NONCONVEX DECENTRALIZED STOCHASTIC BILEVEL OPTIMIZATION UNDER HEAVY-TAILED NOISE

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing decentralized stochastic optimization methods assume the lower-level loss function is strongly convex and the stochastic gradient noise has finite variance. These strong assumptions typically are not satisfied in real-world machine learning models. To address these limitations, we develop a novel decentralized stochastic bilevel optimization algorithm for the nonconvex bilevel optimization problem under heavy-tailed noise. Specifically, we develop a normalized stochastic variance-reduced bilevel gradient descent algorithm, which does not rely on any clipping operation. Moreover, we establish its convergence rate by innovatively bounding interdependent gradient sequences under heavy-tailed noise for nonconvex decentralized bilevel optimization problems. As far as we know, this is the first decentralized bilevel optimization algorithm with rigorous theoretical guarantees under heavy-tailed noise. The extensive experimental results confirm the effectiveness of our algorithm in handling heavy-tailed noise.

1 Introduction

Stochastic bilevel optimization consists of two levels of optimization subproblems, where the upper-level subproblem depends on the optimal solution of the lower-level subproblem. It has received a surge of attention in recent years because it lays the optimization foundation for a series of machine learning models, such as model-agnostic meta-learning (Finn et al., 2017), hyperparameter optimization (Franceschi et al., 2018; Pedregosa, 2016), imbalanced data classification (Yang, 2022), reinforcement learning (Shen et al., 2024; Li et al., 2024a), large language models (Shen et al., 2025; Li et al., 2024b), etc. To facilitate stochastic bilevel optimization for distributed machine learning models, where data are distributed across different workers, a series of decentralized stochastic bilevel optimization algorithms have been developed in recent years. Specifically, in a decentralized setting, each device computes stochastic gradients based on its local training data to update the variables of both the upper-level and lower-level subproblems, and then communicates these updates with neighboring workers in a peer-to-peer manner.

Compared to traditional single-level optimization problems, a unique challenge in decentralized stochastic bilevel optimization lies in computing the stochastic hypergradient, that is, the stochastic gradient of the upper-level loss function with respect to its variable. This challenge is caused by the unique characteristic of bilevel optimization: the upper-level subproblem relies on the optimal solution of the lower-level subproblem, which requires the global Hessian inverse matrix. To address this challenge, three categories of decentralized stochastic bilevel optimization algorithms (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023; Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024; Qin et al., 2025) have been developed. The first category, such as Yang et al. (2022b), uses the Neumann series expansion approach to approximate the Hessian inverse on each device and then communicates it between workers, suffering from high communication costs. The second category, such as Zhang et al. (2023); Zhu et al. (2024), estimates the Hessian-inverse-vector product by solving an auxiliary quadratic optimization problem with gradient descent on each device and then communicating this estimator, which helps reduce communication costs. However, both the first and second categories incur significant computational overhead due to the need to compute second-order Hessian information. The third category, such as Wang et al. (2024), addresses this challenge by reformulating the decentralized stochastic bilevel problem as a single-level optimization problem and then solving it with only first-order gra-

dients. By avoiding the computation of second-order gradients, this category significantly reduces computational overhead.

However, existing decentralized stochastic bilevel optimization algorithms suffer from significant limitations. First, these algorithms require the loss function of the lower-level subproblem to be strongly convex. This strong assumption is not satisfied by most practical machine learning models, such as deep neural networks, which are inherently nonconvex. Second, they assume the stochastic noise in the gradient has finite variance. However, existing studies (Şimşekli et al., 2019; Zhang et al., 2020) have demonstrated that this bounded variance assumption does not hold for the commonly used deep neural networks. In practice, the stochastic noise often follows a heavy-tailed distribution. Hence, these practical scenarios make existing algorithmic designs and theoretical foundations for decentralized bilevel optimization ineffective. It is therefore necessary to develop new decentralized stochastic bilevel optimization algorithms that can accommodate a broader range of machine learning models and provide solid theoretical guarantees. To this end, the goal of this paper is to develop an efficient decentralized stochastic bilevel optimization algorithm for *nonconvex* bilevel problems under *heavy-tailed noise*, with rigorous theoretical guarantees. Since the first-order methods in the aforementioned third category offer low computational overhead and communication costs, this paper focuses on the first-order method.

For standard single-level optimization problems in the single-machine setting, a commonly used approach to handling heavy-tailed noise is Clipped SGD (Zhang et al., 2020), which mitigates the effect of heavy-tailed noise by clipping the norm of the stochastic gradient below a predefined threshold. Nevertheless, tuning the clipping threshold can be challenging. Recently, several works (Liu & Zhou, 2025; Hübler et al., 2024; Sun et al., 2024) have shown that the gradient normalization technique is sufficient to guarantee the convergence of stochastic gradient descent in-expectation under heavy-tailed noise without assuming bounded gradients. For instance, Hübler et al. (2024) proves that the batched normalized SGD (batched-NSGD) can converge in-expectation for a smooth nonconvex minimization problem under heavy-tailed noise, while Sun et al. (2024) achieves a similar conclusion for NSGD using a stronger assumption, the individual Lipschitz smoothness. Additionally, Liu & Zhou (2025) established the in-expectation convergence rate of the batched normalized stochastic gradient descent with momentum (batched-NSGDM) algorithm under heavy-tailed noise by innovatively bounding the accumulated noise from an online learning perspective.

Since the aforementioned approaches focus solely on single-level optimization in a single-machine setting, they are not applicable to decentralized stochastic bilevel optimization problems. In practice, this setting presents several unique challenges, outlined as follows.

- 1. In bilevel optimization, **multiple gradients interact with one another**. Each of these gradients is affected by the heavy-tailed noise, which in turn impacts convergence. Therefore, it is challenging to control all of them and establish a convergence rate under heavy-tailed noise.
- In the decentralized setting, the consensus error with respect to gradients is also affected by heavy-tailed noise. It remains unclear how to design algorithms and analyses that effectively control this noise to ensure convergence.
- 3. The aforementioned first-order method for bilevel optimization requires advanced gradient estimators, such as the variance-reduced gradient, to avoid the quite slow convergence rate under the finite variance assumption, as shown in Kwon et al. (2023a). However, no existing work for both single-level and bilevel problems has demonstrated that the advanced gradient estimator can ensure convergence under heavy-tailed noise without assuming bounded gradients.

In summary, it is challenging to achieve a fast convergence rate for the first-order gradient-based decentralized bilevel optimization algorithm under heavy-tailed noise. To address these unique challenges, we develop a novel decentralized normalized stochastic gradient with variance reduction algorithm to solve Eq. (1). This algorithm **only requires normalized first order gradients**, making it more efficient and effective in handling heavy-tailed noise, which is lacking in existing second-order-based methods. Importantly, our algorithm demonstrates when gradient normalization should be applied in decentralized bilevel optimization. **To the best of our knowledge, this is the first algorithm capable of handling heavy-tailed noise in bilevel optimization**. We further establish the convergence rate of the developed algorithm under heavy-tailed noise. Specifically, to address challenges arising from the interaction between gradients of different variables, we explicitly char-

acterize their interdependence by innovatively handling the optimization subproblems associated with each variable. In addition, we provide a novel analysis of the consensus errors related to these gradients, which are also influenced by heavy-tailed noise. To the best of our knowledge, this is the first work to bound interdependent gradient sequences under heavy-tailed noise in bilevel optimization. Finally, the established convergence rate clearly illustrates how the properties of a decentralized system influence overall convergence, and extensive experimental results validate the effectiveness of the proposed algorithm in handling heavy-tailed noise.

DECENTRALIZED STOCHASTIC BILEVEL OPTIMIZATION

115 116

108

109

110

111

112

113

114

117

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144145

146

2 RELATED WORK

118 119

Decentralized stochastic bilevel optimization enables the decentralized optimization framework for bilevel optimization problems. Due to the two-level characteristics of this problem, there are some unique challenges for computation and communication compared to the decentralization of traditional single-level optimization problems. Specifically, the hypergradient on each worker relies on the global Jacobian matrix and the inverse of the global Hessian matrix. Directly communicating or computing them on each worker can result in a large communication and computation overhead, such as Yang et al. (2022b); Chen et al. (2022a) in the aforementioned first category, which communicates Jacobian or Hessian matrix in each iteration. To avoid this issue, Zhang et al. (2023) developed the first single-loop decentralized algorithm, which computes and communicates the Hessian-inverse-vector product to reduce both computation and communication overhead. This approach has also been applied to the full gradient method (Dong et al., 2023), stochastic gradient (Zhu et al., 2024), and the momentum-based method (Kong et al., 2024). However, these methods require to compute the second-order Jacobian and Hessian matrix, which can incur large memory and computation overhead for high-dimensional problems. To avoid computing second-order gradients, in the single-machine setting, Shen & Chen (2023); Kwon et al. (2023b;a); Chen et al. (2024) propose converting the bilevel optimization problem into a single-level optimization problem via the penalty approach and then only the first-order gradient is needed to solve it, which can save computation overhead significantly. Based on this reformulation, Wang et al. (2024) developed a decentralized first-order method, which only requires the standard stochastic gradient. Therefore, its practical computational time is much smaller than the second-order gradient based method. However, Wang et al. (2024) still suffers from some limitations. On the one hand, it can only handle the strongly-convex lower-level loss function, which is also a limitation of all aforementioned decentralized methods (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023; Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024). On the other hand, Wang et al. (2024) suffers from a quite slow convergence rate, $O(1/T^{1/7})$, where T is the number of iterations, while the first-order method Kwon et al. (2023a) in the single-machine setting can achieve a convergence rate of $O(1/T^{1/5})$. Finally, it is worth noting that all existing bilevel optimization methods, including both single-machine and decentralized settings, assume that the stochastic noise in the gradient has finite variance. Therefore, these algorithms cannot handle heavy-tailed noise.

147 148 149 150

151

152

153

154

155

156

157

158

159

160

161

2.2 STOCHASTIC OPTIMIZATION UNDER HEAVY-TAILED NOISE

Some recent works (Zhang et al., 2020) have shown that the finite variance assumption is too restrictive for modern machine learning models. In practice, commonly used deep neural networks, such as image classification models (Simsekli et al., 2019; Battash et al., 2024) and attention-based models (Zhang et al., 2020; Ahn et al., 2023), have stochastic gradients whose noise follows a heavy-tailed distribution. This observation has sparked the recent interest (Zhang et al., 2020; Cutkosky & Mehta, 2021; Liu et al., 2023b; Nguyen et al., 2023; Liu et al., 2024; Liu & Zhou, 2025; Hübler et al., 2024; Sun et al., 2024; Gorbunov et al., 2023) in the study of stochastic optimization under heavy-tailed noise. For example, Zhang et al. (2020) established the in-expectation convergence rate of Clipped SGD for strongly convex and nonconvex loss functions. As discussed earlier, Clipped SGD requires a clipping threshold, which introduces more difficulties for tuning the optimizer. Therefore, some recent efforts (Liu & Zhou, 2025; Hübler et al., 2024; Sun et al., 2024) have been made to get rid of the clipping operation, while keeping the normalization operation. For example, Sun et al. (2024) established the in-expectation convergence rate of normalized SGD based on a strong assumption

of the individual Lipschitz smoothness. Hübler et al. (2024) also achieved this result without using this strong assumption in the cost of a large batch size. However, extending the convergence rate of normalized SGD to normalized SGD with momentum is not trivial. Sun et al. (2024) addressed this problem by assuming a bounded stochastic gradient. Based on this assumption, Sun et al. (2024) further established the in-expectation convergence rate of normalized SGD with variance reduction. Nevertheless, such a strong assumption is easily violated in practice. Recently, Liu & Zhou (2025) developed an innovative approach from the online learning perspective and successfully addressed this issue, establishing the in-expectation convergence rate of normalized SGD without relying on the bounded stochastic gradient assumption. However, it remains unclear whether the approach in Liu & Zhou (2025) can be applied to the normalized SGD with variance reduction.

In the distributed setting, the heavy-tailed noise has been less studied, although Gürbüzbalaban et al. (2024) has shown that noise in the decentralized setting tends to have heavier tails than in the centralized setting. Moreover, existing distributed methods for handling heavy-tailed noise (Sadiev et al., 2023; Yang et al., 2022a; Lee et al., 2025) still rely on the gradient clipping technique. Therefore, it remains unclear whether the gradient normalization technique without assuming bounded gradients works in the decentralized setting. Furthermore, to the best of our knowledge, gradient normalization without clipping has not yet been explored for decentralized bilevel optimization or decentralized minimax optimization under heavy-tailed noise. Thus, it is important to fill this gap.

3 Problem Setup

3.1 PROBLEM DEFINITION

In this paper, we assume that there are K workers, indexed by $k \in \{1, 2, \dots, K\}$, which form a communication graph and perform peer-to-peer communication within it. These workers collaboratively optimize a nonconvex decentralized stochastic bilevel optimization problem, defined as:

$$\min_{x \in \mathbb{R}^{d_1}, y \in y^*(x)} \frac{1}{K} \sum_{k=1}^K f^{(k)}(x, y) \qquad s.t. \quad y^*(x) = \arg\min_{y \in \mathbb{R}^{d_2}} \frac{1}{K} \sum_{k=1}^K g^{(k)}(x, y) . \tag{1}$$

In Eq. (1), $f(x,y) = \frac{1}{K} \sum_{k=1}^K f^{(k)}(x,y)$ is the global upper-level loss function, where $f^{(k)}(x,y) = \mathbb{E}[f^{(k)}(x,y;\xi^{(k)})]$ is the local one on the k-th worker and $\xi^{(k)}$ denotes random samples on that worker. Additionally, $g(x,y) = \frac{1}{K} \sum_{k=1}^K g^{(k)}(x,y)$ is the global lower-level loss function, where $g^{(k)}(x,y) = \mathbb{E}[g^{(k)}(x,y;\zeta^{(k)})]$ is the lower-level one on the k-th worker and $\zeta^{(k)}$ represents the corresponding random samples. Unlike existing decentralized bilevel optimization methods (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a; Ehang et al., 2023; Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024), which assume that g(x,y) is strongly convex with respect to y, we assume that g(x,y) is a nonconvex loss function with respect to y, but satisfies the Polyak-Lojasiewicz (PL) condition with respect to y for any given x.

3.2 MINIMAX REFORMULATION

Because g(x,y) is nonconvex with respect to y, the second-order-based method, which relies on the Hessian inverse with respect to y of g(x,y), is not applicable to Eq. (1). Hence, we employ the first-order-based method to solve it. Specifically, Kwon et al. (2023a) shows that the lower-level subproblem in Eq. (1) can be converted into a constraint: $g(x,y) \leq \min_{z \in \mathbb{R}^{dy}} g(x,z)$, and then it can be converted into a minimax optimization problem based on the penalty method, which is defined as follows:

$$\min_{x \in \mathbb{R}^{d_1}, y \in \mathbb{R}^{d_2}} \max_{z \in \mathbb{R}^{d_2}} \frac{1}{K} \sum_{k=1}^{K} f^{(k)}(x, y) + \frac{1}{\delta} \left(\frac{1}{K} \sum_{k=1}^{K} g^{(k)}(x, y) - \frac{1}{K} \sum_{k=1}^{K} g^{(k)}(x, z) \right) , \tag{2}$$

where $\delta > 0$ denotes the penalty parameter. With this reformulation, we only need to compute the first-order gradient with respect to x, y, and z to update them.

To solve Eq. (2) and measure its approximation for Eq. (1), we introduce the following functions:

$$\Phi(x) = \min_{y \in y^*(x)} \frac{1}{K} \sum_{k=1}^K f^{(k)}(x, y), \quad \Phi_{\delta}(x) = \min_{y \in \mathbb{R}^{d_2}} \max_{z \in \mathbb{R}^{d_2}} \frac{1}{\delta K} \sum_{k=1}^K h_{\delta}^{(k)}(x, y) - \frac{1}{\delta K} \sum_{k=1}^K g^{(k)}(x, z), \quad (3)$$

where $h_{\delta}^{(k)}(x,y) = \delta f^{(k)}(x,y) + g^{(k)}(x,y)$ and $h_{\delta}(x,y) = \frac{1}{K} \sum_{k=1}^K h_{\delta}^{(k)}(x,y)$. Chen et al. (2024) shows that $\Phi_{\delta}(x)$ can approximate $\Phi(x)$ well, including both their loss functions and gradients, by controlling the penalty parameter δ , which is shown in Appendix C.1. Importantly, $\min_{x \in \mathbb{R}^{d_1}} \Phi_{\delta}(x)$ is tractable compared to $\min_{x \in \mathbb{R}^{d_1}} \Phi(x)$. With the minimax reformulation, in the single-machine setting, Kwon et al. (2023a) shows that the convergence rate when using first-order stochastic gradients is $O(1/T^{1/7})$ and can be improved to $O(1/T^{1/5})$ when using first-order stochastic variance-reduced gradients. Note that this reformulation for nonconvex bilevel optimization cannot achieve the $O(1/T^{1/3})$ convergence rate as the single-level method when using variance-reduced gradients. In fact, it is still an open problem to achieve that convergence rate. The purpose of this paper is not to bridge this gap. Instead, our goal is to design a decentralized algorithm to solve Eq. (2) under heavy-tailed noise and then formally show how its solution solves Eq. (1). Note that there are currently no decentralized minimax optimization methods capable of handling heavy-tailed noise without gradient clipping. Moreover, due to the penalty term, establishing the convergence rate is significantly more challenging than in existing single-level or standard minimax methods. Therefore, solving Eq. (2) as a mean to solve Eq. (1) under heavy-tailed noise requires new algorithm design and convergence analysis.

3.3 ASSUMPTIONS

To solve Eq. (1), we introduce some commonly used assumptions, which have been used in existing nonconvex bilevel optimization methods, such as Kwon et al. (2024); Chen et al. (2024).

Assumption 3.1. Let $z = (x, y) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$, then the upper-level function $f^{(k)}(z)$ and lower-level function $g^{(k)}(z)$ on the k-th worker, and the penalty function $h_{\delta}(z)$ satisfy the following conditions:

- 1. For any z_1 and z_2 , $\mathbb{E}[\|\nabla f^{(k)}(z_1;\xi) \nabla f^{(k)}(z_2;\xi)\|] \le L_f \|z_1 z_2\|$ where the constant $L_f > 0$; $\|\nabla_2 f^{(k)}(x,y)\| \le C_f$ where the constant $C_f > 0$; $\mathbb{E}[\|\nabla^2 f^{(k)}(z_1;\xi) \nabla^2 f^{(k)}(z_2;\xi)\|] \le \ell_f \|z_1 z_2\|$ where the constant $\ell_f > 0$.
- 2. For any z_1 and z_2 , $\mathbb{E}[\|\nabla g^{(k)}(z_1;\zeta) \nabla g^{(k)}(z_2;\zeta)\|] \le L_g\|z_1 z_2\|$ where the constant $L_g > 0$; $\mathbb{E}[\|\nabla^2 g^{(k)}(z_1;\xi) \nabla^2 g^{(k)}(z_2;\xi)\|] \le \ell_g\|z_1 z_2\|$ where the constant $\ell_g > 0$.
- 3. g(x,y) satisfies the μ -PL with respect to y where the constant $\mu > 0$; $h_{\delta}(x,y)$ satisfies the μ -PL with respect to y.

Assumption 3.2. (heavy-tailed noise) All first-order and second-order gradients are the unbiased estimators for the corresponding deterministic gradients. Moreover, there exist $s \in (1,2]$ and $\sigma > 0$ such that $\mathbb{E}[\|\nabla f^{(k)}(z;\xi) - \nabla f^{(k)}(z)\|^s] \leq \sigma^s$ and $\mathbb{E}[\|\nabla g^{(k)}(z;\xi) - \nabla g^{(k)}(z)\|^s] \leq \sigma^s$ for any $z = (x,y) \in \mathbb{R}^{d_x} \times \mathbb{R}^{d_y}$.

Assumption 3.3. For the adjacency matrix $E = [e_{ij}] \in \mathbb{R}_+^{K \times K}$ of the communication graph, $e_{ij} > 0$ indicates that the *i*-th worker and the *j*-th worker are connected. Otherwise, $e_{ij} = 0$. In addition, $\mathcal{N}_k = \{j | e_{kj} > 0\}$ denotes the neighboring workers of the k-th worker. Moreover, it satisfies the following conditions:

- 1. $E^T = E$, $E\mathbf{1} = \mathbf{1}$, $\mathbf{1}^T E = \mathbf{1}^T$, where $\mathbf{1} \in \mathbb{R}^K$ is the vector of all ones.
- 2. Its eigenvalues can be ordered by magnitude as: $|\lambda_K| \le |\lambda_{K-1}| \le \cdots \le |\lambda_2| < |\lambda_1| = 1$. By denoting $\lambda = |\lambda_2|$, the spectral gap is 1λ .

Notations. In this paper, we define $\ell = \max\{L_f, L_g, \ell_f, \ell_g\}$, denote the condition number by $\kappa = \ell/\mu$, and represent the gradient with respect to the *i*-th variable with ∇_i .

