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ABSTRACT

Existing decentralized stochastic optimization methods assume the lower-level
loss function is strongly convex and the stochastic gradient noise has finite vari-
ance. These strong assumptions typically are not satisfied in real-world machine
learning models. To address these limitations, we develop a novel decentralized
stochastic bilevel optimization algorithm for the nonconvex bilevel optimization
problem under heavy-tailed noise. Specifically, we develop a normalized stochas-
tic variance-reduced bilevel gradient descent algorithm, which does not rely on
any clipping operation. Moreover, we establish its convergence rate by innova-
tively bounding interdependent gradient sequences under heavy-tailed noise for
nonconvex decentralized bilevel optimization problems. As far as we know, this
is the first decentralized bilevel optimization algorithm with rigorous theoretical
guarantees under heavy-tailed noise. The extensive experimental results confirm
the effectiveness of our algorithm in handling heavy-tailed noise.

1 INTRODUCTION

Stochastic bilevel optimization consists of two levels of optimization subproblems, where the upper-
level subproblem depends on the optimal solution of the lower-level subproblem. It has received a
surge of attention in recent years because it lays the optimization foundation for a series of machine
learning models, such as model-agnostic meta-learning (Finn et al., 2017), hyperparameter opti-
mization (Franceschi et al., 2018; Pedregosa, 2016), imbalanced data classification (Yang, 2022),
reinforcement learning (Shen et al., 2024; Li et al., 2024a), large language models (Shen et al., 2025;
Li et al., 2024b), etc. To facilitate stochastic bilevel optimization for distributed machine learning
models, where data are distributed across different workers, a series of decentralized stochastic
bilevel optimization algorithms have been developed in recent years. Specifically, in a decentralized
setting, each device computes stochastic gradients based on its local training data to update the vari-
ables of both the upper-level and lower-level subproblems, and then communicates these updates
with neighboring workers in a peer-to-peer manner.

Compared to traditional single-level optimization problems, a unique challenge in decentralized
stochastic bilevel optimization lies in computing the stochastic hypergradient, that is, the stochastic
gradient of the upper-level loss function with respect to its variable. This challenge is caused by the
unique characteristic of bilevel optimization: the upper-level subproblem relies on the optimal so-
lution of the lower-level subproblem, which requires the global Hessian inverse matrix. To address
this challenge, three categories of decentralized stochastic bilevel optimization algorithms (Yang
et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023; Kong et al., 2024; Zhu et al.,
2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024; Qin et al., 2025) have been devel-
oped. The first category, such as Yang et al. (2022b), uses the Neumann series expansion approach
to approximate the Hessian inverse on each device and then communicates it between workers, suf-
fering from high communication costs. The second category, such as Zhang et al. (2023); Zhu et al.
(2024), estimates the Hessian-inverse-vector product by solving an auxiliary quadratic optimization
problem with gradient descent on each device and then communicating this estimator, which helps
reduce communication costs. However, both the first and second categories incur significant compu-
tational overhead due to the need to compute second-order Hessian information. The third category,
such as Wang et al. (2024), addresses this challenge by reformulating the decentralized stochastic
bilevel problem as a single-level optimization problem and then solving it with only first-order gra-
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dients. By avoiding the computation of second-order gradients, this category significantly reduces
computational overhead.

However, existing decentralized stochastic bilevel optimization algorithms suffer from significant
limitations. First, these algorithms require the loss function of the lower-level subproblem to be
strongly convex. This strong assumption is not satisfied by most practical machine learning models,
such as deep neural networks, which are inherently nonconvex. Second, they assume the stochastic
noise in the gradient has finite variance. However, existing studies (Şimşekli et al., 2019; Zhang
et al., 2020) have demonstrated that this bounded variance assumption does not hold for the com-
monly used deep neural networks. In practice, the stochastic noise often follows a heavy-tailed
distribution. Hence, these practical scenarios make existing algorithmic designs and theoretical
foundations for decentralized bilevel optimization ineffective. It is therefore necessary to develop
new decentralized stochastic bilevel optimization algorithms that can accommodate a broader range
of machine learning models and provide solid theoretical guarantees. To this end, the goal of this
paper is to develop an efficient decentralized stochastic bilevel optimization algorithm for nonconvex
bilevel problems under heavy-tailed noise, with rigorous theoretical guarantees. Since the first-order
methods in the aforementioned third category offer low computational overhead and communication
costs, this paper focuses on the first-order method.

For standard single-level optimization problems in the single-machine setting, a commonly used
approach to handling heavy-tailed noise is Clipped SGD (Zhang et al., 2020), which mitigates the
effect of heavy-tailed noise by clipping the norm of the stochastic gradient below a predefined thresh-
old. Nevertheless, tuning the clipping threshold can be challenging. Recently, several works (Liu &
Zhou, 2025; Hübler et al., 2024; Sun et al., 2024) have shown that the gradient normalization tech-
nique is sufficient to guarantee the convergence of stochastic gradient descent in-expectation under
heavy-tailed noise without assuming bounded gradients. For instance, Hübler et al. (2024) proves
that the batched normalized SGD (batched-NSGD) can converge in-expectation for a smooth non-
convex minimization problem under heavy-tailed noise, while Sun et al. (2024) achieves a similar
conclusion for NSGD using a stronger assumption, the individual Lipschitz smoothness. Addition-
ally, Liu & Zhou (2025) established the in-expectation convergence rate of the batched normalized
stochastic gradient descent with momentum (batched-NSGDM) algorithm under heavy-tailed noise
by innovatively bounding the accumulated noise from an online learning perspective.

Since the aforementioned approaches focus solely on single-level optimization in a single-machine
setting, they are not applicable to decentralized stochastic bilevel optimization problems. In practice,
this setting presents several unique challenges, outlined as follows.

1. In bilevel optimization, multiple gradients interact with one another. Each of these gradi-
ents is affected by the heavy-tailed noise, which in turn impacts convergence. Therefore, it is
challenging to control all of them and establish a convergence rate under heavy-tailed noise.

2. In the decentralized setting, the consensus error with respect to gradients is also affected by
heavy-tailed noise. It remains unclear how to design algorithms and analyses that effectively
control this noise to ensure convergence.

3. The aforementioned first-order method for bilevel optimization requires advanced gradient es-
timators, such as the variance-reduced gradient, to avoid the quite slow convergence rate under
the finite variance assumption, as shown in Kwon et al. (2023a). However, no existing work
for both single-level and bilevel problems has demonstrated that the advanced gradient
estimator can ensure convergence under heavy-tailed noise without assuming bounded
gradients.

In summary, it is challenging to achieve a fast convergence rate for the first-order gradient-based de-
centralized bilevel optimization algorithm under heavy-tailed noise. To address these unique chal-
lenges, we develop a novel decentralized normalized stochastic gradient with variance reduction
algorithm to solve Eq. (1). This algorithm only requires normalized first order gradients, making
it more efficient and effective in handling heavy-tailed noise, which is lacking in existing second-
order-based methods. Importantly, our algorithm demonstrates when gradient normalization should
be applied in decentralized bilevel optimization. To the best of our knowledge, this is the first
algorithm capable of handling heavy-tailed noise in bilevel optimization. We further establish
the convergence rate of the developed algorithm under heavy-tailed noise. Specifically, to address
challenges arising from the interaction between gradients of different variables, we explicitly char-
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acterize their interdependence by innovatively handling the optimization subproblems associated
with each variable. In addition, we provide a novel analysis of the consensus errors related to these
gradients, which are also influenced by heavy-tailed noise. To the best of our knowledge, this is
the first work to bound interdependent gradient sequences under heavy-tailed noise in bilevel
optimization. Finally, the established convergence rate clearly illustrates how the properties of a
decentralized system influence overall convergence, and extensive experimental results validate the
effectiveness of the proposed algorithm in handling heavy-tailed noise.

2 RELATED WORK

2.1 DECENTRALIZED STOCHASTIC BILEVEL OPTIMIZATION

Decentralized stochastic bilevel optimization enables the decentralized optimization framework for
bilevel optimization problems. Due to the two-level characteristics of this problem, there are some
unique challenges for computation and communication compared to the decentralization of tradi-
tional single-level optimization problems. Specifically, the hypergradient on each worker relies
on the global Jacobian matrix and the inverse of the global Hessian matrix. Directly communi-
cating or computing them on each worker can result in a large communication and computation
overhead, such as Yang et al. (2022b); Chen et al. (2022a) in the aforementioned first category,
which communicates Jacobian or Hessian matrix in each iteration. To avoid this issue, Zhang et al.
(2023) developed the first single-loop decentralized algorithm, which computes and communicates
the Hessian-inverse-vector product to reduce both computation and communication overhead. This
approach has also been applied to the full gradient method (Dong et al., 2023), stochastic gradient
(Zhu et al., 2024), and the momentum-based method (Kong et al., 2024). However, these methods
require to compute the second-order Jacobian and Hessian matrix, which can incur large memory
and computation overhead for high-dimensional problems. To avoid computing second-order gradi-
ents, in the single-machine setting, Shen & Chen (2023); Kwon et al. (2023b;a); Chen et al. (2024)
propose converting the bilevel optimization problem into a single-level optimization problem via
the penalty approach and then only the first-order gradient is needed to solve it, which can save
computation overhead significantly. Based on this reformulation, Wang et al. (2024) developed a
decentralized first-order method, which only requires the standard stochastic gradient. Therefore,
its practical computational time is much smaller than the second-order gradient based method. How-
ever, Wang et al. (2024) still suffers from some limitations. On the one hand, it can only handle the
strongly-convex lower-level loss function, which is also a limitation of all aforementioned decen-
tralized methods (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023;
Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024). On
the other hand, Wang et al. (2024) suffers from a quite slow convergence rate, O(1/T 1/7), where T
is the number of iterations, while the first-order method Kwon et al. (2023a) in the single-machine
setting can achieve a convergence rate of O(1/T 1/5). Finally, it is worth noting that all existing
bilevel optimization methods, including both single-machine and decentralized settings, assume that
the stochastic noise in the gradient has finite variance. Therefore, these algorithms cannot handle
heavy-tailed noise.

