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ABSTRACT

Existing decentralized stochastic optimization methods assume the lower-level
loss function is strongly convex and the stochastic gradient noise has finite vari-
ance. These strong assumptions typically are not satisfied in real-world machine
learning models. To address these limitations, we develop a novel decentralized
stochastic bilevel optimization algorithm for the nonconvex bilevel optimization
problem under heavy-tailed noise. Specifically, we develop a normalized stochas-
tic variance-reduced bilevel gradient descent algorithm, which does not rely on
any clipping operation. Moreover, we establish its convergence rate by innova-
tively bounding interdependent gradient sequences under heavy-tailed noise for
nonconvex decentralized bilevel optimization problems. As far as we know, this
is the first decentralized bilevel optimization algorithm with rigorous theoretical
guarantees under heavy-tailed noise. The extensive experimental results confirm
the effectiveness of our algorithm in handling heavy-tailed noise.

1 INTRODUCTION

Stochastic bilevel optimization consists of two levels of optimization subproblems, where the upper-
level subproblem depends on the optimal solution of the lower-level subproblem. It has received a
surge of attention in recent years because it lays the optimization foundation for a series of machine
learning models, such as model-agnostic meta-learning (Finn et al.| 2017)), hyperparameter opti-
mization (Franceschi et al., 2018; [Pedregosal [2016), imbalanced data classification (Yang, [2022),
reinforcement learning (Shen et al.,2024;|Li et al., 2024a), large language models (Shen et al.| [2025
Li et al., 2024b), etc. To facilitate stochastic bilevel optimization for distributed machine learning
models, where data are distributed across different workers, a series of decentralized stochastic
bilevel optimization algorithms have been developed in recent years. Specifically, in a decentralized
setting, each device computes stochastic gradients based on its local training data to update the vari-
ables of both the upper-level and lower-level subproblems, and then communicates these updates
with neighboring workers in a peer-to-peer manner.

Compared to traditional single-level optimization problems, a unique challenge in decentralized
stochastic bilevel optimization lies in computing the stochastic hypergradient, that is, the stochastic
gradient of the upper-level loss function with respect to its variable. This challenge is caused by the
unique characteristic of bilevel optimization: the upper-level subproblem relies on the optimal so-
lution of the lower-level subproblem, which requires the global Hessian inverse matrix. To address
this challenge, three categories of decentralized stochastic bilevel optimization algorithms (Yang
et al.}[2022b};|Gao et al., 2023;|Chen et al.,2022aib; [Zhang et al.}2023};|Kong et al.,2024; Zhu et al.
20245 Lu et al., 2022; |Liu et al.||2022b; 2023a; Wang et al., 2024; Qin et al., 2025) have been devel-
oped. The first category, such as|Yang et al.| (2022b)), uses the Neumann series expansion approach
to approximate the Hessian inverse on each device and then communicates it between workers, suf-
fering from high communication costs. The second category, such as|Zhang et al. (2023)); Zhu et al.
(2024), estimates the Hessian-inverse-vector product by solving an auxiliary quadratic optimization
problem with gradient descent on each device and then communicating this estimator, which helps
reduce communication costs. However, both the first and second categories incur significant compu-
tational overhead due to the need to compute second-order Hessian information. The third category,
such as |Wang et al.| (2024), addresses this challenge by reformulating the decentralized stochastic
bilevel problem as a single-level optimization problem and then solving it with only first-order gra-
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dients. By avoiding the computation of second-order gradients, this category significantly reduces
computational overhead.

However, existing decentralized stochastic bilevel optimization algorithms suffer from significant
limitations. First, these algorithms require the loss function of the lower-level subproblem to be
strongly convex. This strong assumption is not satisfied by most practical machine learning models,
such as deep neural networks, which are inherently nonconvex. Second, they assume the stochastic
noise in the gradient has finite variance. However, existing studies (Simsekli et al.l 2019} [Zhang
et al., 2020) have demonstrated that this bounded variance assumption does not hold for the com-
monly used deep neural networks. In practice, the stochastic noise often follows a heavy-tailed
distribution. Hence, these practical scenarios make existing algorithmic designs and theoretical
foundations for decentralized bilevel optimization ineffective. It is therefore necessary to develop
new decentralized stochastic bilevel optimization algorithms that can accommodate a broader range
of machine learning models and provide solid theoretical guarantees. To this end, the goal of this
paper is to develop an efficient decentralized stochastic bilevel optimization algorithm for nonconvex
bilevel problems under heavy-tailed noise, with rigorous theoretical guarantees. Since the first-order
methods in the aforementioned third category offer low computational overhead and communication
costs, this paper focuses on the first-order method.

For standard single-level optimization problems in the single-machine setting, a commonly used
approach to handling heavy-tailed noise is Clipped SGD (Zhang et al., |2020), which mitigates the
effect of heavy-tailed noise by clipping the norm of the stochastic gradient below a predefined thresh-
old. Nevertheless, tuning the clipping threshold can be challenging. Recently, several works (Liu &
Zhou, 2025; Hiibler et al., 2024; Sun et al., 2024) have shown that the gradient normalization tech-
nique is sufficient to guarantee the convergence of stochastic gradient descent in-expectation under
heavy-tailed noise without assuming bounded gradients. For instance, |Hiibler et al.|(2024) proves
that the batched normalized SGD (batched-NSGD) can converge in-expectation for a smooth non-
convex minimization problem under heavy-tailed noise, while |Sun et al.| (2024)) achieves a similar
conclusion for NSGD using a stronger assumption, the individual Lipschitz smoothness. Addition-
ally, [Liu & Zhou| (2025) established the in-expectation convergence rate of the batched normalized
stochastic gradient descent with momentum (batched-NSGDM) algorithm under heavy-tailed noise
by innovatively bounding the accumulated noise from an online learning perspective.

Since the aforementioned approaches focus solely on single-level optimization in a single-machine
setting, they are not applicable to decentralized stochastic bilevel optimization problems. In practice,
this setting presents several unique challenges, outlined as follows.

1. In bilevel optimization, multiple gradients interact with one another. Each of these gradi-
ents is affected by the heavy-tailed noise, which in turn impacts convergence. Therefore, it is
challenging to control all of them and establish a convergence rate under heavy-tailed noise.

2. In the decentralized setting, the consensus error with respect to gradients is also affected by
heavy-tailed noise. It remains unclear how to design algorithms and analyses that effectively
control this noise to ensure convergence.

3. The aforementioned first-order method for bilevel optimization requires advanced gradient es-
timators, such as the variance-reduced gradient, to avoid the quite slow convergence rate under
the finite variance assumption, as shown in [Kwon et al.| (2023a). However, no existing work
for both single-level and bilevel problems has demonstrated that the advanced gradient
estimator can ensure convergence under heavy-tailed noise without assuming bounded
gradients.

In summary, it is challenging to achieve a fast convergence rate for the first-order gradient-based de-
centralized bilevel optimization algorithm under heavy-tailed noise. To address these unique chal-
lenges, we develop a novel decentralized normalized stochastic gradient with variance reduction
algorithm to solve Eq. (I). This algorithm only requires normalized first order gradients, making
it more efficient and effective in handling heavy-tailed noise, which is lacking in existing second-
order-based methods. Importantly, our algorithm demonstrates when gradient normalization should
be applied in decentralized bilevel optimization. To the best of our knowledge, this is the first
algorithm capable of handling heavy-tailed noise in bilevel optimization. We further establish
the convergence rate of the developed algorithm under heavy-tailed noise. Specifically, to address
challenges arising from the interaction between gradients of different variables, we explicitly char-
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acterize their interdependence by innovatively handling the optimization subproblems associated
with each variable. In addition, we provide a novel analysis of the consensus errors related to these
gradients, which are also influenced by heavy-tailed noise. To the best of our knowledge, this is
the first work to bound interdependent gradient sequences under heavy-tailed noise in bilevel
optimization. Finally, the established convergence rate clearly illustrates how the properties of a
decentralized system influence overall convergence, and extensive experimental results validate the
effectiveness of the proposed algorithm in handling heavy-tailed noise.

2 RELATED WORK

2.1 DECENTRALIZED STOCHASTIC BILEVEL OPTIMIZATION

Decentralized stochastic bilevel optimization enables the decentralized optimization framework for
bilevel optimization problems. Due to the two-level characteristics of this problem, there are some
unique challenges for computation and communication compared to the decentralization of tradi-
tional single-level optimization problems. Specifically, the hypergradient on each worker relies
on the global Jacobian matrix and the inverse of the global Hessian matrix. Directly communi-
cating or computing them on each worker can result in a large communication and computation
overhead, such as |Yang et al| (2022b); |Chen et al. (2022a) in the aforementioned first category,
which communicates Jacobian or Hessian matrix in each iteration. To avoid this issue, Zhang et al.
(2023) developed the first single-loop decentralized algorithm, which computes and communicates
the Hessian-inverse-vector product to reduce both computation and communication overhead. This
approach has also been applied to the full gradient method (Dong et al., 2023), stochastic gradient
(Zhu et al.} [2024), and the momentum-based method (Kong et al., 2024). However, these methods
require to compute the second-order Jacobian and Hessian matrix, which can incur large memory
and computation overhead for high-dimensional problems. To avoid computing second-order gradi-
ents, in the single-machine setting, |Shen & Chen| (2023)); Kwon et al.| (2023bga); (Chen et al.| (2024)
propose converting the bilevel optimization problem into a single-level optimization problem via
the penalty approach and then only the first-order gradient is needed to solve it, which can save
computation overhead significantly. Based on this reformulation, Wang et al.| (2024) developed a
decentralized first-order method, which only requires the standard stochastic gradient. Therefore,
its practical computational time is much smaller than the second-order gradient based method. How-
ever, Wang et al.| (2024) still suffers from some limitations. On the one hand, it can only handle the
strongly-convex lower-level loss function, which is also a limitation of all aforementioned decen-
tralized methods (Yang et al., [2022b; |Gao et al.l 2023} (Chen et al., 2022a:bj [Zhang et al.l 2023;
Kong et al.,|2024; [Zhu et al.} 2024; Lu et al., 2022; Liu et al., 2022b; |2023a}; [Wang et al., 2024). On
the other hand, [Wang et al. (2024) suffers from a quite slow convergence rate, O(1/T 1/ 7), where T'
is the number of iterations, while the first-order method [Kwon et al.| (2023a) in the single-machine
setting can achieve a convergence rate of O(1/T/%). Finally, it is worth noting that all existing
bilevel optimization methods, including both single-machine and decentralized settings, assume that
the stochastic noise in the gradient has finite variance. Therefore, these algorithms cannot handle
heavy-tailed noise.