4 DECENTRALIZED NORMALIZED STOCHASTIC GRADIENT DESCENT ASCENT WITH VARIANCE REDUCTION ALGORITHM

4.1 ALGORITHM DESIGN

To solve the reformulated Eq. (2), we developed a novel decentralized normalized stochastic gradient descent ascent with variance reduction (D-NSVRGDA) algorithm, which is presented in Algorithm 1. Specifically, we use the normalized variance-reduced gradient to update three variables: x,

Algorithm 1 D-NSVRGDA

```
271
                                                 Input: \eta_x > 0, \eta_y > 0, \eta_z > 0, \gamma_x > 0, \gamma_y > 0, \gamma_z > 0.

\mathbb{I}_{t>0} = 1 \text{ when } t > 0. \text{ Otherwise, } \mathbb{I}_{t>0} = 0. \text{ The batch size is } B_0 \text{ when } t = 0. \text{ Otherwise, it is } O(1).
Initialization on the k-th worker: x_0^{(k)} = x_0, y_0^{(k)} = y_0, z_0^{(k)} = z_0,
272
273
                                                         1: for t = 0, \dots, T - 1, the k-th worker do
274
                                                                                        Variance gradient estimators:
275
                                                                                       \begin{aligned} & u_{1,t}^{(k)} &= (1-\gamma_x)(u_{1,t-1}^{(k)} - \nabla_1 f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \xi_t^{(k)})) \mathbb{I}_{t>0} + \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}; \xi_t^{(k)}), \\ & u_{2,t}^{(k)} &= (1-\gamma_x)(u_{2,t-1}^{(k)} - \nabla_1 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \zeta_t^{(k)})) \mathbb{I}_{t>0} + \nabla_1 g^{(k)}(x_t^{(k)}, y_t^{(k)}; \zeta_t^{(k)}), \end{aligned} 
276
277
                                                                                        u_{3,t}^{(k)} = (1 - \gamma_x)(\overline{u_{3,t-1}^{(k)}} - \nabla_1 g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}; \zeta_t^{(k)}))\mathbb{I}_{t>0} + \nabla_1 g^{(k)}(x_t^{(k)}, z_t^{(k)}; \zeta_t^{(k)}),
278
                                                                                        v_{1,t}^{(k)} = (1 - \gamma_y)(v_{1,t-1}^{(k)} - \nabla_2 f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \xi_t^{(k)}))\mathbb{I}_{t>0} + \nabla_2 f^{(k)}(x_t^{(k)}, y_t^{(k)}; \xi_t^{(k)}),
279
                                                                                  v_{1,t}^{(k)} = (1 - \gamma_y)(v_{1,t-1}^{(k)} - \nabla_2 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \zeta_t^{(k)})) \mathbb{I}_{t>0} + \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}; \zeta_t^{(k)}), \\ v_{2,t}^{(k)} = (1 - \gamma_y)(v_{1,t-1}^{(k)} - \nabla_2 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \zeta_t^{(k)})) \mathbb{I}_{t>0} + \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}; \zeta_t^{(k)}), \\ w_{1,t}^{(k)} = (1 - \gamma_z)(w_{1,t-1}^{(k)} - \nabla_2 g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}; \zeta_t^{(k)})) \mathbb{I}_{t>0} + \nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)}; \zeta_t^{(k)}), \\ \text{Combine gradient estimators together for each variable:} \\ u_t^{(k)} = u_{1,t}^{(k)} + \frac{1}{\delta}(u_{2,t}^{(k)} - u_{3,t}^{(k)}), \quad v_t^{(k)} = v_{1,t}^{(k)} + \frac{1}{\delta}v_{2,t}^{(k)}, \quad w_t^{(k)} = \frac{1}{\delta}w_{1,t}^{(k)}, \\ \text{Gradient tracking:} \\ v_{2,t}^{(k)} = v_{2,t}^{(k)} + v_{2,t}^{(k
281
                                                                           \begin{split} &\tilde{p}_t^{(k)} = (p_{t-1}^{(k)} - u_{t-1}^{(k)}) \mathbb{I}_{t>0} + u_t^{(k)}, \quad p_t^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{p}_t^{(j)}, \\ &\tilde{q}_t^{(k)} = (q_{t-1}^{(k)} - v_{t-1}^{(k)}) \mathbb{I}_{t>0} + v_t^{(k)}, \quad q_t^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{q}_t^{(j)}, \\ &\tilde{r}_t^{(k)} = (r_{t-1}^{(k)} - w_{t-1}^{(k)}) \mathbb{I}_{t>0} + w_t^{(k)}, \quad r_t^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{r}_t^{(j)}, \\ &\text{Updating:} \end{split}
284
287
288
289
                                                                                    \bar{x}_{t+1}^{(k)} = \bar{x}_t^{(k)} - \eta_x \frac{p_t^{(k)}}{\|p_t^{(k)}\|}, \quad x_{t+1}^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{x}_{t+1}^{(j)} ,
290
291
                                                                                    \tilde{y}_{t+1}^{(k)} = y_t^{(k)} - \eta_y \frac{q_t^{(k)}}{\|q_t^{(k)}\|}, \quad y_{t+1}^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{y}_{t+1}^{(j)} ,
292
                                                                                      \tilde{z}_{t+1}^{(k)} = z_t^{(k)} - \eta_z \frac{r_t^{(k)}}{\|r_t^{(k)}\|}, \quad z_{t+1}^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{z}_{t+1}^{(j)},
293
294
```

y, and z. More specifically, in Step 3 of Algorithm 1, we compute the variance-reduced gradient estimator for three variables as follows:

$$u_t^{(k)} = u_{1,t}^{(k)} + \frac{1}{\delta} (u_{2,t}^{(k)} - u_{3,t}^{(k)}) , \quad v_t^{(k)} = v_{1,t}^{(k)} + \frac{1}{\delta} v_{2,t}^{(k)} , \quad w_t^{(k)} = \frac{1}{\delta} w_{1,t}^{(k)} , \tag{4}$$

In Eq. (4), $u_{1,t}^{(k)}$, $u_{2,t}^{(k)}$, and $u_{3,t}^{(k)}$ are the variance-reduced gradient estimator for $\nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})$, $\nabla_1 g^{(k)}(x_t^{(k)}, y_t^{(k)})$, and $\nabla_1 g^{(k)}(x_t^{(k)}, z_t^{(k)})$, respectively. Similarly, $v_{1,t}^{(k)}$ and $v_{2,t}^{(k)}$ estimate $\nabla_2 f^{(k)}(x_t^{(k)}, y_t^{(k)})$, $\nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)})$, respectively, while $w_{1,t}^{(k)}$ is used to estimate $\nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)})$. All these gradient estimators are computed using the STORM method (Cutkosky & Orabona, 2019), as described in Step 2 of Algorithm 1, where $\gamma_x \in (0,1)$, $\gamma_y \in (0,1)$, and $\gamma_z \in (0,1)$ are three hyperparameters.

Then, our algorithm uses the gradient tracking approach to communicate these gradient estimators, which is shown in Step 4. For example, $p_t^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{p}_t^{(j)}$ represents the aggregation of gradient estimators $\tilde{p}_t^{(j)}$ from the neighboring workers \mathcal{N}_k of the k-th worker. Finally, in Step 5, our algorithm uses the normalized gradient estimator to update the variables. For example, the k-th worker uses the normalized gradient estimator to update its local variable x and communicates the updated variable $\tilde{x}_{t+1}^{(k)}$ as follows:

$$\tilde{x}_{t+1}^{(k)} = x_t^{(k)} - \eta_x \frac{p_t^{(k)}}{\|p_t^{(k)}\|}, \quad x_{t+1}^{(k)} = \sum_{j \in \mathcal{N}_k} e_{kj} \tilde{x}_{t+1}^{(j)}, \tag{5}$$

where $\eta_x > 0$ denotes the learning rate for variable x, $\frac{p_t^{(k)}}{\|p_t^{(k)}\|}$ denotes the normalized gradient estimator, and the second equation represents the aggregation of updated variables $\tilde{x}_{t+1}^{(j)}$ from the

neighboring workers \mathcal{N}_k of the k-th worker. The other two variables are updated in the same way. In Algorithm 1, we use only the normalized gradient estimator to update variables, without employing gradient clipping. To the best of our knowledge, this is the first decentralized algorithm for bilevel optimization under heavy-tailed noise that does not rely on gradient clipping. Furthermore, we believe that our algorithm can also be applied to standard minimax optimization under heavy-tailed noise, for which a decentralized algorithm without gradient clipping is also lacking.

4.2 Convergence Rate

Based on Assumptions 3.1-3.3, we establish the theoretical convergence rate of Algorithm 1 in the following theorem.

Theorem 4.1. Given Assumptions 3.1-3.3, by setting the coefficient as
$$\gamma_x = \gamma_y = \gamma_z = \min\left\{1, O\left(\frac{K^{\frac{1}{2s+1}}}{T^{\frac{2s}{2s+1}}\sigma^{\frac{3s}{(2s+1)(s-1)}}}\right)\right\}$$
, the learning rate as $\eta_x = O\left(\frac{1-\lambda}{\kappa^5\ell}\frac{K^{\frac{1}{2s+1}}}{T^{\frac{2s}{2s+1}}\sigma^{\frac{4-s}{2(2s+1)(s-1)}}}\right)$, $\eta_y = \eta_x \frac{4(\delta L_f + L_g)}{\mu}$, $\eta_z = \eta_x \frac{4L_g}{\mu}$, the batch size in the first step as $B_0 = O\left(K^{\frac{2s}{2s+1}}T^{\frac{2s}{2s+1}}\sigma^{\frac{s(4s-1)}{(2s+1)(s-1)^2}}\right)$,

the batch size in other steps as O(1), and the penalty parameter as $\delta = O\left(\frac{1}{\kappa^3 \ell} \frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right)$, we can obtain the following convergence rate for Algorithm 1:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \le O\left(\frac{\kappa^5 \ell}{1 - \lambda} \frac{\sigma^{\frac{4-s}{2(2s+1)(s-1)}}}{K^{\frac{1}{2s+1}} T^{\frac{1}{2s+1}}}\right) + O\left(\frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right) + O\left(\frac{\ell \sigma^{\frac{2}{2s+1}}}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right) + O\left(\frac{\ell \sigma^{\frac{2}{2s+1}}}{K^{\frac{1}{2s+1}} T^{\frac{1}{2s+1}}}\right).$$
(6)

From Theorem 4.1, we can obtain the following conclusions.

- 1. Because $s \in (1,2]$, the convergence rate is dominated by $O\left(\frac{1}{K^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}}}\right)$ in terms of the number of ierations T. On the one hand, the spectral gap $1-\lambda$ affects only the high-order term of the convergence rate. On the other hand, the factor $K^{\frac{s-1}{2s+1}}$ in the dominated term indicates the linear speed up with respect to the number of workers. To the best of our knowledge, this is the first work achieving the linear speed up convergence rate for nonconvex decentralized bilevel optimization under heavy-tailed noise.
- 2. The convergence rate in Theorem 4.1 can recover the finite-variance setting. Specifically, when s=2, K=1, and not considering other factors, our convergence rate is $O\left(\frac{1}{T^{\frac{1}{5}}}\right)$, which is same as the convergence rate in the single-machine setting in Kwon et al. (2023a).

4.3 PROOF SKETCH

Establishing the convergence rate for Algorithm 1 is significantly more challenging than for existing methods (Liu & Zhou, 2025; Hübler et al., 2024) that address single-level problems in a single-machine setting. The main difficulties arise from: 1) the interaction between gradients with respect to three variables due to the bilevel structure, and 2) the consensus error introduced by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization methods that rely on the finite variance assumption. In Appendix B, we provide a proof sketch to demonstrate how these challenges are addressed. In Appendix C, we provide the detailed proof of Theorem 4.1.

5 EXPERIMENT

In our experiments, we evaluate our algorithm on two machine learning applications: hyperparameter optimization and model pruning. Due to space constraints, we present only the results on two synthetic datasets related to hyperparameter optimization here. Additional experimental results on real-world datasets for both hyperparameter optimization and model pruning are provided in Appendix A.

5.1 Hyperparameter Optimization

To validate the performance of D-NSVRGDA, we consider a nonconvex hyperparameter optimization problem, with the corresponding loss function defined in Eq. (7). Specifically, in the lower-level optimization subproblem, we optimize the weights of a two-layer fully connected neural network. Although this is a nonconvex optimization problem, existing work has shown that it can satisfy the Polyak-Łojasiewicz (PL) condition under the overparameterized regime. In the upper-level optimization subproblem, we optimize the hyperparameters that are used to regularize the neural network weights. Formally, it is defined as below:

$$\min_{x=\{x_1,x_2\}} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}^{(k)}(y^*(x); \mathcal{D}_{vl}^{(k)})$$

$$s.t. \ y^*(x) = \arg\min_{y=\{y_1,y_2\}} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}^{(k)}(y; \mathcal{D}_{tr}^{(k)}) + \mathcal{R}_1(x) + \mathcal{R}_2(x) , \tag{7}$$

where $y_1=[y_{1,pq}]\in\mathbb{R}^{d_1\times d_2}$ is the weight of the first layer, $y_2=[y_{2,pq}]\in\mathbb{R}^{d_2\times d_3}$ is the weight of the second layer, $x_1=[x_{1,q}]\in\mathbb{R}^{d_2}$ and $x_2=[x_{2,q}]\in\mathbb{R}^{d_3}$ are hyperparameters for the regularization term: $\mathcal{R}_1(x)=\frac{1}{d_2}\sum_{q=1}^{d_2}\exp(x_{1,q})\frac{1}{d_1}\sum_{p=1}^{d_1}y_{1,pq}^2$ and $\mathcal{R}_2(x)=\frac{1}{d_3}\sum_{q=1}^{d_3}\exp(x_{2,q})\frac{1}{d_2}\sum_{p=1}^{d_2}y_{2,pq}^2$. In our experiments, d_1 is set to the number of input features, d_2 is set to 20, and d_3 is set to 1 for binary classification.

5.1.1 SYNTHETIC DATASET I

We use a synthetic dataset to allow full control over the heavy-tailed noise. Specifically, we generate a binary classification training dataset via $y = \operatorname{sgn}(Xw + \alpha\xi)$, where $X \in \mathbb{R}^{10,000 \times 100}$ is drawn from a standard Gaussian distribution, $w \in \mathbb{R}^{100}$ is also drawn from a standard Gaussian distribution, the noise $\xi \in \mathbb{R}^{10,000}$ is drawn from a heavy-tailed Cauchy distribution, and $\alpha > 0$ is a scalar for controlling the contribution of heavy-tailed noise. These training samples are evenly distributed to eight workers. We then use the same approach to generate the validation and testing set that have the same number of samples.

Since all existing decentralized bilevel optimization algorithms require a strongly convex lower-level loss function, there are no baseline methods applicable to the *nonconvex* bilevel optimization problem in Eq. (7). Therefore, in our experiment, we primarily investigate the effect of gradient normalization in handling heavy-tailed noise. Specifically, we remove the normalization step in Algorithm 1 to create its variant, denoted as D-SVRGDA. In addition, we incorporate gradient clipping into D-SVRGDA to obtain the second baseline method, D-SVRGDA-Clip. We then compare the performance of D-NSVRGDA with that of D-SVRGDA and D-SVRGDA-Clip. For all algorithms, we use identical hyperparameters. In detail, the learning rate is set to 0.001, the coefficient for momentum is set to 0.9, and the penalty parameter is set to 0.3. As for D-SVRGDA-Clip, we use different clipping threshold to fully demonstrate its performance. Additionally, there are eight workers, which are connected into a LINE graph. The batch size on each worker is set to 32.

Figure 1 shows the upper-level loss function value and the test accuracy of all methods on different datasets that are generated with different levels of heavy-tailed noise. In detail, we use $\alpha = \{0.2, 0.1, 0.05\}$ for generating three datasets. Both the loss function value and the test accuracy in Figure 1 confirm the effectiveness of our algorithm D-NSVRGDA in accommodating different levels of heavy-tailed noise compared to D-SVRGDA. In addition, we can find that D-SVRGDA-Clip is heavily affected by the clipping threshold τ . Therefore, D-SVRGDA-Clip is much more difficult to tune than our method.

5.1.2 SYNTHETIC DATASET II

In this experiment, we introduce a new synthetic dataset to simulate heavy-tailed noise in language data. Specifically, in natural language, some words appear much more frequently than others, which actually follow a heavy-tailed distribution. To simulate this phenomenon, we split features into the common and rare features. Specifically, following Lee et al. (2025), we assume 10% features are the common ones, X_{common} , which are drawn from a Bernoulli distribution with the probability being

Figure 1: The upper-level loss function value and test accuracy on different datasets that are generated with different levels of heavy-tailed noise.

Figure 2: The upper-level loss function value and test accuracy on the second synthetic dataset.

0.9, and 90% are the rare ones, $X_{\rm rare}$, which are drawn from a Bernoulli distribution with probability 0.1. Then, the generated samples are represented by $X = [X_{\rm common}, X_{\rm rare}]$. Then, we use the same method to generate w, ξ , and y as the first synthetic dataset, where α is 0.1. Moreover, the total number of features is 100, and the number of samples in the training, validation, and testing sets is 10,000. The other settings are the same as those of the first synthetic dataset. Figure 2 shows the upper-level loss function value and the test accuracy of all methods. Both the loss function value and the test accuracy in Figure 2 further confirm the effectiveness of our algorithm D-NSVRGDA in accommodating heavy-tailed noise compared to D-SVRGDA and D-SVRGDA-Clip.

6 Conclusion

Heavy-tailed noise is common in practical machine learning models, yet it has not been studied in the context of decentralized bilevel optimization. To bridge this gap, our paper developed the first decentralized bilevel optimization algorithm to handle heavy-tailed noise in machine learning models that can be formulated as the bilevel optimization problem. Moreover, our paper provided ta theoretical convergence rate for our algorithm under heavy-tailed noise. To the best of our knowledge, this is the first theoretical result for nonconvex decentralized bilevel optimization under heavy-tailed noise. Finally, the extensive experiments validate the effectiveness of the proposed algorithm in handling heavy-tailed noise.

Ethics statement This work complies with the ICLR Code of Ethics. It does not involve human subjects or personal data, and all datasets used are publicly available benchmarks. The research is primarily algorithmic and theoretical and does not pose foreseeable risks to fairness, privacy, or security.

Reproducibility statement We provide the problem setup and assumptions in Section 3, the algorithm design and theoretical analyses in Section 4. A proof sketch and the main proof are included in Appendix B- C. Experimental details are given in Section 5 and Appendix A. The full source code will be released upon acceptance.

The Use of Large Language Models (LLMs) LLMs were employed solely for polishing the writing to enhance the clarity of presentation. They were not involved in the conception of the research process.

REFERENCES

- Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear attention is (maybe) all you need (to understand transformer optimization). *arXiv preprint arXiv:2310.01082*, 2023.
- Barak Battash, Lior Wolf, and Ofir Lindenbaum. Revisiting the noise model of stochastic gradient descent. In *International Conference on Artificial Intelligence and Statistics*, pp. 4780–4788. PMLR, 2024.
- Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization: Hardness results and improved analysis. In *The Thirty Seventh Annual Conference on Learning Theory*, pp. 947–980. PMLR, 2024.
- Xuxing Chen, Minhui Huang, and Shiqian Ma. Decentralized bilevel optimization. *arXiv preprint arXiv:2206.05670*, 2022a.

Xuxing Chen, Minhui Huang, Shiqian Ma, and Krishnakumar Balasubramanian. Decentralized stochastic bilevel optimization with improved per-iteration complexity. *arXiv* preprint *arXiv*:2210.12839, 2022b.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization with heavy tails. *Advances in Neural Information Processing Systems*, 34:4883–4895, 2021.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd. *Advances in neural information processing systems*, 32, 2019.

Youran Dong, Shiqian Ma, Junfeng Yang, and Chao Yin. A single-loop algorithm for decentralized bilevel optimization. *CoRR*, abs/2311.08945, 2023. doi: 10.48550/ARXIV.2311.08945. URL https://doi.org/10.48550/arXiv.2311.08945.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In *International Conference on Machine Learning*, pp. 1568–1577. PMLR, 2018.

Hongchang Gao, Bin Gu, and My T Thai. On the convergence of distributed stochastic bilevel optimization algorithms over a network. In *International Conference on Artificial Intelligence and Statistics*, pp. 9238–9281. PMLR, 2023.

Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability convergence for composite and distributed stochastic minimization and variational inequalities with heavy-tailed noise. arXiv preprint arXiv:2310.01860, 2023.

- Mert Gürbüzbalaban, Yuanhan Hu, Umut Şimşekli, Kun Yuan, and Lingjiong Zhu. Heavy-tail phenomenon in decentralized sgd. *IISE Transactions*, pp. 1–15, 2024.
 - Feihu Huang and Songcan Chen. Near-optimal decentralized momentum method for nonconvex-pl minimax problems. *arXiv preprint arXiv:2304.10902*, 2023.
 - Florian Hübler, Ilyas Fatkhullin, and Niao He. From gradient clipping to normalization for heavy tailed sgd. *arXiv preprint arXiv:2410.13849*, 2024.
 - Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In *Joint European conference on machine learning and knowledge discovery in databases*, pp. 795–811. Springer, 2016.
 - Boao Kong, Shuchen Zhu, Songtao Lu, Xinmeng Huang, and Kun Yuan. Decentralized bilevel optimization over graphs: Loopless algorithmic update and transient iteration complexity. *arXiv* preprint arXiv:2402.03167, 2024.
 - Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert Nowak. On penalty methods for nonconvex bilevel optimization and first-order stochastic approximation. *arXiv* preprint *arXiv*:2309.01753, 2023a.
 - Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method for stochastic bilevel optimization. In *International Conference on Machine Learning*, pp. 18083– 18113. PMLR, 2023b.
 - Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order methods in stochastic bilevel optimization. *arXiv preprint arXiv:2402.07101*, 2024.
 - Su Hyeong Lee, Manzil Zaheer, and Tian Li. Efficient distributed optimization under heavy-tailed noise. *arXiv preprint arXiv:2502.04164*, 2025.
 - Chenliang Li, Siliang Zeng, Zeyi Liao, Jiaxiang Li, Dongyeop Kang, Alfredo Garcia, and Mingyi Hong. Learning reward and policy jointly from demonstration and preference improves alignment. In *NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine Learning: Principles and Scalability*, 2024a. URL https://openreview.net/forum?id=D8SSXvhZHl.
 - Jiaxiang Li, Siliang Zeng, Hoi To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting more juice out of the SFT data: Reward learning from human demonstration improves SFT for LLM alignment. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL https://openreview.net/forum?id=orxQccN8Fm.
 - Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in overparameterized non-linear systems and neural networks. *Applied and Computational Harmonic Analysis*, 59:85–116, 2022a.
 - Langqi Liu, Yibo Wang, and Lijun Zhang. High-probability bound for non-smooth non-convex stochastic optimization with heavy tails. In *Forty-first International Conference on Machine Learning*, 2024.
 - Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Interact: achieving low sample and communication complexities in decentralized bilevel learning over networks. In *Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing*, pp. 61–70, 2022b.
 - Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Prometheus: taming sample and communication complexities in constrained decentralized stochastic bilevel learning. In *International Conference on Machine Learning*, pp. 22420–22453. PMLR, 2023a.
- Zijian Liu and Zhengyuan Zhou. Nonconvex stochastic optimization under heavy-tailed noises:

 Optimal convergence without gradient clipping. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=NKotdPUc3L.

- Zijian Liu, Jiawei Zhang, and Zhengyuan Zhou. Breaking the lower bound with (little) structure: Acceleration in non-convex stochastic optimization with heavy-tailed noise. In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 2266–2290. PMLR, 2023b.
 - Songtao Lu, Xiaodong Cui, Mark S Squillante, Brian Kingsbury, and Lior Horesh. Decentralized bilevel optimization for personalized client learning. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 5543–5547. IEEE, 2022.
 - Ta Duy Nguyen, Thien H Nguyen, Alina Ene, and Huy Nguyen. Improved convergence in high probability of clipped gradient methods with heavy tailed noise. *Advances in Neural Information Processing Systems*, 36:24191–24222, 2023.
 - Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving a class of non-convex min-max games using iterative first order methods. *arXiv* preprint *arXiv*:1902.08297, 2019.
 - Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International conference on machine learning*, pp. 737–746. PMLR, 2016.
 - Zhen Qin, Zhuqing Liu, Songtao Lu, Yingbin Liang, and Jia Liu. DUET: Decentralized bilevel optimization without lower-level strong convexity. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=jxMAPMqNr5.
 - Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochastic optimization and variational inequalities: the case of unbounded variance. In *International Conference on Machine Learning*, pp. 29563–29648. PMLR, 2023.
 - Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. In *International Conference on Machine Learning*, pp. 30992–31015. PMLR, 2023.
 - Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforcement learning and rlhf. *arXiv* preprint arXiv:2402.06886, 2024.
 - Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. SEAL: Safety-enhanced aligned LLM fine-tuning via bilevel data selection. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=VHguhvcoM5.
 - Umut Şimşekli, Mert Gürbüzbalaban, Thanh Huy Nguyen, Gaël Richard, and Levent Sagun. On the heavy-tailed theory of stochastic gradient descent for deep neural networks. *arXiv preprint arXiv:1912.00018*, 2019.
 - Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient noise in deep neural networks. In *International Conference on Machine Learning*, pp. 5827–5837. PMLR, 2019.
 - Tao Sun, Xinwang Liu, and Kun Yuan. Gradient normalization provably benefits nonconvex sgd under heavy-tailed noise. *arXiv preprint arXiv:2410.16561*, 2024.
 - Xiaoyu Wang, Xuxing Chen, Shiqian Ma, and Tong Zhang. Fully first-order methods for decentralized bilevel optimization. *arXiv preprint arXiv:2410.19319*, 2024.
- Wenhan Xian, Feihu Huang, Yanfu Zhang, and Heng Huang. A faster decentralized algorithm for nonconvex minimax problems. *Advances in Neural Information Processing Systems*, 34:25865–25877, 2021.
- Haibo Yang, Peiwen Qiu, and Jia Liu. Taming fat-tailed ("heavier-tailed" with potentially infinite variance) noise in federated learning. *Advances in Neural Information Processing Systems*, 35: 17017–17029, 2022a.
 - Shuoguang Yang, Xuezhou Zhang, and Mengdi Wang. Decentralized gossip-based stochastic bilevel optimization over communication networks. *arXiv preprint arXiv:2206.10870*, 2022b.