2.2 STOCHASTIC OPTIMIZATION UNDER HEAVY-TAILED NOISE

Some recent works (Zhang et al., 2020) have shown that the finite variance assumption is too restric-
tive for modern machine learning models. In practice, commonly used deep neural networks, such as
image classification models (Simsekli et al., 2019; Battash et al., 2024) and attention-based models
(Zhang et al., 2020; Ahn et al., 2023), have stochastic gradients whose noise follows a heavy-tailed
distribution. This observation has sparked the recent interest (Zhang et al., 2020; Cutkosky & Mehta,
2021; Liu et al., 2023b; Nguyen et al., 2023; Liu et al., 2024; Liu & Zhou, 2025; Hübler et al., 2024;
Sun et al., 2024; Gorbunov et al., 2023) in the study of stochastic optimization under heavy-tailed
noise. For example, Zhang et al. (2020) established the in-expectation convergence rate of Clipped
SGD for strongly convex and nonconvex loss functions. As discussed earlier, Clipped SGD requires
a clipping threshold, which introduces more difficulties for tuning the optimizer. Therefore, some
recent efforts (Liu & Zhou, 2025; Hübler et al., 2024; Sun et al., 2024) have been made to get rid of
the clipping operation, while keeping the normalization operation. For example, Sun et al. (2024)
established the in-expectation convergence rate of normalized SGD based on a strong assumption
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of the individual Lipschitz smoothness. Hübler et al. (2024) also achieved this result without using
this strong assumption in the cost of a large batch size. However, extending the convergence rate of
normalized SGD to normalized SGD with momentum is not trivial. Sun et al. (2024) addressed this
problem by assuming a bounded stochastic gradient. Based on this assumption, Sun et al. (2024)
further established the in-expectation convergence rate of normalized SGD with variance reduction.
Nevertheless, such a strong assumption is easily violated in practice. Recently, Liu & Zhou (2025)
developed an innovative approach from the online learning perspective and successfully addressed
this issue, establishing the in-expectation convergence rate of normalized SGD without relying on
the bounded stochastic gradient assumption. However, it remains unclear whether the approach in
Liu & Zhou (2025) can be applied to the normalized SGD with variance reduction.

In the distributed setting, the heavy-tailed noise has been less studied, although Gürbüzbalaban et al.
(2024) has shown that noise in the decentralized setting tends to have heavier tails than in the cen-
tralized setting. Moreover, existing distributed methods for handling heavy-tailed noise (Sadiev
et al., 2023; Yang et al., 2022a; Lee et al., 2025) still rely on the gradient clipping technique. There-
fore, it remains unclear whether the gradient normalization technique without assuming bounded
gradients works in the decentralized setting. Furthermore, to the best of our knowledge, gradient
normalization without clipping has not yet been explored for decentralized bilevel optimization or
decentralized minimax optimization under heavy-tailed noise. Thus, it is important to fill this gap.

3 PROBLEM SETUP

3.1 PROBLEM DEFINITION

In this paper, we assume that there are K workers, indexed by k ∈ {1, 2, · · · ,K}, which form a
communication graph and perform peer-to-peer communication within it. These workers collabora-
tively optimize a nonconvex decentralized stochastic bilevel optimization problem, defined as:

min
x∈Rd1 ,y∈y∗(x)

1

K

K∑
k=1

f (k)(x, y) s.t. y∗(x) = arg min
y∈Rd2

1

K

K∑
k=1

g(k)(x, y) . (1)

In Eq. (1), f(x, y) = 1
K

∑K
k=1 f

(k)(x, y) is the global upper-level loss function, where f (k)(x, y) =

E[f (k)(x, y; ξ(k))] is the local one on the k-th worker and ξ(k) denotes random samples on that
worker. Additionally, g(x, y) = 1

K

∑K
k=1 g

(k)(x, y) is the global lower-level loss function, where
g(k)(x, y) = E[g(k)(x, y; ζ(k))] is the lower-level one on the k-th worker and ζ(k) represents the
corresponding random samples. Unlike existing decentralized bilevel optimization methods (Yang
et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang et al., 2023; Kong et al., 2024; Zhu et al.,
2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al., 2024), which assume that g(x, y) is
strongly convex with respect to y, we assume that g(x, y) is a nonconvex loss function with respect
to y, but satisfies the Polyak-Lojasiewicz (PL) condition with respect to y for any given x.

3.2 MINIMAX REFORMULATION

Because g(x, y) is nonconvex with respect to y, the second-order-based method, which relies on the
Hessian inverse with respect to y of g(x, y), is not applicable to Eq. (1). Hence, we employ the
first-order-based method to solve it. Specifically, Kwon et al. (2023a) shows that the lower-level
subproblem in Eq. (1) can be converted into a constraint: g(x, y) ≤ minz∈Rdy g(x, z), and then
it can be converted into a minimax optimization problem based on the penalty method, which is
defined as follows:

min
x∈Rd1 ,y∈Rd2

max
z∈Rd2

1

K

K∑
k=1

f (k)(x, y) +
1

δ

(
1

K

K∑
k=1

g(k)(x, y)− 1

K

K∑
k=1

g(k)(x, z)

)
, (2)

where δ > 0 denotes the penalty parameter. With this reformulation, we only need to compute the
first-order gradient with respect to x, y, and z to update them.

To solve Eq. (2) and measure its approximation for Eq. (1), we introduce the following functions:

Φ(x) = min
y∈y∗(x)

1

K

K∑
k=1

f (k)(x, y), Φδ(x) = min
y∈Rd2

max
z∈Rd2

1

δ

1

K

K∑
k=1

h
(k)
δ (x, y)− 1

δ

1

K

K∑
k=1

g(k)(x, z) , (3)
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where h(k)
δ (x, y) = δf (k)(x, y)+ g(k)(x, y) and hδ(x, y) =

1
K

∑K
k=1 h

(k)
δ (x, y). Chen et al. (2024)

shows that Φδ(x) can approximate Φ(x) well, including both their loss functions and gradients, by
controlling the penalty parameter δ, which is shown in Appendix C.1. Importantly, minx∈Rd1 Φδ(x)
is tractable compared to minx∈Rd1 Φ(x). With the minimax reformulation, in the single-machine
setting, Kwon et al. (2023a) shows that the convergence rate when using first-order stochastic gra-
dients is O(1/T 1/7) and can be improved to O(1/T 1/5) when using first-order stochastic variance-
reduced gradients. Note that this reformulation for nonconvex bilevel optimization cannot achieve
the O(1/T 1/3) convergence rate as the single-level method when using variance-reduced gradients.
In fact, it is still an open problem to achieve that convergence rate. The purpose of this paper is
not to bridge this gap. Instead, our goal is to design a decentralized algorithm to solve Eq. (2)
under heavy-tailed noise and then formally show how its solution solves Eq. (1). Note that there
are currently no decentralized minimax optimization methods capable of handling heavy-tailed noise
without gradient clipping. Moreover, due to the penalty term, establishing the convergence rate is
significantly more challenging than in existing single-level or standard minimax methods. There-
fore, solving Eq. (2) as a mean to solve Eq. (1) under heavy-tailed noise requires new algorithm
design and convergence analysis.

3.3 ASSUMPTIONS

To solve Eq. (1), we introduce some commonly used assumptions, which have been used in existing
nonconvex bilevel optimization methods, such as Kwon et al. (2024); Chen et al. (2024).

Assumption 3.1. Let z = (x, y) ∈ Rdx×Rdy , then the upper-level function f (k)(z) and lower-level
function g(k)(z) on the k-th worker, and the penalty function hδ(z) satisfy the following conditions:

1. For any z1 and z2, E[∥∇f (k)(z1; ξ)−∇f (k)(z2; ξ)∥] ≤ Lf∥z1−z2∥ where the constant Lf >

0; ∥∇2f
(k)(x, y)∥ ≤ Cf where the constant Cf > 0; E[∥∇2f (k)(z1; ξ) −∇2f (k)(z2; ξ)∥] ≤

ℓf∥z1 − z2∥ where the constant ℓf > 0.

2. For any z1 and z2, E[∥∇g(k)(z1; ζ) − ∇g(k)(z2; ζ)∥] ≤ Lg∥z1 − z2∥ where the constant
Lg > 0; E[∥∇2g(k)(z1; ξ)−∇2g(k)(z2; ξ)∥] ≤ ℓg∥z1 − z2∥ where the constant ℓg > 0.

3. g(x, y) satisfies the µ-PL with respect to y where the constant µ > 0; hδ(x, y) satisfies the
µ-PL with respect to y.

Assumption 3.2. (heavy-tailed noise) All first-order and second-order gradients are the unbiased
estimators for the corresponding deterministic gradients. Moreover, there exist s ∈ (1, 2] and σ > 0
such that E[∥∇f (k)(z; ξ) − ∇f (k)(z)∥s] ≤ σs and E[∥∇g(k)(z; ξ) − ∇g(k)(z)∥s] ≤ σs for any
z = (x, y) ∈ Rdx × Rdy .

Assumption 3.3. For the adjacency matrix E = [eij ] ∈ RK×K
+ of the communication graph,

eij > 0 indicates that the i-th worker and the j-th worker are connected. Otherwise, eij = 0. In
addition, Nk = {j|ekj > 0} denotes the neighboring workers of the k-th worker. Moreover, it
satisfies the following conditions:

1. ET = E, E1 = 1, 1TE = 1T , where 1 ∈ RK is the vector of all ones.

2. Its eigenvalues can be ordered by magnitude as: |λK | ≤ |λK−1| ≤ · · · ≤ |λ2| < |λ1| = 1.

By denoting λ = |λ2|, the spectral gap is 1− λ.