2.2  STOCHASTIC OPTIMIZATION UNDER HEAVY-TAILED NOISE

Some recent works (Zhang et al.,|2020) have shown that the finite variance assumption is too restric-
tive for modern machine learning models. In practice, commonly used deep neural networks, such as
image classification models (Simsekli et al., 2019; Battash et al.| 2024)) and attention-based models
(Zhang et al., 20205 |Ahn et al., [2023)), have stochastic gradients whose noise follows a heavy-tailed
distribution. This observation has sparked the recent interest (Zhang et al.|[2020; |(Cutkosky & Mehta,
20215 Liu et al.,[2023b; [Nguyen et al., 2023} |Liu et al.,2024; |Liu & Zhou, 2025} Hiibler et al., 2024;
Sun et al., |2024; \Gorbunov et al., 2023) in the study of stochastic optimization under heavy-tailed
noise. For example, Zhang et al.|(2020) established the in-expectation convergence rate of Clipped
SGD for strongly convex and nonconvex loss functions. As discussed earlier, Clipped SGD requires
a clipping threshold, which introduces more difficulties for tuning the optimizer. Therefore, some
recent efforts (Liu & Zhoul 2025} Hiibler et al., [2024; |Sun et al.,[2024) have been made to get rid of
the clipping operation, while keeping the normalization operation. For example, |Sun et al.|(2024)
established the in-expectation convergence rate of normalized SGD based on a strong assumption
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of the individual Lipschitz smoothness. [Hiibler et al.| (2024) also achieved this result without using
this strong assumption in the cost of a large batch size. However, extending the convergence rate of
normalized SGD to normalized SGD with momentum is not trivial. |Sun et al.| (2024) addressed this
problem by assuming a bounded stochastic gradient. Based on this assumption, [Sun et al.| (2024)
further established the in-expectation convergence rate of normalized SGD with variance reduction.
Nevertheless, such a strong assumption is easily violated in practice. Recently, |Liu & Zhou|(2025)
developed an innovative approach from the online learning perspective and successfully addressed
this issue, establishing the in-expectation convergence rate of normalized SGD without relying on
the bounded stochastic gradient assumption. However, it remains unclear whether the approach in
Liu & Zhou| (2025) can be applied to the normalized SGD with variance reduction.

In the distributed setting, the heavy-tailed noise has been less studied, although Giirbiizbalaban et al.
(2024) has shown that noise in the decentralized setting tends to have heavier tails than in the cen-
tralized setting. Moreover, existing distributed methods for handling heavy-tailed noise (Sadiev
et al.| [2023; Yang et al.,2022aj [Lee et al., 2025) still rely on the gradient clipping technique. There-
fore, it remains unclear whether the gradient normalization technique without assuming bounded
gradients works in the decentralized setting. Furthermore, to the best of our knowledge, gradient
normalization without clipping has not yet been explored for decentralized bilevel optimization or
decentralized minimax optimization under heavy-tailed noise. Thus, it is important to fill this gap.

3 PROBLEM SETUP

3.1 PROBLEM DEFINITION

In this paper, we assume that there are K workers, indexed by k € {1,2,---, K}, which form a
communication graph and perform peer-to-peer communication within it. These workers collabora-
tively optimize a nonconvex decentralized stochastic bilevel optimization problem, defined as:

K K
. 1 X L1
min K E Iz, y) s.t. y'(x) = arg min - E g (z,y) . (1)
k=1 k=1

z€RN yey* (= yER

In Eq. , flzy) = % Zszl ) (z,y) is the global upper-level loss function, where f*) (z, y) =
E[f®) (x,y; %)) is the local one on the k-th worker and £(*) denotes random samples on that
worker. Additionally, g(z,y) = % Z,If:l g™ (2, ) is the global lower-level loss function, where

g (z,y) = E[g®¥) (z,y; *))] is the lower-level one on the k-th worker and ¢(*) represents the
corresponding random samples. Unlike existing decentralized bilevel optimization methods (Yang
et al.}2022b};|Gao et al., 2023;|Chen et al.,2022aib; [Zhang et al., 2023 |Kong et al.,2024; Zhu et al.}
2024; Lu et al., 2022; [Liu et al., 2022b; [2023a; [Wang et al., 2024), which assume that g(z,y) is
strongly convex with respect to y, we assume that g(x, y) is a nonconvex loss function with respect
to y, but satisfies the Polyak-Lojasiewicz (PL) condition with respect to y for any given x.

3.2 MINIMAX REFORMULATION

Because g(x, y) is nonconvex with respect to y, the second-order-based method, which relies on the
Hessian inverse with respect to y of g(x,y), is not applicable to Eq. . Hence, we employ the
first-order-based method to solve it. Specifically, Kwon et al.| (2023a) shows that the lower-level
subproblem in Eq. can be converted into a constraint: g(z,y) < min,cpa, g(2, 2), and then
it can be converted into a minimax optimization problem based on the penalty method, which is
defined as follows:

1 & 11 & 1 &
min - max = > [P (@,y) + 5 (K > 6@y - Zg““(m,z)) 7 ©)
k=1 k=1

z€R91,ycRI2 zeRd2 K

where 6 > 0 denotes the penalty parameter. With this reformulation, we only need to compute the
first-order gradient with respect to x, y, and z to update them.

To solve Eq. (2) and measure its approximation for Eq. (I)), we introduce the following functions:

1 & 11 & 11 &
o (k) R 1 (k) 1 (k)
®(z) = min )7 gil Y (x,y), Ps(x) min max % kE:1 hg ' (x,y) 976 gilg (z,2), (3

yEy* (x) yeRd2 zcrd2 O
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where B (2, y) = 61 (2, y) + g (2, ) and hs(z,y) = = S | h{ (,y). Chen et al (2024)
shows that ®s(x) can approximate ®(z) well, including both their loss functions and gradients, by
controlling the penalty parameter §, which is shown in Appendix Importantly, min, cga, ®s5(x)
is tractable compared to min,cpa, ®(x). With the minimax reformulation, in the single-machine
setting, Kwon et al.| (2023a) shows that the convergence rate when using first-order stochastic gra-
dients is O(1/T"/7) and can be improved to O(1/T"/%) when using first-order stochastic variance-
reduced gradients. Note that this reformulation for nonconvex bilevel optimization cannot achieve
the O(1/T'/3) convergence rate as the single-level method when using variance-reduced gradients.
In fact, it is still an open problem to achieve that convergence rate. The purpose of this paper is
not to bridge this gap. Instead, our goal is to design a decentralized algorithm to solve Eq. (2)
under heavy-tailed noise and then formally show how its solution solves Eq. (I). Note that there
are currently no decentralized minimax optimization methods capable of handling heavy-tailed noise
without gradient clipping. Moreover, due to the penalty term, establishing the convergence rate is
significantly more challenging than in existing single-level or standard minimax methods. There-
fore, solving Eq. as a mean to solve Eq. under heavy-tailed noise requires new algorithm
design and convergence analysis.

3.3 ASSUMPTIONS

To solve Eq. (1), we introduce some commonly used assumptions, which have been used in existing
nonconvex bilevel optimization methods, such as Kwon et al.|(2024); [Chen et al.| (2024)).

Assumption 3.1. Let z = (x,y) € R% xR, then the upper-level function f (k) (z) and lower-level
function g*)(z) on the k-th worker, and the penalty function hs(z) satisfy the following conditions:

1. Forany z, and zo, B[||V f*) (21;€) — V¥ (29; €)|]] < Ly||21 — 22| where the constant Ly >

0; ||V2f(k)(:r,y) | < Cy where the constant Cy > 0; IE[HVQf(k)(zl;f) — v2f(k)(22;§)”] <
U¢||z1 — 22| where the constant £ > 0.

2. For any z1 and z, E[||[Vg® (21;¢) — Vg®) (22;Q)|I] < Lyllz1 — 22|| where the constant
Ly > 0; B[ V295 (215€) — V2g¥) (29; )] < yll21 — 22| where the constant £, > 0,

3. g(x,y) satisfies the u-PL with respect to y where the constant 1 > 0; hs(x,y) satisfies the
p-PL with respect to y.

Assumption 3.2. (heavy-tailed noise) All first-order and second-order gradients are the unbiased
estimators for the corresponding deterministic gradients. Moreover; there exist s € (1,2] and o > 0
such that B[||V fF)(z;€) — VF(2)|°] < 0° and B[||Vg¥) (2;¢) — Vg (2)||*] < o* for any
z = (z,y) € R% x R,

Assumption 3.3. For the adjacency matrix E = [e;;] € Rf *K-of the communication graph,
e;; > 0 indicates that the i-th worker and the j-th worker are connected. Otherwise, e;; = 0. In
addition, Ny = {jlex; > 0} denotes the neighboring workers of the k-th worker. Moreover, it
satisfies the following conditions:

1. ET = FE E1=1,1TE =17, where 1 € R¥ is the vector of all ones.

2. Its eigenvalues can be ordered by magnitude as: |Ax| < |[Ag—_1| <+ <|ho| < |\ =1

By denoting X\ = |\z|, the spectral gap is 1 — \.

Notations. In this paper, we define { = max{Ly¢, L,, ¢, {,}, denote the condition number by

k = £/, and represent the gradient with respect to the ¢-th variable with V.

4 DECENTRALIZED NORMALIZED STOCHASTIC GRADIENT DESCENT
ASCENT WITH VARIANCE REDUCTION ALGORITHM

4.1 ALGORITHM DESIGN

To solve the reformulated Eq. (2, we developed a novel decentralized normalized stochastic gradi-
ent descent ascent with variance reduction (D-NSVRGDA) algorithm, which is presented in Algo-
rithm[I] Specifically, we use the normalized variance-reduced gradient to update three variables: x,
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Algorithm 1 D-NSVRGDA

Input: 7, > 0,my > 0,7, > 0,7 > 0,7, > 0,7, > 0.
I;>0 = 1 when ¢ > 0. Otherwise, I;~o = 0. The batch size is Bo when ¢ = 0. Otherwise, it is O(1).
(k) (k) ( )

Initialization on the k-th worker: x5’ = o, ¥y = = Y0, 25 = = 20,
1: fort =0,---,T — 1, the k-th worker do
2:  Variance gradlent estimators:
k k k
uft) = (1= 72)(ui) oy = Vaf O e s £>>>H>o+v1 ® (af* “),
k 3) k k
ugg = (1= ) (usy—y = Vag™ (2, 9705 ¢ t >0 + Vig® (a3 ” ),
k k k k). ~(k
ugly = (1= 72)(ug) s = Vag™ (@, 2% ¢)leso + Vig™ (af ( 2 4< ).
k k k k k
v = (=) — f<k><x£_>1, 2)1,5( Wliso + Vaf (@, y; £89),
E k k k k). ~(k
vir) = (1= 7)) (0571 = Vag™ (@, 915 ) so + Vag ™ (a ,yé i),
k k) k k k k) (k). ~(k
0l = (=30l — Tag e, o0 (o + Tag O 400,
3:  Combine gradient estimators together for each variable:
k k k k k k k k
P 284l ), bl il o=l
4: Gradlent tracking
_(k k k
P( )= (P( ) utf Mo +U > PE )= E;e/\/k ek]p?),
~(k k k k k
= 6 ol o g
- k k k ~(j
( (Tg )1 wt 1)]1 t>0 +w( >7 7'§ )= Zjej\/k ekJ'TEJ)’
5: Updatmg
(K k (k) k ~(j
x§+>1 - flﬁ'i ) N ”pzk) H 1(5+)1 = Z]ENk ekjmggl >

( ) )
~ (k) (k) (k) _ ~(4)
Y1 =Y — My e (k) N Y1 = Zjej\/k ekjyt7+1 >

(k‘) .
(k) _ (k) r (k) _ 5(9)
Zg41 = 2t TNz ”rfk)” s Rl & Zje/\/'k €kjZi¥1 >
t

6: end for

y, and z. More specifically, in Step 3 of Algorithm |I} we compute the variance-reduced gradient
estimator for three variables as follows:

k K, 1, (& k k 1 1 %
STV e S L o

In Eq. @) u§k2 s ugkt) , and ugkt) are the variance-reduced gradient estimator for V; f (k)( (k ), ygk)),

Vig®) (x §k>, t()), and V,g® (z; (k) (k)), respectively.  Similarly, vglft) and vé? esti-

mate Vo () (xgk), yt(k)), Vag™®) (x (k), Yy )), respectively, while wglft) is used to estimate
Vag) (asgk) , zt(k) ). All these gradient estimators are computed using the STORM method (Cutkosky

& Orabona, 2019), as described in Step 2 of Algorithm [1} where v, € (0,1), v, € (0,1), and
7. € (0,1) are three hyperparameters.