- Tianbao Yang. Algorithmic foundations of empirical x-risk minimization. *arXiv preprint* arXiv:2206.00439, 2022.
- Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in Neural Information Processing Systems*, 33:15383–15393, 2020.
- Xuan Zhang, Gabriel Mancino-Ball, Necdet Serhat Aybat, and Yangyang Xu. Jointly improving the sample and communication complexities in decentralized stochastic minimax optimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 20865–20873, 2024.
- Yihan Zhang, My T Thai, Jie Wu, and Hongchang Gao. On the communication complexity of decentralized bilevel optimization. *arXiv preprint arXiv:2311.11342*, 2023.
- Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, and Sijia Liu. Advancing model pruning via bi-level optimization. Advances in Neural Information Processing Systems, 35:18309–18326, 2022.
- Shuchen Zhu, Boao Kong, Songtao Lu, Xinmeng Huang, and Kun Yuan. Sparkle: a unified single-loop primal-dual framework for decentralized bilevel optimization. *Advances in Neural Information Processing Systems*, 37:62912–62987, 2024.

A MORE EXPERIMENTS

A.1 HYPERPARAMETER OPTIMIZATION

In this experiment, we evaluate the performance of D-NSVRGDA on three real-world datasets: a9a, covtype, and IMDB, all of which are available from LIBSVM ¹. The experimental settings, including the communication graph, the batch size, the learning rate, and the penalty parameter, are the same as those in the first two experiments.

Figure 3 shows the upper-level loss function value and the test accuracy of D-NSVRGDA, D-SVRGDA-Clip, and D-SVRGDA on three real-world datasets. Similar to the first two experiments, both the loss function value and the test accuracy in Figure 3 further confirm the effectiveness of our algorithm D-NSVRGDA. In particular, IMDB is a text dataset whose features naturally follow a heavy-tailed distribution, and our algorithm demonstrates significant improvement over the baseline.

Figure 3: The upper-level loss function value and test accuracy on real-world datasets.

A.2 MODEL PRUNING

In this experiment, we verify the performance of our algorithm on the model pruning task. Following Zhang et al. (2022), model pruning can be formulated as a bilevel optimization problem. Formally, in the decentralized setting, its loss function is defined as follows:

$$\min_{x} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}^{(k)}(x \odot y^{*}(x))$$
s.t. $y^{*}(x) = \arg\min_{y} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}^{(k)}(x \odot y)$, (8)

where $y \in \mathbb{R}^d$ denotes the parameter of a deep neural network, and $x \in \{0,1\}^d$ is a binary mask, where 0 indicates pruning the corresponding neuron. Since Liu et al. (2022a) shows that optimizing an overparameterized deep neural network satisfies the PL condition, the model pruning problem satisfies the nonconvex-PL assumption when pruning a deep neural network. In this experiment, we use the same neural network architecture as in the first three experiments and keep the other experimental settings unchanged. For the pruning rate, we prune 80% of the neurons.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Figure 4 shows the upper-level loss value and test accuracy of D-NSVRGDA, D-SVRGDA-Clip, and D-SVRGDA on the model pruning task defined in Eq. (8). We also evaluate D-SVRGDA-Clip under different clipping threshold values. From the figure, we observe that our algorithm, D-NSVRGDA, consistently outperforms the baseline methods in terms of both the loss value and test accuracy. This further confirms the effectiveness of our algorithm in handling heavy-tailed noise in new applications.

Figure 4: The upper-level loss function value and test accuracy on real-world datasets for model pruning task.

B PROOF SKETCH

Establishing the convergence rate for Algorithm 1 is significantly more challenging than for existing methods (Liu & Zhou, 2025; Hübler et al., 2024) that address single-level problems in a single-machine setting. The main difficulties arise from: 1) the interaction between gradients with respect to three variables due to the bilevel structure, and 2) the consensus error introduced by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization methods that rely on the finite variance assumption.

B.1 SOLUTION FOR THE FIRST CHALLENGE

First Step: Given that the gradients with respect to three variables interact with each other, we first disclose how they interact with each other in Lemma B.1.

Lemma B.1. Given Assumption 3.1, we can obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \leq \frac{\mathbb{E}[\Phi(\bar{x}_0)] - \mathbb{E}[\Phi(\bar{x}_T)]}{T} + 2\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \nabla \Phi_{\delta}(\bar{x}_t)\|]}_{Approximation \ Error \ caused \ by \ the \ minimax \ reformulation} \\
+ \frac{2(\delta L_f + L_g)}{\mu} \frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E}[\|\nabla_2 h_{\delta}(\bar{x}_t, \bar{y}_t)\|]}_{Gradient \ regarding \ y} + \frac{2L_g}{\mu} \frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{z}_t)\|]}_{Gradient \ regarding \ z} + \frac{\eta_x L_{\Phi}}{2} \\
+ \mathbf{Gradient \ Errors} + \mathbf{Consensus \ Errors} \ . \tag{9}$$

Here, **Gradient Errors** include $2\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{1,t}^{(k)}\|], \quad 2\frac{1}{\delta}\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{2,t}^{(k)}\|], \quad \text{and} \quad 2\frac{1}{\delta}\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)},z_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{3,t}^{(k)}\|]. \quad \textbf{Consensus Errors} \quad \text{include:} \quad 2(L_{f} + \frac{2L_{g}}{\delta})\frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|], \quad 2(L_{f} + \frac{L_{g}}{\delta})\frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|y_{t}^{(k)} - \bar{y}_{t}\|], \quad 2\frac{L_{g}}{\delta}\frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|y_{t}^{(k)} - \bar{y}_{t}\|], \quad 2\frac{L_{g}}{\delta}\frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{p}_{t} - p_{t}^{(k)}\|], \quad \text{where the first three terms are the consensus error with respect to variables, while the last is about the gradient.}$

Lemma B.1 discloses that the gradient $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|]$ regarding x is influenced by $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t, \bar{y}_t)\|]$ regarding y and $\mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{z}_t)\|]$ regarding z. Meanwhile, Lemma B.1 reveals that the gradient $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|]$ is also affected by the consensus errors regarding both variables and gradients. After revealing this explicit interaction, the remainder of the proof boils down to bounding each factor.

Second Step: After revealing the explicit interaction between three gradients, our next step is to bound $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t,\bar{y}_t)\|]$ with respect to y and $\mathbb{E}[\|\nabla_2 g(\bar{x}_t,\bar{z}_t)\|]$ regarding z, so that $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|]$ can be bounded. However, this is challenging because $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t,\bar{y}_t)\|]$ is affected by the update of two variables simultaneously (the same applies to $\mathbb{E}[\|\nabla_2 g(\bar{x}_t,\bar{z}_t)\|]$), and is thus affected by two normalized variance-reduced gradients. In our proof, we innovatively handle those normalized variance-reduced gradients and establish the following lemma.

Lemma B.2. Given Assumption 3.1 and $\eta_x \leq \eta_y \frac{\mu}{2(\delta L_f + L_g)}$, we can obtain that

$$\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_2 h_{\delta}(\bar{x}_t, \bar{y}_t)\|] \leq \frac{2(\frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_0, \bar{y}_0) - h_{\delta}^*(\bar{x}_0)] - \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_T, \bar{y}_T) - h_{\delta}^*(\bar{x}_T)])}{\eta_y T} \\
+ \frac{1}{\delta} 2\eta_x (\delta L_f + L_g) + \frac{1}{\delta} \eta_y (\delta L_f + L_g) + \frac{1}{\delta} \frac{\eta_x^2 (\delta L_f + L_g)}{\eta_y} + \frac{1}{\delta} \frac{\eta_x^2 L_{h_{\delta}^*}}{\eta_y} \\
+ \mathbf{Gradient \ Errors} + \mathbf{Consensus \ Errors} . \tag{10}$$

Here, $h_{\delta}^*(x) = h_{\delta}(x, y^*(x))$ where $y^*(x) = \arg\min_y h_{\delta}(x, y)$. Gradient Errors include: $4\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K\nabla_2 f^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{1,t}^{(k)}\|]$ and $4\frac{1}{\delta}\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K\nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\|]$. Consensus Errors include:

$$4\left(L_f + \frac{L_g}{\delta}\right) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{x}_t - x_t^{(k)}\|], 4\left(L_f + \frac{L_g}{\delta}\right) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{y}_t - y_t^{(k)}\|],$$
 and
$$2\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_t - q_t^{(k)}\|].$$

Lemma B.2 shows that $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t, \bar{y}_t)\|]$ is only affected by **Gradient Errors**, **Consensus Errors**, and some other terms that are not explicitly related to $\mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{z}_t)\|]$ and $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|]$. Therefore, we only need to provide the upper bound of **Gradient Errors** and **Consensus Errors** in order to bound $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t, \bar{y}_t)\|]$. Similarly, we can bound $\mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{z}_t)\|]$ as Lemma B.2, which is deferred to Lemma C.7 in Appendix C.2 due to space limitation.

Summarization. First, it is worth noting that our proof is fundamentally different from existing decentralized bilevel optimization (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023; Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024) or decentralized minimax optimization (Xian et al., 2021; Zhang et al., 2024; Huang & Chen, 2023) that rely on the finite-variance assumption. For example, the upper bound for $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|]$ in those methods has a term with regard to σ^2 , which could be infinity under heavy-tailed noise. On the contrary, our upper bound does not have this kind of terms. In fact, this is the first work showing how to handle the normalized variance-reduced gradient and heavy-tailed noise for decentralized bilevel optimization. Second, from Lemmas B.1, B.2, C.7, we can observe that they all are affected by **Gradient Errors** and **Consensus Errors**. Then, we need to bound them under heavy-tailed noise.

B.2 SOLUTION FOR THE SECOND CHALLENGE

First Step. Since the consensus error regarding gradients involves the gradient estimator, e.g., $u_{1,t}^{(k)}$, it can be influenced by both stochastic noises and gradient errors. For example, Eq. (93) in Appendix C.5 shows that the consensus error regarding the gradient, $\mathbb{E}[\|p_t^{(k)} - \bar{p}_t\|]$, is influenced by stochastic noises, e.g., $\mathbb{E}[\|\nabla_1 f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)}) - \nabla_1 f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)};\xi_j^{(k)})\|]$, and gradient errors, e.g., $\mathbb{E}[\|u_{1,j-1}^{(k)} - \nabla_1 f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)})\|]$. Then, our fist step for this challenge is to establish the upper bound for Gradient Errors. For example, in Lemma B.3, we establish the upper bound for the Gradient Error, $\mathbb{E}[\|u_{1,t}^{(k)} - \nabla_1 f^{(k)}(x_t^{(k)},y_t^{(k)})\|]$.

Lemma B.3. Given Assumptions 3.1-3.3, we can obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,t}^{(k)} - \nabla_{1} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \leq (1 - \gamma_{x})^{t} \frac{2\sqrt{2}}{B_{0}^{1 - 1/s}} \sigma K + \frac{4\eta_{x} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \sqrt{K} + \frac{4\eta_{y} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \sqrt{K} + 2\sqrt{2}\gamma_{x}^{1 - 1/s} \sigma K.$$
(11)

Note that bounding gradient errors requires addressing the communication step. Lemma B.3 demonstrates the influence of the spectral gap $1-\lambda$ on this bound, which differs from the single-machine setting. Similarly, we established other Gradient Errors in Lemmas C.17- C.21 in Appendix C.4.

Second Step. The second step is to bound the consensus error regarding gradients in terms of **Gradient Errors**. For example, in Lemma B.4, we provide the upper bound for $\frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|p_t^{(k)}-\bar{p}_t\|]$, demonstrating how the heavy-tailed noise (σ) , hyperparameters $(\eta_x,\eta_y,\eta_z,\gamma_x)$, penalty parameter (δ) , and spectral gap $(1-\lambda)$ affect this upper bound.

Lemma B.4. Given Assumptions 3.1-3.3, we can obtain

$$\begin{split} &\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_t^{(k)} - \bar{p}_t\|] \leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 f^{(k)}(x_0^{(k)}, y_0^{(k)})\|] \\ &+ \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 g^{(k)}(x_0^{(k)}, y_0^{(k)})\|] + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 g^{(k)}(x_0^{(k)}, z_0^{(k)})\|] \\ &+ \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_0^{1-1/s}} \left(1 + \frac{2}{\delta}\right) \sigma + \frac{\gamma_x \lambda \sqrt{K}\sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{2}{\delta}\right) + \frac{4\eta_x \lambda \sqrt{K}}{(1-\lambda)^{5/2}} \left(L_f + \frac{2L_g}{\delta}\right) \end{split}$$

$$+ \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{z}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) + \frac{2\sqrt{2}\gamma_{x}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \sigma\left(1 + \frac{2}{\delta}\right) + \frac{4\eta_{x}\sqrt{\gamma_{x}}\lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\sqrt{\gamma_{x}}\lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right).$$
(12)

Similarly, we established the upper bounds for other consensus errors regarding gradients in Lemmas C.30, C.31 in Appendix C.5.

After obtaining the upper bounds for the gradients, $\mathbb{E}[\|\nabla_2 h_\delta(\bar{x}_t, \bar{y}_t)\|]$ and $\mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{z}_t)\|]$, the upper bounds for **Consensus Errors**, and the upper bounds for **Gradient Errors**, we plug them into Lemma B.1, we can finally obtain the convergence rate of Algorithm 1 in Theorem 4.1.

C MAIN PROOF

 This section is organized as follows:

- 1. Appendix C.1: Supporting Terminologies and Lemmas
- 2. Appendix C.2: Characterizing Interdependence between Gradients
- 3. Appendix C.3: Bounding Consecutive Updates
- 4. Appendix C.4: Bounding Gradient Errors
- 5. Appendix C.5: Bounding Consensus Errors
- 6. Appendix C.6: Proof of Theorem 4.1

The proof of Theorem 4.1 follows the structure presented in Section B. Specifically, we first characterize the interdependence between different gradients in Appendix C.2 and then bound Gradient Errors in Appendix C.4 and Consensus Errors in Appendix C.5. Based on them, we prove Theorem 4.1 in Appendix C.6.

C.1 SUPPORTING TERMINOLOGIES AND LEMMAS

We define the following terminologies for convergence analysis:

$$X_{t} = [x_{t}^{(1)}, x_{t}^{(2)}, \cdots, x_{t}^{(K)}], \quad Y_{t} = [y_{t}^{(1)}, y_{t}^{(2)}, \cdots, y_{t}^{(K)}], \quad Z_{t} = [z_{t}^{(1)}, z_{t}^{(2)}, \cdots, z_{t}^{(K)}],$$

$$P_{t} = [p_{t}^{(1)}, p_{t}^{(2)}, \cdots, p_{t}^{(K)}], \quad Q_{t} = [q_{t}^{(1)}, q_{t}^{(2)}, \cdots, q_{t}^{(K)}], \quad R_{t} = [r_{t}^{(1)}, r_{t}^{(2)}, \cdots, r_{t}^{(K)}],$$

$$U_{t} = [u_{t}^{(1)}, u_{t}^{(2)}, \cdots, u_{t}^{(K)}], \quad V_{t} = [v_{t}^{(1)}, v_{t}^{(2)}, \cdots, v_{t}^{(K)}], \quad W_{t} = [w_{t}^{(1)}, w_{t}^{(2)}, \cdots, w_{t}^{(K)}],$$

$$\hat{P}_{t} = [\frac{p_{t}^{(1)}}{\|p_{t}^{(1)}\|}, \frac{p_{t}^{(2)}}{\|p_{t}^{(2)}\|}, \cdots, \frac{p_{t}^{(K)}}{\|p_{t}^{(K)}\|}], \quad \hat{Q}_{t} = [\frac{q_{t}^{(1)}}{\|q_{t}^{(1)}\|}, \frac{q_{t}^{(2)}}{\|q_{t}^{(2)}\|}, \cdots, \frac{q_{t}^{(K)}}{\|q_{t}^{(K)}\|}],$$

$$\hat{R}_{t} = [\frac{r_{t}^{(1)}}{\|r_{t}^{(1)}\|}, \frac{r_{t}^{(2)}}{\|r_{t}^{(2)}\|}, \cdots, \frac{r_{t}^{(K)}}{\|r_{t}^{(K)}\|}],$$

$$\bar{X}_{t} = X_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{Y}_{t} = Y_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{Z}_{t} = Z_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K},$$

$$\bar{P}_{t} = P_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{Q}_{t} = Q_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{R}_{t} = R_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K},$$

$$\bar{P}_{t} = \hat{P}_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{Q}_{t} = \hat{Q}_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{R}_{t} = \hat{R}_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K},$$

$$\bar{U}_{t} = U_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{V}_{t} = V_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}, \quad \bar{W}_{t} = W_{t} \frac{\mathbf{1}\mathbf{1}^{T}}{K}.$$

$$(13)$$

Lemma C.1. Chen et al. (2024) Given Assumptions 3.1, then $\Phi(x)$ is L_{Φ} -smooth, where the constant $L_{\Phi} = O(\ell \kappa^3)$.

Lemma C.2. Chen et al. (2024) Given Assumptions 3.1, then $Y^*(x)$ is continuous, i.e., for any $x_1, x_2 \in \mathbb{R}^{d_1}$, the following inequality holds:

$$Dist(Y^*(x_1), Y^*(x_2)) \le C_{y^*} \|x_1 - x_2\|, \tag{14}$$

where $C_{y^*} = \frac{L_g}{\mu} = O(\kappa)$, $Dist(\cdot, \cdot)$ denotes the distance between two sets.

Lemma C.3. (Appendix A of Karimi et al. (2016)) Given Assumptions 3.1, the following inequality holds:

$$||y^*(x) - z||^2 \le \frac{1}{u^2} ||\nabla_2 g(x, z)||^2, \qquad ||y^*_{\delta}(x) - y||^2 \le \frac{1}{u^2} ||\nabla_2 h_{\delta}(x, y)||^2.$$
 (15)

Lemma C.4. Given Assumptions 3.1, then $\nabla g^*(x)$ is continuous and $\nabla h^*_{\delta}(x)$ is also continuous, i.e., for any $x_1, x_2 \in \mathbb{R}^{d_1}$, the following inequalities hold:

$$\|\nabla g^*(x_1) - \nabla g^*(x_2)\| \le L_{g^*} \|x_1 - x_2\| , \quad \|\nabla h^*_{\delta}(x_1) - \nabla h^*_{\delta}(x_2)\| \le L_{h^*_{\delta}} \|x_1 - x_2\| , \quad (16)$$
where $L_{g^*} = L_g(1 + \frac{L_g}{\mu}) = O(\ell \kappa)$ and $L_{h^*_{\delta}} = (\delta L_f + L_g)(1 + \frac{\delta L_f + L_g}{\mu}) = O(\ell \kappa)$.

This lemma be easily proved by following Lemma A.5 in Nouiehed et al. (2019).

Lemma C.5. Liu & Zhou (2025) Given random vectors v_t that satisfies $\mathbb{E}[v_t|\mathcal{F}_{t-1}] = 0$, where \mathcal{F}_{t-1} is a natural filtration and $t \in \mathbb{N}$, then the following inequality holds:

$$\mathbb{E}[\|\sum_{t=1}^{T} v_t\|] \le 2\sqrt{2}\mathbb{E}[(\sum_{t=1}^{T} \|v_t\|^s)^{\frac{1}{s}}], \qquad (17)$$

where $T \in \mathbb{N}$ and $s \in [1, 2]$.

C.2 CHARACTERIZING INTERDEPENDENCE BETWEEN GRADIENTS

Lemma C.6. Given Assumption 3.1, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_{t})\|] \leq \frac{\mathbb{E}[\Phi(\bar{x}_{0})] - \mathbb{E}[\Phi(\bar{x}_{T})]}{T} + 2\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_{t}) - \nabla \Phi_{\delta}(\bar{x}_{t})\|] \\
+ \frac{2(\delta L_{f} + L_{g})}{\mu} \frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \frac{2L_{g}}{\mu} \frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] \\
+ 2\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{1} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} u_{1,t}^{(k)}\|] \\
+ 2\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} u_{2,t}^{(k)}\|] \\
+ 2\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} u_{3,t}^{(k)}\|] \\
+ 2(L_{f} + \frac{2L_{g}}{\delta}) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] + 2(L_{f} + \frac{L_{g}}{\delta}) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|y_{t}^{(k)} - \bar{y}_{t}\|] \\
+ 2\frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|] + \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{p}_{t} - p_{t}^{(k)}\|] + \frac{\eta_{x} L_{\Phi}}{2} . \tag{18}$$

Proof. Due to the smoothness of $\Phi(x)$, we obtain

$$\mathbb{E}[\Phi(\bar{x}_{t+1})] \leq \mathbb{E}[\Phi(\bar{x}_t)] + \mathbb{E}[\langle \nabla \Phi(\bar{x}_t), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{L_{\Phi}^2}{2} \mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_t\|^2] \\
= \mathbb{E}[\Phi(\bar{x}_t)] - \eta_x \mathbb{E}[\langle \nabla \Phi(\bar{x}_t), \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} \rangle] + \frac{\eta_x^2 L_{\Phi}^2}{2} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|}\|^2] \\
\stackrel{(a)}{=} \mathbb{E}[\Phi(\bar{x}_t)] \underbrace{-\eta_x \mathbb{E}[\langle \nabla \Phi(\bar{x}_t) - \bar{p}_t, \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} \rangle]}_{T_1} - \frac{\eta_x \mathbb{E}[\langle \bar{p}_t, \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} \rangle]}{T_2} + \frac{\eta_x^2 L_{\Phi}}{2} , \quad (19)$$

where (a) holds due to $\|\frac{p_t^{(k)}}{\|p_t^{(k)}\|}\|=1$.