Notations. In this paper, we define ℓ = max{Lf , Lg, ℓf , ℓg}, denote the condition number by
κ = ℓ/µ, and represent the gradient with respect to the i-th variable with ∇i.

4 DECENTRALIZED NORMALIZED STOCHASTIC GRADIENT DESCENT
ASCENT WITH VARIANCE REDUCTION ALGORITHM

4.1 ALGORITHM DESIGN

To solve the reformulated Eq. (2), we developed a novel decentralized normalized stochastic gradi-
ent descent ascent with variance reduction (D-NSVRGDA) algorithm, which is presented in Algo-
rithm 1. Specifically, we use the normalized variance-reduced gradient to update three variables: x,
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Algorithm 1 D-NSVRGDA
Input: ηx > 0, ηy > 0, ηz > 0, γx > 0, γy > 0, γz > 0.

It>0 = 1 when t > 0. Otherwise, It>0 = 0. The batch size is B0 when t = 0. Otherwise, it is O(1).
Initialization on the k-th worker: x(k)

0 = x0, y(k)
0 = y0, z(k)0 = z0,

1: for t = 0, · · · , T − 1, the k-th worker do
2: Variance gradient estimators:

u
(k)
1,t = (1− γx)(u

(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t ))It>0 +∇1f

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t ),

u
(k)
2,t = (1− γx)(u

(k)
2,t−1 −∇1g

(k)(x
(k)
t−1, y

(k)
t−1; ζ

(k)
t ))It>0 +∇1g

(k)(x
(k)
t , y

(k)
t ; ζ

(k)
t ),

u
(k)
3,t = (1− γx)(u

(k)
3,t−1 −∇1g

(k)(x
(k)
t−1, z

(k)
t−1; ζ

(k)
t ))It>0 +∇1g

(k)(x
(k)
t , z

(k)
t ; ζ

(k)
t ),

v
(k)
1,t = (1− γy)(v

(k)
1,t−1 −∇2f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t ))It>0 +∇2f

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t ),

v
(k)
2,t = (1− γy)(v

(k)
2,t−1 −∇2g

(k)(x
(k)
t−1, y

(k)
t−1; ζ

(k)
t ))It>0 +∇2g

(k)(x
(k)
t , y

(k)
t ; ζ

(k)
t ),

w
(k)
1,t = (1− γz)(w

(k)
1,t−1 −∇2g

(k)(x
(k)
t−1, z

(k)
t−1; ζ

(k)
t ))It>0 +∇2g

(k)(x
(k)
t , z

(k)
t ; ζ

(k)
t ),

3: Combine gradient estimators together for each variable:
u
(k)
t = u

(k)
1,t + 1

δ
(u

(k)
2,t − u

(k)
3,t ), v

(k)
t = v

(k)
1,t + 1

δ
v
(k)
2,t , w

(k)
t = 1

δ
w

(k)
1,t ,

4: Gradient tracking:
p̃
(k)
t = (p

(k)
t−1 − u

(k)
t−1)It>0 + u

(k)
t , p

(k)
t =

∑
j∈Nk

ekj p̃
(j)
t ,

q̃
(k)
t = (q

(k)
t−1 − v

(k)
t−1)It>0 + v

(k)
t , q

(k)
t =

∑
j∈Nk

ekj q̃
(j)
t ,

r̃
(k)
t = (r

(k)
t−1 − w

(k)
t−1)It>0 + w

(k)
t , r

(k)
t =

∑
j∈Nk

ekj r̃
(j)
t ,

5: Updating:

x̃
(k)
t+1 = x

(k)
t − ηx

p
(k)
t

∥p(k)
t ∥

, x
(k)
t+1 =

∑
j∈Nk

ekj x̃
(j)
t+1 ,

ỹ
(k)
t+1 = y

(k)
t − ηy

q
(k)
t

∥q(k)
t ∥

, y
(k)
t+1 =

∑
j∈Nk

ekj ỹ
(j)
t+1 ,

z̃
(k)
t+1 = z

(k)
t − ηz

r
(k)
t

∥r(k)
t ∥

, z
(k)
t+1 =

∑
j∈Nk

ekj z̃
(j)
t+1 ,

6: end for

y, and z. More specifically, in Step 3 of Algorithm 1, we compute the variance-reduced gradient
estimator for three variables as follows:

u
(k)
t = u

(k)
1,t +

1

δ
(u

(k)
2,t − u

(k)
3,t ) , v

(k)
t = v

(k)
1,t +

1

δ
v
(k)
2,t , w

(k)
t =

1

δ
w

(k)
1,t , (4)

In Eq. (4), u(k)
1,t , u(k)

2,t , and u
(k)
3,t are the variance-reduced gradient estimator for ∇1f

(k)(x
(k)
t , y

(k)
t ),

∇1g
(k)(x

(k)
t , y

(k)
t ), and ∇1g

(k)(x
(k)
t , z

(k)
t ), respectively. Similarly, v

(k)
1,t and v

(k)
2,t esti-

mate ∇2f
(k)(x

(k)
t , y

(k)
t ), ∇2g

(k)(x
(k)
t , y

(k)
t ), respectively, while w

(k)
1,t is used to estimate

∇2g
(k)(x

(k)
t , z

(k)
t ). All these gradient estimators are computed using the STORM method (Cutkosky

& Orabona, 2019), as described in Step 2 of Algorithm 1, where γx ∈ (0, 1), γy ∈ (0, 1), and
γz ∈ (0, 1) are three hyperparameters.

Then, our algorithm uses the gradient tracking approach to communicate these gradient estimators,
which is shown in Step 4. For example, p(k)t =

∑
j∈Nk

ekj p̃
(j)
t represents the aggregation of gra-

dient estimators p̃
(j)
t from the neighboring workers Nk of the k-th worker. Finally, in Step 5, our

algorithm uses the normalized gradient estimator to update the variables. For example, the k-th
worker uses the normalized gradient estimator to update its local variable x and communicates the
updated variable x̃

(k)
t+1 as follows:

x̃
(k)
t+1 = x

(k)
t − ηx

p
(k)
t

∥p(k)t ∥
, x

(k)
t+1 =

∑
j∈Nk

ekj x̃
(j)
t+1 , (5)

where ηx > 0 denotes the learning rate for variable x, p
(k)
t

∥p(k)
t ∥

denotes the normalized gradient

estimator, and the second equation represents the aggregation of updated variables x̃
(j)
t+1 from the

neighboring workers Nk of the k-th worker. The other two variables are updated in the same way.

In Algorithm 1, we use only the normalized gradient estimator to update variables, without employ-
ing gradient clipping. To the best of our knowledge, this is the first decentralized algorithm for
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bilevel optimization under heavy-tailed noise that does not rely on gradient clipping. Further-
more, we believe that our algorithm can also be applied to standard minimax optimization under
heavy-tailed noise, for which a decentralized algorithm without gradient clipping is also lacking.

4.2 CONVERGENCE RATE

Based on Assumptions 3.1-3.3, we establish the theoretical convergence rate of Algorithm 1 in the
following theorem.

Theorem 4.1. Given Assumptions 3.1-3.3, by setting the coefficient as γx = γy = γz =

min

{
1, O

(
K

1
2s+1

T
2s

2s+1 σ
3s

(2s+1)(s−1)

)}
, the learning rate as ηx = O

(
1−λ
κ5ℓ

K
1

2s+1

T
2s

2s+1 σ
4−s

2(2s+1)(s−1)

)
, ηy =

ηx
4(δLf+Lg)

µ , ηz = ηx
4Lg

µ , the batch size in the first step as B0 = O

(
K

2s
2s+1T

2s
2s+1σ

s(4s−1)

(2s+1)(s−1)2

)
,

the batch size in other steps as O(1), and the penalty parameter as δ = O

(
1

κ3ℓ
1

K
s−1
2s+1 T

s−1
2s+1

)
, we

can obtain the following convergence rate for Algorithm 1:

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)∥] ≤ O

(
κ5ℓ

1− λ

σ
4−s

2(2s+1)(s−1)

K
1

2s+1T
1

2s+1

)
+O

(
1

K
s−1
2s+1T

s−1
2s+1

)

+O

(
κ4ℓσ

2s−2
2s+1

K
s−1
2s+1T

s−1
2s+1

)
+O

(
ℓσ

2
2s+1

K
1

2s+1T
1

2s+1

)
. (6)

From Theorem 4.1, we can obtain the following conclusions.

1. Because s ∈ (1, 2], the convergence rate is dominated by O
(

1

K
s−1
2s+1 T

s−1
2s+1

)
in terms of the

number of ierations T . On the one hand, the spectral gap 1−λ affects only the high-order term
of the convergence rate. On the other hand, the factor K

s−1
2s+1 in the dominated term indicates

the linear speed up with respect to the number of workers. To the best of our knowledge, this
is the first work achieving the linear speed up convergence rate for nonconvex decentralized
bilevel optimization under heavy-tailed noise.

2. The convergence rate in Theorem 4.1 can recover the finite-variance setting. Specifically, when
s = 2, K = 1, and not considering other factors, our convergence rate is O

(
1

T
1
5

)
, which is

same as the convergence rate in the single-machine setting in Kwon et al. (2023a).

4.3 PROOF SKETCH

Establishing the convergence rate for Algorithm 1 is significantly more challenging than for existing
methods (Liu & Zhou, 2025; Hübler et al., 2024) that address single-level problems in a single-
machine setting. The main difficulties arise from: 1) the interaction between gradients with
respect to three variables due to the bilevel structure, and 2) the consensus error introduced
by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed
noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization
methods that rely on the finite variance assumption. In Appendix B, we provide a proof sketch
to demonstrate how these challenges are addressed. In Appendix C, we provide the detailed
proof of Theorem 4.1.