Then, our algorithm uses the gradient tracking approach to communicate these gradient estimators,

which is shown in Step 4. For example, pgk) =>. JEN, Ekj p‘ij ) represents the aggregation of gra-

dient estimators ptj ) from the neighboring workers N, of the k-th worker. Finally, in Step 5, our
algorithm uses the normalized gradient estimator to update the variables. For example, the k-th

worker uses the normalized gradient estimator to update its local variable  and communicates the

updated variable xi +)1 as follows:

(k)
~(k k p k
x§+)1 = :E( ) — Nz Ek) ) E+)1 = Z ek]xt+1 ) &)
ol JENK
o)
where 1, > 0 denotes the learning rate for variable z, ot (k> T denotes the normalized gradient
~(3)

estimator, and the second equation represents the aggregation of updated variables z,’; from the
neighboring workers A}, of the k-th worker. The other two variables are updated in the same way.

In Algorithm [T} we use only the normalized gradient estimator to update variables, without employ-
ing gradient clipping. To the best of our knowledge, this is the first decentralized algorithm for
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bilevel optimization under heavy-tailed noise that does not rely on gradient clipping. Further-
more, we believe that our algorithm can also be applied to standard minimax optimization under
heavy-tailed noise, for which a decentralized algorithm without gradient clipping is also lacking.

4.2 CONVERGENCE RATE

Based on Assumptions [3.1}{3.3] we establish the theoretical convergence rate of Algorithm [I}in the
following theorem.

Theorem 4.1. Given Assumptions by setting the coefficient as v, = vy = V. =
_1 1
min {1, (0] <2K2+13) }, the learning rate as 1, = O <1K_52\ —E ), Ny =

T2s+1 g (2s+1)(s—1) T%02(2s+1)(s 1)
A(SL;+Ly) _elde=l) )

N m , Ny = nw , the batch size in the first step as By = O KZH 75 g ot G-12

the batch size in other steps as O(1), and the penalty parameter as 6 = O ( % 1_1) we
K 2€+1 T2sF1

can obtain the following convergence rate for Algorithm I}

T—

K3l G IEADGD 1
Z IV ||<0<1 S —— +O<M)
— Ka2s+1T2s+1 Ka2s+1 T 2s+1

t=0
Ko 2 loTr
+0 ( +O | —/— | - (6)
K2s+1 Tm Ka2s+1T2s+1

From Theorem[d.1] we can obtain the following conclusions.

1. Because s € (1,2], the convergence rate is dominated by O( %) in terms of the

K2s+1T2s+1
number of ierations 7'. On the one hand, the spectral gap 1 — X affects only the high-order term

of the convergence rate. On the other hand, the factor K 31 in the dominated term indicates
the linear speed up with respect to the number of workers. To the best of our knowledge, this
is the first work achieving the linear speed up convergence rate for nonconvex decentralized
bilevel optimization under heavy-tailed noise.

2. The convergence rate in Theorem[d.T|can recover the finite-variance setting. Speciﬁcally, when

s = 2, K = 1, and not considering other factors, our convergence rate is O , which is

same as the convergence rate in the single-machine setting in Kwon et al. (2023a)

4.3 PROOF SKETCH

Establishing the convergence rate for Algorithm/[I]is significantly more challenging than for existing
methods (Liu & Zhou, [2025} |Hiibler et al., 2024) that address single-level problems in a single-
machine setting. The main difficulties arise from: 1) the interaction between gradients with
respect to three variables due to the bilevel structure, and 2) the consensus error introduced
by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed
noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization
methods that rely on the finite variance assumption. In Appendix B, we provide a proof sketch
to demonstrate how these challenges are addressed. In Appendix [C, we provide the detailed
proof of Theorem[4.1]

5 EXPERIMENT

In our experiments, we evaluate our algorithm on two machine learning applications: hyperparam-
eter optimization and model pruning. Due to space constraints, we present only the results on two
synthetic datasets related to hyperparameter optimization here. Additional experimental results on
real-world datasets for both hyperparameter optimization and model pruning are provided in

Appendix [A]
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5.1 HYPERPARAMETER OPTIMIZATION

To validate the performance of D-NSVRGDA, we consider a nonconvex hyperparameter optimiza-
tion problem, with the corresponding loss function defined in Eq. (7). Specifically, in the lower-level
optimization subproblem, we optimize the weights of a two-layer fully connected neural network.
Although this is a nonconvex optimization problem, existing work has shown that it can satisfy the
Polyak-tLojasiewicz (PL) condition under the overparameterized regime. In the upper-level opti-
mization subproblem, we optimize the hyperparameters that are used to regularize the neural net-
work weights. Formally, it is defined as below:

K
1
min — E LE) (y*(z ;D(k)
:L’:{ajl,$2} Kk:1 (y ( ) ’Ul )

(N
K
N ) 1 . k
s.t.y*(z) = arg min K ,;:1 E(k)(y;'Dgr)) + Ri(z) + Ra(z),

y={v1,y2

where y1 = [y1,9] € RUX9 is the weight of the first layer, yo = [y, € R%*% s

the weight of the second layer, 1 = [z1,] € R% and 2o = [z2,] € R% are hyperpa-
rameters for the regularization term: R (z) = é 52:1 exp(a:l,q)di1 Zi;l Y3y, and Ro(x) =

1 d 1 d 2 : : :
75 g1 €XP(22,9) 37 2201 Y3,pq- In OUr experiments, d is set to the number of input features, ds

is set to 20, and dj is set to 1 for binary classification.

5.1.1 SYNTHETIC DATASET I

We use a synthetic dataset to allow full control over the heavy-tailed noise. Specifically, we generate
a binary classification training dataset via y = sgn(Xw + af), where X € R10:000x100 i drawn
from a standard Gaussian distribution, w € R1%0 is also drawn from a standard Gaussian distribution,
the noise ¢ € R19990 is drawn from a heavy-tailed Cauchy distribution, and o > 0 is a scalar for
controlling the contribution of heavy-tailed noise. These training samples are evenly distributed to
eight workers. We then use the same approach to generate the validation and testing set that have
the same number of samples.

Since all existing decentralized bilevel optimization algorithms require a strongly convex lower-
level loss function, there are no baseline methods applicable to the nonconvex bilevel optimization
problem in Eq. (7). Therefore, in our experiment, we primarily investigate the effect of gradient
normalization in handling heavy-tailed noise. Specifically, we remove the normalization step in
Algorithm I to create its variant, denoted as D-SVRGDA. In addition, we incorporate gradient clip-
ping into D-SVRGDA to obtain the second baseline method, D-SVRGDA-Clip. We then compare
the performance of D-NSVRGDA with that of D-SVRGDA and D-SVRGDA-Clip. For all algo-
rithms, we use identical hyperparameters. In detail, the learning rate is set to 0.001, the coefficient
for momentum is set to 0.9, and the penalty parameter is set to 0.3. As for D-SVRGDA-Clip, we
use different clipping threshold to fully demonstrate its performance. Additionally, there are eight
workers, which are connected into a LINE graph. The batch size on each worker is set to 32.

Figure [1| shows the upper-level loss function value and the test accuracy of all methods on dif-
ferent datasets that are generated with different levels of heavy-tailed noise. In detail, we use
a ={0.2,0.1,0.05} for generating three datasets. Both the loss function value and the test accuracy
in Figure |1| confirm the effectiveness of our algorithm D-NSVRGDA in accommodating different
levels of heavy-tailed noise compared to D-SVRGDA. In addition, we can find that D-SVRGDA-
Clip is heavily affected by the clipping threshold 7. Therefore, D-SVRGDA-Clip is much more
difficult to tune than our method.

5.1.2 SYNTHETIC DATASET II

In this experiment, we introduce a new synthetic dataset to simulate heavy-tailed noise in language
data. Specifically, in natural language, some words appear much more frequently than others, which
actually follow a heavy-tailed distribution. To simulate this phenomenon, we split features into the
common and rare features. Specifically, following|Lee et al.[(2025)), we assume 10% features are the
common ones, Xcommon, Which are drawn from a Bernoulli distribution with the probability being
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Figure 1: The upper-level loss function value and test accuracy on different datasets that are gener-
ated with different levels of heavy-tailed noise.
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Figure 2: The upper-level loss function value and test accuracy on the second synthetic dataset.

0.9, and 90% are the rare ones, X ur, which are drawn from a Bernoulli distribution with probability
0.1. Then, the generated samples are represented by X = [Xcommon; Xrare]. Then, we use the same
method to generate w, &, and y as the first synthetic dataset, where « is 0.1. Moreover, the total
number of features is 100, and the number of samples in the training, validation, and testing sets is
10,000. The other settings are the same as those of the first synthetic dataset. Figure [2] shows the
upper-level loss function value and the test accuracy of all methods. Both the loss function value
and the test accuracy in Figure 2] further confirm the effectiveness of our algorithm D-NSVRGDA
in accommodating heavy-tailed noise compared to D-SVRGDA and D-SVRGDA-Clip.

6 CONCLUSION

Heavy-tailed noise is common in practical machine learning models, yet it has not been studied in
the context of decentralized bilevel optimization. To bridge this gap, our paper developed the first de-
centralized bilevel optimization algorithm to handle heavy-tailed noise in machine learning models
that can be formulated as the bilevel optimization problem. Moreover, our paper provided ta theo-
retical convergence rate for our algorithm under heavy-tailed noise. To the best of our knowledge,
this is the first theoretical result for nonconvex decentralized bilevel optimization under heavy-tailed
noise. Finally, the extensive experiments validate the effectiveness of the proposed algorithm in
handling heavy-tailed noise.
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A MORE EXPERIMENTS

A.1 HYPERPARAMETER OPTIMIZATION

In this experiment, we evaluate the performance of D-NSVRGDA on three real-world datasets: a9a,
covtype, and IMDB, all of which are available from LIBSVME The experimental settings, including
the communication graph, the batch size, the learning rate, and the penalty parameter, are the same
as those in the first two experiments.

Figure [3] shows the upper-level loss function value and the test accuracy of D-NSVRGDA, D-
SVRGDA-Clip, and D-SVRGDA on three real-world datasets. Similar to the first two experiments,
both the loss function value and the test accuracy in Figure [3] further confirm the effectiveness of
our algorithm D-NSVRGDA. In particular, IMDB is a text dataset whose features naturally follow a
heavy-tailed distribution, and our algorithm demonstrates significant improvement over the baseline.