For T_1 , we bound it as follows:

$$T_1 \le \eta_x \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \bar{p}_t\|\| \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} \|] \le \eta_x \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \bar{p}_t\|]. \tag{20}$$

For T_2 , we bound it as follows:

$$T_2 = -\eta_x \mathbb{E}[\langle \bar{p}_t, \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} - \frac{\bar{p}_t}{\|\bar{p}_t\|} \rangle] - \eta_x \mathbb{E}[\langle \bar{p}_t, \frac{\bar{p}_t}{\|\bar{p}_t\|} \rangle]$$

$$\begin{aligned} & 1080 \\ & 1081 \\ & 1082 \\ & 1082 \\ & 1083 \\ & 1084 \\ & 1085 \\ & 1086 \\ & 1087 \\ & 1088 \\ & 1088 \\ & 1089 \\ & 1090 \\ & 1091 \\ & 1091 \\ & 1092 \\ & 1094 \end{aligned} \end{aligned} \qquad \begin{aligned} & \leq \eta_x \mathbb{E}[\|\bar{p}_t\|\| \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|} - \frac{\bar{p}_t}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|\bar{p}_t\|} \|] - \eta_x \mathbb{E}[\|\bar{p}_t\|] \\ & - \frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|\bar{p}_t\|} \|] - \eta_x \mathbb{E}[\|\bar{p}_t\|] \\ & \leq \eta_x \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\|\bar{p}_t\|\|p_t^{(k)}\|\| \frac{1}{\|p_t^{(k)}\|} - \frac{1}{\|\bar{p}_t\|} \|] - \eta_x \mathbb{E}[\|\bar{p}_t\|] \\ & = \eta_x \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\|\bar{p}_t - p_t^{(k)}\|] - \eta_x \mathbb{E}[\|\bar{p}_t\|] \\ & = \eta_x \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\|\bar{p}_t - p_t^{(k)}\|] - \eta_x \mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|] + \eta_x \mathbb{E}[\|\nabla\Phi(\bar{x}_t) - \bar{p}_t\|] , \end{aligned} \end{aligned}$$

where (a) holds due to the following inequality:

$$\mathbb{E}[\|\nabla\Phi(\bar{x}_t)\|] \le \mathbb{E}[\|\nabla\Phi(\bar{x}_t) - \bar{p}_t\|] + \mathbb{E}[\|\bar{p}_t\|]. \tag{22}$$

Therefore, we obtain

$$\mathbb{E}[\Phi(\bar{x}_{t+1})] \leq \mathbb{E}[\Phi(\bar{x}_t)] - \eta_x \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] + \eta_x \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\|\bar{p}_t - p_t^{(k)}\|] + \frac{\eta_x^2 L_{\Phi}}{2} + 2\eta_x \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \bar{p}_t\|]. \tag{23}$$

For $\mathbb{E}[\|\nabla\Phi(\bar{x}_t) - \bar{p}_t\|]$, we bound it as follows:

$$\begin{split} & \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \bar{p}_{t}\|] \\ & \leq \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \nabla\Phi_{\delta}(\bar{x}_{t})\|] + \mathbb{E}[\|\nabla\Phi_{\delta}(\bar{x}_{t}) - \nabla_{x}\Phi_{\delta}(\bar{x}_{t}, \bar{y}_{t}, \bar{z}_{t})\|] \\ & + \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \nabla\Phi_{\delta}(\bar{x}_{t})\|] + \mathbb{E}[\|\nabla\Phi_{\delta}(\bar{x}_{t}) - \nabla_{x}\Phi_{\delta}(\bar{x}_{t}, \bar{y}_{t}, \bar{z}_{t})\|] \\ & + \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \nabla\Phi_{\delta}(\bar{x}_{t})\|] + (L_{f} + \frac{L_{g}}{\delta})\mathbb{E}[\|y_{\delta}^{*}(\bar{x}_{t}) - \bar{y}_{t}\|] + \frac{L_{g}}{\delta}\mathbb{E}[\|y^{*}(\bar{x}_{t}) - \bar{z}_{t}\|] \\ & + \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \nabla\Phi_{\delta}(\bar{x}_{t})\|] + (L_{f} + \frac{L_{g}}{\delta})\mathbb{E}[\|\nabla_{2}h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \frac{1}{\mu}\frac{L_{g}}{\delta}\mathbb{E}[\|\nabla_{2}g(\bar{x}_{t}, \bar{z}_{t})\|] \\ & + \mathbb{E}[\|\nabla\Phi(\bar{x}_{t}) - \nabla\Phi_{\delta}(\bar{x}_{t})\|] + \frac{1}{\mu}(L_{f} + \frac{L_{g}}{\delta})\mathbb{E}[\|\nabla_{2}h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \frac{1}{\mu}\frac{L_{g}}{\delta}\mathbb{E}[\|\nabla_{2}g(\bar{x}_{t}, \bar{z}_{t}) - \bar{u}_{3,t}\|] \\ & + \mathbb{E}[\|\nabla_{1}f(\bar{x}_{t}, \bar{y}_{t}) - \bar{u}_{1,t}\|] + \frac{1}{\delta}\mathbb{E}[\|\nabla_{1}g(\bar{x}_{t}, \bar{y}_{t}) - \bar{u}_{2,t}\|] + \frac{1}{\delta}\mathbb{E}[\|\nabla_{1}g(\bar{x}_{t}, \bar{z}_{t}) - \bar{u}_{3,t}\|] \\ & + \mathbb{E}[\|\nabla_{1}f(\bar{x}_{t}, \bar{y}_{t}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] + \mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{1,t}^{(k)}\|] \\ & + \mathbb{E}[\|\nabla_{1}g(\bar{x}_{t}, \bar{y}_{t}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] + \frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{1,t}^{(k)}\|] \\ & + \frac{1}{\delta}\mathbb{E}[\|\nabla_{1}g(\bar{x}_{t}, \bar{z}_{t}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)})\|] + \frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}u_{3,t}^{(k)}\|] \\ & + \mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}U_{1,t}^{(k)}\|] \\ & + \mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}$$

$$\frac{1134}{1135} + \frac{1}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} u_{2,t}^{(k)}\|] \\
+ \frac{1}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} u_{3,t}^{(k)}\|] + (L_{f} + \frac{2L_{g}}{\delta}) \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] \\
+ (L_{f} + \frac{L_{g}}{\delta}) \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|y_{t}^{(k)} - \bar{y}_{t}\|] + \frac{L_{g}}{\delta} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|], \tag{24}$$

where (a) holds due to Assumption 3.1, (b) holds due to Lemma C.3, and (c) holds due to Assumption 3.1.

By combining the above two inequalities, we complete the proof.

Lemma C.7. Given Assumption 3.1 and $\eta_x \leq \frac{\mu}{2L_a} \eta_z$, we obtain

 $\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_{2}g(\bar{x}_{t}, \bar{z}_{t})\|] \leq \frac{2(\frac{1}{\delta}\mathbb{E}[g(\bar{x}_{0}, \bar{z}_{0}) - g^{*}(\bar{x}_{0})] - \frac{1}{\delta}\mathbb{E}[g(\bar{x}_{T}, \bar{z}_{T}) - g^{*}(\bar{x}_{T})])}{\eta_{z}T} \\
+ 4\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2}g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} w_{1,t}^{(k)}\|] \\
+ 4\frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] + 4\frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|] \\
+ 2\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|] + \frac{1}{\delta} 2\eta_{x} L_{g} + \frac{1}{\delta} \eta_{z} L_{g} + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{g}}{\eta_{z}} + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{g^{*}}}{\eta_{z}}. \tag{25}$

Proof. Due to the smoothness of q, we obtain

$$\frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] + \frac{1}{\delta} \mathbb{E}[\langle \nabla_{2} g(\bar{x}_{t+1}, \bar{z}_{t}), \bar{z}_{t+1} - \bar{z}_{t} \rangle] + \frac{1}{\delta} \frac{L_{g}}{2} \mathbb{E}[\|\bar{z}_{t+1} - \bar{z}_{t}\|^{2}]$$

$$= \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] - \eta_{z} \mathbb{E}[\langle \frac{1}{\delta} \nabla_{2} g(\bar{x}_{t+1}, \bar{z}_{t}), \frac{1}{K} \sum_{k=1}^{K} \frac{r_{t}^{(k)}}{\|r_{t}^{(k)}\|} \rangle] + \frac{1}{\delta} \frac{\eta_{z}^{2} L_{g}}{2} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \frac{r_{t}^{(k)}}{\|r_{t}^{(k)}\|}\|^{2}]$$

$$\stackrel{(a)}{=} \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] + \frac{1}{\delta} \frac{\eta_{z}^{2} L_{g}}{2}$$

$$-\eta_{z} \mathbb{E}[\langle \frac{1}{\delta} \nabla_{2} g(\bar{x}_{t+1}, \bar{z}_{t}) - \bar{r}_{t}, \frac{1}{K} \sum_{k=1}^{K} \frac{r_{t}^{(k)}}{\|r_{t}^{(k)}\|} \rangle] - \eta_{z} \mathbb{E}[\langle \bar{r}_{t}, \frac{1}{K} \sum_{k=1}^{K} \frac{r_{t}^{(k)}}{\|r_{t}^{(k)}\|} \rangle], \tag{26}$$

where (a) holds due to $\|\frac{r_t^{(k)}}{\|r_{\perp}^{(k)}\|}\|=1$.

Similar to the proof of Lemma C.6, for T_1 , we obtain

$$\begin{split} T_{1} &\leq \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t+1}, \bar{z}_{t}) - \bar{r}_{t}\|] \\ &\leq \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t+1}, \bar{z}_{t}) - \frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t}) - \bar{r}_{t}\|] \\ &\leq \eta_{z} \frac{L_{g}}{\delta} \mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|] + \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t}) - \bar{r}_{t}\|] \\ &= \eta_{x} \eta_{z} \frac{L_{g}}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|}\|] + \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t}) - \bar{r}_{t}\|] \end{split}$$

1188
$$= \eta_x \eta_z \frac{L_g}{\delta} + \eta_z \mathbb{E}[\|\frac{1}{\delta} \nabla_2 g(\bar{x}_t, \bar{z}_t) - \bar{r}_t\|]. \tag{27}$$

In addition, similar to the proof of Lemma C.6, for T_2 , we obtain

$$T_{2} \leq \eta_{z} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|] - \eta_{z} \mathbb{E}[\|\bar{r}_{t}\|]$$

$$\leq \eta_{z} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|] - \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t}) - \bar{r}_{t}\|]. \tag{28}$$

Then, we obtain

$$\frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] - \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|] + 2\eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t}) - \bar{r}_{t}\|] + \eta_{x} \eta_{z} \frac{L_{g}}{\delta} + \frac{1}{\delta} \frac{\eta_{z}^{2} L_{g}}{2}.$$
(29)

For $\mathbb{E}[\|\frac{1}{\delta}\nabla_2 g(\bar{x}_t, \bar{z}_t) - \bar{r}_t\|]$, we bound it as follows:

$$\mathbb{E}[\|\frac{1}{\delta}\nabla_{2}g(\bar{x}_{t},\bar{z}_{t}) - \bar{r}_{t}\|] \\
\leq \mathbb{E}[\|\frac{1}{\delta}\nabla_{2}g(\bar{x}_{t},\bar{z}_{t}) - \frac{1}{\delta}\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},z_{t}^{(k)})\|] \\
+ \mathbb{E}[\|\frac{1}{\delta}\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},z_{t}^{(k)}) - \frac{1}{\delta}\frac{1}{K}\sum_{k=1}^{K}w_{1,t}^{(k)}\|] \\
\leq \frac{L_{g}}{\delta}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] + \frac{L_{g}}{\delta}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|] \\
+ \frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},z_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}w_{1,t}^{(k)}\|], \tag{30}$$

where (a) holds due to Assumption 3.1.

By combining the above two inequalities, we obtain

$$\frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] - \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|]
+ 2\eta_{z} \frac{L_{g}}{\delta} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] + 2\eta_{z} \frac{L_{g}}{\delta} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|]
+ 2\eta_{z} \frac{1}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2} g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} w_{1,t}^{(k)}\|] + \eta_{x} \eta_{z} \frac{L_{g}}{\delta} + \frac{1}{\delta} \frac{\eta_{z}^{2} L_{g}}{2} .$$
(31)

Moreover, due to the smoothness of g, we obtain

$$\frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] \leq \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] + \frac{1}{\delta} \mathbb{E}[\langle \nabla_{1}g(\bar{x}_{t}, \bar{z}_{t}), \bar{x}_{t+1} - \bar{x}_{t} \rangle] + \frac{1}{\delta} \frac{L_{g}}{2} \mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}]$$

$$= \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] + \frac{1}{\delta} \mathbb{E}[\langle \nabla_{1}g(\bar{x}_{t}, \bar{z}_{t}) - \nabla_{x}g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle]$$

$$+ \frac{1}{\delta} \mathbb{E}[\langle \nabla_{x}g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle] + \frac{1}{\delta} \frac{\eta_{x}^{2}L_{g}}{2} \mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}]$$

$$= \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] - \eta_{x} \mathbb{E}[\langle \frac{1}{\delta}(\nabla_{1}g(\bar{x}_{t}, \bar{z}_{t}) - \nabla_{x}g(\bar{x}_{t}, y^{*}(\bar{x}_{t}))), \frac{1}{K} \sum_{t=1}^{K} \frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|} \rangle]$$

$$\begin{aligned} & + \frac{1}{\delta} \mathbb{E}[\langle \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^K \frac{p_t^{(k)}}{\|p_t^{(k)}\|}\|^2] \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{1}{\delta} \mathbb{E}[\|\nabla_1 g(\bar{x}_t, \bar{x}_t) - \nabla_1 g(\bar{x}_t, y^*(\bar{x}_t))\|] \\ & + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{L_g}{\delta} \mathbb{E}[\|\bar{x}_t - y^*(\bar{x}_t)\|] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{L_g}{\mu \delta} \mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{x}_t)\|] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{L_g}{\mu \delta} \mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{x}_t)\|] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{L_g}{\mu \delta} \mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{x}_t)\|] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \eta_x \frac{L_g}{\mu \delta} \mathbb{E}[\|\nabla_2 g(\bar{x}_t, \bar{x}_t)\|] + \frac{1}{\delta} \mathbb{E}[\zeta \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle] + \frac{1}{\delta} \frac{\eta_x^2 L_g}{2} \\ & + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_t, \bar{x}_t)] + \frac{$$

where (a) holds due to $\nabla_x g(\bar{x}_t,y^*(\bar{x}_t)) = \nabla_1 g(\bar{x}_t,y^*(\bar{x}_t)) + \nabla y^*(\bar{x}_t)\nabla_2 g(\bar{x}_t,y^*(\bar{x}_t)) = \nabla_1 g(\bar{x}_t,y^*(\bar{x}_t))$ and $\|\frac{p_t^{(k)}}{\|p_t^{(k)}\|}\| = 1$, (b) holds due to Assumption 3.1, and (c) holds due to Lemma C.3.

Furthermore, due to the smoothness of $g^*(x)$ as shown in Lemma C.4, we obtain

$$\frac{1}{\delta}g^{*}(\bar{x}_{t+1}) \geq \frac{1}{\delta}g^{*}(\bar{x}_{t}) + \frac{1}{\delta}\langle\nabla g^{*}(\bar{x}_{t}), \bar{x}_{t+1} - \bar{x}_{t}\rangle - \frac{1}{\delta}\frac{L_{g^{*}}}{2}\|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}$$

$$= \frac{1}{\delta}g^{*}(\bar{x}_{t}) + \frac{1}{\delta}\langle\nabla_{x}g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t}\rangle - \frac{1}{\delta}\frac{\eta_{x}^{2}L_{g^{*}}}{2}\|\frac{1}{K}\sum_{k=1}^{K}\frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|}\|^{2}$$

$$= \frac{1}{\delta}g^{*}(\bar{x}_{t}) + \frac{1}{\delta}\langle\nabla_{x}g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t}\rangle - \frac{1}{\delta}\frac{\eta_{x}^{2}L_{g^{*}}}{2}.$$
(33)

Then, we obtain

$$\frac{1}{\delta}g^*(\bar{x}_t) - \frac{1}{\delta}g^*(\bar{x}_{t+1}) \le -\frac{1}{\delta}\langle \nabla_x g(\bar{x}_t, y^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle + \frac{1}{\delta} \frac{\eta_x^2 L_{g^*}}{2}.$$
 (34)

Finally, we obtain

$$\frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t+1})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t+1})]$$

$$= \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t+1})] - \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] + \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t+1}, \bar{z}_{t})] - \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})]$$

$$+ \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t})] + \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t+1})]$$

$$+ \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t})] + \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t+1})]$$

$$+ \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] - \frac{1}{\delta} \mathbb{E}[g^*(\bar{x}_{t})] - \eta_{z} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|]$$

$$+ 2\eta_{z} \frac{L_{g}}{\delta} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] + 2\eta_{z} \frac{L_{g}}{\delta} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|]$$

$$+ 2\eta_{z} \frac{1}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2} g^{(k)} (x_{t}^{(k)}, z_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} w_{1,t}^{(k)}\|] + \eta_{x} \eta_{z} \frac{L_{g}}{\delta} + \frac{1}{\delta} \frac{\eta_{z}^{2} L_{g}}{2}$$

$$+ \eta_{x} \frac{L_{g}}{\mu \delta} \mathbb{E}[\|\nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \frac{1}{\delta} \mathbb{E}[\langle \nabla_{x} g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle] + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{g}}{2}$$

$$- \frac{1}{\delta} \mathbb{E}[\langle \nabla_{x} g(\bar{x}_{t}, y^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle] + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{g}^{*}}{2}$$

$$= \frac{1}{\delta} \mathbb{E}[g(\bar{x}_{t}, \bar{z}_{t})] - \frac{1}{\delta} \mathbb{E}[g^{*}(\bar{x}_{t})] + \left(\eta_{x} \frac{L_{g}}{\mu} - \eta_{z}\right) \frac{1}{\delta} \mathbb{E}[\|\nabla_{2} g(\bar{x}_{t}, \bar{z}_{t})\|] + \eta_{z} \frac{1}{K} \sum_{t=1}^{K} \mathbb{E}[\|\bar{r}_{t} - r_{t}^{(k)}\|]$$

$$+2\eta_{z}\frac{L_{g}}{\delta}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|x_{t}^{(k)}-\bar{x}_{t}\|]+2\eta_{z}\frac{L_{g}}{\delta}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|z_{t}^{(k)}-\bar{z}_{t}\|]+\frac{1}{\delta}\eta_{x}\eta_{z}L_{g}+\frac{1}{\delta}\frac{\eta_{z}^{2}L_{g}}{2}$$

$$+2\eta_{z}\frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},z_{t}^{(k)})-\frac{1}{K}\sum_{k=1}^{K}w_{1,t}^{(k)}\|]+\frac{1}{\delta}\frac{\eta_{z}^{2}L_{g}}{2}+\frac{1}{\delta}\frac{\eta_{x}^{2}L_{g^{*}}}{2}.$$
(35)

By setting $\eta_x \leq \frac{\mu}{2L_a} \eta_z$, we complete the proof.

Lemma C.8. Given Assumption 3.1 and $\eta_x \leq \eta_y \frac{\mu}{2L_{h_s}}$, where $L_{h_\delta} = \delta L_f + L_g$, we obtain that

$$\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla_{2}h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] \leq \frac{2(\frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{0}, \bar{y}_{0}) - h_{\delta}^{*}(\bar{x}_{0})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{T}, \bar{y}_{T}) - h_{\delta}^{*}(\bar{x}_{T})])}{\eta_{y}T} + 4\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} v_{1,t}^{(k)}\|] + 4\frac{1}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} v_{2,t}^{(k)}\|] + 4\left(L_{f} + \frac{L_{g}}{\delta}\right) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{y}_{t} - y_{t}^{(k)}\|] + 4\left(L_{f} + \frac{L_{g}}{\delta}\right) \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] + \frac{1}{\delta} 2\eta_{x} L_{h_{\delta}} + \frac{1}{\delta} \eta_{y} L_{h_{\delta}} + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{h_{\delta}}}{\eta_{y}} + \frac{1}{\delta} \frac{\eta_{x}^{2} L_{h_{\delta}}}{\eta_{y}}. \tag{36}$$

Proof. Given Assumptions 3.1, it is easy to know that $h_{\delta}(x,y) = \delta f(x,y) + g(x,y)$ is $L_{h_{\delta}}$ -smooth with $L_{h_{\delta}} = \delta L_f + L_g$.

Then, based on its smoothness, we obtain

$$\frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t})] + \frac{1}{\delta} \mathbb{E}[\langle \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}), \bar{y}_{t+1} - \bar{y}_{t} \rangle] + \frac{1}{\delta} \frac{L_{h_{\delta}}}{2} \mathbb{E}[\|\bar{y}_{t+1} - \bar{y}_{t}\|^{2}] \\
= \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t})] - \eta_{y} \mathbb{E}[\langle \frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}), \frac{1}{K} \sum_{k=1}^{K} \frac{q_{t}^{(k)}}{\|q_{t}^{(k)}\|} \rangle] + \frac{1}{\delta} \frac{\eta_{y}^{2} L_{h_{\delta}}}{2} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \frac{q_{t}^{(k)}}{\|q_{t}^{(k)}\|}\|^{2}] \\
\stackrel{(a)}{=} \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t})] + \frac{1}{\delta} \frac{\eta_{y}^{2} L_{h_{\delta}}}{2} \\
- \eta_{y} \mathbb{E}[\langle \frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}) - \bar{q}_{t}, \frac{1}{K} \sum_{k=1}^{K} \frac{q_{t}^{(k)}}{\|q_{t}^{(k)}\|} \rangle] - \eta_{y} \mathbb{E}[\langle \bar{q}_{t}, \frac{1}{K} \sum_{k=1}^{K} \frac{q_{t}^{(k)}}{\|q_{t}^{(k)}\|} \rangle], \tag{37}$$

where (a) holds due to $\|\frac{q_t^{(k)}}{\|q_t^{(k)}\|}\|=1.$

For T_1 , we bound it as follows:

$$T_{1} \leq \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}) - \bar{q}_{t}\|\|\frac{1}{K} \sum_{k=1}^{K} \frac{q_{t}^{(k)}}{\|q_{t}^{(k)}\|}\|]$$

$$\leq \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}) - \bar{q}_{t}\|]$$

$$\leq \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t}) - \frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{q}_{t}\|]$$

$$\stackrel{(a)}{\leq} \eta_{y} L_{h_{\delta}} \frac{1}{\delta} \mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|] + \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{q}_{t}\|]$$

1350
$$\stackrel{(b)}{=} \frac{1}{\delta} \eta_x \eta_y L_{h_{\delta}} + \eta_y \mathbb{E}[\|\frac{1}{\delta} \nabla_2 h_{\delta}(\bar{x}_t, \bar{y}_t) - \bar{q}_t\|],$$
 (38)

where (a) holds due to Assumption 3.1, and (b) holds due to $\|\frac{p_t^{(k)}}{\|p_t^{(k)}\|}\|=1$.

Similar to the proof of Lemma C.6, for T_2 , we bound it as follows:

$$T_{2} \leq \eta_{y} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] - \eta_{y} \mathbb{E}[\|\bar{q}_{t}\|]$$

$$\leq \eta_{y} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] - \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{q}_{t}\|]. \tag{39}$$

Then, we obtain

$$\frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t})] - \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \frac{1}{\delta} \frac{\eta_{y}^{2} L_{h_{\delta}}}{2} + \frac{1}{\delta} \eta_{x} \eta_{y} L_{h_{\delta}} + \eta_{y} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] + 2\eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{q}_{t}\|].$$
(40)

For $\mathbb{E}[\|\frac{1}{\delta}\nabla_2 h_\delta(\bar{x}_t, \bar{y}_t) - \bar{q}_t\|]$, we bound it as follows:

$$\mathbb{E}\left[\left\|\frac{1}{\delta}\nabla_{2}h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{q}_{t}\right\|\right] \\
= \mathbb{E}\left[\left\|\frac{1}{\delta}\nabla_{2}h_{\delta}(\bar{x}_{t}, \bar{y}_{t}) - \bar{v}_{t}\right\|\right] \\
\leq \mathbb{E}\left[\left\|\nabla_{2}f(\bar{x}_{t}, \bar{y}_{t}) - \bar{v}_{1,t}\right\|\right] + \mathbb{E}\left[\left\|\frac{1}{\delta}\nabla_{2}g(\bar{x}_{t}, \bar{y}_{t}) - \frac{1}{\delta}\bar{v}_{2,t}\right\|\right] \\
\leq \mathbb{E}\left[\left\|\nabla_{2}f(\bar{x}_{t}, \bar{y}_{t}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{2}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\right\|\right] + \mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{1,t}^{(k)}\right\|\right] \\
+ \frac{1}{\delta}\mathbb{E}\left[\left\|\nabla_{2}g(\bar{x}_{t}, \bar{y}_{t}) - \frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\right\|\right] + \frac{1}{\delta}\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{2,t}^{(k)}\right\|\right] \\
\stackrel{(a)}{\leq} \left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}\left[\left\|\bar{x}_{t} - x_{t}^{(k)}\right\|\right] + \left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}\left[\left\|\bar{y}_{t} - y_{t}^{(k)}\right\|\right] \\
+ \mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{1,t}^{(k)}\right\|\right] \\
+ \frac{1}{\delta}\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{2,t}^{(k)}\right\|\right], \tag{41}$$

where (a) holds due to Assumption 3.1.