5 EXPERIMENT

In our experiments, we evaluate our algorithm on two machine learning applications: hyperparam-
eter optimization and model pruning. Due to space constraints, we present only the results on two
synthetic datasets related to hyperparameter optimization here. Additional experimental results on
real-world datasets for both hyperparameter optimization and model pruning are provided in
Appendix A.
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5.1 HYPERPARAMETER OPTIMIZATION

To validate the performance of D-NSVRGDA, we consider a nonconvex hyperparameter optimiza-
tion problem, with the corresponding loss function defined in Eq. (7). Specifically, in the lower-level
optimization subproblem, we optimize the weights of a two-layer fully connected neural network.
Although this is a nonconvex optimization problem, existing work has shown that it can satisfy the
Polyak-Łojasiewicz (PL) condition under the overparameterized regime. In the upper-level opti-
mization subproblem, we optimize the hyperparameters that are used to regularize the neural net-
work weights. Formally, it is defined as below:

min
x={x1,x2}

1

K

K∑
k=1

L(k)(y∗(x);D(k)
vl )

s.t. y∗(x) = arg min
y={y1,y2}

1

K

K∑
k=1

L(k)(y;D(k)
tr ) +R1(x) +R2(x) ,

(7)

where y1 = [y1,pq] ∈ Rd1×d2 is the weight of the first layer, y2 = [y2,pq] ∈ Rd2×d3 is
the weight of the second layer, x1 = [x1,q] ∈ Rd2 and x2 = [x2,q] ∈ Rd3 are hyperpa-
rameters for the regularization term: R1(x) = 1

d2

∑d2

q=1 exp(x1,q)
1
d1

∑d1

p=1 y
2
1,pq and R2(x) =

1
d3

∑d3

q=1 exp(x2,q)
1
d2

∑d2

p=1 y
2
2,pq . In our experiments, d1 is set to the number of input features, d2

is set to 20, and d3 is set to 1 for binary classification.

5.1.1 SYNTHETIC DATASET I

We use a synthetic dataset to allow full control over the heavy-tailed noise. Specifically, we generate
a binary classification training dataset via y = sgn(Xw + αξ), where X ∈ R10,000×100 is drawn
from a standard Gaussian distribution, w ∈ R100 is also drawn from a standard Gaussian distribution,
the noise ξ ∈ R10,000 is drawn from a heavy-tailed Cauchy distribution, and α > 0 is a scalar for
controlling the contribution of heavy-tailed noise. These training samples are evenly distributed to
eight workers. We then use the same approach to generate the validation and testing set that have
the same number of samples.

Since all existing decentralized bilevel optimization algorithms require a strongly convex lower-
level loss function, there are no baseline methods applicable to the nonconvex bilevel optimization
problem in Eq. (7). Therefore, in our experiment, we primarily investigate the effect of gradient
normalization in handling heavy-tailed noise. Specifically, we remove the normalization step in
Algorithm 1 to create its variant, denoted as D-SVRGDA. In addition, we incorporate gradient clip-
ping into D-SVRGDA to obtain the second baseline method, D-SVRGDA-Clip. We then compare
the performance of D-NSVRGDA with that of D-SVRGDA and D-SVRGDA-Clip. For all algo-
rithms, we use identical hyperparameters. In detail, the learning rate is set to 0.001, the coefficient
for momentum is set to 0.9, and the penalty parameter is set to 0.3. As for D-SVRGDA-Clip, we
use different clipping threshold to fully demonstrate its performance. Additionally, there are eight
workers, which are connected into a LINE graph. The batch size on each worker is set to 32.

Moreover, we compare our algorithm with methods developed for nonconvex bilevel problems in
the single-machine setting under the bounded-variance assumption: F2BSA (Kwon et al., 2023a).
We consider both single-loop and double-loop variants of F2BSA under the decentralized setting.
For the double-loop approach, the inner-loop iterations are set to one, five, and ten, which we denote
as D-F2BSA-1, D-F2BSA-5, and D-F2BSA-10, respectively. For the single-loop approach, which
also uses STORM variance reduction technique, we denote it by D-F2BSA-VR. The learning rates
of these baselines are set according to Corollaries 5.2 and 5.5 of Kwon et al. (2023a).

Figure 1 shows the upper-level loss function value and the test accuracy of all methods on dif-
ferent datasets that are generated with different levels of heavy-tailed noise. In detail, we use
α = {0.2, 0.1, 0.05} for generating three datasets. Both the loss function value and the test accuracy
in Figure 1 confirm the effectiveness of our algorithm D-NSVRGDA in accommodating different
levels of heavy-tailed noise compared to D-SVRGDA. In addition, we can find that D-SVRGDA-
Clip is heavily affected by the clipping threshold τ . Therefore, D-SVRGDA-Clip is much more dif-
ficult to tune than our method. Furthermore, the double-loop approach (D-F2BSA) depends heavily
on the number of inner-loop iterations; increasing it may improve performance but incurs substantial
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computational overhead. Though the single-loop approach with variance reduction (D-F2BSA-VR)
performs better than the other baselines, it still remains inferior to our method.
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Figure 1: The upper-level loss function value and test accuracy on different datasets that are gener-
ated with different levels of heavy-tailed noise. (Add new baselines: different variants of D-F2BSA)
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(a) Loss
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Figure 2: The upper-level loss function value and test accuracy on the second synthetic dataset.
(Add new baselines: different variants of D-F2BSA)

5.1.2 SYNTHETIC DATASET II

In this experiment, we introduce a new synthetic dataset to simulate heavy-tailed noise in language
data. Specifically, in natural language, some words appear much more frequently than others, which
actually follow a heavy-tailed distribution. To simulate this phenomenon, we split features into the
common and rare features. Specifically, following Lee et al. (2025), we assume 10% features are the
common ones, Xcommon, which are drawn from a Bernoulli distribution with the probability being
0.9, and 90% are the rare ones, Xrare, which are drawn from a Bernoulli distribution with probability
0.1. Then, the generated samples are represented by X = [Xcommon, Xrare]. Then, we use the same
method to generate w, ξ, and y as the first synthetic dataset, where α is 0.1. Moreover, the total
number of features is 100, and the number of samples in the training, validation, and testing sets is
10,000. The other settings are the same as those of the first synthetic dataset. Figure 2 shows the
upper-level loss function value and the test accuracy of all methods. Both the loss function value
and the test accuracy in Figure 2 further confirm the effectiveness of our algorithm D-NSVRGDA
in accommodating heavy-tailed noise compared to other baselines.
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6 CONCLUSION

Heavy-tailed noise is common in practical machine learning models, yet it has not been studied in
the context of decentralized bilevel optimization. To bridge this gap, our paper developed the first de-
centralized bilevel optimization algorithm to handle heavy-tailed noise in machine learning models
that can be formulated as the bilevel optimization problem. Moreover, our paper provided ta theo-
retical convergence rate for our algorithm under heavy-tailed noise. To the best of our knowledge,
this is the first theoretical result for nonconvex decentralized bilevel optimization under heavy-tailed
noise. Finally, the extensive experiments validate the effectiveness of the proposed algorithm in
handling heavy-tailed noise.

Ethics statement This work complies with the ICLR Code of Ethics. It does not involve human
subjects or personal data, and all datasets used are publicly available benchmarks. The research
is primarily algorithmic and theoretical and does not pose foreseeable risks to fairness, privacy, or
security.

Reproducibility statement We provide the problem setup and assumptions in Section 3, the algo-
rithm design and theoretical analyses in Section 4. A proof sketch and the main proof are included
in Appendix B- C. Experimental details are given in Section 5 and Appendix A. The full source code
will be released upon acceptance.
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A MORE EXPERIMENTS

A.1 HYPERPARAMETER OPTIMIZATION ON REAL-WORLD DATASETS

In this experiment, we evaluate the performance of D-NSVRGDA on three real-world datasets: a9a,
covtype, and IMDB, all of which are available from LIBSVM 1. The experimental settings, including
the communication graph, the batch size, the learning rate, and the penalty parameter, are the same
as those in the first two experiments.

Figure 3 shows the upper-level loss function value and the test accuracy of D-NSVRGDA and other
baselines on three real-world datasets. Similar to the first two experiments, both the loss func-
tion value and the test accuracy in Figure 3 further confirm the effectiveness of our algorithm D-
NSVRGDA. In particular, IMDB is a text dataset whose features naturally follow a heavy-tailed
distribution, and our algorithm demonstrates significant improvement over the baseline.
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Figure 3: The upper-level loss function value and test accuracy on real-world datasets for hyperpa-
rameter optimization task. (Add new baselines: different variants of D-F2BSA)

In addition, we provide further experiments under different communication graphs (Figure 4) and
different hyperparameter settings (Figure 5). Figure 4 shows that our algorithm consistently outper-
forms the baselines across different graph topologies. Figure 5 demonstrates that the convergence
rate improves with a larger learning rate and a smaller penalty parameter δ.
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Figure 4: The upper-level loss function value and test accuracy under different graphs on a9a dataset.

A.2 HYPERPARAMETER OPTIMIZATION ON NONCONVEX-STRONGLY-CONVEX BILEVEL
OPTIMIZATION PROBLEM

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Figure 5: The upper-level loss function value and test accuracy under different hyperparameters on
a9a dataset.

To provide a more comprehensive comparison with existing decentralized bilevel baselines, we
further conduct experiments on a hyperparameter optimization task under a nonconvex–strongly-
convex bilevel formulation. Specifically, we focus on the hyperparameter optimization task, where
the classifier is a logistic regression model. Then, the lower-level optimization problem is to learn
the weight of the logistic regression model, and the upper-level optimization problem is to learn
the coefficient of the regularization term like Eq. (7). Since strong convexity implies the PL con-
dition, our method can be directly applied in this setting. In addition to our variant with gradient
clipping, we compare against the following representative baselines: DSBO (Chen et al., 2022a),
MA-DSBO (Chen et al., 2022b), Gossip-DSBO (Yang et al., 2022b), VRDBO (Gao et al., 2023),
DSVRBGD (Zhang et al., 2023), and DSGDA-GT (Wang et al., 2024). Note that all of these meth-
ods rely on second-order information for updates, except DSGDA-GT, which is fully first-order. In
our experiments, we set the learning rate of these baseline methods according to their theoretical
results in the original paper.