—— D-NSVRGDA

—— D-NSVRGDA —— D-NSVRGDA

09 D-SVRGDA-Clip(t=0.8) 11 D-SVRGDA-Clip(t = 0.8) 0.70 D-SVRGDA-Clip(t = 0.8)
—— D-SVRGDA-Clip(t=0.6) —— D-SVRGDA-Clip(t=0.6) —— D-SVRGDA-Clip(t=0.6)
08 —— D-SVRGDA-Clip(t=0.5) 1.0 —— D-SVRGDA-Clip(t=0.5) 0.65 —— D-SVRGDA-Clip(t =0.5)
—— D-SVRGDA-Clip(t=0.2) —— D-SVRGDA-Clip(T=0.2) 060 —— D-SVRGDA-Clip(T=0.2)
07 — D-SVRGDA 09 —— D-SVRGDA —— D-SVRGDA

Loss

06

05

0.4

0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000 5000 6000 7000 8000
Iter Iter Iter

(a) a9a (b) covtype (c) IMDB

—— D-NSVRGDA

Accuracy
Accuracy

0.6 —— D-NSVRGDA 055 —— D-NSVRGDA 0.60
D-SVRGDA-Clip(t = 0.8) D-SVRGDA-Clip(t = 0.8) D-SVRGDA-Clip(T = 0.8)
~—— D-SVRGDA-Clip(T=0.6) 0.50 ~—— D-SVRGDA-Clip(t = 0.6) 055 ~—— D-SVRGDA-Clip(t = 0.6)
05 ~—— D-SVRGDA-Clip(T=0.5) ~——— D-SVRGDA-Clip(t=0.5) 050 ~—— D-SVRGDA-Clip(t=0.5)
—— D-SVRGDA-Clip(T=0.2) 0.45 —— D-SVRGDA-Clip(t=0.2) —— D-SVRGDA-Clip(t=0.2)
—— D-SVRGDA —— D-SVRGDA 0.45 —— D-SVRGDA
Iter Iter Iter
(d) a9a (e) covtype (f) IMDB

Figure 3: The upper-level loss function value and test accuracy on real-world datasets.

A.2 MODEL PRUNING

In this experiment, we verify the performance of our algorithm on the model pruning task. Following
Zhang et al.| (2022)), model pruning can be formulated as a bilevel optimization problem. Formally,
in the decentralized setting, its loss function is defined as follows:

K
1
in — (k) *
mxmKE LYYz oy (x))
k=1
| K
*(z) = i 72 (k)
st y* () arg min k:1£ (xOy), (8)

where y € RY denotes the parameter of a deep neural network, and = € {0,1}? is a binary mask,
where 0 indicates pruning the corresponding neuron. Since Liu et al|(2022a) shows that optimizing
an overparameterized deep neural network satisfies the PL condition, the model pruning problem
satisfies the nonconvex-PL assumption when pruning a deep neural network. In this experiment,
we use the same neural network architecture as in the first three experiments and keep the other
experimental settings unchanged. For the pruning rate, we prune 80% of the neurons.

'https://www.csie.ntu.edu.tw/-cjlin/libsvmtools/datasets/
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Figure [] shows the upper-level loss value and test accuracy of D-NSVRGDA, D-SVRGDA-Clip,
and D-SVRGDA on the model pruning task defined in Eq. (8). We also evaluate D-SVRGDA-
Clip under different clipping threshold values. From the figure, we observe that our algorithm,
D-NSVRGDA, consistently outperforms the baseline methods in terms of both the loss value and
test accuracy. This further confirms the effectiveness of our algorithm in handling heavy-tailed noise
in new applications.
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Figure 4: The upper-level loss function value and test accuracy on real-world datasets for model
pruning task.
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B PROOF SKETCH

Establishing the convergence rate for Algorithm|T]is significantly more challenging than for existing
methods (Liu & Zhoul, 2025} [Hiibler et al., [2024) that address single-level problems in a single-
machine setting. The main difficulties arise from: 1) the interaction between gradients with
respect to three variables due to the bilevel structure, and 2) the consensus error introduced
by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed
noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization
methods that rely on the finite variance assumption.

B.1 SOLUTION FOR THE FIRST CHALLENGE

First Step: Given that the gradients with respect to three variables interact with each other, we first
disclose how they interact with each other in Lemma|B.T]

Lemma B.1. Given Assumption[3.1) we can obtain

T-1

E[®(Zo)] — E[®(Z7)] 1 _ _
Z V@ (@)l < - £22 3 E[IVR(E) - V()]
t= =0 Approximation Error caused by the minimax reformulation
_ T-1
200Ly+ Ly 11 2L,11 ’Ith)
4 2ot L) ﬁz (1ahs(e gl + 2225 7 3 Ell Vool 201 +
—_—
t=0 Gradient regarding y =0 Gradient regarding z
+ Gradient Errors + Consensus Errors . )]
. . T— K k k
Here, Gradient Errors include 25 ST E[|E K, VB @4 P)
k k
%Zk 1u1t] 25T fO [”sz 1v19(k(()a ()) - %Zk 1U2t} and
211 t:O [||sz 1V1g(k)(x§ , t ) - ?Zk L (k)H] Consensus Errors include:
2L T-1 k _ T-1 _
2 7 Zico & Lo Ellar” all, 2Ly + - X % Sic Elly” - gl

T—1 1 (k) T-1 1 (k)
t=0 K k 1 H|Zt — 7z, and £ 3,2, + k LE[llpe — t [|], where the first three
terms are the consensus error with respect to Varlables while the last is about the gradient.

LemmaB.1]discloses that the gradient E[||V®(zZ,)||] regarding  is influenced by E|[||Vahs(Zs, ¢ )||]
regarding y and E[|V2g(Z+, Z;)||] regarding z. Meanwhile, Lemma reveals that the gradient
E[||V®(Z,)||] is also affected by the consensus errors regarding both variables and gradients. After
revealing this explicit interaction, the remainder of the proof boils down to bounding each factor.

Second Step: After revealing the explicit interaction between three gradients, our next step is to
bound E[||Vahs(Z:, §:)||] with respect to y and E[||V2g(Z¢, Z;)||] regarding z, so that E[||V®(Z,)|]
can be bounded. However, this is challenging because E[||V2hs(Z:,7:)||] is affected by the up-
date of two variables simultaneously (the same applies to E[||V2g(Z:, Z;)||]), and is thus affected
by two normalized variance-reduced gradients. In our proof, we innovatively handle those nor-
malized variance-reduced gradients and establish the following lemma.

Lemma B.2. Given Assumptionand Ne < 1y W, we can obtain that
g

T-1 1 - * (= 1 = - * (4
11 o 2(5E[hs(Zo,Y0) — hi(Zo)] — sElhs(Zr, Y1) — hi(Z
1L 0 ) < 2o 0) i)~ 3Elator. o) ~ o)
t=0 My
1 1 1n2(0Ls+ L ) lnth*
—2n,(6Ly + Ly OL;+ L ~ = g
+ Gradient Errors + Consensus Errors . (10)
Here, hj(z) = hs(z,y*(x)) where y*(x) = arg miny hs(z,y). Gradient Er-
rors  include: Y im0 Elllg 2oh=1 Vaft™(zy ) K Zk 11 2 11] an
411 -1 E[Hi ZK v (k) (k) (k)Y _ 1 K (k) C E include:
5T 2 t—0 7o D ey Vog' (xy 7y ) 7 D kel Us ¢ H]. onsensus Errors include:
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L, T—1
(L +5) A2l S Bl - 2P
T—1 _ k
and 2+ Y7 £ 08 Bllg - ¢

Lemma|[B.2shows that E[||V2hs(Z4, 7:)||] is only affected by Gradient Errors, Consensus Errors,
and some other terms that are not explicitly related to E[||Vag(Z¢, Z)||] and E[||V®(Z;)||]. There-
fore, we only need to provide the upper bound of Gradient Errors and Consensus Errors in order
to bound E[||V2hs(Z, 5:)|]. Similarly, we can bound E[||V2g(Z¢, z)||] as Lemma[B.2] which is
deferred to Lemma|[C.7]in Appendix [C.2]due to space limitation.

Summarization. First, it is worth noting that our proof is fundamentally different from existing
decentralized bilevel optimization (Yang et al.,2022b; (Gao et al., 2023; (Chen et al.|[2022a3b}; [ Zhang
et al., 2023} |Kong et al., 2024} Zhu et al., 2024} [Lu et al., 2022} [Liu et al.| [2022b}2023aj; Wang et al.,
2024)) or decentralized minimax optimization (Xian et al., 2021} Zhang et al., 2024; Huang & Chen),
2023) that rely on the finite-variance assumption. For example, the upper bound for E[||V®(Z;)]|]
in those methods has a term with regard to o2, which could be infinity under heavy-tailed noise. On
the contrary, our upper bound does not have this kind of terms. In fact, this is the first work showing
how to handle the normalized variance-reduced gradient and heavy-tailed noise for decentralized
bilevel optimization. Second, from Lemmas[B.T| [B.2} [C.7] we can observe that they all are affected
by Gradient Errors and Consensus Errors. Then, we need to bound them under heavy-tailed
noise.

L, T-1
]’4(Lf+7)% =0 T kl [||yt*y§)

8

B.2 SOLUTION FOR THE SECOND CHALLENGE

First Step. Since the consensus error regarding gradients involves the gradient estimator, e.g.,

ugkt) , it can be influenced by both stochastic noises and gradient errors. For example, Eq. 1| in

Appendix shows that the consensus error regarding the gradient, [|| Dy (k) _ Pt|l], is influenced by
stochastic noises, e.g., E[||V1f*) (z (k_)l y]_l) Vi f#E( ]k)l yj(k)l, f(k))H] and gradient errors,

e.g., IE[Hugkjl1 Vi f®) (x jk)l, y](k)l)H]. Then, our fist step for this challenge is to establish the
upper bound for Gradlent Errors. For example in Lemma [B.3] we establish the upper bound for

the Gradient Error, E[||u —V, f* ( ) yt(k))H]
Lemma B.3. Given Assumpnons B.1)3.3] we can obtain

2v/2 41 L
E[ul®) 0 () By < (1 — e K VK
z s = V3 SO I < (17 oo K+ 5y 7=V

477ny 1-1/s
+(1_A)rf+2\f7 oK . (11)

Note that bounding gradient errors requires addressing the communication step. Lemma[B.3|demon-
strates the influence of the spectral gap 1 — X on this bound, which differs from the single-machine
setting. Similarly, we established other Gradient Errors in Lemmas [C.2T]in Appendix [C.4]

Second Step. The second step is to bound the consensus error regarding gradients in

terms of Gradlent Errors For example, in Lemma [B.4] we provide the upper bound for

% ,T 01 ;1< k 1 [||pt — Pt||], demonstrating how the heavy-tailed noise (o), hyperparameters

(Mz» My» Mz V=), penalty parameter (§), and spectral gap (1 — A) affect this upper bound.
Lemma B.4. Given Assumptions we can obtain

Z Zﬂ«:npﬁ)—ptu i )T\ﬁzﬂ«:uvﬂ“ 55 )

(k) (k) (k) (k)
. TdeE\vlg (b, o6+ = T(;fZE 1V19® (7, 6]

e ()i () <>f<)
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dn, WK 1oL A, WK L, WK 2V/20 1.2
A2\ TS ) Ta=E s T Ta— N g s
222 ANE 2\ AneyTRA 2L,\ . 40y /TeA 2L,
—(1_)\)3/2 o1+ +7(1_)\)5/2 Ly+ +7(1_/\)5/2 Ly+—|.