By combining the above two inequalities, we obtain

$$\frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t+1})] \leq \frac{1}{\delta} \mathbb{E}[h_{\delta}(\bar{x}_{t+1}, \bar{y}_{t})] - \eta_{y} \mathbb{E}[\|\frac{1}{\delta} \nabla_{2} h_{\delta}(\bar{x}_{t}, \bar{y}_{t})\|] + \frac{1}{\delta} \frac{\eta_{y}^{2} L_{h_{\delta}}}{2} + \frac{1}{\delta} \eta_{x} \eta_{y} L_{h_{\delta}} \\
+ \eta_{y} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] \\
+ 2\eta_{y} \left(L_{f} + \frac{L_{g}}{\delta}\right) \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{x}_{t} - x_{t}^{(k)}\|] + 2\eta_{y} \left(L_{f} + \frac{L_{g}}{\delta}\right) \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\bar{y}_{t} - y_{t}^{(k)}\|] \\
+ 2\eta_{y} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} \nabla_{2} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}) - \frac{1}{K} \sum_{k=1}^{K} v_{1,t}^{(k)}\|]$$

$$+ 2\eta_y \frac{1}{\delta} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K} \sum_{k=1}^K v_{2,t}^{(k)}\|].$$
 (43)

In addition, due to the smoothness of $h_{\delta}(x,y)$, we further obtain

In addition, due to the smoothness of
$$h_{\delta}(x,y)$$
, we further obtain

$$\frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t+1},\bar{y}_{t})] \leq \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \frac{1}{\delta}\mathbb{E}[\langle\nabla_{1}h_{\delta}(\bar{x}_{t},\bar{y}_{t}),\bar{x}_{t+1} - \bar{x}_{t}\rangle] + \frac{1}{\delta}\frac{L_{h_{\delta}}}{2}\mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \frac{1}{\delta}\frac{L_{h_{\delta}}}{2}\mathbb{E}[\|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}]$$

$$+ \mathbb{E}[\langle\frac{1}{\delta}\nabla_{1}h_{\delta}(\bar{x}_{t},\bar{y}_{t}) - \frac{1}{\delta}\nabla h_{\delta}^{*}(\bar{x}_{t}),\bar{x}_{t+1} - \bar{x}_{t}\rangle] + \mathbb{E}[\langle\frac{1}{\delta}\nabla h_{\delta}^{*}(\bar{x}_{t}),\bar{x}_{t+1} - \bar{x}_{t}\rangle]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|}\|^{2}] + \mathbb{E}[\langle\frac{1}{\delta}\nabla_{x}h_{\delta}(\bar{x}_{t},y_{\delta}^{*}(\bar{x}_{t})),\bar{x}_{t+1} - \bar{x}_{t}\rangle]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|}\|^{2}] + \mathbb{E}[\langle\frac{1}{\delta}\nabla_{x}h_{\delta}(\bar{x}_{t},y_{\delta}^{*}(\bar{x}_{t})),\bar{x}_{t+1} - \bar{x}_{t}\rangle]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2}\mathbb{E}[\|\nabla_{1}h_{\delta}(\bar{x}_{t},\bar{y}_{t}) - \nabla_{1}h_{\delta}(\bar{x}_{t},y_{\delta}^{*}(\bar{x}_{t}))]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \eta_{x}\frac{1}{\delta}\mathbb{E}[\|\nabla_{1}h_{\delta}(\bar{x}_{t},\bar{y}_{t}) - \nabla_{1}h_{\delta}(\bar{x}_{t},y_{\delta}^{*}(\bar{x}_{t}))]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \eta_{x}\frac{1}{\delta}\mathbb{E}[\|\nabla_{1}h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \mathbb{E}[\langle\frac{1}{\delta}\nabla_{x}h_{\delta}(\bar{x}_{t},y_{\delta}^{*}(\bar{x}_{t})),\bar{x}_{t+1} - \bar{x}_{t}\rangle]$$

$$= \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] + \eta_{x}\frac{1}{\delta}\mathbb{E}[h_{\delta}($$

where (a) holds due to $\|\frac{p_t^{(k)}}{\|p_s^{(k)}\|}\|=1$ and $\nabla h_\delta^*(\bar{x}_t)=\nabla_x h_\delta(\bar{x}_t,y_\delta^*(\bar{x}_t))=\nabla_1 h_\delta(\bar{x}_t,y_\delta^*(\bar{x}_t))+$ $\nabla y_{\delta}^*(\bar{x}_t) \nabla_2 h_{\delta}(\bar{x}_t, y_{\delta}^*(\bar{x}_t)) = \nabla_1 h_{\delta}(\bar{x}_t, y_{\delta}^*(\bar{x}_t)), (b) \text{ holds due to Assumption 3.1, and } (c) \text{ holds}$ due to Lemma C.3.

Furthermore, due to the smoothness of $h_{\delta}^*(x_t)$ as shown in Lemma C.4, we obtain

$$\frac{1}{\delta} h_{\delta}^{*}(\bar{x}_{t+1}) \geq \frac{1}{\delta} h_{\delta}^{*}(\bar{x}_{t}) + \frac{1}{\delta} \langle \nabla h_{\delta}^{*}(\bar{x}_{t}), \bar{x}_{t+1} - \bar{x}_{t} \rangle - \frac{1}{\delta} \frac{L_{h_{\delta}^{*}}}{2} \|\bar{x}_{t+1} - \bar{x}_{t}\|^{2}$$

$$= \frac{1}{\delta} h_{\delta}^{*}(\bar{x}_{t}) + \frac{1}{\delta} \langle \nabla_{x} h_{\delta}(\bar{x}_{t}, y_{\delta}^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle - \frac{1}{\delta} \frac{\eta_{x}^{2} L_{h_{\delta}^{*}}}{2} \|\frac{1}{K} \sum_{k=1}^{K} \frac{p_{t}^{(k)}}{\|p_{t}^{(k)}\|} \|^{2}$$

$$= \frac{1}{\delta} h_{\delta}^{*}(\bar{x}_{t}) + \frac{1}{\delta} \langle \nabla_{x} h_{\delta}(\bar{x}_{t}, y_{\delta}^{*}(\bar{x}_{t})), \bar{x}_{t+1} - \bar{x}_{t} \rangle - \frac{1}{\delta} \frac{\eta_{x}^{2} L_{h_{\delta}^{*}}}{2} . \tag{45}$$

Then, we obtain

$$\frac{1}{\delta} h_{\delta}^*(\bar{x}_t) - \frac{1}{\delta} h_{\delta}^*(\bar{x}_{t+1}) \le -\frac{1}{\delta} \langle \nabla_x h_{\delta}(\bar{x}_t, y_{\delta}^*(\bar{x}_t)), \bar{x}_{t+1} - \bar{x}_t \rangle + \frac{1}{\delta} \frac{\eta_x^2 L_{h_{\delta}^*}}{2} . \tag{46}$$

Finally, we obtain

$$\begin{array}{ll} \textbf{1451} & \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t+1},\bar{y}_{t+1})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t+1})] \\ \textbf{1453} & = \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t+1},\bar{y}_{t+1})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t+1},\bar{y}_{t})] + \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t+1},\bar{y}_{t})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] \\ \textbf{1455} & + \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t})] + \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t+1})] \\ \textbf{1457} & \leq \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t})] \\ \end{array}$$

$$\begin{aligned} & -\eta_{y}\mathbb{E}[\|\frac{1}{\delta}\nabla_{2}h_{\delta}(\bar{x}_{t},\bar{y}_{t})\|] + \frac{1}{\delta}\frac{\eta_{y}^{2}L_{h_{\delta}}}{2} + \frac{1}{\delta}\eta_{x}\eta_{y}L_{h_{\delta}} + \eta_{y}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] \\ & + 2\eta_{y}\left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{x}_{t} - x_{t}^{(k)}\|] + 2\eta_{y}\left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{y}_{t} - y_{t}^{(k)}\|] \\ & + 2\eta_{y}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}f^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{1,t}^{(k)}\|] \\ & + 2\eta_{y}\frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{2,t}^{(k)}\|] \\ & + 2\eta_{y}\frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{2,t}^{(k)}\|] \\ & + \eta_{x}\frac{1}{\delta}\frac{L_{h_{\delta}}}{\mu}\mathbb{E}[\|\nabla_{2}h_{\delta}(\bar{x}_{t},\bar{y}_{t})\|] + \mathbb{E}[\langle\frac{1}{\delta}\nabla_{x}h_{\delta}(\bar{x}_{t},y_{s}^{*}(\bar{x}_{t})),\bar{x}_{t+1} - \bar{x}_{t}\rangle] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2} \\ & - \frac{1}{\delta}\mathbb{E}[\langle\nabla_{x}h_{\delta}(\bar{x}_{t},y_{s}^{*}(\bar{x}_{t})),\bar{x}_{t+1} - \bar{x}_{t}\rangle] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2} \\ & = \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_{t},\bar{y}_{t})] - \frac{1}{\delta}\mathbb{E}[h_{\delta}^{*}(\bar{x}_{t})] + \left(\eta_{x}\frac{L_{h_{\delta}}}{\mu} - \eta_{y}\right)\frac{1}{\delta}\mathbb{E}[\|\nabla_{2}h_{\delta}(\bar{x}_{t},\bar{y}_{t})\|] + \eta_{y}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{q}_{t} - q_{t}^{(k)}\|] \\ & + 2\eta_{y}\left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{x}_{t} - x_{t}^{(k)}\|] + 2\eta_{y}\left(L_{f} + \frac{L_{g}}{\delta}\right)\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|\bar{y}_{t} - y_{t}^{(k)}\|] \\ & + 2\eta_{y}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}f^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{1,t}^{(k)}\|] + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2} + \frac{1}{\delta}\frac{\eta_{x}^{2}L_{h_{\delta}}}{2} \\ & + 2\eta_{y}\frac{1}{\delta}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}\nabla_{2}g^{(k)}(x_{t}^{(k)},y_{t}^{(k)}) - \frac{1}{K}\sum_{k=1}^{K}v_{1,t}^{(k)}\|] + \frac{1}{\delta}\frac{\eta_{y}^{2}L_{h_{\delta}}}{2} + \frac{1}{\delta}\eta_{x}\eta_{y}L_{h_{\delta}}. \end{aligned} \tag{47}$$

By setting $\eta_x \leq \eta_y \frac{\mu}{2L_{b,c}}$, we complete the proof.

C.3 BOUNDING CONSECUTIVE UPDATES

Lemma C.9. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|x_{t+1}^{(k)} - x_{t}^{(k)}\|] \leq \frac{4\eta_{x}}{1 - \lambda} K; \quad \sum_{k=1}^{K} \mathbb{E}[\|y_{t+1}^{(k)} - y_{t}^{(k)}\|] \leq \frac{4\eta_{y}}{1 - \lambda} K;$$

$$\sum_{k=1}^{K} \mathbb{E}[\|z_{t+1}^{(k)} - z_{t}^{(k)}\|] \leq \frac{4\eta_{z}}{1 - \lambda} K. \tag{48}$$

Proof.

$$\mathbb{E}[\|X_{t+1} - X_t\|_F^2] = \mathbb{E}[\|(X_t - \eta_x \hat{P}_t)E - X_t\|_F^2]$$

$$\leq 2\mathbb{E}[\|X_t E - X_t\|_F^2] + 2\eta_x^2 \mathbb{E}[\|\hat{P}_t E\|_F^2]$$

$$= 2\mathbb{E}[\|(X_t - \bar{X}_t)(E - I)\|_F^2] + 2\eta_x^2 \mathbb{E}[\|\hat{P}_t E\|_F^2]$$

$$\leq 2\mathbb{E}[\|X_t - \bar{X}_t\|_F^2 \|E - I\|_2^2] + 2\eta_x^2 \mathbb{E}[\|\hat{P}_t\|_F^2 \|E\|_2^2]$$

$$\stackrel{(a)}{\leq} 8\mathbb{E}[\|X_t - \bar{X}_t\|_F^2] + 2\eta_x^2 \mathbb{E}[\|\hat{P}_t\|_F^2]$$

$$\leq 8\mathbb{E}[\|X_t - \bar{X}_t\|_F^2] + 2\eta_x^2 \sum_{k=1}^K \mathbb{E}[\|\frac{p_t^{(k)}}{\|p_t^{(k)}\|}\|^2]$$

$$\leq 8\mathbb{E}[\|X_t - \bar{X}_t\|_F^2] + 2\eta_x^2 K$$

1512
$$\leq \frac{8\eta_x^2\lambda^2}{(1-\lambda)^2}K + 2\eta_x^2K \leq \frac{10\eta_x^2}{(1-\lambda)^2}K , \tag{49}$$

where (a) holds due to $||E - I||_2 \le 2$ and $||E||_2 \le 1$, (b) holds due to Lemma C.28, and (c) holds due to $\lambda < 1$.

Then, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|x_{t+1}^{(k)} - x_{t}^{(k)}\|] = \sqrt{\left(\sum_{k=1}^{K} \mathbb{E}[\|x_{t+1}^{(k)} - x_{t}^{(k)}\|]\right)^{2}}$$

$$\leq \sqrt{K \sum_{k=1}^{K} \mathbb{E}[\|x_{t+1}^{(k)} - x_{t}^{(k)}\|^{2}]} = \sqrt{K} \sqrt{\mathbb{E}[\|X_{t+1} - X_{t}\|_{F}^{2}]} \leq \frac{4\eta_{x}}{1 - \lambda} K.$$
(50)

The other two inequalities can be proved in a same approach.

Lemma C.10. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,t}^{(k)} - u_{1,t-1}^{(k)}\|] \leq \gamma_{x} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}) - \nabla_{1} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \xi_{t}^{(k)})\|]
+ \gamma_{x} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,t-1}^{(k)} - \nabla_{1} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)})\|] + \frac{4\eta_{x} L_{f}}{1 - \lambda} K + \frac{4\eta_{y} L_{f}}{1 - \lambda} K.$$
(51)

Proof.

where (a) holds due to Lemma C.9.

Lemma C.11. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{2,t}^{(k)} - u_{2,t-1}^{(k)}\|] \leq \gamma_x \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}) - \nabla_1 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \zeta_t^{(k)})\|]
+ \gamma_x \sum_{k=1}^{K} \mathbb{E}[\|u_{2,t-1}^{(k)} - \nabla_1 g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)})\|] + \frac{4\eta_x L_g}{1 - \lambda} K + \frac{4\eta_y L_g}{1 - \lambda} K.$$
(53)

Lemma C.12. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{3,t}^{(k)} - u_{3,t-1}^{(k)}\|] \leq \gamma_{x} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1}g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}) - \nabla_{1}g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}; \zeta_{t}^{(k)})\|]
+ \gamma_{x} \sum_{k=1}^{K} \mathbb{E}[\|u_{3,t-1}^{(k)} - \nabla_{1}g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)})\|] + \frac{4\eta_{x}L_{g}}{1 - \lambda}K + \frac{4\eta_{z}L_{g}}{1 - \lambda}K.$$
(54)

Lemma C.13. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{1,t}^{(k)} - v_{1,t-1}^{(k)}\|] \le \gamma_{y} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}) - \nabla_{2} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \xi_{t}^{(k)})\|]
+ \gamma_{y} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,t-1}^{(k)} - \nabla_{1} f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)})\|] + \frac{4\eta_{x} L_{f}}{1 - \lambda} K + \frac{4\eta_{y} L_{f}}{1 - \lambda} K.$$
(55)

Lemma C.14. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{2,t}^{(k)} - v_{2,t-1}^{(k)}\|] \le \gamma_{y} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}) - \nabla_{2}g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \zeta_{t}^{(k)})\|]
+ \gamma_{y} \sum_{k=1}^{K} \mathbb{E}[\|u_{2,t-1}^{(k)} - \nabla_{1}g^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)})\|] + \frac{4\eta_{x}L_{g}}{1-\lambda}K + \frac{4\eta_{y}L_{g}}{1-\lambda}K.$$
(56)

Lemma C.15. Given Assumptions 3.1-3.3, for t > 0, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|w_{1,t}^{(k)} - w_{1,t-1}^{(k)}\|] \le \gamma_z \sum_{k=1}^{K} \mathbb{E}[\|\nabla_2 g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}) - \nabla_2 g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)}; \zeta_t^{(k)})\|]
+ \gamma_z \sum_{k=1}^{K} \mathbb{E}[\|w_{1,t-1}^{(k)} - \nabla_2 g^{(k)}(x_{t-1}^{(k)}, z_{t-1}^{(k)})\|] + \frac{4\eta_x L_g}{1 - \lambda} K + \frac{4\eta_z L_g}{1 - \lambda} K.$$
(57)

Lemmas C.11 - C.15 can be easily proved by following Lemma C.10.

C.4 BOUNDING GRADIENT ERRORS

Lemma C.16. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,t}^{(k)} - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})\|] \le (1 - \gamma_x)^t \frac{2\sqrt{2}\sigma K}{B_0^{1 - 1/s}} + \frac{4(\eta_x + \eta_y)L_f}{(1 - \lambda)\sqrt{\gamma_x}} \sqrt{K} + 2\sqrt{2}\gamma_x^{1 - 1/s}\sigma K.$$
(58)

Proof. When t > 0, based on Algorithm 1, we obtain

$$u_{1:t}^{(k)} - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})$$

$$\begin{aligned} & = (1 - \gamma_x)(u_{1,t-1}^{(k)} - \nabla_1 f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)})) + (1 - \gamma_x) \left(\nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}; \xi_t^{(k)}) \right. \\ & \quad - \nabla_1 f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}; \xi_t^{(k)}) - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}) + \nabla_1 f^{(k)}(x_{t-1}^{(k)}, y_{t-1}^{(k)}) \right) \\ & \quad + \gamma_x (\nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}; \xi_t^{(k)}) - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})) \\ & \quad + \gamma_x (\nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}; \xi_t^{(k)}) - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})) \\ & \quad = (1 - \gamma_x)^t (u_{1,0}^{(k)} - \nabla_1 f^{(k)}(x_0^{(k)}, y_0^{(k)})) + \sum_{j=1}^t (1 - \gamma_x)^{t-j+1} \left(\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) \right. \\ & \quad - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_j^{(k)}) + \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}) \right) \\ & \quad + \sum_{j=1}^t \gamma_x (1 - \gamma_x)^{t-j} (\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) - \nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)})) \\ & \quad + \sum_{j=1}^t \gamma_x (1 - \gamma_x)^{t-j} (\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) - \nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)})) \,. \end{aligned} \tag{59}$$

Then, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,t}^{(k)} - \nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq (1 - \gamma_{x})^{t} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,0}^{(k)} - \nabla_{1}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \\
+ \sum_{k=1}^{K} \mathbb{E}[\|\sum_{j=1}^{t} (1 - \gamma_{x})^{t-j+1} \left(\nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) \\
+ \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right)\|] \\
+ \sum_{k=1}^{K} \mathbb{E}[\|\gamma_{x}\sum_{j=1}^{t} (1 - \gamma_{x})^{t-j}(\nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}))\|] . \tag{60}$$

For the first term on the right-hand side of Eq. (60), we bound it as follows:

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,0}^{(k)} - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \\
= \sum_{k=1}^{K} \mathbb{E}[\|\frac{1}{B_{0}} \sum_{b=1}^{B_{0}} \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0,b}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \\
= \sum_{k=1}^{K} \frac{1}{B_{0}} \mathbb{E}[\|\sum_{b=1}^{B_{0}} (\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0,b}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}))\|] \\
\stackrel{(a)}{\leq} \sum_{k=1}^{K} \frac{2\sqrt{2}}{B_{0}} \mathbb{E}[(\sum_{b=1}^{B_{0}} \|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|^{s})^{\frac{1}{s}}] \\
\stackrel{(b)}{\leq} \sum_{k=1}^{K} \frac{2\sqrt{2}}{B_{0}} (\sum_{b=1}^{B_{0}} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|^{s}])^{\frac{1}{s}} \\
\stackrel{(c)}{\leq} \frac{2\sqrt{2}K}{B_{0}^{1-1/s}} \sigma, \tag{61}$$

where B_0 represents the batch size in the initial iteration, (a) holds due to Lemma C.5, (b) holds due to Hölder's inequality, and (c) holds due to Assumption 3.2.

To bound the second term on the right-hand side of Eq. (60), we first bound the following one:

$$\sum_{k=1}^{K} \mathbb{E}[\|\sum_{j=1}^{t} (1 - \gamma_x)^{t-j+1} \Big(\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_j^{(k)}) \Big)$$

$$\begin{aligned} & + \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}) \Big) \|^2] \\ & = \sum_{k=1}^K \sum_{j=1}^t (1 - \gamma_x)^{2(t-j+1)} \mathbb{E}[\|\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_j^{(k)}) \\ & + \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}) \|^2] \\ & \leq \sum_{k=1}^K \sum_{j=1}^t (1 - \gamma_x)^{2(t-j+1)} \mathbb{E}[\|\nabla_1 f^{(k)}(x_j^{(k)}, y_j^{(k)}; \xi_j^{(k)}) - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_j^{(k)}) \|^2] \\ & \leq \sum_{k=1}^K \sum_{j=1}^t (1 - \gamma_x)^{2(t-j+1)} L_f^2 (\mathbb{E}[\|x_j^{(k)} - x_{j-1}^{(k)}\|^2] + \mathbb{E}[\|y_j^{(k)} - y_{j-1}^{(k)}\|^2]) \\ & \leq \sum_{k=1}^t \sum_{j=1}^t (1 - \gamma_x)^{2(t-j+1)} L_f^2 (\mathbb{E}[\|X_j - X_{j-1}\|_F^2] + \mathbb{E}[\|Y_j - Y_{j-1}\|_F^2]) \\ & \leq \sum_{j=1}^t (1 - \gamma_x)^{2(t-j+1)} L_f^2 \left(\frac{10\eta_x^2}{(1-\lambda)^2} K + \frac{10\eta_y^2}{(1-\lambda)^2} K\right) \\ & \leq \frac{1}{1 - (1 - \gamma_x)^2} L_f^2 \left(\frac{10\eta_x^2}{(1-\lambda)^2} K + \frac{10\eta_y^2}{(1-\lambda)^2} K\right) \\ & \leq \frac{10\eta_x^2}{(1-\lambda)^2} \frac{L_f^2}{\gamma_x} K + \frac{10\eta_y^2}{(1-\lambda)^2} \frac{L_f^2}{\gamma_x} K, \end{aligned} \tag{62}$$

where (a) holds due to Eq. (49), and (b) holds due to $\gamma_x < 1$.

