ω) ↪→ C0(Ω)

and the claim follows.
ii) Let the embedding Xs

p,q(Ω) ↪→ C0(Ω) be 2-factorable as
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Xs
p,q(Ω) C0(Ω)

H

U

id

V ,

where H is a Hilbert space and U and V are bounded linear operators. Fix some ε > 0. By Lemma 33 we find
non-integer ŝ > s and some p̂ ≥ 1 such that

ε > ŝ− s ≥ |d/p− d/p̂| (47)

holds and such that the embedding W ŝ
p̂ (Ω) ↪→ Xs

p,q(Ω) exists. Especially, the embedding W ŝ
p̂ (Ω) ↪→ C0(Ω) is

2-factorable as

W ŝ
p̂ (Ω) Xs

p,q(Ω) C0(Ω)

H

id

U◦id
U

id

V .

By a translation and scaling argument, we can now assume B(0, 1) ⊂ Ω without loss of generality.
Let us fix a 0 < δ ≤ 1/2. We define n := Npack(B(0, 1/2), δ) and choose f1, . . . , fn as in Lemma 31.

Since those functions are disjointedly supported translated copies of each other, we have

∥(f1, . . . , fn)∥Radn(C0(Ω)) =Eε∼Rad∥ε1f1 + · · ·+ εnfn∥C0(Ω) = ∥f1∥∞ = 1.

This observation and Lemma 31 give

∥W ŝ
p̂ (Ω) ↪→ C0(Ω)∥type2 ≥

∥(f1, . . . , fn)∥Radn(C0(Ω))

∥(f1, . . . , fn)∥ℓn2 (W ŝ
p̂ (Ω))

≥ Ĉn−1/2δŝ−d/p̂

for constant Ĉ > 0 that is independent of δ and n. Using the packing number bound (8) we thus find a constant
C̄ > 0 such that

∥W ŝ
p̂ (Ω) ↪→ C0(Ω)∥type2 ≥ C̄δŝ−d(1/p̂−1/2)

holds for all δ ∈ (0, 1/2]. Now, Lemma 5 implies ŝ ≥ (d/p̂ − d/2)+ . Using a cotype 2 argument, we
analogously obtain the requirement ŝ ≥ d/2, where we use ∥(f1, . . . , fn)∥ℓn2 (C0(Ω)) = n1/2.

Since ε is arbitrarily small, we conclude s ≥ (d/p − d/2)+ and s ≥ d/2 from Eq. (47). It remains to
show that s ≥ (d/p1 − d/2)+ + d/2 holds. If (d/p − d/2)+ = 0, this follows directly from our previous
considerations. If (d/p− d/2)+ > 0, then we have

(d/p− d/2)+ + d/2 = d/p,

and the claim holds by assumption.
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