]

0 0

(12)

Similarly, we established the upper bounds for other consensus errors regarding gradients in Lem-
mas [C.30) in Appendix

After obtaining the upper bounds for the gradients, E[|Vahs(Z:, 7¢)||] and E[||V2g(Z¢, Z;)|], the
upper bounds for Consensus Errors, and the upper bounds for Gradient Errors, we plug them
into Lemma B.T] we can finally obtain the convergence rate of Algorithm [I]in Theorem .1}

18
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C MAIN PROOF

This section is organized as follows:

. Appendix[C.1; Supporting Terminologies and Lemmas

. Appendix|[C.2; Characterizing Interdependence between Gradients
. Appendix|[C.3; Bounding Consecutive Updates

. Appendix Bounding Gradient Errors

Appendix [C.5; Bounding Consensus Errors

Appendix[C.6} Proof of Theorem [d.1]

R

The proof of Theorem [4.1] follows the structure presented in Section [B] Specifically, we first char-
acterize the interdependence between different gradients in Appendix and then bound Gradient
Errors in Appendix [C.4] and Consensus Errors in Appendix [C.5] Based on them, we prove Theo-

rem[.T]in Appendix [C.6]
C.1 SUPPORTING TERMINOLOGIES AND LEMMAS

We define the following terminologies for convergence analysis:

Xt:[ (1)7 (2)a"' 7'7:1(£K)]7 )/t [ (1)79( 7yt(K)]7 Zt:[ = Zt( )7 azt(K)]7
1 K 1 K el 2 K
Ur = [uz(fl)vuz(t )’ T UEK)] , V= [Ug”vaG)" e 7U§K)] , W= [wt wiZ)’ T 7w§K)} ’
L I L I L
- 1 I 2 bl I’ K bl - 1 9’ 2 bl ] K I’
[ | [ [
SIRTINE S
1 ) 2 b ) K )
[ A TS
_ 117 _ 117 117
Xy =X —— Y, =Y.—— Ly = Li——
t PR t ' t R
_ 117 _ 117 117
P =P — R, =R
t t K ) Qt Qt ) t — t™ - K )
= . 117 = 11T = . 117
t t K ) Qt Qt ) t t K )
_ 117 _ 11T B 117
Ut:Ut77 V;EZVtTa Wt:WtT (13)

Lemma C.1. |Chen et al.|(2024) Given Assumptions then ®(x) is Lg-smooth, where the con-
stant Ly = O(0k?).

Lemma C.2. |Chen et al.|(2024) Given Assumptions then Y*(x) is continuous, i.e., for any
x1, 29 € R4, the following inequality holds:

Dist(Y* (1), Y™ (23)) < Cy-[lz1 — 22,

where Cy« = % = O(k), Dist(-,

Lemma C.3. (Appendix A of Karimi et al|(2016)) Given Assumptions[3.1] the following inequality
holds:

(14)

-) denotes the distance between two sets.

ly*(z) — 2| lys () —y|I* < (15)

Lemma C.4. Given Assumptions then Vg*(x) is continuous and NV h(z) is also continuous,
i.e., for any x,xo € R4, the following inequalities hold:

“(21) = Vg*(2)|| < Lg- [Vh5 (1) —
where Ly = Lg(1 + =) = O((r) and Ly; = (5Ly + Ly)(1+

1 1
< EHVQQ(%Z)Hz, E|\V2h6(x,y)||2~

(16)

7'r2|| )

Vhs(@2)|| < Ln;
5Lf+L ) O(zlﬁ)

7I2|| )
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This lemma be easily proved by following Lemma A.5 in|Nouiehed et al.| (2019).

Lemma C.5. Liu & Zhou| (2025) Given random vectors v that satisfies E[vs|Fi—1] = 0, where
Fi—1 is a natural filtration and t € N, then the following inequality holds:

T T
E[| Y vell] < 2V2E[(Y [luill*)?], 17
t=1 =1
where T € Nand s € [1,2].

C.2 CHARACTERIZING INTERDEPENDENCE BETWEEN GRADIENTS

Lemma C.6. Given Assumption we obtain

T-1
E[®(zo)] — E[®(27)] 1 _ _
= ZE IV < - rg S E[IVE(E) - V()|
t=0
2L+ Ly) 11 20,11 «
f
m 3T 2 E[[[Vahs(ze, ye)[l] + T*f ; [[IV2g(ze, 2]
= | K | X
k) (k k
+25 2 Ellz > Vi @,y - 23wl
t=0 k=1 k=1
IPLAE SRR SEPCIR N IS JWCT)
5T K Lot K 2t
t=0 k=1 k=1
1112 | K | K
k) _(k k
+ 257 > Bl - VigW @l 5" - 2 3wl
t=0 k=1 k=1
T—1 K T-1 K
2L, 1 1 *) - Ly 1 1 (k) _ -
+2(Lf+7)f }ZE[H% *$t||]+2(Lf+7)f ?ZE[H% — il]
t=0 T k=1 t=0 T k=1
T-1, K T-1, K
L,1 1 k) - 1 1 (k) NzLa
+27f RZE[H% _ZtH]J'_T XZE[HZ% Py H]‘f'T : (18)
t=0 " k=1 t=0 " k=1
Proof. Due to the smoothness of ®(x), we obtain
L2
E[®(Z¢11)] < E[@(2¢)] + E(V®(Z4), Ze41 — 2)] + T@E[Hjt+l — &)’
K (k) n2L2 K (k)
1 p =L P
= B[2(z)] ~ nE[VE(), = > L]+ m— L)
=t llpe |l = IIn ||
K (k) K 2
(a) - - 1 p L<I>
= E[®(z,)] ~neE[(VO(Te) — Pr 52 Y~y )] =7 Z , (19
=1 Pl
T1 T2
(k)
where (a) holds due to || ||Z?k>u | =
For T3, we bound it as follows:
1~ p
T < nE[[Ve(ze) — pellll 5 > a1 < B[ Ve(z:) — pell] - (20)
=1 o
For T5, we bound it as follows:
R S b
Ty = —nuEB[(pe; = — =) = B[P, 7]
K= p el 174l
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K (k) _

_ 1 Dy _
< nElllpelll = I = nElllpel]
K S o t
K (k) K pE)
| Dy 1 _
= 0 E[l|pe]ll| = - = ] — nE[||pe]]]
K=Y Kf llp I
1 & | 1
< e > Ell5e| 125 — =1 = n.El15:]]
& 2 Elml 2 | T t
1 K
_ k _
= naezz O Ellpe = p” I - neElllpell]
k=1
( K
(k _ _ _
< mK ZE 15 — p{7|l] — BV (@)|] + nE[|VO(z:) — pell] 20
where (a) holds due to the following inequality:
E[[Ve(z,)|]] < E[IVe(z:) — pell] + Elllpell] - (22)
Therefore, we obtain
_ (k) 77qu>
E[®(Zi41)] < E[®(Z¢)] — 0 [IIV@(It)HH%KZE Ipe — |l + 5
k=1
+ 20 E[[V@(Z:) — pell] - (23)

For E[||V®(Z:) — pt||], we bound it as follows:

E[[|[Ve(z:) — pell]
SE[[VE(z1) = VOs5(Z)|] + E[[[VOs(T1) — VaPs(Ze, §r, Z0) ]
+E[IVa®s (T4, Ut, 2t) — Dill]
(a) B ~ L - - L B )
< E[|V®(Z) — V®5(Z,)|[] + (Ly + TQ)E[HyE(%) =gl + TQE[”?/*(CW) — 2]
+ E[IVa®s(Z¢, Ge, 2e) — Del]

(b) 1 L 1L
< E[IVO(z:) — Vs ()] + ;(Lf + Tg)E[”VthS(i'ta yolll + ;TQEHIVM(@, z)|l]

1 1
E[[|V1f (@, 0) — el + <E[[[V1g(Ze, e) — t2.4]|]] + EE[”vlg(jt, Zy) — U3 t[]

_ _ 5 L, 1L, o
E[[[VE(#:) — Vs(ze)]] + <Lf+—> IV 2hs (@0, @)l + -~ Bl V29, 201
1 & e
E[nvlf(@,yt)—?Zvlﬂ“( .y >||+E|\—Zv1f<k L) = 2 > utl
kilK
SElIV19(z, ) Zw@ NI+ EH—ZWW (2" 5™ = 2 Y us?l
k=1

K K
L 1 k) _(k k) (K 1 k
SEIVig(@,2) = 22 > Vig® @, =) + EH—ZW (2", 5" = 2 > ug ]
k=1

BV (@) — Vst + (L ﬁﬁmmvm(m,yt)mﬁ%mnvggmmn

”*ZV RN KZ ui
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11 1«
k k k
$Ell > Vig® @ i) = 2 > usdll
k=1
K K K
1 1 k) (k 1 k 2L, 1 ) -
$El Yo Vig® @ ) = 2 3w+ (L + =505 DBl — 2l
k=1 k=1

1 & L1 &
Lf*f ZEH?J —all+ 5 D E E[||2" — 2], 24)
k:l

where () holds due to Assumption[3.1] (b) holds due to Lemma|C.3] and (c) holds due to Assump-
tion[31]

By combining the above two inequalities, we complete the proof.