Then, we bound the second term on the right-hand side of Eq. (60) as follows:

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\sum_{j=1}^{t} (1 - \gamma_{x})^{t-j+1} \left(\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) + \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right)\right\|\right] \\
\leq \frac{4\eta_{x} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \sqrt{K} + \frac{4\eta_{y} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \sqrt{K} . \tag{63}$$

For the third term on the right-hand side of Eq. (60), we bound it as follows:

$$\mathbb{E}[\|\sum_{j=1}^{t} \gamma_{x}(1-\gamma_{x})^{t-j}(\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)}))\|]$$

$$\mathbb{E}[\|\sum_{j=1}^{t} \gamma_{x}(1-\gamma_{x})^{t-j}(\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)}))\|]$$

$$\frac{a}{1714}$$

$$\leq 2\sqrt{2}\mathbb{E}\left[\left(\sum_{j=1}^{t} \|\gamma_{x}(1-\gamma_{x})^{t-j}(\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)}))\|^{s}\right)^{1/s} \right]$$

$$= 2\sqrt{2}\mathbb{E}\left[\left(\sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)}\|\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)})\|^{s}\right)^{1/s} \right]$$

$$\frac{b}{1722}$$

$$\leq 2\sqrt{2}\left(\mathbb{E}\left[\sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)}\|\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)})\|^{s}\right)^{1/s}$$

$$\leq 2\sqrt{2}\left(\sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)}\right)^{1/s}$$

where (a) holds due to Lemma C.5, (b) holds due to Hölder's inequality, and (c) holds due to Assumption 3.2.

Finally, when t > 0, from

1732
1733
1734
$$\left(\sum_{j=1}^{t} (1 - \gamma_x)^{s(t-j)}\right)^{1/s} \le \left(\frac{1}{1 - (1 - \gamma_x)^s}\right)^{1/s} \le \left(\frac{1}{1 - (1 - \gamma_x)}\right)^{1/s} \le \gamma_x^{-1/s}, \quad (65)$$
1735

we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{1,t}^{(k)} - \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)})\|]$$

$$\leq (1 - \gamma_x)^t \frac{2\sqrt{2}K}{B_0^{1 - 1/s}} \sigma + \frac{4\eta_x L_f}{(1 - \lambda)\sqrt{\gamma_x}} \sqrt{K} + \frac{4\eta_y L_f}{(1 - \lambda)\sqrt{\gamma_x}} \sqrt{K} + 2\sqrt{2}\gamma_x^{1 - 1/s} \sigma K.$$
(66)

Based on Eq. (61), it is easy to know that this upper bound also holds when t = 0.

Lemma C.17. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{2,t}^{(k)} - \nabla_1 g^{(k)}(x_t^{(k)}, y_t^{(k)})\|] \le (1 - \gamma_x)^t \frac{2\sqrt{2}\sigma K}{B_0^{1 - 1/s}} + \frac{4(\eta_x + \eta_y)L_g}{(1 - \lambda)\sqrt{\gamma_x}} \sqrt{K} + 2\sqrt{2}\gamma_x^{1 - 1/s}\sigma K.$$
(67)

Lemma C.18. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{3,t}^{(k)} - \nabla_1 g^{(k)}(x_t^{(k)}, z_t^{(k)})\|] \le (1 - \gamma_x)^t \frac{2\sqrt{2}\eta_y}{B_0^{1 - 1/s}} x + \frac{4(\eta_x + \eta_z)L_g}{(1 - \lambda)\sqrt{\gamma_x}} \sqrt{K} + 2\sqrt{2}\gamma_x^{1 - 1/s} \sigma K.$$
(68)

Lemma C.19. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{1,t}^{(k)} - \nabla_2 f^{(k)}(x_t^{(k)}, y_t^{(k)})\|] \le (1 - \gamma_y)^t \frac{2\sqrt{2}\sigma K}{B_0^{1 - 1/s}} + \frac{4(\eta_x + \eta_y)L_f}{(1 - \lambda)\sqrt{\gamma_y}} \sqrt{K} + 2\sqrt{2}\gamma_y^{1 - 1/s}\sigma K.$$
(69)

Lemma C.20. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{2,t}^{(k)} - \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)})\|] \le (1 - \gamma_y)^t \frac{2\sqrt{2}\sigma K}{B_0^{1 - 1/s}} + \frac{4(\eta_x + \eta_y)L_g}{(1 - \lambda)\sqrt{\gamma_y}} \sqrt{K} + 2\sqrt{2}\gamma_y^{1 - 1/s}\sigma K.$$
(70)

Lemma C.21. Given Assumptions 3.1-3.3, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|w_{1,t}^{(k)} - \nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)})\|] \le (1 - \gamma_z)^t \frac{2\sqrt{2}\sigma K}{B_0^{1 - 1/s}} + \frac{4(\eta_x + \eta_z)L_g}{(1 - \lambda)\sqrt{\gamma_z}} \sqrt{K} + 2\sqrt{2}\gamma_z^{1 - 1/s}\sigma K.$$
(71)

Lemmas C.17 - C.21 can be easily proved by following Lemma C.16.

Lemma C.22. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} u_{1,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{1} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{x} T} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} + \frac{4(\eta_{x} + \eta_{y})L_{f}}{(1-\lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}\gamma_{x}^{1-1/s}\sigma}{K^{1-1/s}}.$$
(72)

Proof. When t > 0, same as the proof of Lemma C.16, we obtain

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}(u_{1,t}^{(k)} - \nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)}))\right\|\right] \\
\leq (1 - \gamma_{x})^{t}\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}(u_{1,0}^{(k)} - \nabla_{1}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}))\right\|\right] \\
+ \mathbb{E}\left[\left\|\sum_{j=1}^{t}(1 - \gamma_{x})^{t-j+1}\frac{1}{K}\sum_{k=1}^{K}\left(\nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) + \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right)\right] \\
+ \mathbb{E}\left[\left\|\gamma_{x}\sum_{j=1}^{t}(1 - \gamma_{x})^{t-j}\frac{1}{K}\sum_{k=1}^{K}(\nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1}f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right)\right]. \tag{73}$$

Then, for the first term on the right-hand side of Eq. (73), we obtain

$$\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}(u_{1,0}^{(k)} - \nabla_{1}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}))\|] \leq \frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|u_{1,0}^{(k)} - \nabla_{1}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \stackrel{(a)}{\leq} \frac{2\sqrt{2}}{B_{0}^{1-1/s}}\sigma,$$

$$(74)$$

where (a) holds due to Eq. (61).

To bound the second term on the right-hand side of Eq. (73), we first bound the following one:

$$\mathbb{E}\left[\left\|\sum_{j=1}^{t} (1 - \gamma_{x})^{t-j+1} \frac{1}{K} \sum_{k=1}^{K} (\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) + \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}) \right\|^{2} \right] \\
&= \frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{j=1}^{t} (1 - \gamma_{x})^{2(t-j+1)} \mathbb{E}\left[\left\|\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) + \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) + \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)}) \right]^{2} \\
&\leq \frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{j=1}^{t} (1 - \gamma_{x})^{2(t-j+1)} \mathcal{L}_{f}^{2} (\mathbb{E}\left[\left\|X_{j} - X_{j-1}^{(k)}\right\|^{2}\right] + \mathbb{E}\left[\left\|y_{j}^{(k)} - y_{j-1}^{(k)}\right\|^{2}\right] \\
&= \frac{1}{K^{2}} \sum_{j=1}^{t} (1 - \gamma_{x})^{2(t-j+1)} \mathcal{L}_{f}^{2} (\mathbb{E}\left[\left\|X_{j} - X_{j-1}\right\|^{2}\right] + \mathbb{E}\left[\left\|Y_{j} - Y_{j-1}\right\|^{2}\right] \\
&\leq \frac{1}{K^{2}} \sum_{j=1}^{t} (1 - \gamma_{x})^{2(t-j+1)} \mathcal{L}_{f}^{2} \left(\frac{10\eta_{x}^{2}}{(1-\lambda)^{2}}K + \frac{10\eta_{y}^{2}}{(1-\lambda)^{2}}K\right) \\
&\leq \frac{1}{1 - (1 - \gamma_{x})^{2}} \mathcal{L}_{f}^{2} \left(\frac{10\eta_{x}^{2}}{(1-\lambda)^{2}} \frac{1}{K} + \frac{10\eta_{y}^{2}}{(1-\lambda)^{2}} \frac{1}{K}\right) \\
&\leq \frac{10\eta_{x}^{2}}{(1-\lambda)^{2}} \frac{1}{\gamma_{x}} \frac{1}{K} + \frac{10\eta_{y}^{2}}{(1-\lambda)^{2}} \frac{L_{f}^{2}}{\gamma_{x}} \frac{1}{K}, \tag{75}$$

where (a) holds due to Eq. (49), and (b) holds due to $\gamma_x < 1$.

Then, we bound the second term on the right-hand side of Eq. (60) as follows:

$$\mathbb{E}\left[\left\|\sum_{j=1}^{t}(1-\gamma_{x})^{t-j+1}\frac{1}{K}\sum_{k=1}^{K}\left(\nabla_{1}f^{(k)}(x_{j}^{(k)},y_{j}^{(k)};\xi_{j}^{(k)})-\nabla_{1}f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)};\xi_{j}^{(k)})\right)\right]$$

$$+ \nabla_{1} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}) \Big) \|]$$

$$\leq \frac{4\eta_{x} L_{f}}{(1-\lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{4\eta_{y} L_{f}}{(1-\lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}}.$$
(76)

For the third term on the right-hand side of Eq. (73), we bound it as follows:

$$\mathbb{E}\left[\left\|\sum_{j=1}^{t} \gamma_{x}(1-\gamma_{x})^{t-j} \frac{1}{K} \sum_{k=1}^{K} (\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}))\right\|\right] \\
= \frac{1}{K} \mathbb{E}\left[\left\|\sum_{j=1}^{t} \gamma_{x}(1-\gamma_{x})^{t-j} \sum_{k=1}^{K} (\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right\|\right] \\
\stackrel{(a)}{\leq} \frac{2\sqrt{2}}{K} \mathbb{E}\left[\left(\sum_{k=1}^{K} \sum_{j=1}^{t} \|\gamma_{x}(1-\gamma_{x})^{t-j}(\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\right\|^{s}\right)^{1/s}\right] \\
= \frac{2\sqrt{2}}{K} \mathbb{E}\left[\left(\sum_{k=1}^{K} \sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)} \|\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\|^{s}\right)^{1/s}\right] \\
\stackrel{(b)}{\leq} \frac{2\sqrt{2}}{K} \left(\mathbb{E}\left[\sum_{k=1}^{K} \sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)} \|\nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)}; \xi_{j}^{(k)}) - \nabla_{1} f^{(k)}(x_{j}^{(k)}, y_{j}^{(k)})\|^{s}\right]\right)^{1/s} \\
\stackrel{(c)}{\leq} \frac{2\sqrt{2}}{K} \left(\sum_{k=1}^{K} \sum_{j=1}^{t} \gamma_{x}^{s}(1-\gamma_{x})^{s(t-j)}\right)^{1/s} \sigma, \tag{77}$$

where (a) holds due to Lemma C.5, (b) holds due to Hölder's inequality, and (c) holds due to Assumption 3.2.

Finally, when t > 0, from

$$\left(\sum_{k=1}^{K} \sum_{j=1}^{t} \gamma_x^s (1 - \gamma_x)^{s(t-j)}\right)^{1/s} \le \left(\frac{K}{1 - (1 - \gamma_x)^s}\right)^{1/s} \le \left(\frac{K}{1 - (1 - \gamma_x)^s}\right)^{1/s} \le \frac{\gamma_x^{-1/s}}{K^{-1/s}},$$
(78)

we obtain

$$\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^{K}u_{1,t}^{(k)} - \frac{1}{K}\sum_{k=1}^{K}\nabla_{1}f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|]$$

$$\leq (1 - \gamma_{x})^{t}\frac{2\sqrt{2}}{B_{0}^{1-1/s}}\sigma + \frac{4\eta_{x}L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}}\frac{1}{\sqrt{K}} + \frac{4\eta_{y}L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}}\frac{1}{\sqrt{K}} + \frac{2\sqrt{2}}{K^{1-1/s}}\gamma_{x}^{1-1/s}\sigma. \tag{79}$$

Similarly, it is easy to know that this upper bound also holds when t=0. Then, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} u_{1,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{1} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq \frac{1}{T} \sum_{t=0}^{T-1} (1 - \gamma_{x})^{t} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \sigma + \frac{4\eta_{x} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{4\eta_{y} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}}{K^{1-1/s}} \gamma_{x}^{1-1/s} \sigma \\
\leq \frac{1}{\gamma_{x} T} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \sigma + \frac{4\eta_{x} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{4\eta_{y} L_{f}}{(1 - \lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}}{K^{1-1/s}} \gamma_{x}^{1-1/s} \sigma . \tag{80}$$

Lemma C.23. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} u_{2,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{x} T} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} + \frac{4(\eta_{x} + \eta_{y})L_{g}}{(1-\lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}\gamma_{x}^{1-1/s}\sigma}{K^{1-1/s}}.$$
(81)

Lemma C.24. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} u_{3,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{1} g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{x} T} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} + \frac{4(\eta_{x} + \eta_{z})L_{g}}{(1-\lambda)\sqrt{\gamma_{x}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}\gamma_{x}^{1-1/s}\sigma}{K^{1-1/s}}.$$
(82)

Lemma C.25. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} v_{1,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{2} f^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{y} T} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \sigma + \frac{4(\eta_{x} + \eta_{y}) L_{f}}{(1 - \lambda)\sqrt{\gamma_{y}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2} \gamma_{y}^{1-1/s} \sigma}{K^{1-1/s}} .$$
(83)

Lemma C.26. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} v_{2,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{2} g^{(k)}(x_{t}^{(k)}, y_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{y} T} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \sigma + \frac{4(\eta_{x} + \eta_{y}) L_{g}}{(1 - \lambda)\sqrt{\gamma_{y}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2} \gamma_{y}^{1-1/s} \sigma}{K^{1-1/s}} .$$
(84)

Lemma C.27. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\frac{1}{K} \sum_{k=1}^{K} w_{1,t}^{(k)} - \frac{1}{K} \sum_{k=1}^{K} \nabla_{2} g^{(k)}(x_{t}^{(k)}, z_{t}^{(k)})\|] \\
\leq \frac{1}{\gamma_{z} T} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} + \frac{4(\eta_{x} + \eta_{z})L_{g}}{(1 - \lambda)\sqrt{\gamma_{z}}} \frac{1}{\sqrt{K}} + \frac{2\sqrt{2}\gamma_{z}^{1-1/s}\sigma}{K^{1-1/s}} .$$
(85)

C.5 BOUNDING CONSENSUS ERRORS

Lemma C.28. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] \leq \frac{\eta_{x}\lambda}{1-\lambda}; \quad \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|y_{t}^{(k)} - \bar{y}_{t}\|] \leq \frac{\eta_{y}\lambda}{1-\lambda};$$

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|z_{t}^{(k)} - \bar{z}_{t}\|] \leq \frac{\eta_{z}\lambda}{1-\lambda}.$$
(86)

Proof.

$$\begin{split} &\frac{1}{K} \mathbb{E}[\|X_t - \bar{X}_t\|_F^2] \\ &= \frac{1}{K} \mathbb{E}[\|(X_{t-1} - \eta_x \hat{P}_{t-1})E - (\bar{X}_{t-1} - \eta_x \bar{\hat{P}}_{t-1})\|_F^2] \\ &\stackrel{(a)}{=} \frac{1}{K} \mathbb{E}[\|((X_{t-1} - \eta_x \hat{P}_{t-1}) - (\bar{X}_{t-1} - \eta_x \bar{\hat{P}}_{t-1}))(E - \frac{\mathbf{1}\mathbf{1}^T}{K})\|_F^2] \end{split}$$

$$\frac{1944}{1945} \leq \frac{1}{K} \mathbb{E}[\|(X_{t-1} - \eta_x \hat{P}_{t-1}) - (\bar{X}_{t-1} - \eta_x \bar{\hat{P}}_{t-1})\|_F^2 \|E - \frac{11^T}{K}\|_2^2] \\
\frac{(b)}{2} \lambda^2 \frac{1}{K} \mathbb{E}[\|(X_{t-1} - \eta_x \hat{P}_{t-1}) - (\bar{X}_{t-1} - \eta_x \bar{\hat{P}}_{t-1})\|_F^2] \\
\frac{1948}{1949} \leq \lambda^2 (1 + 1/a) \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \lambda^2 (1 + a) \frac{1}{K} \mathbb{E}[\|\hat{P}_{t-1} - \bar{\hat{P}}_{t-1}\|_F^2] \\
\frac{(c)}{2} \lambda \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \frac{\lambda^2}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|\hat{P}_{t-1} - \bar{\hat{P}}_{t-1}\|_F^2] \\
\frac{1951}{1952} \leq \lambda \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \frac{\lambda^2}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|\hat{P}_{t-1}\|_F^2] \\
\frac{1953}{1954} \leq \lambda \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \frac{\lambda^2}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|\hat{P}_{t-1}\|_F^2] \\
\frac{1955}{1956} = \lambda \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \frac{\lambda^2}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|\frac{p_{t-1}^{(k)}}{\|p_{t-1}^{(k)}\|}\|^2] \\
\frac{1958}{1959} = \lambda \frac{1}{K} \mathbb{E}[\|X_{t-1} - \bar{X}_{t-1}\|_F^2] + \eta_x^2 \frac{\lambda^2}{1 - \lambda} \\
\frac{1960}{1961} \leq \frac{\eta_x^2 \lambda^2}{(1 - \lambda)^2}, \tag{87}$$

where (a) holds because E is a doubly stochastic matrix, (b) holds due to Assumption 3.3, (c) holds due to $a = \frac{\lambda}{1-\lambda}$.

Then, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|] = \sqrt{\frac{1}{K^{2}} \left(\sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|]\right)^{2}}$$

$$\leq \sqrt{\frac{1}{K^{2}} K \sum_{k=1}^{K} \mathbb{E}[\|x_{t}^{(k)} - \bar{x}_{t}\|^{2}]} \leq \sqrt{\frac{1}{K} \mathbb{E}[\|X_{t} - \bar{X}_{t}\|_{F}^{2}]} \leq \frac{\eta_{x} \lambda}{1 - \lambda} .$$
(88)

The other two inequalities can be proved in a same approach.

Lemma C.29. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|] \\
\leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \\
+ \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) \sigma \\
+ \frac{\gamma_{x}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{2}{\delta}\right) + \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{z}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} \\
+ \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) + \frac{2\sqrt{2}\gamma_{x}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \sigma \left(1 + \frac{2}{\delta}\right) \\
+ \frac{4\eta_{x}\sqrt{\gamma_{x}\lambda}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\sqrt{\gamma_{x}\lambda}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) . \tag{89}$$

Proof. When t > 0, similar to the proof of Lemma C.28, we obtain

$$\frac{1}{K}\mathbb{E}[\|P_t - \bar{P}_t\|_F^2]
= \frac{1}{K}\mathbb{E}[\|(P_{t-1} - U_{t-1} + U_t)E - (\bar{P}_{t-1} - \bar{U}_{t-1} + \bar{U}_t)\|_F^2]$$

1998
1999
$$\leq \lambda^{2} \frac{1}{K} \mathbb{E}[\|(P_{t-1} - U_{t-1} + U_{t}) - (\bar{P}_{t-1} - \bar{U}_{t-1} + \bar{U}_{t})\|_{F}^{2}]$$
2000
2001
$$\leq \lambda^{2} (1 + 1/a) \frac{1}{K} \mathbb{E}[\|P_{t-1} - \bar{P}_{t-1}\|_{F}^{2}] + \lambda^{2} (1 + a) \frac{1}{K} \mathbb{E}[\|U_{t} - U_{t-1} - (\bar{U}_{t} - \bar{U}_{t-1})\|_{F}^{2}]$$
2002
2003
$$\leq \lambda^{2} (1 + 1/a) \frac{1}{K} \mathbb{E}[\|P_{t-1} - \bar{P}_{t-1}\|_{F}^{2}] + \lambda^{2} (1 + a) \frac{1}{K} \mathbb{E}[\|U_{t} - U_{t-1}\|_{F}^{2}]$$
2004
$$\leq \lambda^{2} (1 + 1/a) \frac{1}{K} \mathbb{E}[\|P_{t-1} - \bar{P}_{t-1}\|_{F}^{2}] + \frac{\lambda^{2}}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|U_{t} - U_{t-1}\|_{F}^{2}]$$
2005
$$\leq \lambda^{2} \frac{1}{K} \mathbb{E}[\|P_{t-1} - \bar{P}_{t-1}\|_{F}^{2}] + \sum_{j=1}^{t} \lambda^{t-j} \frac{\lambda^{2}}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|U_{j} - U_{j-1}\|_{F}^{2}] ,$$
2006
$$\leq \lambda^{t} \frac{1}{K} \mathbb{E}[\|P_{0} - \bar{P}_{0}\|_{F}^{2}] + \sum_{j=1}^{t} \lambda^{t-j} \frac{\lambda^{2}}{1 - \lambda} \frac{1}{K} \mathbb{E}[\|U_{j} - U_{j-1}\|_{F}^{2}] ,$$
2008
2009

where (a) holds due to Assumption 3.3, (b) holds due to $a = \frac{\lambda}{1-\lambda}$.

For $\frac{1}{K}\mathbb{E}[\|P_0 - \bar{P}_0\|_F^2]$, we bound it as follows:

$$\frac{1}{K}\mathbb{E}[\|P_0 - \bar{P}_0\|_F^2] = \frac{1}{K}\mathbb{E}[\|U_0 E - \bar{U}_0\|_F^2] = \frac{1}{K}\mathbb{E}[\|(U_0 - \bar{U}_0)(E - \frac{\mathbf{1}\mathbf{1}^T}{K})\|_F^2]
\leq \frac{1}{K}\mathbb{E}[\|U_0 - \bar{U}_0\|_F^2\|E - \frac{\mathbf{1}\mathbf{1}^T}{K}\|_2^2] \leq \lambda^2 \frac{1}{K}\mathbb{E}[\|U_0 - \bar{U}_0\|_F^2].$$
(91)

Then, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|] = \sqrt{\frac{1}{K^{2}} \left(\sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|]\right)^{2}}$$

$$\leq \sqrt{\frac{1}{K^{2}} K \sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|^{2}]} = \sqrt{\frac{1}{K}} \mathbb{E}[\|P_{t} - \bar{P}_{t}\|_{F}^{2}]}$$

$$\leq \sqrt{\lambda^{t+2} \frac{1}{K}} \mathbb{E}[\|U_{0} - \bar{U}_{0}\|_{F}^{2}]} + \sqrt{\sum_{j=1}^{t} \lambda^{t-j} \frac{\lambda^{2}}{1 - \lambda} \frac{1}{K}} \mathbb{E}[\|U_{j} - U_{j-1}\|_{F}^{2}]}$$

$$\stackrel{(a)}{\leq} \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1 - \lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{j}^{(k)} - u_{j-1}^{(k)}\|]$$

$$\stackrel{(b)}{\leq} \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1 - \lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,j}^{(k)} - u_{1,j-1}^{(k)}\|]$$

$$+ \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1 - \lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{3,j}^{(k)} - u_{3,j-1}^{(k)}\|]$$

$$+ \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1 - \lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{3,j}^{(k)} - u_{3,j-1}^{(k)}\|]$$

$$(92)$$

where (a) and (b) hold due to $\sqrt{\sum_{i=1}^n a_i} \le \sum_{i=1}^n \sqrt{a_i}$ for any $a_i \ge 0$ and n > 1.

Note that this upper bound also holds when t = 0 according to Eq. (91).