From Figure 6, we can clearly observe that our algorithm, which relies only on first-order variance-
reduced gradient updates, requires substantially less time to converge compared with methods that
depend on second-order Jacobians or Hessians. Although DSGDA-GT also uses fully first-order in-
formation, its high complexity of O(ϵ−7) leads to significantly slower convergence, offering limited
practical advantage.
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(b) Test Accuracy

Figure 6: The upper-level loss function value and test accuracy for the nonconvex-strongly-convex
bilevel problem with respect to the time consumed (seconds) on a9a dataset.

A.3 MODEL PRUNING

In this experiment, we verify the performance of our algorithm on the model pruning task. Following
Zhang et al. (2022), model pruning can be formulated as a bilevel optimization problem. Formally,
in the decentralized setting, its loss function is defined as follows:

min
x

1

K

K∑
k=1

L(k)(x⊙ y∗(x))

s.t. y∗(x) = argmin
y

1

K

K∑
k=1

L(k)(x⊙ y) , (8)

where y ∈ Rd denotes the parameter of a deep neural network, and x ∈ {0, 1}d is a binary mask,
where 0 indicates pruning the corresponding neuron. Since Liu et al. (2022a) shows that optimizing
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an overparameterized deep neural network satisfies the PL condition, the model pruning problem
satisfies the nonconvex-PL assumption when pruning a deep neural network. In this experiment,
we use the same neural network architecture as in the first three experiments and keep the other
experimental settings unchanged. For the pruning rate, we prune 80% of the neurons.

Figure 7 shows the upper-level loss value and test accuracy of D-NSVRGDA and other baselines on
the model pruning task defined in Eq. (8). We also evaluate D-SVRGDA-Clip under different clip-
ping threshold values. From the figure, we observe that our algorithm, D-NSVRGDA, consistently
outperforms the baseline methods in terms of both the loss value and test accuracy. This further
confirms the effectiveness of our algorithm in handling heavy-tailed noise in new applications.
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Figure 7: The upper-level loss function value and test accuracy on real-world datasets for model
pruning task. (Add new baselines: different variants of D-F2BSA)

A.4 MODEL PRUNING FOR RNN
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(b) Test AUC

Figure 8: The upper-level loss function value and test AUC score in the RNN pruning task.

In this section, we add an additional experiment to further verify the performance of our algorithm
on more complicated applications. Specifically, we consider the model pruning task in Eq. (8) for
the text classification application using a recurrent neural network, as the language data typically
incurs the heavy-tailed noise. In detail, we use Sentiment140 dataset (Go et al., 2009) and use a
two-layer recurrent neural network as the classifier where the embedding size is 300 and the number
of hidden neurons is 128. Then, in the lower-level optimization problem, we learn the weight of the
recurrent neural network in the lower-level optimization problem, while learning the pruning mask
in the upper-level optimization problem. In this experiment, we use the same experimental settings
for all methods as the last experiment regarding MLP pruning.
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Figure 8 shows the upper-level loss function value and test AUC (area-under-the-curve) score of
D-NSVRGDA and all baselines on the RNN pruning task. Similar to the MLP pruning task, our
algorithm, D-NSVRGDA, consistently outperforms all baseline methods in terms of both the loss
value and test accuracy for the RNN pruning task. This further confirms the effectiveness of our
algorithm in handling heavy-tailed noise in large-scale real-world applications.
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B PROOF SKETCH

Establishing the convergence rate for Algorithm 1 is significantly more challenging than for existing
methods (Liu & Zhou, 2025; Hübler et al., 2024) that address single-level problems in a single-
machine setting. The main difficulties arise from: 1) the interaction between gradients with
respect to three variables due to the bilevel structure, and 2) the consensus error introduced
by the decentralized setting. On the other hand, both challenges are compounded by heavy-tailed
noise, which makes the analysis more difficult than that in existing decentralized bilevel optimization
methods that rely on the finite variance assumption.

B.1 NOVELTY OF OUR CONVERGENCE ANALYSIS

Here, we highlight the novelty of our convergence analysis in handling the unique challenges
caused by the heavy-tailed noise for the decentralized bilevel optimization. Specifically, bounding
E[||∇Φ(x̄t)||] is quite challenging in the presence of heavy-tailed noise for nonconvex bilevel opti-
mization. The reason is that its upper bound relies on the optimization errors regarding y and
z, and the update of y and z relies on normalized gradient estimators to handle heavy-tailed
noise.

B.1.1 NOVELTY OVER METHODS WITH BOUNDED VARIANCE

When there does not exist heavy-tailed noise, the commonly used approach (Kwon et al., 2023a) for
handling the optimization errors regarding y and z is to bound ||ȳt − y∗δ (x̄t)||2 and ||z̄t − y∗(x̄t)||2.
However, this approach does NOT work for the normalized gradient estimator. The reason
is that it requires the standard stochastic gradient estimator without normalization and re-
quires strong convexity. Specifically, the second to last step in Lemma C.1 of Kwon et al. (2023a)
holds only for the original gradient and strong convexity. As a result, Lemma C.1 of Kwon et al.
(2023a) cannot handle the normalized gradient estimator in our algorithm. For example, if us-
ing Lemma C.1 of Kwon et al. (2023a) to bound ||z̄t+1 − y∗(x̄t+1)||2, it is incapable of handling

||z̄t − ηz
1
K

∑K
k=1

r
(k)
t

||r(k)
t ||

− y∗(x̄t+1)||2 in the presence of the normalized gradient and the ab-
sence of strong convexity.

In our proof, we proposed a novel approach to handle the normalized gradient estimator when bound-
ing the optimization errors regarding y and z. Generally speaking, we bound optimization errors
regarding y and z from the perspective of function values, instead of variables. Specifically,
as shown in Lemma B.1, we proposed bounding E[||∇2hδ(x̄t, ȳt)||] and E[||∇2g(x̄t, z̄t)||], instead
of ||ȳt − y∗δ (x̄t)|| and ||z̄t − y∗(x̄t)||. For example, to bound E[||∇2hδ(x̄t, ȳt)||], we study the
evolvement of the function values: hδ(x̄t+1, ȳt+1) and h∗

δ(x̄t+1). In particular, by upper bounding
hδ(x̄t+1, ȳt+1) − hδ(x̄t, ȳt) and h∗

δ(x̄t) − h∗
δ(x̄t+1), where the normalized gradient estimator is

much easier to handle and the strong convexity is NOT required, we can obtain the upper bound of
E[||∇2hδ(x̄t, ȳt)||] in Lemma C.8. Similarly, we bound E[||∇2g(x̄t, z̄t)||] in Lemma C.7. As such,
we can successfully address the challenge about the optimization error with respect to y and z.

B.1.2 NOVELTY OVER METHODS FOR SINGLE-LEVEL OPTIMIZATION

The single-level optimization method for heavy-tailed noise, such as Liu & Zhou (2025), cannot
handle the interaction among three variables in our bilevel optimization problems. For exam-
ple, when bounding E[||∇2hδ(x̄t, ȳt)||] in Lemma C.8, we need to handle the interaction between x
and y. The existing single-level approaches (Liu & Zhou, 2025) are NOT capable of handling this
interaction.

In our proof, we develop a novel approach to handle the interaction between two variables when
bounding E[||∇2hδ(x̄t, ȳt)||] and E[||∇2g(x̄t, z̄t)||]. For example, we use three steps to address this
interaction when bounding E[||∇2hδ(x̄t, ȳt)||] in Lemma C.8, which is shown below:

• First, we figure out how the update of y affects the evolvement of the function value
hδ(x̄t+1, ȳt+1), i.e., studying hδ(x̄t+1, ȳt+1)− hδ(x̄t+1, ȳt).

• Second, we study how the update of x affects the evolvement of the function value
hδ(x̄t+1, ȳt), i.e., bounding hδ(x̄t+1, ȳt)− hδ(x̄t, ȳt).
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• Third, we investigate how the update of x affects the evolvement of h∗
δ(x̄t+1), i.e., bounding

h∗
δ(x̄t)− h∗

δ(x̄t+1).

Finally, by combining these three upper bounds to obtain the upper bound of hδ(x̄t+1, ȳt+1) −
h∗
δ(x̄t+1), this can provide the upper bound of the optimization error regarding y, i.e., bounding

E[||∇2hδ(x̄t, ȳt)||]. With such a novel approach, we can successfully address the challenge caused
by the interaction between three variables.

In summary, our proof is novel and has addressed unique challenges caused by the heavy-tailed noise
for nonconvex decentralized bilevel optimization. To the best of our knowledge, this is the first paper
proposing this technique to handle the heavy-tailed noise for nonconvex bilevel optimization.

B.2 SOLUTION FOR THE FIRST CHALLENGE

First Step: Given that the gradients with respect to three variables interact with each other, we first
disclose how they interact with each other in Lemma B.1.
Lemma B.1. Given Assumption 3.1, we can obtain

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)∥] ≤
E[Φ(x̄0)]− E[Φ(x̄T )]

T
+ 2

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥]︸ ︷︷ ︸
Approximation Error caused by the minimax reformulation

+
2(δLf + Lg)

µ

1

δ

1

T

T−1∑
t=0

E[∥∇2hδ(x̄t, ȳt)∥]︸ ︷︷ ︸
Gradient regarding y

+
2Lg

µ

1

δ

1

T

T−1∑
t=0

E[∥∇2g(x̄t, z̄t)∥]︸ ︷︷ ︸
Gradient regarding z

+
ηxLΦ

2

+ Gradient Errors + Consensus Errors . (9)

Here, Gradient Errors include 2 1
T

∑T−1
t=0 E[∥ 1

K

∑K
k=1 ∇1f

(k)(x
(k)
t , y

(k)
t ) −

1
K

∑K
k=1 u

(k)
1,t ∥], 2 1

δ
1
T

∑T−1
t=0 E[∥ 1

K

∑K
k=1 ∇1g

(k)(x
(k)
t , y

(k)
t ) − 1

K

∑K
k=1 u

(k)
2,t ∥], and

2 1
δ

1
T

∑T−1
t=0 E[∥ 1

K

∑K
k=1 ∇1g

(k)(x
(k)
t , z

(k)
t ) − 1

K

∑K
k=1 u

(k)
3,t ∥]. Consensus Errors include:

2(Lf +
2Lg

δ ) 1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥x

(k)
t − x̄t∥], 2(Lf +

Lg

δ ) 1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥y

(k)
t − ȳt∥],

2
Lg

δ
1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥z

(k)
t − z̄t∥], and 1

T

∑T−1
t=0

1
K

∑K
k=1 E[∥p̄t − p

(k)
t ∥], where the first three

terms are the consensus error with respect to variables, while the last is about the gradient.