O
Lemma C.7. Given Assumptionand Ny < ﬁnz, we obtain
T-1 1 =3 * (4 1 ) * (5
11 I 2(5E[g(Z0, 20) — 9" (%0)] — 5E[g(Zr, 2r) — 9" (Z1)])
57 S EllVag(zn )] < -
t=0 Nz
LN 1 &
k
+i55 T ||—Zv g @ 7)== > il
=0 k=1
T—1 K T-1 K
L, 1 1 L, 1 1
4722 Y = Y Bl —zm ]+ 45 D = D ElY - F)]
t=0 k=1 t=0 k=1
T-1 , K
1 1 B (k) 1 177IL 117IL
2— — E — 20y Ly 2Lg . 25
+T;Kk§::1 e = rfl + 5200 + 51 A St St
Proof. Due to the smoothness of g, we obtain
1 1. 1 o 1L, )
EE[Q(%H,%H)} < EE[Q(%H’ZO] + SE[<v2g(xt+17Zt),Zt+1 —z)] + 52 E[l|ze+1 — 2[|7]
K (k) K (k)
. 1 ooy 1 r 1m2L, r
= E]E[g(ftﬂ,zt)] *UzEKng(ZtH,Zt),? t(k) )N+ < 5 9 [||*Zt7k)\|2]
iV k=1 ||7"t |
(a) 1 o n:L,
= SE[Q(%H, zZ)] + g 2
K (k) K
—1 [<§Vzg(xt+1,2t) Tt, ?; " k)|| [{re, 2 > (26)
Tl T2

(k)
where (a) holds due to HHTEi”HH =
Tt
Similar to the proof of Lemma[C.6] for T}, we obtain
1
T < an[HgVM(@Ha@) — 7]
1 B B 1 o 1 o _
< an[Hng(ﬂCtHazt) - 5V29(fﬂtazt)||] + an[||5V29($t72t) — 7]

L B _ 1 o _
< WZ?Q]E[H%H — Z¢l] JFUZE[HSVQQ(%,Z%) — 7]

K (k)

1 ooy -
mmz [llfzmll] B[ 5V29(2e, 2) — 7]l
k=1
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L 1
= nznzTg + nz]E[HSVZQ(i'ta Et) - ’FtH] . (27)

In addition, similar to the proof of Lemma|C.6] for 7%, we obtain

K
1 _ k _
Ty <n2gg D Elllre =i l] = nEfl7]]

k=1
k) 1 o 1 o _
Z]E e =7l = 0Bl 5 Vag(@e, 2) ]+ n:Elll 5 V29(@e 2) — ] (28)
Then, we obtain
1 B _ 1 B _ 1 o 1 & _ (k)
SElg(Ze1, 7)) < $Elo, 70] — nEll 5 V2000 20l + g S EllF )]
k=1
1 L, 1 L
+ QWZE[HEVQQ(:%M Zt) - 7:t”] + nmnz? + SUZZ (29)
For E[||+V2g(Z4, 2) — 7:/|], we bound it as follows:
1 oy
[l +Vag(@, 2) — 7
1 o LISNg ) (k)
E[Hgvzg(xtvzt)—ggsz (x5 2 Il
k=1
K K
11 11
il (k) (n(R) (R)y L (k)
FE[I5 2 S Vag®, 2P - 22 S wl)
k=1 k=1
(a) Lg 1 K (k) _ Lg 1 K _
< S Bl - mll+ 22 SOEl - 7))
k=1 k=1
1 & 1 &
k) (k k
Bl > Vag™ @ 5" - 2 > wil (30)
k=1 k=1
where (a) holds due to Assumption[3.1]
By combining the above two inequalities, we obtain
1 B B 1 B B 1 o 1 & _ (k)
5E9@er1, 2e4)] < SEl9(@e41, 20)] = mE[ Vg (@0, 2] + 124 > E[IF -]
K K
L, 1 k _ Ly 1 k _
20 2 Y Bl — 2]+ 2.2 2 D E(l" -z
k=1 k=1
K
I 1 L, 1n°L
+ 20, 5E H—ZV g® (@™, 2" = =S w4 nan. =2 + L (31)
K § & 2
k=1 k=1
Moreover, due to the smoothness of g, we obtain
1 1 1 1L
5El9(@er1, 20)] < SElg(Te, 2)] + SE[(V1g(Te, 2), o1 — Te)] + g?gE[”ft-&-l — )]
1 1
= 5Elg(@e, 2)] + SE[Vig(Te, 2) = Vog(@e,y"(21)), o1 — T)]
1 e - _ 1n2Lg .\ _
+ SE(Vag(@0,y* (@0)), 21 — 20 + 5 2B |7041 — 2]
1 1 1 i
= EE[g(ft,Et)]—m; [<5(V19(T/t,zt) Vag(Ze, y* ), Z !
k:l P
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K
1 e _ 1L,
+ EEKva(It,y (T1)), Bea1 — )] + 5 9 2:: (k)” %]
(a) 1 B 1 e
< 515[ (It,zt)]+7h E[[[V1g(Zt, 2t) — Vig(Ze, y™ (74))]]]
Y e (Vag @y @), 2 — 2]+ LTl
5 29\ Tt, Y (Tt)), Ti41 — Tt D)
(®) 1 L, . o B B 1 L
< EE[Q(@’@)] Ty E[l|z: — y" (@:)]]] + EE[WM(%,Z/ (T¢)), Ta1 — Te)] + 5 T 5
(01 o L, o 1 o _ n2Lg
< EE[Q(xtazt” + ﬁzEE[Hvzg(%,%)H] + EEKV:I:Q(CUMU (%4)), Teg1 — Te)] + g 5

(32)

where (a) holds due to Vmg(xt, (Zy)) = Vig(Z,y*(Ze)) + Vy*(Z0)Vag(Ze, y*(Ze)) =
V19(Zs, y*(z4)) and ||-Z B ““)H | = 1, (b) holds due to Assumption and (¢) holds due to
LemmalC3l

Furthermore, due to the smoothness of g*(x) as shown in Lemma we obtain

1 1 Lg-
g (93 ) + 5<V9*(7 ) Tt+1 —$t> 5 9 ||It+1 —fUt||
K k
1 pg) H2
k
K= 1™

1
59 (ZTe41) >

| =

1n2L

1
(Vag(Zt,y" (T¢)), Teg1 — Te) — 5 5

— gg*(ft) +

SN

1

Then, we obtain

1 112«
5(Vag(@0y (@), 8pr — 1) 5”129

(33)

1 L
59*(@) - 59*(9_ﬁt+1) < == (Vag(Zt, " (T4)), Te1 — Te) + gnx2 . (34)

(9]

Finally, we obtain

%E[g(i't-ﬁ—la Zi1)] — %E[g* (Zt41)]

= 2Elg@1, )] — 5Bl 20] + FEl @, 7)) - 5Elg(ae, 7))
+ 3Elg(@, %) - 5Elg" (@) + Bl ()] - $Elg" (Tesa)]

I T 1 1 & )
< g]E[g(ﬂft’Zt)] - EE[Q (T¢)] — an[Ilszg(xt,Zt)ll] + 17 > E[||re— 7]

K
L, 1 k
+2nz§§Zme§ ~ )]+ 20,22 ZEHZ( '~z

L, 1n%L,
35 2
L I . n2L,

+ 77m E[[[Vag(zs, z) ] + E[(Vmg(xt, Y (Ze)), Ty — Ze)] + 5 72

+2nz ||*ZV29(M Zw

1020,
- EEKvmgm,y*(ft)),m — a4 s

1 1 L 1 1 &
= 5Elg(7:,2)] - SElg"(@:)] + (nx/f - m) SEUV29(@:, 20| +n: 5 ;E 17 — 2]
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K Lyl o~_ ) 1L,
+2772 Z =)+ 2m. =2 3 E;E[Hzt -zl + 6W7ZL st 575
& 1 & (k) 1n2Ly,  1n2L,-
205 ||—szg” )~ szlwu I+5750+ 5755 (35)
By setting n,, < ﬁnz, we complete the proof.
O

Lemma C.8. Given Assumptionand N < Ny ﬁ, where Ly,; = 0Ly + Lg, we obtain that
5

T—1 1 = * (7 1 T 1 T
11 o 2(5E[hs(Zo, 50) — h3(To)] — 5E[hs(Zr,y7) — hy(Z7)])
5T Z E[[|[Vahs(Z:, 7¢) ] < T
t=0 Y
= 1 K
k
+al Z]EH—ZV PO ™) = = Dol
t=0 k=1
L1 1 1 o
k) (K k
iz ZEHvaQgW o) = 2 Dol
. k=1
. -1, K
+4<Lf+§g>T ?ZE[th—xt ] +4<L +) > % > Elllm - u |l
- K
T-1 ., K
) 1 1n2Lyn,  1m3Ln:
- 2 Ly + <=nyLns + < = 36
T 2 k: ”q ” + <2 Lips + 6779 hs T 5 Ty + 5 ny (36)

Proof. Given Assumptions[3.1] it is easy to know that hs(z,y) = 6 f(x,y) + g(,y) is Lj;-smooth
with Ly, = 6L + L.

Then, based on its smoothness, we obtain

1 B B 1 B B 1 B . 1Ly,
SE[hé(xtH?ytH)] < EE[ha(ﬂftH,yt)] + EEszh&(%H, Ut), Yev1 — Ye)) + 52 A
K (k) K (
1 _ _ 1 q 1m2Ly
= SB[ (71, 0] ~ mE EVahs(Fen, 70, 2 O )]+ = MR S
i g |l = llat™l
a 1 _ _ 1772L}
@ EE[h6($t+layt)] + 3 y2 =
L& P 1E
77y [<5v2h5(xt+17yt) — (qt, E (k) >] _ny]EKQh ? Z (k) >] ) (37)
= el i e |l
T T
(k)
where (a) holds due to ”HZET)HH =1
For T}, we bound it as follows:
1 1 & ¢
T < UyE[||gV2h6(fft+1, Ut) — all ”? ; m”]

1
= UyE[||gV2h6(§?t+1, Ut) — G||]
1 1 1
< nyE[||5V2h5(§:t+1, Ut) — 5V2h6(ft,§t)\|] + WyE[HgV2h5(ft7§t) — qll]

(a) 1 B B 1 o -
< fyLns g]E[thJrl — T[] + ny]E[Hszhé(xuyt) — qll]
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(1 1 o _
= Snmnthg + nyE[”nghé(Itayt) — qtll] (38)

where (a) holds due to Assumption and (b) holds due to || -2 it GO H H

Similar to the proof of Lemma[C.6] for T, we bound it as follows:

K
1 _ k _
Ty <nyge Y Ella — a1 - nElllal]
k=1

K
1 1 o 1 o _
Sy Z]E[H(h — g - E[||5V2h6($t»yt)||] + nyE[”gVﬂé(iﬁtayt) —al]. 39

Then, we obtain

17 2Ly 1
y2 4§ +577177th5

Elhs(Zi1,9t)] — Vth(xhyt)H}

JEll5

SN

1
EE[hé (Zg1, Jeg1)] <

K
1 1 o _
1y 2 Blllg — " 1)+ 20,El 5 V2hs (@0, 5) — @l - (40)
k=1

For E[||4Vahs(Zy, §:) — ||, we bound it as follows:
1 oo -
E[”SVQhé(xta ye) — all]

1
= E[||5V2h5(ft, Ut) — vel[]

1 1
E[||Vaf(Ze, 5e) — v1¢ll] + E[H*Vw(ft, Ut) — 562,t|‘]
K

K

1 k k) (k 1

E[|[Vaf (@0 5) = 2 > Vol Pl )]l +EH—ZW ) = = Dol
k=1 k:l

K

K
1
SElIV29(70,3) Z g™ @yl + EH—ZWW 9,y 9D o]
k=1 k=1

(@)

: (Lf+) ZEnxt—x”n (L +) ZEny e
1 K

k
E[ngvzf(k) (2, g Z
k=1
K

H—szg“c) ) Zvé’? (4D
k=1 k=1

where (a) holds due to Assumption[3.1}

By combining the above two inequalities, we obtain

1 1 77th5 1

1
EE[h6(£t+1agt+1)] < SE[hé(ftJrlygt)] [\\5V2h6($t7yt)||] 5 + gnznthé

K
1
7 O Ellla —a”|] “2)
k=1

L\ 1w Ly\ 1 &
_ k _ k
womy (10 52) e 2Bl o) 2 (24 ) e S Bl
k=1

K

k k k

+2n,E II*ZV FO M, yMy - Z )
k=1 k=1
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K
+20,1E 5 szg 2, y) - Z = 43)
k:

In addition, due to the smoothness of hs(z, y), we further obtain

1 1 1

5El6(Ze11,90)] < SE[Rs (20, 50)] + SE[Vihe(Z0, 52), Toir — To)] + 57 Ell|Ze41 — z4]|]