Then, due to Lemmas C.10 - C.12, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_t^{(k)} - \bar{p}_t\|]$$

$$\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_0^{(k)} - \bar{u}_0\|]$$

$$\begin{array}{lll} & 2052 \\ 2053 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|\nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_j^{(k)})\|] \\ 2055 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|\nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \zeta_j^{(k)})\|] \\ 2058 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|\nabla_1 g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}) - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}; \zeta_j^{(k)})\|] \\ 2061 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{1,j-1}^{(k)} - \nabla_1 f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2062 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{2,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2063 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{2,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2064 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2065 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2066 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2067 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2068 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2069 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2070 & + \gamma_x \sum_{j=1}^t \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^K \mathbb{E}[\|u_{3,j-1}^{(k)} - \nabla_1 g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ 2071 & + \gamma_x$$

Therefore, we obtain

2077

$$\begin{array}{ll} 2079 \\ 2080 \\ 2081 \\ 2082 \\ 2083 \\ 2084 \\ & = \frac{1}{T} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_{0}^{(k)} - \bar{p}_{t}\|] \\ 2085 \\ 2086 \\ 2087 \\ & \leq \lambda \frac{1}{T} \sum_{t=1}^{T-1} \lambda^{t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] + \frac{1}{T} \sum_{t=1}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|] \\ 2086 \\ 2087 \\ & \leq \lambda \frac{1}{T} \sum_{t=0}^{T-1} \lambda^{t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \zeta_{j}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}) - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}; \zeta_{j}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,j-1}^{(k)} - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,j-1}^{(k)} - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{1,j-1}^{(k)} - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{2,j-1}^{(k)} - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{2,j-1}^{(k)} - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|] \\ & + \gamma_{x} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{2,j-1}^{(k)} - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j$$

$$+ \frac{4\eta_{x}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \left(L_{f} + \frac{2L_{g}}{\delta} \right) \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2}$$

$$+ \frac{4\eta_{y}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \left(L_{f} + \frac{L_{g}}{\delta} \right) \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} + \frac{4\eta_{z}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} .$$
(94)

Note that $\nabla_1 f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)};\xi_j^{(k)})$ is computed with the samples in the $j\geq 1$ -th iteration, where the batch size is 1, then for any $j\in\{1,\cdots,t\}$, we obtain

$$\mathbb{E}[\|\nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)})\|]
= \mathbb{E}[(\|\nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)})\|^{s})^{1/s}]
\stackrel{(a)}{\leq} (\mathbb{E}[\|\nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)})\|^{s}])^{1/s}
\stackrel{(b)}{\leq} \sigma,$$
(95)

where (a) holds due to Hölder's inequality, and (b) holds due to Assumption 3.2.

Similarly, we obtain

$$\mathbb{E}[\|\nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \zeta_{j}^{(k)})\|] \leq \sigma,$$

$$\mathbb{E}[\|\nabla_{1}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}) - \nabla_{1}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}; \zeta_{j}^{(k)})\|] \leq \sigma.$$
(96)

Then, we obtain

$$\begin{array}{ll} 2132 & \frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|p_{t}^{(k)}-\bar{p}_{t}\|] \\ 2134 & \\ 2135 & \\ & \leq \lambda\frac{1}{T}\sum_{t=0}^{T-1}\lambda^{t/2}\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|u_{0}^{(k)}-\bar{u}_{0}\|] + \gamma_{x}\frac{\lambda\sqrt{K}\sigma}{\sqrt{1-\lambda}}\left(1+\frac{2}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ 2137 & + \frac{4\eta_{x}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{2L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ 2140 & + \frac{4\eta_{y}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} + \frac{4\eta_{z}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\frac{L_{g}}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ 2141 & + \gamma_{x}\frac{\lambda}{\sqrt{1-\lambda}}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2}\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|u_{1,j-1}^{(k)}-\nabla_{1}f^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)})\|] \\ 2142 & + \gamma_{x}\frac{\lambda}{\sqrt{1-\lambda}}\frac{1}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2}\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|u_{2,j-1}^{(k)}-\nabla_{1}g^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)})\|] \\ 2143 & + \gamma_{x}\frac{\lambda}{\sqrt{1-\lambda}}\frac{1}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2}\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|u_{2,j-1}^{(k)}-\nabla_{1}g^{(k)}(x_{j-1}^{(k)},y_{j-1}^{(k)})\|] \\ 2150 & + \gamma_{x}\frac{\lambda}{\sqrt{1-\lambda}}\frac{1}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2}\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|u_{3,j-1}^{(k)}-\nabla_{1}g^{(k)}(x_{j-1}^{(k)},z_{j-1}^{(k)})\|]. \end{array}$$

Then, based on Lemmas C.16, C.17, C.18, we obtain

$$\begin{aligned} & 2155 \\ & 2156 \\ & 2157 \end{aligned} \qquad \frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_t^{(k)} - \bar{p}_t\|] \\ & 2158 \\ & 2159 \end{aligned} \qquad \leq \lambda \frac{1}{T} \sum_{t=0}^{T-1} \lambda^{t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_0^{(k)} - \bar{u}_0\|] + \gamma_x \frac{\lambda \sqrt{K} \sigma}{\sqrt{1-\lambda}} \left(1 + \frac{2}{\delta}\right) \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \end{aligned}$$

$$\frac{2160}{2161} + \frac{4\eta_x\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_f + \frac{2L_g}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{4\eta_y\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_f + \frac{L_g}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} + \frac{4\eta_z\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\frac{L_g}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{4\eta_y\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\frac{\lambda}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} + \frac{4\eta_z\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\frac{L_g}{\delta}\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{2166}{2167} + \gamma_x\frac{\lambda\sqrt{K}}{\sqrt{1-\lambda}}\frac{2\sqrt{2}}{g_0^{1-1/s}}\sigma\left(1 + \frac{2}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{2170}{2171} + \gamma_x\frac{\lambda}{\sqrt{1-\lambda}}\frac{4\eta_x}{(1-\lambda)\sqrt{\gamma_x}}\left(L_f + \frac{2L_g}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{2173}{2174} + \gamma_x\frac{\lambda}{\sqrt{1-\lambda}}\frac{4\eta_y}{(1-\lambda)\sqrt{\gamma_x}}\left(L_f + \frac{2L_g}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\
\frac{2175}{2176} + \gamma_x\frac{\lambda}{\sqrt{1-\lambda}}\frac{4\eta_y}{(1-\lambda)\sqrt{\gamma_x}}\left(L_f + \frac{2L_g}{\delta}\right)\frac{1}{T}\sum_{t=1}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} . \tag{98}$$

Because

$$\frac{1}{T} \sum_{t=0}^{T-1} \lambda^{t/2} \leq \frac{1}{(1-\sqrt{\lambda})T} \leq \frac{1}{(1-\lambda)T},$$

$$\frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \leq \frac{1}{T} \sum_{t=1}^{T-1} \sum_{j=1}^{T-1} \lambda^{(T-1-j)/2} \leq \frac{1}{1-\sqrt{\lambda}} \leq \frac{1}{1-\lambda},$$

$$\frac{1}{T} \sum_{t=1}^{T-1} (1-\gamma_x)^t \sum_{j=1}^{t} \lambda^{(t-j)/2} \leq \frac{1}{T} \sum_{t=1}^{T-1} (1-\gamma_x)^t \sum_{j=1}^{T-1} \lambda^{(T-1-j)/2}$$

$$\leq \frac{1}{1-\sqrt{\lambda}} \frac{1}{T} \sum_{t=1}^{T-1} (1-\gamma_x)^t \leq \frac{1}{(1-\lambda)\gamma_x T},$$
(99)

we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_{t}^{(k)} - \bar{p}_{t}\|]
\leq \frac{\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] + \frac{\gamma_{x}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{2}{\delta}\right)
+ \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{z}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta}
+ \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) + \frac{2\sqrt{2}\gamma_{x}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \sigma\left(1 + \frac{2}{\delta}\right)
+ \frac{4\eta_{x}\sqrt{\gamma_{x}}\lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\sqrt{\gamma_{x}}\lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right).$$
(100)

For $\sum_{k=1}^K \mathbb{E}[\|u_0^{(k)} - \bar{u}_0\|]$, we bound it as follows:

$$\begin{split} & \sum_{k=1}^K \mathbb{E}[\|u_0^{(k)} - \bar{u}_0\|] = \sum_{k=1}^K \mathbb{E}[\|u_{1,0}^{(k)} + \frac{1}{\delta}u_{2,0}^{(k)} + \frac{1}{\delta}u_{3,0}^{(k)} - \frac{1}{K}\sum_{j=1}^K (u_{1,0}^{(j)} + \frac{1}{\delta}u_{2,0}^{(j)} + \frac{1}{\delta}u_{3,0}^{(j)})\|] \\ & \leq \sum_{k=1}^K \mathbb{E}[\|u_{1,0}^{(k)} - \frac{1}{K}\sum_{j=1}^K u_{1,0}^{(j)}\|] + \sum_{k=1}^K \mathbb{E}[\|\frac{1}{\delta}u_{2,0}^{(k)} - \frac{1}{K}\sum_{j=1}^K \frac{1}{\delta}u_{2,0}^{(j)}\|] + \sum_{k=1}^K \mathbb{E}[\|\frac{1}{\delta}u_{3,0}^{(k)} - \frac{1}{K}\sum_{j=1}^K \frac{1}{\delta}u_{3,0}^{(j)}\|] \end{split}$$

$$\begin{aligned} & 2214 \\ & 2215 \\ & 2216 \\ & 2216 \\ & 2217 \\ & 2218 \\ & 2219 \\ & & + \frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \xi_{0}^{(j)}) \|] \\ & 2217 \\ & 2218 \\ & 2219 \\ & & + \frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} g^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \zeta_{0}^{(j)}) \|] \\ & 2220 \\ & 2221 \\ & & + \frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} g^{(j)}(x_{0}^{(j)}, z_{0}^{(j)}; \zeta_{0}^{(j)}) \|] . \end{aligned}$$

For the first term on the last step of Eq. (101), we bound it as follows:

$$\sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \xi_{0}^{(j)})\|]$$

$$\leq \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|]$$

$$+ \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)})\|]$$

$$+ \sum_{k=1}^{K} \mathbb{E}[\|\frac{1}{K} \sum_{j=1}^{K} \nabla_{1} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \xi_{0}^{(j)})\|]$$

$$\leq 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|]$$

$$\stackrel{(a)}{\leq} 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \sigma, \tag{102}$$

where (a) holds due to Eq. (61)

Similarly, we bound the second term on the last step of Eq. (101) as follows:

$$\frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{1} g^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \zeta_{0}^{(j)})\|] \\
\leq \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \frac{1}{\delta} \sigma. \tag{103}$$

By combining them together, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|u_{0}^{(k)} - \bar{u}_{0}\|] \leq 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) \sigma.$$
(104)

Finally, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|p_t^{(k)} - \bar{p}_t\|]
\leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 f^{(k)}(x_0^{(k)}, y_0^{(k)})\|] + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_1 g^{(k)}(x_0^{(k)}, y_0^{(k)})\|]$$

$$\begin{array}{ll} & + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1}g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) \sigma \\ & + \frac{\gamma_{x}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{2}{\delta}\right) + \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{z}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} \\ & + \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}\sigma}{B_{0}^{1-1/s}} \left(1 + \frac{2}{\delta}\right) + \frac{2\sqrt{2}\gamma_{x}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \sigma \left(1 + \frac{2}{\delta}\right) \\ & + \frac{4\eta_{x}\sqrt{\gamma_{x}\lambda}}{T(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) + \frac{4\eta_{y}\sqrt{\gamma_{x}\lambda}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{2L_{g}}{\delta}\right) . \end{array}$$

Lemma C.30. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|q_{t}^{(k)} - \bar{q}_{t}\|] \\
\leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] \\
+ \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_{0}^{1-1/s}} \left(1 + \frac{1}{\delta}\right) \sigma + \frac{\gamma_{y} \lambda \sqrt{K} \sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{1}{\delta}\right) \\
+ \frac{4\eta_{x} \lambda \sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{y} \lambda \sqrt{K}}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) \\
+ \frac{\lambda \sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \left(1 + \frac{1}{\delta}\right) \sigma + \frac{2\sqrt{2}\gamma_{y}^{2-1/s} \lambda \sqrt{K}}{(1-\lambda)^{3/2}} \left(1 + \frac{1}{\delta}\right) \sigma \\
+ \frac{4\eta_{x} \sqrt{\gamma_{y}} \lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) + \frac{4\eta_{y} \sqrt{\gamma_{y}} \lambda}{(1-\lambda)^{5/2}} \left(L_{f} + \frac{L_{g}}{\delta}\right) . \tag{106}$$

Proof. Following the proof of Lemma C.29, for any $t \ge 0$, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|q_{t}^{(k)} - \bar{q}_{t}\|] \\
\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{0}^{(k)} - \bar{v}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{j}^{(k)} - v_{j-1}^{(k)}\|] \\
\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{0}^{(k)} - \bar{v}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{1,j}^{(k)} - v_{1,j-1}^{(k)}\|] \\
+ \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{2,j}^{(k)} - v_{2,j-1}^{(k)}\|] . \tag{107}$$

Based on Lemma C.13 and Lemma C.14, we obtain

$$\begin{split} &\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|q_{t}^{(k)} - \bar{q}_{t}\|] \\ &\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{0}^{(k)} - \bar{v}_{0}\|] \\ &+ \gamma_{y} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{2} f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \xi_{j}^{(k)})\|] \end{split}$$

2322
$$+ \gamma_{y} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}) - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)}; \zeta_{j}^{(k)})\|]$$
2325
$$+ \gamma_{y} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{1,j-1}^{(k)} - \nabla_{2}f^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|]$$
2328
$$+ \gamma_{y} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{2,j-1}^{(k)} - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|]$$
2330
$$+ \gamma_{y} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|v_{2,j-1}^{(k)} - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, y_{j-1}^{(k)})\|]$$
2331
$$+ \frac{4\eta_{x}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \left(L_{f} + \frac{L_{g}}{\delta}\right) \sum_{j=1}^{t} \lambda^{(t-j)/2}$$
2334
$$+ \frac{4\eta_{y}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \left(L_{f} + \frac{L_{g}}{\delta}\right) \sum_{j=1}^{t} \lambda^{(t-j)/2} .$$
2108)

Then, we obtain

23382339

$$\begin{array}{lll} & \frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^{K}\mathbb{E}[\|q_{t}^{(k)}-\bar{q}_{t}\|] \\ & 2344 \\ & 2345 \\ & 2346 \\ & 2346 \\ & 2347 \\ & 2348 \\ & 2349 \\ & & +\frac{4\eta_{x}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{y}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{y}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{y}\sqrt{K}}{1-\lambda}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{2\sqrt{\lambda}\sqrt{K}}{\sqrt{1-\lambda}}\frac{2\sqrt{2}}{B_{0}^{1-1/s}}\sigma\left(1+\frac{1}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\left(1-\gamma_{y}\right)^{t}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{x}\sqrt{\gamma_{y}}}{\sqrt{1-\lambda}}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{y}\sqrt{\gamma_{y}}}{(1-\lambda)}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{y}\sqrt{\gamma_{y}}}{\sqrt{1-\lambda}}\frac{\lambda}{\sqrt{1-\lambda}}\left(L_{f}+\frac{L_{g}}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{\lambda\sqrt{K}}{\sqrt{1-\lambda}}2\sqrt{2}\gamma_{y}^{2-1/s}\sigma\left(1+\frac{1}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{\lambda\sqrt{K}}{\sqrt{1-\lambda}}2\sqrt{2}\gamma_{y}^{2-1/s}\sigma\left(1+\frac{1}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{4\eta_{x}\sqrt{K}}{\sqrt{1-\lambda}}2\sqrt{2}\gamma_{y}^{2-1/s}\sigma\left(1+\frac{1}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{\lambda\sqrt{K}}{\sqrt{1-\lambda}}2\sqrt{2}\frac{2\sqrt{2}}{2\gamma_{y}^{2-1/s}\sigma\left(1+\frac{1}{\delta}\right)\frac{1}{T}\sum_{t=0}^{T-1}\sum_{j=1}^{t}\lambda^{(t-j)/2} \\ & +\frac{\lambda\sqrt{K}}{(1-\lambda)^{5/2}}\left(L_{f}+\frac{L_{g}}{\delta}\right)+\frac{4\eta_{y}\sqrt{K}\sqrt{K}}{(1-\lambda)^{3/2}}\left(1+\frac{1}{\delta}\right) \\ & +\frac{4\eta_{x}\sqrt{\gamma_{y}}\lambda}{(1-\lambda)^{5/2}}\left(L_{f}+\frac{L_{g}}{\delta}\right)+\frac{4\eta_{y}\sqrt{\gamma_{y}}\lambda}{(1-\lambda)^{5/2}}\left(L_{f}+\frac{L_{g}}{\delta}\right). \end{array}$$

For $\sum_{k=1}^{K} \mathbb{E}[\|v_0^{(k)} - \bar{v}_0\|]$, we bound it as follows:

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{0}^{(k)} - \bar{v}_{0}\|] \\
= \sum_{k=1}^{K} \mathbb{E}[\|v_{1,0}^{(k)} + \frac{1}{\delta}u_{2,0}^{(k)} - \frac{1}{K}\sum_{j=1}^{K}(v_{1,0}^{(j)} + \frac{1}{\delta}v_{2,0}^{(j)})\|] \\
\leq \sum_{k=1}^{K} \mathbb{E}[\|v_{1,0}^{(k)} - \frac{1}{K}\sum_{j=1}^{K}v_{1,0}^{(j)}\|] + \sum_{k=1}^{K} \mathbb{E}[\|\frac{1}{\delta}v_{2,0}^{(k)} - \frac{1}{K}\sum_{j=1}^{K}\frac{1}{\delta}v_{2,0}^{(j)}\|] \\
\leq \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \frac{1}{K}\sum_{j=1}^{K}\nabla_{2}f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \xi_{0}^{(j)})\|] \\
+ \frac{1}{\delta}\sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K}\sum_{j=1}^{K}\nabla_{2}g^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \zeta_{0}^{(j)})\|]. \tag{110}$$

For the first term on the last step of Eq. (110), we bound it as follows:

$$\sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \xi_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{2} f^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \xi_{0}^{(j)})\|] \\
\leq 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \sigma. \tag{111}$$

Similarly, we bound the second term on the last step of Eq. (110) as follows:

$$\frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K} \sum_{j=1}^{K} \nabla_{2} g^{(j)}(x_{0}^{(j)}, y_{0}^{(j)}; \zeta_{0}^{(j)})\|] \\
\leq \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \frac{1}{\delta} \sigma. \tag{112}$$

By combining them together, we obtain

$$\sum_{k=1}^{K} \mathbb{E}[\|v_{0}^{(k)} - \bar{v}_{0}\|] \\
\leq 2 \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}} \left(1 + \frac{1}{\delta}\right) \sigma. \tag{113}$$

Finally, we obtain

$$\begin{split} &\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|q_t^{(k)} - \bar{q}_t\|] \\ &\leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_2 f^{(k)}(x_0^{(k)}, y_0^{(k)})\|] + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_2 g^{(k)}(x_0^{(k)}, y_0^{(k)})\|] \\ &+ \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_0^{1-1/s}} \left(1 + \frac{1}{\delta}\right) \sigma + \frac{\gamma_y \lambda \sqrt{K} \sigma}{(1-\lambda)^{3/2}} \left(1 + \frac{1}{\delta}\right) \\ &+ \frac{4\eta_x \lambda \sqrt{K}}{(1-\lambda)^{5/2}} \left(L_f + \frac{L_g}{\delta}\right) + \frac{4\eta_y \lambda \sqrt{K}}{(1-\lambda)^{5/2}} \left(L_f + \frac{L_g}{\delta}\right) \end{split}$$

$$+ \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}}{B_0^{1-1/s}} \sigma \left(1 + \frac{1}{\delta}\right) + \frac{2\sqrt{2}\gamma_y^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \sigma \left(1 + \frac{1}{\delta}\right) + \frac{4\eta_x\sqrt{\gamma_y}\lambda}{(1-\lambda)^{5/2}} \left(L_f + \frac{L_g}{\delta}\right) + \frac{4\eta_y\sqrt{\gamma_y}\lambda}{(1-\lambda)^{5/2}} \left(L_f + \frac{L_g}{\delta}\right).$$
(114)

Lemma C.31. Given Assumptions 3.1-3.3, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|r_{t}^{(k)} - \bar{r}_{t}\|] \\
\leq \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_{0}^{1-1/s}} \frac{1}{\delta}\sigma + \frac{\gamma_{z}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \frac{1}{\delta} \\
+ \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \frac{1}{\delta}\sigma + \frac{2\sqrt{2}\gamma_{z}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \frac{1}{\delta}\sigma \\
+ \frac{4\eta_{x}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{z}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} .$$
(115)

Proof. Following the proof of Lemma C.29, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|r_{t}^{(k)} - \bar{r}_{t}\|]$$

$$\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{j}^{(k)} - w_{j-1}^{(k)}\|]$$

$$\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] + \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{1,j}^{(k)} - w_{1,j-1}^{(k)}\|].$$
(116)

Based on Lemma C.15, we obtain

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|r_{t}^{(k)} - \bar{r}_{t}\|]$$

$$\leq \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|]$$

$$+ \gamma_{z} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}) - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}; \zeta_{j}^{(k)})\|]$$

$$+ \gamma_{z} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{1,j-1}^{(k)} - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)})\|]$$

$$+ \frac{4\eta_{x}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \frac{L_{g}}{\delta} \sum_{k=1}^{t} \lambda^{(t-j)/2} + \frac{4\eta_{y}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \frac{L_{g}}{\delta} \sum_{k=1}^{t} \lambda^{(t-j)/2}.$$
(117)

Then, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|r_t^{(k)} - \bar{r}_t\|]$$

$$\begin{aligned} & 2484 \\ 2485 & \leq \frac{1}{T} \sum_{t=0}^{T-1} \lambda^{1+t/2} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] \\ & 2487 \\ 2488 & + \gamma_{z} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}) - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)}; \zeta_{j}^{(k)})\|] \\ & + \gamma_{z} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \frac{\lambda}{\sqrt{1-\lambda}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{1,j-1}^{(k)} - \nabla_{2}g^{(k)}(x_{j-1}^{(k)}, z_{j-1}^{(k)})\|] \\ & + \frac{4\eta_{x}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} + \frac{4\eta_{y}\sqrt{K}}{1-\lambda} \frac{\lambda}{\sqrt{1-\lambda}} \frac{L_{g}}{\delta} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{j=1}^{t} \lambda^{(t-j)/2} \\ & 2493 \\ 2494 & \leq \frac{\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] + \frac{\gamma_{z}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \frac{1}{\delta} \\ & \leq \frac{\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] + \frac{\gamma_{z}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \frac{1}{\delta} \\ & + \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \frac{1}{\delta} \sigma + \frac{2\sqrt{2}\gamma_{z}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \frac{1}{\delta} \sigma \\ & + \frac{4\eta_{x}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{z}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} . \end{aligned} \tag{118}$$

For $\sum_{k=1}^K \mathbb{E}[\|w_0^{(k)} - \bar{w}_0\|]$, we bound it as follows:

$$\sum_{k=1}^{K} \mathbb{E}[\|w_{0}^{(k)} - \bar{w}_{0}\|] = \sum_{k=1}^{K} \mathbb{E}[\|\frac{1}{\delta}w_{1,0}^{(k)} - \frac{1}{K}\sum_{j=1}^{K}\frac{1}{\delta}w_{1,0}^{(j)}\|]$$

$$= \frac{1}{\delta}\sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)}; \zeta_{0}^{(k)}) - \frac{1}{K}\sum_{j=1}^{K}\nabla_{2}g^{(j)}(x_{0}^{(j)}, z_{0}^{(j)}; \zeta_{0}^{(j)})\|]$$

$$\leq \frac{2}{\delta}\sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{4\sqrt{2}K}{B_{0}^{1-1/s}}\frac{1}{\delta}\sigma. \tag{119}$$