Lemma B.1 discloses that the gradient E[∥∇Φ(x̄t)∥] regarding x is influenced by E[∥∇2hδ(x̄t, ȳt)∥]
regarding y and E[∥∇2g(x̄t, z̄t)∥] regarding z. Meanwhile, Lemma B.1 reveals that the gradient
E[∥∇Φ(x̄t)∥] is also affected by the consensus errors regarding both variables and gradients. After
revealing this explicit interaction, the remainder of the proof boils down to bounding each factor.

Second Step: After revealing the explicit interaction between three gradients, our next step is to
bound E[∥∇2hδ(x̄t, ȳt)∥] with respect to y and E[∥∇2g(x̄t, z̄t)∥] regarding z, so that E[∥∇Φ(x̄t)∥]
can be bounded. However, this is challenging because E[∥∇2hδ(x̄t, ȳt)∥] is affected by the up-
date of two variables simultaneously (the same applies to E[∥∇2g(x̄t, z̄t)∥]), and is thus affected
by two normalized variance-reduced gradients. In our proof, we innovatively handle those nor-
malized variance-reduced gradients and establish the following lemma.
Lemma B.2. Given Assumption 3.1 and ηx ≤ ηy

µ
2(δLf+Lg)

, we can obtain that

1

δ

1

T

T−1∑
t=0

E[∥∇2hδ(x̄t, ȳt)∥] ≤
2( 1δE[hδ(x̄0, ȳ0)− h∗

δ(x̄0)]− 1
δE[hδ(x̄T , ȳT )− h∗

δ(x̄T )])

ηyT

+
1

δ
2ηx(δLf + Lg) +

1

δ
ηy(δLf + Lg) +

1

δ

η2x(δLf + Lg)

ηy
+

1

δ

η2xLh∗
δ

ηy

+ Gradient Errors + Consensus Errors . (10)

Here, h∗
δ(x) = hδ(x, y

∗(x)) where y∗(x) = argminy hδ(x, y). Gradient Er-
rors include: 4 1

T

∑T−1
t=0 E[∥ 1

K

∑K
k=1 ∇2f

(k)(x
(k)
t , y

(k)
t ) − 1

K

∑K
k=1 v

(k)
1,t ∥] and

4 1
δ

1
T

∑T−1
t=0 E[∥ 1

K

∑K
k=1 ∇2g

(k)(x
(k)
t , y

(k)
t ) − 1

K

∑K
k=1 v

(k)
2,t ∥]. Consensus Errors include:
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4
(
Lf +

Lg

δ

)
1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥x̄t − x

(k)
t ∥], 4

(
Lf +

Lg

δ

)
1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥ȳt − y

(k)
t ∥],

and 2 1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥q̄t − q

(k)
t ∥].

Lemma B.2 shows that E[∥∇2hδ(x̄t, ȳt)∥] is only affected by Gradient Errors, Consensus Errors,
and some other terms that are not explicitly related to E[∥∇2g(x̄t, z̄t)∥] and E[∥∇Φ(x̄t)∥]. There-
fore, we only need to provide the upper bound of Gradient Errors and Consensus Errors in order
to bound E[∥∇2hδ(x̄t, ȳt)∥]. Similarly, we can bound E[∥∇2g(x̄t, z̄t)∥] as Lemma B.2, which is
deferred to Lemma C.7 in Appendix C.2 due to space limitation.

Summarization. First, it is worth noting that our proof is fundamentally different from existing
decentralized bilevel optimization (Yang et al., 2022b; Gao et al., 2023; Chen et al., 2022a;b; Zhang
et al., 2023; Kong et al., 2024; Zhu et al., 2024; Lu et al., 2022; Liu et al., 2022b; 2023a; Wang et al.,
2024) or decentralized minimax optimization (Xian et al., 2021; Zhang et al., 2024; Huang & Chen,
2023) that rely on the finite-variance assumption. For example, the upper bound for E[∥∇Φ(x̄t)∥]
in those methods has a term with regard to σ2, which could be infinity under heavy-tailed noise. On
the contrary, our upper bound does not have this kind of terms. In fact, this is the first work showing
how to handle the normalized variance-reduced gradient and heavy-tailed noise for decentralized
bilevel optimization. Second, from Lemmas B.1, B.2, C.7, we can observe that they all are affected
by Gradient Errors and Consensus Errors. Then, we need to bound them under heavy-tailed
noise.

B.3 SOLUTION FOR THE SECOND CHALLENGE

First Step. Since the consensus error regarding gradients involves the gradient estimator, e.g.,
u
(k)
1,t , it can be influenced by both stochastic noises and gradient errors. For example, Eq. (93) in

Appendix C.5 shows that the consensus error regarding the gradient, E[∥p(k)t − p̄t∥], is influenced by
stochastic noises, e.g., E[∥∇1f

(k)(x
(k)
j−1, y

(k)
j−1) − ∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )∥], and gradient errors,

e.g., E[∥u(k)
1,j−1 − ∇1f

(k)(x
(k)
j−1, y

(k)
j−1)∥]. Then, our fist step for this challenge is to establish the

upper bound for Gradient Errors. For example, in Lemma B.3, we establish the upper bound for
the Gradient Error, E[∥u(k)

1,t −∇1f
(k)(x

(k)
t , y

(k)
t )∥].

Lemma B.3. Given Assumptions 3.1-3.3, we can obtain

K∑
k=1

E[∥u(k)
1,t −∇1f

(k)(x
(k)
t , y

(k)
t )∥] ≤ (1− γx)

t 2
√
2

B
1−1/s
0

σK +
4ηxLf

(1− λ)
√
γx

√
K

+
4ηyLf

(1− λ)
√
γx

√
K + 2

√
2γ1−1/s

x σK . (11)

Note that bounding gradient errors requires addressing the communication step. Lemma B.3 demon-
strates the influence of the spectral gap 1− λ on this bound, which differs from the single-machine
setting. Similarly, we established other Gradient Errors in Lemmas C.17- C.21 in Appendix C.4.

Second Step. The second step is to bound the consensus error regarding gradients in
terms of Gradient Errors. For example, in Lemma B.4, we provide the upper bound for
1
T

∑T−1
t=0

1
K

∑K
k=1 E[∥p

(k)
t − p̄t∥], demonstrating how the heavy-tailed noise (σ), hyperparameters

(ηx, ηy , ηz , γx), penalty parameter (δ), and spectral gap (1− λ) affect this upper bound.

Lemma B.4. Given Assumptions 3.1-3.3, we can obtain

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥p(k)t − p̄t∥] ≤
2λ

(1− λ)T

1√
K

K∑
k=1

E[∥∇1f
(k)(x

(k)
0 , y

(k)
0 )∥]

+
2λ

(1− λ)T

1

δ

1√
K

K∑
k=1

E[∥∇1g
(k)(x

(k)
0 , y

(k)
0 )∥] + 2λ

(1− λ)T

1

δ

1√
K

K∑
k=1

E[∥∇1g
(k)(x

(k)
0 , z

(k)
0 )∥]

+
λ

(1− λ)T

4
√
2
√
K

B
1−1/s
0

(
1 +

2

δ

)
σ +

γxλ
√
Kσ

(1− λ)3/2

(
1 +

2

δ

)
+

4ηxλ
√
K

(1− λ)5/2

(
Lf +

2Lg

δ

)
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+
4ηyλ

√
K

(1− λ)5/2

(
Lf +

Lg

δ

)
+

4ηzλ
√
K

(1− λ)5/2
Lg

δ
+

λ
√
K

T (1− λ)3/2
2
√
2σ

B
1−1/s
0

(
1 +

2

δ

)

+
2
√
2γ

2−1/s
x λ

√
K

(1− λ)3/2
σ

(
1 +

2

δ

)
+

4ηx
√
γxλ

(1− λ)5/2

(
Lf +

2Lg

δ

)
+

4ηy
√
γxλ

(1− λ)5/2

(
Lf +

2Lg

δ

)
.

(12)

Similarly, we established the upper bounds for other consensus errors regarding gradients in Lem-
mas C.30, C.31 in Appendix C.5.

After obtaining the upper bounds for the gradients, E[∥∇2hδ(x̄t, ȳt)∥] and E[∥∇2g(x̄t, z̄t)∥], the
upper bounds for Consensus Errors, and the upper bounds for Gradient Errors, we plug them
into Lemma B.1, we can finally obtain the convergence rate of Algorithm 1 in Theorem 4.1.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C MAIN PROOF

This section is organized as follows:

1. Appendix C.1: Supporting Terminologies and Lemmas
2. Appendix C.2: Characterizing Interdependence between Gradients
3. Appendix C.3: Bounding Consecutive Updates
4. Appendix C.4: Bounding Gradient Errors
5. Appendix C.5: Bounding Consensus Errors
6. Appendix C.6: Proof of Theorem 4.1

The proof of Theorem 4.1 follows the structure presented in Section B. Specifically, we first char-
acterize the interdependence between different gradients in Appendix C.2 and then bound Gradient
Errors in Appendix C.4 and Consensus Errors in Appendix C.5. Based on them, we prove Theo-
rem 4.1 in Appendix C.6.