1 1L
= <Elhs (@, 50) + 5 5 El|Zesr — 7]

1 1 1
E[(5Vihs(Ze,50) — EVhE(i"t)@tH = 2)] + B[{(5Vh5(Z0), Teer — T4)]
(
1n2L
<Elhs(Ze,90)] + 77790 Mg [H* Z p (k)H 1] + [( Vahs(Ze, Y5 (Te)), Tev1 — Te)

k 1
1 1 pi)
nmEKivlhé(ftagt) v h(S(‘Ttay(S(‘rt ) Z k)” ”
=1

0 g K lF2
(@) 1 o S ws
< 5Elhs (e, 40)] +77x E[[IV1hs(Ze, 9e) — Vaihs(Te, y5(20)) ]

1 1n2L
E[(5Vahs (2,95 (20)). B — 20)] + 57050
®) 1 L, Y 1 e _ 1921y,
< SElhs (0, 50)] + 10 e B — v ] + B Vs (T, 03 (20), Zuvn — )] + 5 22
(91 L 1 1n2L
< 5Elhs(ze, 5)] + 77:105 " || Vahs (Z0, ) l] + E[(5Vahs(Ze, 45 (20)), Tor — 2)] + ganh& ;
(44)

where (a) holds due to ||-2 = (k) l || 1 and Vh}(Z) = Vahs(Z, v (Te) = Vihe(ZTe, y3(Z)) +

Vy;(Z)Vahs(Ze, y5 (X)) = Vihs(Ze,y5(Z:)), (b) holds due to Assumption and (c) holds
due to Lemmal[CJ3]

Furthermore, due to the smoothness of A} () as shown in Lemma we obtain

1 1 o -~ _ 1 Lh
gha(ﬂftﬂ) > gh (T) + 5<Vh5($t)7$t+1 — Ty) — ETH%&H — zy|?
1.1 - 1nmLh —~
= 5h5 (@) + 5{Vahs(Te, 45 (20)), Tear = Te) — 5 Z amar I
1 o 1 _ ./ 177mLh*
= ghé(xt) + g(th(;(xt,y(; (T¢)); Tg1 — Ty) — 579 (45)
Then, we obtain
1., 1., 1 o B B 17]th
gh(s(xt) - ghé(xt-i-l) < —g<vxh6($t,y5 (T4)), o1 — Tg) + = 5 2 (46)

Finally, we obtain
1 i _ 1.
5E[h5(xt+17yt+l)} - EE[h’(s(xFl’l)]

1 1 1 1
= SE[hé(@H, Ui1)) — SE[ha(fﬁHh%)] + SE[hé(ft+17gt)] - EE[hé(jt,gtﬂ

+ SEfhs (0 50)] — SERSE] + SER @] — SER ()
< SElhs(m, 7)) - 5B @)
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1oyLlys 1 1 &
- Bl s il + 5 G e S Bl ol
— .
+ 21y <Lf+ ) ZE th—xt ]+ 2ny ( _,_(;;) Z]E 9 — ]
k=1
K
+ 2n,E ||7 Zv f(k) (’C (k) Z
k 1 k=1
L1 & K
k
+ 20, 5Bl 75 > Vag™ (2 ") Z
k=1
1L - i - ., 1zl
+ leg%E[Hvﬁé(xtvyt)m + E[(gvmhé(xtaya (Z¢)), Teg1 — Te)] + 377 th
1 — * [ = _ _ lnth’f
- SEKvazhé(‘rtvyz; (T¢)), Teg1 — Te)] + 52 :
K
1 o 1 . Ly, 1 o 1 _
= 5Elhs(ze, 3)] — SE[h5(2:)] + <771:6 - 77y> SEIV2hs(ze, Go)ll] +ny 7 > Efllg — oIl
H k=1
L) 1 < )
+ 21, Lf“‘? ZEth_xt ] + 2ny Lf"'* Z]EHyt yt ||
K
1 : 1n2L 173 L
5 1 ) () 00y = L5y o Leln, | Lnislo;
1 (k) i 1 77th5 1

k 1
By setting n,, < nyﬁ, we complete the proof.

O]
C.3 BOUNDING CONSECUTIVE UPDATES
Lemma C.9. Given Assumptions[3.I{3.3] we obtain
K 47) 4n
k k v k k
D Efll) -2Vl < 775K ZE [oss =™ < 77555
K 7477
k k z
D Elld - 2Pl < 75K (48)
k=1

Proof.
]E[HXt-‘rl - Xt“%?] = ]E[H(Xt - anf)E - Xf”%‘]
< 2E[| X E — X¢l|3] + 202E[| B.E|)2]
= 2E[||(X; — X;)(E — I)||7] + 2n2E[| B E|| 7]
< 2E[|X; — Xel|2 1B — I|3] + 2n02E (| | 1 B3]

(a) _ .
< 8E[||X; — Xi|[7] + 2nE [||Pt||%]

< SE[|| X; — X1 2] + mZE [
I} | )H

< 8E[|| Xt — X¢||%] + 202 K
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() 8n2\? (¢ 10n?
< 2 K4 mPK < —2_K
S oz TRt s gThe

where (a) holds due to ||E — I]|2 < 2 and ||E||2 < 1, (b) holds due to Lemma|C.28] and (c) holds
dueto A < 1.

(49)

Then, we obtain

K K 2

k (k k (k
STE[lz - 2Pl = (Z E[||z?, — «f ’1)
k=1 k=1

K
< || KD Bl — o2 = VB X - X3 < KL 50
k=1
The other two inequalities can be proved in a same approach. O

Lemma C.10. Given Assumptions[3.1}3.3] for t > 0, we obtain

K
k k k k
STE[u — )] < ZEHV FE @, By = 7y E @)y eEhy)
= k=1

K
k k) (k 47793L 4n, L
3Bl = Vif e )+ T K+ K (51)

Proof.

k k
Efluf®) —ul")_,|]

M=

b
I
-

k k k: k k k k
E[|(1 = 72) (@™ = Vif® @,y e) + Vi@ @M,y ey —ulf) )

)t

I
Mx

=~
Il
-

k k k k k
B[V f® (@, ey — 717 @),y 6]

Mw

o~
Il

1

K
k k
+ 70 Y Elllud?)_; — Vi @, g

K
k k k k: k
+ 7 Y B[V E @) ) = Vi ® @)y )]
k=1

k
< fZEH»T() ot 1||+LfZE||yt — M
k=1

k
mZEmuﬁz L= VO By

)

K
k k k k k
mZEnwlﬂ @y = Vi@ @Ry ® e8P

( ) 4n, L 4n, L N
S T KT K L SEN) V196 )
k=1

K
k k k
+ 7 B[V ® @),y = Vi @)y eI (52)
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where (a) holds due to Lemma[C.9]

O
Lemma C.11. Given Assumptions[3.1{3.3| for t > 0, we obtain
ijmué’TB—uzt ] 7 31O 60 - T1g 5% )
k=1
+%ZEIIu2t L= Vil I+ TR+ T (53)
Lemma C.12. Given Assumptions[3.1}3.3] for t > 0, we obtain
iﬁ[nuét — 0 < 7 S BNV, ) - T )
k=1
+%ZE [y = Fag® (@, O+ Tk TER 54
Lemma C.13. Given Assumptions[3.1}[3.3| for t > 0, we obtain
SB[ — o, <vyZEIIV PO @) = Vo O @)y )]
) K
9 Bl — VO + TR T 55)
k=1
Lemma C.14. Given Assumptions[3.1}3.3| for t > 0, we obtain
iE[Hvé’fﬁ—vu 1< 7 3 B0 0, )~ Tas® e, 8O
k=1
wZEnugt L= Vag® Gl )l + TR+ T (56)
Lemma C.15. Given Assumptions[3.1Y[3.3 for t > 0, we obtain
ZE )~ w1 < 7 3BT 0, 250 — Tag e, 5,5
k=1
b B - Vag®af, o)+ Loy ey 57)

k=1
Lemmas [C.11]-[C.I5|can be easily proved by following Lemma [C.10}

C.4 BOUNDING GRADIENT ERRORS

Lemma C.16. Given Assumptions[3.1{3.3] we obtain

K

k k) (k 2V20K | 4(n. +ny)L s
SCEl — 17O i < (1= ) S (VR 2y ok
— 0 xr

(58)

Proof. Whent > 0, based on Algorithmm we obtain

k k

uft) = Vi P,y
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= (1= 7))y = Vi O @, yP) + (1 = 70) (Vi O

+ e (Vi fE ((k),yt ;e — v, ((k),yt( 5)

:(1—%)t( f(k)( (k (k) +Z

k
e

i

—Vif® @y B e®y = vy B @) By v f R @) 0

k
)

)

) (Var®ag )

k k k
WWV“%JQHVMWyﬂ”)%NNﬁ@w

t
+§:vA17%N*NVd“Mé“,f%§“> Vﬁﬂ“(“%%“

Then, we obtain

me — Vi f® @y )]

k k k
< (1 =) Y E[ulty — Vi P,y

e

=
—

Z ” t j+1 (vlf(k)( (k) 7y§k);£§k)) v, f(k)(

k=1 ]:1

+ V1P y ) = T O ® y ) )

t

) -

(k)

yjl

ek

K
+ D Elle (1= 7) (Vi f P @y €0y - vy f B @, )
k=1

Jj=1

For the first term on the right-hand side of Eq. (60), we bound it as follows:

Zwmomf@ﬂ%m
k=1

N \

=Z|P2Nf:&%,@%mﬂuﬁww

N

(“K \f k) (k). o(k k) (B)y)s
SIpL (5I935, €)= T2 700, 1)
k=1 b=1

® E fB B (k) ok k) (ks
gZyZWWW@WUw%MMU
k=1 b=1

() 2¢/2K

<

Bé_l/s

due to Holder’s inequality, and (c) holds due to Assumption

k k k k
—Z IQﬁW“%M_M)%NWM%WH

1
s

']

1
s

(59)

(60)

(61)

where B represents the batch size in the initial iteration, (%holds due to Lemma[C.3] (b) holds

To bound the second term on the right-hand side of Eq. (60), we first bound the following one:

¢

-l 30— 1 (T ) - T e 06
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k k k k
+ V1 f O @y = VP y ) 1)
K t
k k k)
=331 )2 EIHVE] VP (@ 06y - vy 0 @)y ey
k k k k
Vi fO @y ) — w0 @ 012
i k k k k k
371 = A 2HIE] T B @ ) v p B2

K t
i k k
<3N = )2 L2E] - 217 By - 1)
k=

t
=Y (1= ) IV LREIX; - X |F] + ElY; — Y l3)

(@) & : 1012 1012
2(t—j+1) 72 T
A >Lf<(1_A)2K+(l_j\’)2K

1 10n2 10n2
< L2 K YK
ST f((l—w T

2 2 2
© 107 Ly 10m, Ly

< + — K,
(1=2)? 7% (1 =) 7%
where (a) holds due to Eq. (@#9), and (b) holds due to 7y, < 1.
Then, we bound the second term on the right-hand side of Eq. (60) as follows:

K t
ZE Z 1- t g+l (vlf ( (k ayj(k)vf(k)) v f ( ]k 17y](k)1a£(k))
k=1 j=1

k k k k
+ V1O @,y = VO @,y ) )

4Usz 4nny
R AL W A )

For the third term on the right-hand side of Eq. (60), we bound it as follows:

(62)

t
E[ Y 7ol = 7o) (Vif® @y ey - w1 70 @8 5|

j=1
, 1/s7
(a)
<2VIE || D [1e(l =) (Vafr® @,y e) — v O @0, )
Jj=1
1/s:
¢ (k) (k) (k)
:2\/§]E Z (1— ) t J)”Vlf(k( ] ’yj g ) f ( 1 ’yj )”S
j=1
. 1_/3
(b)
< 22 Z ) DNV O @0y g f 0 () s
1/s
(© ¢ ,
<2V2 (Y -t o, (64)
j=1
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where (a) holds due to Lemma (b) holds due to Holder’s inequality, and (c) holds due to
Assumption[3.2}

Finally, when ¢ > 0, from

1/s

t (i) 1 1/s 1 1/s Y
_ s(t—j —1/s
2 A=) (rnmy) (o) = ©

j=1

we obtain

Eful®) — V10 (@, 4*))

Nk

22K An, Ly 4ny Ly 1
<(1—7,)t o+ VK +y7«/ K +2V2y 7Yoo K . (66)
T A T VY e RV
Based on Eq. (61, it is easy to know that this upper bound also holds when ¢ = 0. O

Lemma C.17. Given Assumptions[3.1{3.3] we obtain

) CIRC V20K 4(nx+ny) : s
E E[ -V < + VK +2 K.