Finally, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|r_{t}^{(k)} - \bar{r}_{t}\|]
\leq \frac{\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \frac{2}{\delta} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)}, z_{0}^{(k)})\|] + \frac{\lambda}{(1-\lambda)T} \frac{4\sqrt{2}\sqrt{K}}{B_{0}^{1-1/s}} \frac{1}{\delta}\sigma + \frac{\gamma_{z}\lambda\sqrt{K}\sigma}{(1-\lambda)^{3/2}} \frac{1}{\delta}
+ \frac{4\eta_{x}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{y}\lambda\sqrt{K}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{\lambda\sqrt{K}}{T(1-\lambda)^{3/2}} \frac{2\sqrt{2}}{B_{0}^{1-1/s}} \frac{1}{\delta}\sigma + \frac{2\sqrt{2}\gamma_{z}^{2-1/s}\lambda\sqrt{K}}{(1-\lambda)^{3/2}} \frac{1}{\delta}\sigma
+ \frac{4\eta_{x}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} + \frac{4\eta_{z}\sqrt{\gamma_{z}\lambda}}{(1-\lambda)^{5/2}} \frac{L_{g}}{\delta} .$$
(120)

C.6 PROOF OF THEOREM 4.1

Proof. By plugging the inequalities in Lemmas C.8, C.7 into Lemma C.6, we obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|]
\leq \frac{\mathbb{E}[\Phi(\bar{x}_0) - \Phi(\bar{x}_T)]}{\eta_x T} + 2\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \nabla \Phi_{\delta}(\bar{x}_t)\|]$$

$$\begin{array}{ll} 2838 & + \frac{4(\delta L_f + L_g) \left(\frac{1}{5}\mathbb{E}[h_{\delta}(\bar{x}_0, \bar{y}_0) - h_{\delta}^*(\bar{x}_0)] - \frac{1}{\delta}\mathbb{E}[h_{\delta}(\bar{x}_T, \bar{y}_T) - h_{\delta}^*(\bar{x}_T)])}{\eta_0 T} \\ 2840 & + \frac{4L_g \left(\frac{1}{5}\mathbb{E}[g(\bar{x}_0, \bar{z}_0) - g^*(\bar{x}_0)] - \frac{1}{\delta}\mathbb{E}[g(\bar{x}_T, \bar{x}_T) - g^*(\bar{x}_T)])}{\eta_0 T} \\ 2841 & + 2\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_1 f^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K u_{1,t}^{(k)}\| \\ 2842 & + 2\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_1 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K u_{2,t}^{(k)}\| \\ 2843 & + 2\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_1 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K u_{2,t}^{(k)}\| \\ 2844 & + 2\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_1 g^{(k)}(x_t^{(k)}, z_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K u_{2,t}^{(k)}\| \\ 2855 & + 2\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_1 g^{(k)}(x_t^{(k)}, z_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{1,t}^{(k)}\| \\ 2855 & + \frac{8(\delta L_f + L_g)}{\mu}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2856 & + \frac{8L_g}{\mu}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2856 & + \frac{8L_g}{\mu}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, y_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2856 & + \frac{8L_g}{2}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2856 & + \frac{2(L_f + L_g)}{\delta}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2860 & + \frac{2(L_f + L_g)}{\delta}\frac{1}{\delta}T\sum_{t=0}^{T-1}\mathbb{E}[\|\frac{1}{K}\sum_{k=1}^K \nabla_2 g^{(k)}(x_t^{(k)}, z_t^{(k)}) - \frac{1}{K}\sum_{k=1}^K v_{2,t}^{(k)}\| \\ 2861 & + \left(2(L_f + \frac{L_g}{\delta}) + \frac{8(\delta L_f + L_g)}{\delta}\right) \left(L_f + \frac{L_g}{\delta}\right) \frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^K \mathbb{E}[\|\bar{y}_t - y_t^{(k)}\|] \\ 2862 & + \left(2(L_f + \frac{L_g}{\delta}) + \frac{8(\delta L_f + L_g)}{\delta}\right) \frac{1}{T}\sum_{t=0}^{T-1}\frac{1}{K}\sum_{k=1}^K \mathbb{E}[\|\bar{y}_t - q_t^{(k)}\|] \\ 2863 & + \left(2(L_f + \frac{L_g}{\delta}) + \frac{8(\delta L_f + L_g)}{\delta}\right) \frac{1}{T}\sum_$$

By plugging Lemmas C.22, C.23, C.24, C.25, C.26, C.27, C.28, C.29, C.30, C.31 into the above inequality and setting $\eta_y=\eta_x\frac{4(\delta L_f+L_g)}{\mu}$ and $\eta_z=\eta_x\frac{4L_g}{\mu}$, we obtain

$$\begin{array}{ll} \textbf{2581} & \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \leq \frac{\mathbb{E}[\Phi(\bar{x}_0) - \Phi(\bar{x}_T)]}{\eta_x T} + 2\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \nabla \Phi_{\delta}(\bar{x}_t)\|] \\ \textbf{2583} & + \frac{1}{\delta} \frac{\mathbb{E}[(h_{\delta}(\bar{x}_0, \bar{y}_0) - h_{\delta}^*(\bar{x}_0)) - (h_{\delta}(\bar{x}_T, \bar{y}_T) - h_{\delta}^*(\bar{x}_T))]}{\eta_x T} \\ \textbf{2586} & + \frac{1}{\delta} \frac{\mathbb{E}[(g(\bar{x}_0, \bar{z}_0) - g^*(\bar{x}_0)) - (g(\bar{x}_T, \bar{z}_T) - g^*(\bar{x}_T))]}{\eta_x T} \\ \textbf{2588} & + \frac{\eta_x L_{\Phi}}{2} + \frac{1}{\delta} \frac{4\eta_x (\delta L_f + L_g)^2}{\mu} + \frac{1}{\delta} \frac{8\eta_x (\delta L_f + L_g)^3}{\mu^2} + \frac{1}{\delta} \frac{\eta_x (\delta L_f + L_g)}{2} + \frac{1}{\delta} \frac{\eta_x L_{h_{\delta}^*}}{2} \\ \textbf{2590} & + \frac{1}{\delta} \frac{4\eta_x L_g^2}{\mu} + \frac{1}{\delta} \frac{8\eta_x L_g^3}{\mu^2} + \frac{1}{\delta} \frac{\eta_x L_g}{2} + \frac{1}{\delta} \frac{\eta_x L_{g^*}}{2} \end{array}$$

2577

$$\begin{array}{ll} & + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{1}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{1}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| \\ & + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{1}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| + \frac{4(\delta L_{I} + L_{g})}{\mu} \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{2}f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| \\ & + \frac{2\lambda}{(1-\lambda)T} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{2}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| + \frac{4L_{g}}{\mu} \frac{2\lambda}{(1-\lambda)T} \frac{1}{\sqrt{K}} \frac{1}{\delta} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{2}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| \\ & + \frac{4(\delta L_{I} + L_{g})}{\mu} \frac{2\lambda}{\mu^{1-\lambda/2}} \frac{1}{\sqrt{K}} + \left(1 + \frac{1}{\delta}\right) \frac{8(\delta L_{I} + L_{g})}{\mu} \frac{2\lambda^{2}}{K^{1-\lambda/2}} \frac{1}{\sqrt{V^{1-\lambda/2}}} \frac{1}{\delta} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[||\nabla_{2}g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})||| \\ & + \left(1 + \frac{2}{\delta}\right) \frac{1}{\gamma_{s}} \frac{1}{K} \frac{1}{\delta} + \left(1 + \frac{1}{\delta}\right) \frac{8(\delta L_{I} + L_{g})}{\mu} \frac{1}{2V^{1-\lambda/2}} \frac{2\sqrt{2}}{\gamma_{s}^{1-\lambda/2}} \frac{1}{\gamma_{s}^{1-\lambda/2}} \frac{1}{\delta} \\ & + \left(1 + \frac{2}{\delta}\right) \frac{1}{\gamma_{s}} \frac{1}{K} \frac{1}{\delta} + \left(1 + \frac{1}{\delta}\right) \frac{8(\delta L_{I} + L_{g})}{\mu} \frac{1}{\mu} \frac{1}{\lambda} \frac{2\sqrt{2}}{\mu} \frac{1}{\gamma_{s}^{1-\lambda/2}} \frac{1}{\delta} \\ & + \left(1 + \frac{2}{\delta}\right) \frac{1}{\gamma_{s}} \frac{1}{K} \frac{1}{\delta} \frac{1}{\delta} \frac{1}{\lambda} \\ & + \left(1 + \frac{2}{\delta}\right) \frac{1}{\gamma_{s}} \frac{1}{K} \frac{1}{\lambda} \frac{1}$$

Because $\kappa > 1$, $1 - \lambda < 1$, $\gamma_x < 1$, $\gamma_y < 1$, $\gamma_z < 1$, $s \in (1, 2]$, $L_{\Phi} = O(\ell \kappa^3)$, $L_{h_{\delta}^*} = O(\ell \kappa)$, and $L_{q^*} = O(\ell \kappa)$, it can be simplified to the following inequality: $\frac{1}{T} \sum_{t=1}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \le \frac{\mathbb{E}[\Phi(\bar{x}_0) - \Phi(\bar{x}_T)]}{n_r T} + 2\frac{1}{T} \sum_{t=1}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \nabla \Phi_{\delta}(\bar{x}_t)\|]$ $+ \frac{1}{\delta} \frac{\mathbb{E}[(h_{\delta}(\bar{x}_{0}, \bar{y}_{0}) - h_{\delta}^{*}(\bar{x}_{0})) - (h_{\delta}(\bar{x}_{T}, \bar{y}_{T}) - h_{\delta}^{*}(\bar{x}_{T}))]}{n_{T}T}$ $+ \frac{1}{\lambda} \frac{\mathbb{E}[(g(\bar{x}_0, \bar{z}_0) - g^*(\bar{x}_0)) - (g(\bar{x}_T, \bar{z}_T) - g^*(\bar{x}_T))]}{n_- T}$ $+ O\left(\frac{\lambda}{(1-\lambda)T}\right) \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} f^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|] + O\left(\frac{\lambda}{(1-\lambda)T} \frac{1}{\delta}\right) \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathbb{E}[\|\nabla_{1} g^{(k)}(x_{0}^{(k)}, y_{0}^{(k)})\|]$ $+ O\left(\frac{\lambda}{(1-\lambda)T}\frac{1}{\delta}\right)\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|\nabla_{1}g^{(k)}(x_{0}^{(k)},z_{0}^{(k)})\|] + O\left(\frac{\lambda\kappa}{(1-\lambda)T}\right)\frac{1}{\sqrt{K}}\sum_{k=1}^{K}\mathbb{E}[\|\nabla_{2}f^{(k)}(x_{0}^{(k)},y_{0}^{(k)})\|]$ $+ O\left(\frac{\lambda \kappa}{(1-\lambda)T}\frac{1}{\delta}\right)\frac{1}{\sqrt{K}}\sum_{k=0}^{K}\mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)},y_{0}^{(k)})\|] + O\left(\frac{\lambda \kappa}{(1-\lambda)T}\frac{1}{\delta}\right)\frac{1}{\sqrt{K}}\sum_{k=0}^{K}\mathbb{E}[\|\nabla_{2}g^{(k)}(x_{0}^{(k)},z_{0}^{(k)})\|]$ $+O\left(\eta_x\kappa^3\ell\right)+O\left(\eta_x\frac{\kappa^2\ell}{\delta}\right)+O\left(\eta_x\frac{\kappa^2\ell}{\delta}\frac{\lambda\sqrt{K}}{(1-\lambda)^{5/2}}\right)$ $+O\left(\frac{1}{\delta}\frac{\gamma_x^{1-1/s}}{K^{1-1/s}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{\gamma_y^{1-1/s}}{K^{1-1/s}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{\gamma_z^{1-1/s}}{K^{1-1/s}}\sigma\right)$ $+O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_x K}}\frac{\kappa \ell}{\delta}\right)+O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_x K}}\frac{\kappa^2 \ell}{\delta}\right)+O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_x K}}\frac{\kappa^2 \ell}{\delta}\right)$ $+O\left(\frac{1}{\delta}\frac{1}{\gamma_{r}T}\frac{1}{R^{1-1/s}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{1}{\gamma_{u}T}\frac{1}{R^{1-1/s}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{1}{\gamma_{r}T}\frac{1}{R^{1-1/s}}\sigma\right)$ $+O\left(\frac{1}{\delta}\frac{\gamma_x\lambda\sqrt{K}}{(1-\lambda)^{3/2}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{\gamma_y\lambda\sqrt{K}}{(1-\lambda)^{3/2}}\sigma\right)+O\left(\frac{\kappa}{\delta}\frac{\gamma_z\lambda\sqrt{K}}{(1-\lambda)^{3/2}}\sigma\right)$

We set

 $+O\left(\frac{\kappa}{\delta}\frac{\lambda}{(1-\lambda)^{3/2}T}\frac{\sqrt{K}}{R_*^{1-1/s}}\sigma\right)$.

$$\delta = O\left(\frac{1}{\kappa^{3}\ell} \frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right),$$

$$\gamma_{x} = \gamma_{y} = \gamma_{z} = O\left(\frac{K^{\frac{1}{2s+1}}}{T^{\frac{2s}{2s+1}} \sigma^{\frac{3s}{(2s+1)(s-1)}}}\right),$$

$$\eta_{x} = O\left(\frac{1-\lambda}{\kappa^{5}\ell} \frac{K^{\frac{1}{2s+1}}}{T^{\frac{2s}{2s+1}} \sigma^{\frac{4-s}{2(2s+1)(s-1)}}}\right),$$

$$B_{0} = O\left(K^{\frac{2s}{2s+1}} T^{\frac{2s}{2s+1}} \sigma^{\frac{s(4s-1)}{(2s+1)(s-1)^{2}}}\right).$$
(124)

(123)

Then, we can obtain

$$O\left(\frac{1}{\delta}\frac{\gamma_x^{1-1/s}}{K^{1-1/s}}\sigma\right) = O\left(\frac{\kappa^3\ell}{1}\frac{K^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}}}{1}\frac{K^{\frac{s-1}{s(2s+1)}}}{T^{\frac{2s}{2s+1}\times\frac{s-1}{s}}\sigma^{\frac{3s}{(2s+1)(s-1)}\times\frac{s-1}{s}}}\frac{1}{K^{1-1/s}}\sigma\right)$$

 $+O\left(\frac{\eta_x\sqrt{\gamma_x}\lambda}{(1-\lambda)^{5/2}}\frac{\kappa\ell}{\delta}\right)+O\left(\frac{\eta_x\sqrt{\gamma_y}\lambda}{(1-\lambda)^{5/2}}\frac{\kappa^2\ell}{\delta}\right)+O\left(\frac{\eta_x\sqrt{\gamma_z}\lambda}{(1-\lambda)^{5/2}}\frac{\kappa^2\ell}{\delta}\right)$

$$\begin{aligned} & 2700 \\ & 2701 \\ & = O\left(\frac{\kappa^3 \ell \sigma^{\frac{2s-1}{2s+1}}}{K^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}}}\right), \\ & 2702 \\ & O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_x K}} \frac{\kappa \ell}{\delta}\right) = O\left(\frac{1-\lambda}{\kappa^5 \ell} \frac{K^{\frac{1}{2s+1}}}{T^{\frac{2s}{2s+1}}\sigma^{\frac{4-s}{2(2s+1)(s-1)}}} \frac{T^{\frac{s}{2s+1}}\sigma^{\frac{3s}{2(2s+1)(s-1)}}}{K^{\frac{1}{2(2s+1)}}} \frac{1}{(1-\lambda)K^{\frac{1}{2}}} \kappa^4 \ell^2 K^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}}\right) \\ & 2705 \\ & = O\left(\frac{\ell}{\kappa} \frac{\sigma^{\frac{2s+1}{2s+1}}}{K^{\frac{1}{2s+1}}T^{\frac{1}{2s+1}}}\right), \\ & 2708 \\ & 2709 \\ & O\left(\frac{1}{\delta} \frac{1}{\gamma_x T} \frac{1}{B_0^{1-1/s}}\sigma\right) = O\left(\kappa^3 \ell K^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}} \frac{T^{\frac{2s}{2s}}\sigma^{\frac{3s}{(2s+1)(s-1)}}}{K^{\frac{1}{2s+1}}} \frac{1}{T} \frac{1}{K^{\frac{2s}{2s+1}} \times \frac{s-1}{s}} T^{\frac{2s}{2s+1} \times \frac{s-1}{s}} \frac{s^{\frac{s-1}{2s+1}}T^{\frac{s-1}{2s+1}}}{s^{\frac{s-1}{2s+1}}T^{\frac{2s}{2s+1}}} \frac{1}{T} \frac{1}{K^{\frac{2s}{2s+1}}} \frac{1}{T^{\frac{2s}{2s+1}} \times \frac{s-1}{s}} \frac{s^{\frac{s-1}{2s+1}} \times \frac{s(4s-1)}{s}}{s^{\frac{s-1}{2s+1}}(s-1)^2} \sigma \right) \\ & = O\left(\frac{\kappa^3 \ell \sigma^{\frac{2s}{2s+1}}}}{K^{\frac{2s}{2s+1}}T^{\frac{2s}{2s+1}}}\right), \\ & 2714 \\ & 2715 \\ & O\left(\frac{1}{\eta_x T}\right) = O\left(\frac{\kappa^5 \ell}{1-\lambda} \frac{T^{\frac{2s}{2s+1}}\sigma^{\frac{4-s}{2(2s+1)(s-1)}}}{K^{\frac{1}{2s+1}}} \frac{1}{T}\right) \\ & = O\left(\frac{\kappa^5 \ell}{1-\lambda} \frac{\sigma^{\frac{4-s}{2s+1}}\sigma^{\frac{1}{2s+1}}}{K^{\frac{1}{2s+1}}} \frac{1}{T}\right). \end{aligned} \tag{125}$$

Because $s \in (1,2]$ and $\bar{x}_0 = x_0$, $\bar{y}_0 = y_0$, $\bar{z}_0 = z_0$, it is easy to verify that the following terms marked by blue are high-order terms compared to $\frac{1}{T^{\frac{s-1}{2s+1}}}$:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \leq \frac{\mathbb{E}[\Phi(x_0) - \Phi(x^*)]}{\eta_x T} + 2\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t) - \nabla \Phi_{\delta}(\bar{x}_t)\|]$$

$$+ \frac{1}{\delta} \frac{\mathbb{E}[h_{\delta}(x_0, y_0) - h_{\delta}^*(x_0)]}{\eta_x T} + \frac{1}{\delta} \frac{\mathbb{E}[g(x_0, z_0) - g^*(x_0)]}{\eta_x T}$$

$$+ O\left(\frac{1}{\delta} \frac{\gamma_x^{1-1/s}}{K^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_y^{1-1/s}}{K^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_z^{1-1/s}}{K^{1-1/s}} \sigma\right)$$

$$+ O\left(\frac{\eta_x}{\delta} \frac{\kappa^{\ell}}{K^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_y^{1-1/s}}{K^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_z^{1-1/s}}{K^{1-1/s}} \sigma\right)$$

$$+ O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_x}K} \frac{\kappa^{\ell}}{\delta}\right) + O\left(\frac{\eta_x}{(1-\lambda)\sqrt{\gamma_y}K} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x}{\delta} \frac{\kappa^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{1}{\delta} \frac{1}{\gamma_x T} \frac{1}{B_0^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{1}{\gamma_y T} \frac{1}{B_0^{1-1/s}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{1}{\gamma_z T} \frac{1}{B_0^{1-1/s}} \sigma\right)$$

$$+ O\left(\frac{1}{\delta} \frac{\gamma_x \lambda \sqrt{K}}{(1-\lambda)^{3/2}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_y \lambda \sqrt{K}}{(1-\lambda)^{3/2}} \sigma\right) + O\left(\frac{\kappa}{\delta} \frac{\gamma_z \lambda \sqrt{K}}{(1-\lambda)^{3/2}} \sigma\right)$$

$$+ O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_y \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{(1-\lambda)^{3/2}} \frac{\kappa^{\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_y \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\kappa}{\delta} \frac{\lambda}{(1-\lambda)^{3/2}} \frac{\lambda}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_y \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\kappa}{\delta} \frac{\lambda}{(1-\lambda)^{3/2}} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\lambda}{\delta} \frac{\lambda}{(1-\lambda)^{3/2}} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\kappa^{2\ell}}{\delta} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\kappa^{2\ell}}{\delta} \frac{\lambda^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\lambda}{\delta} \frac{\lambda}{(1-\lambda)^{3/2}} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\kappa^{2\ell}}{\delta} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\kappa^{2\ell}}{\delta} \frac{\lambda^{2\ell}}{\delta}\right)$$

$$+ O\left(\frac{\lambda}{\delta} \frac{\lambda}{(1-\lambda)^{3/2}} \frac{\lambda^{2\ell}}{\delta}\right) + O\left(\frac{\eta_x \sqrt{\gamma_x \lambda}}{\delta} \frac{\kappa^{2\ell}}{\delta}\right) + O\left(\frac{\kappa^{2\ell}}{\delta} \frac{\lambda^{2\ell}}{\delta}\right) + O\left($$

On the one hand, both $\frac{1}{\delta}\mathbb{E}[h_{\delta}(x_0,y_0)-h_{\delta}(x_0,y_{\delta}^*(x_0))]$ and $\frac{1}{\delta}\mathbb{E}[g(x_0,z_0)-g(x_0,y^*(x_0))]$ are affected by $\frac{1}{\delta}$, to avoid the degeneration of the convergence rate, we can provide good initial points (x_0,y_0) and (x_0,z_0) such that $\mathbb{E}[h_{\delta}(x_0,y_0)-h_{\delta}(x_0,y_{\delta}^*(x_0))] \leq \delta$ and $\mathbb{E}[g(x_0,z_0)-g(x_0,y^*(x_0))] \leq \delta$ can mitigate the adverse affect from $\frac{1}{\delta}$. Since both $h_{\delta}(x,y)$ and g(x,z) satisfy the μ -PL condition with respect to the second variable, we can use a gradient descent method to obtain such solutions, which has a linear convergence rate and therefore does not affect the other terms in Eq. (126). On the other hand, we have $\mathbb{E}[\|\nabla\Phi(\bar{x}_t)-\nabla\Phi_{\delta}(\bar{x}_t)\|] \leq O(\delta\ell\kappa^3) =$

$$O\left(\frac{1}{\kappa^3 \ell} \frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}} \ell \kappa^3\right) = O\left(\frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right). \text{ As a result, we can obtain}$$

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \Phi(\bar{x}_t)\|] \le O\left(\frac{\kappa^5 \ell}{1 - \lambda} \frac{\sigma^{\frac{4-s}{2(2s+1)(s-1)}}}{K^{\frac{1}{2s+1}} T^{\frac{1}{2s+1}}}\right) + O\left(\frac{1}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right) + O\left(\frac{\kappa^4 \ell \sigma^{\frac{2s-2}{2s+1}}}{K^{\frac{s-1}{2s+1}} T^{\frac{s-1}{2s+1}}}\right) + O\left(\frac{\ell \sigma^{\frac{2s}{2s+1}}}{K^{\frac{1}{2s+1}} T^{\frac{1}{2s+1}}}\right). \tag{127}$$