C.1 SUPPORTING TERMINOLOGIES AND LEMMAS

We define the following terminologies for convergence analysis:

Xt = [x
(1)
t , x

(2)
t , · · · , x(K)

t ] , Yt = [y
(1)
t , y

(2)
t , · · · , y(K)

t ] , Zt = [z
(1)
t , z

(2)
t , · · · , z(K)

t ] ,

Pt = [p
(1)
t , p

(2)
t , · · · , p(K)

t ] , Qt = [q
(1)
t , q

(2)
t , · · · , q(K)

t ] , Rt = [r
(1)
t , r

(2)
t , · · · , r(K)

t ] ,

Ut = [u
(1)
t , u

(2)
t , · · · , u(K)

t ] , Vt = [v
(1)
t , v

(2)
t , · · · , v(K)

t ] , Wt = [w
(1)
t , w

(2)
t , · · · , w(K)

t ] ,

P̂t = [
p
(1)
t

∥p(1)t ∥
,

p
(2)
t

∥p(2)t ∥
, · · · , p

(K)
t

∥p(K)
t ∥

] , Q̂t = [
q
(1)
t

∥q(1)t ∥
,

q
(2)
t

∥q(2)t ∥
, · · · , q

(K)
t

∥q(K)
t ∥

] ,

R̂t = [
r
(1)
t

∥r(1)t ∥
,

r
(2)
t

∥r(2)t ∥
, · · · , r

(K)
t

∥r(K)
t ∥

] ,

X̄t = Xt
11T

K
, Ȳt = Yt

11T

K
, Z̄t = Zt

11T

K
,

P̄t = Pt
11T

K
, Q̄t = Qt

11T

K
, R̄t = Rt

11T

K
,

¯̂
Pt = P̂t

11T

K
,

¯̂
Qt = Q̂t

11T

K
,

¯̂
Rt = R̂t

11T

K
,

Ūt = Ut
11T

K
, V̄t = Vt

11T

K
, W̄t = Wt

11T

K
. (13)

Lemma C.1. Chen et al. (2024) Given Assumptions 3.1, then Φ(x) is LΦ-smooth, where the con-
stant LΦ = O(ℓκ3).
Lemma C.2. Chen et al. (2024) Given Assumptions 3.1, then Y ∗(x) is continuous, i.e., for any
x1, x2 ∈ Rd1 , the following inequality holds:

Dist(Y ∗(x1), Y
∗(x2)) ≤ Cy∗∥x1 − x2∥ , (14)

where Cy∗ =
Lg

µ = O(κ), Dist(·, ·) denotes the distance between two sets.

Lemma C.3. (Appendix A of Karimi et al. (2016)) Given Assumptions 3.1, the following inequality
holds:

∥y∗(x)− z∥2 ≤ 1

µ2
∥∇2g(x, z)∥2 , ∥y∗δ (x)− y∥2 ≤ 1

µ2
∥∇2hδ(x, y)∥2 . (15)

Lemma C.4. Given Assumptions 3.1, then ∇g∗(x) is continuous and ∇h∗
δ(x) is also continuous,

i.e., for any x1, x2 ∈ Rd1 , the following inequalities hold:

∥∇g∗(x1)−∇g∗(x2)∥ ≤ Lg∗∥x1 − x2∥ , ∥∇h∗
δ(x1)−∇h∗

δ(x2)∥ ≤ Lh∗
δ
∥x1 − x2∥ , (16)

where Lg∗ = Lg(1 +
Lg

µ ) = O(ℓκ) and Lh∗
δ
= (δLf + Lg)(1 +

δLf+Lg

µ ) = O(ℓκ).
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This lemma be easily proved by following Lemma A.5 in Nouiehed et al. (2019).
Lemma C.5. Liu & Zhou (2025) Given random vectors vt that satisfies E[vt|Ft−1] = 0, where
Ft−1 is a natural filtration and t ∈ N, then the following inequality holds:

E[∥
T∑

t=1

vt∥] ≤ 2
√
2E[(

T∑
t=1

∥vt∥s)
1
s ] , (17)

where T ∈ N and s ∈ [1, 2].

C.2 CHARACTERIZING INTERDEPENDENCE BETWEEN GRADIENTS

Lemma C.6. Given Assumption 3.1, we obtain

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)∥] ≤
E[Φ(x̄0)]− E[Φ(x̄T )]

T
+ 2

1

T

T−1∑
t=0

E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥]

+
2(δLf + Lg)

µ

1

δ

1

T

T−1∑
t=0

E[∥∇2hδ(x̄t, ȳt)∥] +
2Lg

µ

1

δ

1

T

T−1∑
t=0

E[∥∇2g(x̄t, z̄t)∥]

+ 2
1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇1f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
1,t ∥]

+ 2
1

δ

1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
2,t ∥]

+ 2
1

δ

1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

u
(k)
3,t ∥]

+ 2(Lf +
2Lg

δ
)
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] + 2(Lf +

Lg

δ
)
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥y(k)t − ȳt∥]

+ 2
Lg

δ

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥z(k)t − z̄t∥] +
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥] + ηxLΦ

2
. (18)

Proof. Due to the smoothness of Φ(x), we obtain

E[Φ(x̄t+1)] ≤ E[Φ(x̄t)] + E[⟨∇Φ(x̄t), x̄t+1 − x̄t⟩] +
L2
Φ

2
E[∥x̄t+1 − x̄t∥2]

= E[Φ(x̄t)]− ηxE[⟨∇Φ(x̄t),
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
⟩] + η2xL

2
Φ

2
E[∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥2]

(a)
= E[Φ(x̄t)]−ηxE[⟨∇Φ(x̄t)− p̄t,

1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
⟩]︸ ︷︷ ︸

T1

−ηxE[⟨p̄t,
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
⟩]︸ ︷︷ ︸

T2

+
η2xLΦ

2
, (19)

where (a) holds due to ∥ p
(k)
t

∥p(k)
t ∥

∥ = 1.

For T1, we bound it as follows:

T1 ≤ ηxE[∥∇Φ(x̄t)− p̄t∥∥
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥] ≤ ηxE[∥∇Φ(x̄t)− p̄t∥] . (20)

For T2, we bound it as follows:

T2 = −ηxE[⟨p̄t,
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
− p̄t

∥p̄t∥
⟩]− ηxE[⟨p̄t,

p̄t
∥p̄t∥

⟩]
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≤ ηxE[∥p̄t∥∥
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
− p̄t

∥p̄t∥
∥]− ηxE[∥p̄t∥]

= ηxE[∥p̄t∥∥
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
− 1

K

K∑
k=1

p
(k)
t

∥p̄t∥
∥]− ηxE[∥p̄t∥]

≤ ηx
1

K

K∑
k=1

E[∥p̄t∥∥p(k)t ∥∥ 1

∥p(k)t ∥
− 1

∥p̄t∥
∥]− ηxE[∥p̄t∥]

= ηx
1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥]− ηxE[∥p̄t∥]

(a)

≤ ηx
1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥]− ηxE[∥∇Φ(x̄t)∥] + ηxE[∥∇Φ(x̄t)− p̄t∥] , (21)

where (a) holds due to the following inequality:

E[∥∇Φ(x̄t)∥] ≤ E[∥∇Φ(x̄t)− p̄t∥] + E[∥p̄t∥] . (22)

Therefore, we obtain

E[Φ(x̄t+1)] ≤ E[Φ(x̄t)]− ηxE[∥∇Φ(x̄t)∥] + ηx
1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥] + η2xLΦ

2

+ 2ηxE[∥∇Φ(x̄t)− p̄t∥] . (23)

For E[∥∇Φ(x̄t)− p̄t∥], we bound it as follows:

E[∥∇Φ(x̄t)− p̄t∥]
≤ E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥] + E[∥∇Φδ(x̄t)−∇xΦδ(x̄t, ȳt, z̄t)∥]
+ E[∥∇xΦδ(x̄t, ȳt, z̄t)− p̄t∥]

(a)

≤ E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥] + (Lf +
Lg

δ
)E[∥y∗δ (x̄t)− ȳt∥] +

Lg

δ
E[∥y∗(x̄t)− z̄t∥]

+ E[∥∇xΦδ(x̄t, ȳt, z̄t)− p̄t∥]
(b)

≤ E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥] +
1

µ
(Lf +

Lg

δ
)E[∥∇2hδ(x̄t, ȳt)∥] +

1

µ

Lg

δ
E[∥∇2g(x̄t, z̄t)∥]

+ E[∥∇1f(x̄t, ȳt)− ū1,t∥] +
1

δ
E[∥∇1g(x̄t, ȳt)− ū2,t∥] +

1

δ
E[∥∇1g(x̄t, z̄t)− ū3,t∥]

≤ E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥] +
1

µ
(Lf +

Lg

δ
)E[∥∇2hδ(x̄t, ȳt)∥] +

1

µ

Lg

δ
E[∥∇2g(x̄t, z̄t)∥]

+ E[∥∇1f(x̄t, ȳt)−
1

K

K∑
k=1

∇1f
(k)(x

(k)
t , y

(k)
t )∥] + E[∥ 1

K

K∑
k=1

∇1f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
1,t ∥]

+
1

δ
E[∥∇1g(x̄t, ȳt)−

1

K

K∑
k=1

∇1g
(k)(x

(k)
t , y

(k)
t )∥] + 1

δ
E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
2,t ∥]

+
1

δ
E[∥∇1g(x̄t, z̄t)−

1

K

K∑
k=1

∇1g
(k)(x

(k)
t , z

(k)
t )∥] + 1

δ
E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

u
(k)
3,t ∥]

(c)

≤ E[∥∇Φ(x̄t)−∇Φδ(x̄t)∥] +
1

µ
(Lf +

Lg

δ
)E[∥∇2hδ(x̄t, ȳt)∥] +

1

µ

Lg

δ
E[∥∇2g(x̄t, z̄t)∥]

+ E[∥ 1

K

K∑
k=1

∇1f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
1,t ∥]
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+
1

δ
E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

u
(k)
2,t ∥]

+
1

δ
E[∥ 1

K

K∑
k=1

∇1g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

u
(k)
3,t ∥] + (Lf +

2Lg

δ
)
1

K

K∑
k=1

E[∥x(k)
t − x̄t∥]

+ (Lf +
Lg

δ
)
1

K

K∑
k=1

E[∥y(k)t − ȳt∥] +
Lg

δ

1

K

K∑
k=1

E[∥z(k)t − z̄t∥] , (24)

where (a) holds due to Assumption 3.1, (b) holds due to Lemma C.3, and (c) holds due to Assump-
tion 3.1.