(67)
Lemma C.18. Given Assumptions[3.1{3.3] we obtain

K
®) o (k) k) () o 2V2ny A e L -1/
;E[”u&t Vig )(xt 20 < (1 =) Bolfl/sx—’_ 1-Nv7 \/7+2\[W /0K .

(68)
Lemma C.19. Given Assumptions[3.1{3.3] we obtain

K
220K 4(ne +ny) Ly 1-1
Effo") - Var® @,y < (1 - 7,) o + YVE +2V2y, 7 oK
,;1 ’ Bt (=N
(69)

Lemma C.20. Given Assumptions[3.1{3.3] we obtain

K
220K  4(ng +n,)L
E ’U(k) v29 ()’ (k) < 1_,.)/ t + z Y 9\/7_'_2\/»,}/1 I/SO,K
I; [” 2.t ( t )”] ( y) 3371/5 (I_A)\/’Ty

(70)
Lemma C.21. Given Assumptions[3.1{3.3] we obtain

Z 2V20K | A(n; +n.)L e
E (k) (k) _(k) < (1= . t g 2 1-1/s K.
||’IU VQQ ( Ty 52 )H] — ( 0 ) Béfl/s + (1 _ A)\/> + \/>’Y g

(71)
Lemmas [C.17]-[C.21] can be easily proved by following Lemma [C.16]
Lemma C.22. Given Assumptions@@ we obtain
T—
k k) (k
Z u— uf'y — Zv IO @,y
o K
1 2v20 4, Ly 1 2v2y '
< V2o Aty 1 2V2% o a2

+
T gyt (=M= VK = K7V
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Proof. When ¢ > 0, same as the proof of Lemma|[C.16] we obtain
K

1 k k) (k
Elll 2 > (ui) = Vuf P )l
k=1
1 K
k k k
< (1=72) Elll 7 Y (ut'y = Vaf P (ag” u6™))l)
k=1

t
21—%t J+1Kz(v1f<k>( By By gy p O @0y ™) ek

k k k
+V1f(k (22,550 = Vi@ @5 )

t K
k) (k). o(k k
Elllve Y (1= 2)" Z M@,y ey — v B P BN 3)
j=1 K
Then, for the first term on the right-hand side of Eq (73), we obtain
K
1 k) k K v @ 2v2
Bfll— >l - Vi @l g ZE el = Va5t ) = o
k=1 0
(74)

where (a) holds due to Eq. (61).

To bound the second term on the right-hand side of Eq. (73], we first bound the following one:
K

t
—j+1 1
B[ Y (1) 2 Y (Vif Pl o 6 = v @ )
=1

k=1
+ Vi @y W) — v fE @2

Kt
1 k) (k) o(k k k k
= 23 2 2 (1= TRV W @ o5 6) - P @l )

k=1 j=1

k k k k
+V, f(’“)( WLy = v @,y 912

k k k

SKQZZ ) 2TDE[V R 28 60y - vy f 0 ), )12

k=1 j=1

k k k

< QZZ 1— 7, 2T LR E[ — 2112+ E[lly$ — o )12)

k=1j=1

1 < .

= =5 2 (1= ) " IVLHENX; — Xy [F] +EY; — Va3

j=1

1-A2" T -z

2 10 2
- 1 2 oy 1 10 1
1—(1—19,)2 (1-M2K  (1-)\2K
© w0 Lj1, 10 Lj1
T A=A K (1-MN%24 K
where (a) holds due to Eq. (@9), and (b) holds due to 7, < 1.
Then, we bound the second term on the right-hand side of Eq. (60) as follows:

k k k k k k
||Z (1—7) T Z( @y = V1P )y )

(@ 1 , 10m2 10n?
< — (1_%)2(t—g+1)Lfc< e gy ny) K

(75)
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k k k k
+ VP ) = T B E® ) )
4Wfo 1 4Uny 1

< + (76)
1-NviavE  (1-Nyi VK
For the third term on the right-hand side of Eq. (73, we bound it as follows:
K
1 k) (k). (K k) (&
||Z% 7)Y (Vi Py ) = v W @y )l
Jj=1 k=1
t
1 k) (k). o(k k) (k
= ZElIY 71— ”Zvﬂk (@,y5 ) = 71 @,y M)l
j=1
K t 1/s7]
(@) 2v2 k) (k) (K k) (k) is
< SB[ 22 e =) (VW @ i) - Vi El )l
k=1j=1
1/5:
220 (5o =99, 70 ),y ;¢ ) (8 (F)
= SB[ 222 =) VO 5 6) - Vi, g
k=1j=1
K t i&
® 2\/5 s s(t—j k k k k E)\irs
< Ve E ZZ’Ym(lf’)’z) (t J)Hvlf(k( ()7y]( ). 5( )) 1f(k)(:E§) ())”
k=1j=1
1/s
Sﬂ SO - | g a7
k=1 j=1

where (a) holds due to Lemma (b) holds due to Holder’s inequality, and (c¢) holds due to
Assumption 3.2}

Finally, when ¢ > 0, from

1/s
1/s 1/s —1/s
S5 - )< (i) s () <
=1 j=1 1= (1) 1—(1—1z) K=/
(78)
we obtain
| X K ()
— - (k) k
Bl Y e — & Vi W )]
k=1 k=1
22 4n, L 1 4n, L 1 2
<(1—7) 11/;/SU+ Ladi + 1{/5 e (79)
Al I-NvivE -V vE K
Similarly, it is easy to know that this upper bound also holds when ¢ = 0. Then, we obtain
= 1 X
k
=SB >l _fzw Nl
t=0 k=1
T—1
1 2v/2 4n, L 1 4n, L 1 2
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Lemma C.23. Given Assumptions we obtain

S N R k) (k)
- L k L (k) k k
t=0 k=1 k=1
1 2v20  4Ama+ny)L, 1 22y Vo

—_— — . 81
ST R T - VE K ®h

Lemma C.24. Given Assumptions|3.113.3] we obtain

7ZE”7Z (k) i (k) (k) (k))”]
k

k=1

et 1 B -
TRl - Ny VE K T

Lemma C.25. Given Assumptions|3.113.3} we obtain

1 T-1 1 K
k k
7 OBl > o) - Zvﬂ“ )l
t=0 k=1

12V A tm)ly 1 22y
ST N VE T R

Lemma C.26. Given Assumptions|3.113.3} we obtain

e P (k) (k)
1 ENlL k 1 (k) (k) (K
T;:o HIKk:lvz,t Kg:lvzg (zyy )

1ova 4(nx+ny)Lgi+M (84)
=5,T Béil/s (1_/\)\/77/ \/E K1-1/s .

Lemma C.27. Given Assumptions[3.I{3.3] we obtain

1T—l 1 K K
k k
SRS wt Z g® @)
T K
t=0 k=1 k:
1 220 A +n)Ly 1 2v29 Vo0

< — . 85
ST R T LNy VR K ®

(83)

C.5 BOUNDING CONSENSUS ERRORS

Lemma C.28. Given Assumptions we obtain

K

() . A
ZEHx <y Z ™ =gl < 725

N

Z (ER < 177_AA . (86)
Proof.
FE[IX, — X[
= B{(Xis — BB — (Ko = maBr) 3]
O LR(X1ms = 0 Prms) = (R = e P ) (E = S 3]
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117
E{(Xe-1 = nePiet) = (Kems = ne P [FI1E = == 3]

NS IA
> N\

B (Xemr = naPr) — (Xi1 = nPr1)||2]

_ 1 ~ =
< )\2(1 + 1/G)EE[||Xt—1 = XiallF] + mzA (L + ) B[Py — Pra[7]

(© 1 _ A1
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< AZE[ X Xe1lF] + TN R

1 v 2 2 A1 3 2
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:)\%E[HXtA — X7 —Hﬁl)\Q Ilfi ||pz’“1 .
= /\%E[HXt—l - X7+ 77:%%
) (177320)\;)2 | &7)

where (a) holds because E is a doubly stochastic matrix, (b) holds due to Assumption[3.3] (c) holds

D
duetoa = 175

Then, we obtain
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The other two inequalities can be proved in a same approach. O
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where (a) holds due to Assumption (b) holds due to a = ﬁ
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where (a) and (b) hold due to /> a; < > | \/a; forany a; > 0 and n > 1.
Note that this upper bound also holds when ¢ = 0 according to Eq. (91).
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C.6 PROOF OF THEOREM [4.1]
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By plugging Lemmas [C.22} [C.23] [C.24] [C.25] [C.26] ICTL [C.281 [C29, [C.30} [C.3T] into the above
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Because K > 1,1 =A< 1,79, < 1,7, < 1,7, < 1,s € (1,2], Lo = O(¢s3), Lyp: = O(lk), and
L4+ = O(¢k), it can be simplified to the following inequality:
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Then, we can obtain
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3, 28
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Because s € (1,2] and Ty = xo, Jo = Yo, Zo = 2o, it is easy to verify that the following terms

marked by blue are high-order terms compared to ——
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On the one hand, both +E[hs(zo,y0) — hs(zo, Y3 (x0))] and $E[g(20, 20) — g(xo,y*(20))] are
affected by %, to avoid the degeneration of the convergence rate, we can provide good initial
points (z,yo) and (xg, z9) such that E[hs(zo,y0) — hs(xo, y5(z0))] < d and E[g(zo, 20) —
g(z0,y*(x0))] < 0 can mitigate the adverse affect from }. Since both hs(z,y) and g(z, z) sat-
isfy the p-PL condition with respect to the second variable, we can use a gradient descent method

to obtain such solutions, which has a linear convergence rate and therefore does not affect the
other terms in Eq. (126). On the other hand, we haveE[||V®(z;) — V®s(z,)||] < O(6k3) =

0] (Nég ———= K| = O <1s> As aresult, we can obtain
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