By combining the above two inequalities, we complete the proof.

Lemma C.7. Given Assumption 3.1 and ηx ≤ µ
2Lg

ηz , we obtain

1

δ

1

T

T−1∑
t=0

E[∥∇2g(x̄t, z̄t)∥] ≤
2( 1δE[g(x̄0, z̄0)− g∗(x̄0)]− 1

δE[g(x̄T , z̄T )− g∗(x̄T )])

ηzT

+ 4
1

δ

1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

w
(k)
1,t ∥]

+ 4
Lg

δ

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] + 4

Lg

δ

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥z(k)t − z̄t∥]

+ 2
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥] + 1

δ
2ηxLg +

1

δ
ηzLg +

1

δ

η2xLg

ηz
+

1

δ

η2xLg∗

ηz
. (25)

Proof. Due to the smoothness of g, we obtain

1

δ
E[g(x̄t+1, z̄t+1)] ≤

1

δ
E[g(x̄t+1, z̄t)] +

1

δ
E[⟨∇2g(x̄t+1, z̄t), z̄t+1 − z̄t⟩] +

1

δ

Lg

2
E[∥z̄t+1 − z̄t∥2]

=
1

δ
E[g(x̄t+1, z̄t)]− ηzE[⟨

1

δ
∇2g(x̄t+1, z̄t),

1

K

K∑
k=1

r
(k)
t

∥r(k)t ∥
⟩] + 1

δ

η2zLg

2
E[∥ 1

K

K∑
k=1

r
(k)
t

∥r(k)t ∥
∥2]

(a)
=

1

δ
E[g(x̄t+1, z̄t)] +

1

δ

η2zLg

2

−ηzE[⟨
1

δ
∇2g(x̄t+1, z̄t)− r̄t,

1

K

K∑
k=1

r
(k)
t

∥r(k)t ∥
⟩]︸ ︷︷ ︸

T1

−ηzE[⟨r̄t,
1

K

K∑
k=1

r
(k)
t

∥r(k)t ∥
⟩]︸ ︷︷ ︸

T2

, (26)

where (a) holds due to ∥ r
(k)
t

∥r(k)
t ∥

∥ = 1.

Similar to the proof of Lemma C.6, for T1, we obtain

T1 ≤ ηzE[∥
1

δ
∇2g(x̄t+1, z̄t)− r̄t∥]

≤ ηzE[∥
1

δ
∇2g(x̄t+1, z̄t)−

1

δ
∇2g(x̄t, z̄t)∥] + ηzE[∥

1

δ
∇2g(x̄t, z̄t)− r̄t∥]

≤ ηz
Lg

δ
E[∥x̄t+1 − x̄t∥] + ηzE[∥

1

δ
∇2g(x̄t, z̄t)− r̄t∥]

= ηxηz
Lg

δ
E[∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥] + ηzE[∥

1

δ
∇2g(x̄t, z̄t)− r̄t∥]
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= ηxηz
Lg

δ
+ ηzE[∥

1

δ
∇2g(x̄t, z̄t)− r̄t∥] . (27)

In addition, similar to the proof of Lemma C.6, for T2, we obtain

T2 ≤ ηz
1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]− ηzE[∥r̄t∥]

≤ ηz
1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]− ηzE[∥

1

δ
∇2g(x̄t, z̄t)∥] + ηzE[∥

1

δ
∇2g(x̄t, z̄t)− r̄t∥] . (28)

Then, we obtain

1

δ
E[g(x̄t+1, z̄t+1)] ≤

1

δ
E[g(x̄t+1, z̄t)]− ηzE[∥

1

δ
∇2g(x̄t, z̄t)∥] + ηz

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]

+ 2ηzE[∥
1

δ
∇2g(x̄t, z̄t)− r̄t∥] + ηxηz

Lg

δ
+

1

δ

η2zLg

2
. (29)

For E[∥ 1
δ∇2g(x̄t, z̄t)− r̄t∥], we bound it as follows:

E[∥1
δ
∇2g(x̄t, z̄t)− r̄t∥]

≤ E[∥1
δ
∇2g(x̄t, z̄t)−

1

δ

1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )∥]

+ E[∥1
δ

1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

δ

1

K

K∑
k=1

w
(k)
1,t ∥]

(a)

≤ Lg

δ

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] +

Lg

δ

1

K

K∑
k=1

E[∥z(k)t − z̄t∥]

+
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

w
(k)
1,t ∥] , (30)

where (a) holds due to Assumption 3.1.

By combining the above two inequalities, we obtain

1

δ
E[g(x̄t+1, z̄t+1)] ≤

1

δ
E[g(x̄t+1, z̄t)]− ηzE[∥

1

δ
∇2g(x̄t, z̄t)∥] + ηz

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]

+ 2ηz
Lg

δ

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] + 2ηz

Lg

δ

1

K

K∑
k=1

E[∥z(k)t − z̄t∥]

+ 2ηz
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

w
(k)
1,t ∥] + ηxηz

Lg

δ
+

1

δ

η2zLg

2
. (31)

Moreover, due to the smoothness of g, we obtain
1

δ
E[g(x̄t+1, z̄t)] ≤

1

δ
E[g(x̄t, z̄t)] +

1

δ
E[⟨∇1g(x̄t, z̄t), x̄t+1 − x̄t⟩] +

1

δ

Lg

2
E[∥x̄t+1 − x̄t∥2]

=
1

δ
E[g(x̄t, z̄t)] +

1

δ
E[⟨∇1g(x̄t, z̄t)−∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩]

+
1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2
E[∥x̄t+1 − x̄t∥2]

=
1

δ
E[g(x̄t, z̄t)]− ηxE[⟨

1

δ
(∇1g(x̄t, z̄t)−∇xg(x̄t, y

∗(x̄t))),
1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
⟩]
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+
1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2
E[∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥2]

(a)

≤ 1

δ
E[g(x̄t, z̄t)] + ηx

1

δ
E[∥∇1g(x̄t, z̄t)−∇1g(x̄t, y

∗(x̄t))∥]

+
1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2
(b)

≤ 1

δ
E[g(x̄t, z̄t)] + ηx

Lg

δ
E[∥z̄t − y∗(x̄t)∥] +

1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2
(c)

≤ 1

δ
E[g(x̄t, z̄t)] + ηx

Lg

µδ
E[∥∇2g(x̄t, z̄t)∥] +

1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2
,

(32)

where (a) holds due to ∇xg(x̄t, y
∗(x̄t)) = ∇1g(x̄t, y

∗(x̄t)) + ∇y∗(x̄t)∇2g(x̄t, y
∗(x̄t)) =

∇1g(x̄t, y
∗(x̄t)) and ∥ p

(k)
t

∥p(k)
t ∥

∥ = 1, (b) holds due to Assumption 3.1, and (c) holds due to

Lemma C.3.

Furthermore, due to the smoothness of g∗(x) as shown in Lemma C.4, we obtain

1

δ
g∗(x̄t+1) ≥

1

δ
g∗(x̄t) +

1

δ
⟨∇g∗(x̄t), x̄t+1 − x̄t⟩ −

1

δ

Lg∗

2
∥x̄t+1 − x̄t∥2

=
1

δ
g∗(x̄t) +

1

δ
⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩ −
1

δ

η2xLg∗

2
∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥2

=
1

δ
g∗(x̄t) +

1

δ
⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩ −
1

δ

η2xLg∗

2
. (33)

Then, we obtain

1

δ
g∗(x̄t)−

1

δ
g∗(x̄t+1) ≤ −1

δ
⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩+
1

δ

η2xLg∗

2
. (34)

Finally, we obtain

1

δ
E[g(x̄t+1, z̄t+1)]−

1

δ
E[g∗(x̄t+1)]

=
1

δ
E[g(x̄t+1, z̄t+1)]−

1

δ
E[g(x̄t+1, z̄t)] +

1

δ
E[g(x̄t+1, z̄t)]−

1

δ
E[g(x̄t, z̄t)]

+
1

δ
E[g(x̄t, z̄t)]−

1

δ
E[g∗(x̄t)] +

1

δ
E[g∗(x̄t)]−

1

δ
E[g∗(x̄t+1)]

≤ 1

δ
E[g(x̄t, z̄t)]−

1

δ
E[g∗(x̄t)]− ηzE[∥

1

δ
∇2g(x̄t, z̄t)∥] + ηz

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]

+ 2ηz
Lg

δ

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] + 2ηz

Lg

δ

1

K

K∑
k=1

E[∥z(k)t − z̄t∥]

+ 2ηz
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

w
(k)
1,t ∥] + ηxηz

Lg

δ
+

1

δ

η2zLg

2

+ ηx
Lg

µδ
E[∥∇2g(x̄t, z̄t)∥] +

1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg

2

− 1

δ
E[⟨∇xg(x̄t, y

∗(x̄t)), x̄t+1 − x̄t⟩] +
1

δ

η2xLg∗

2

=
1

δ
E[g(x̄t, z̄t)]−

1

δ
E[g∗(x̄t)] +

(
ηx

Lg

µ
− ηz

)
1

δ
E[∥∇2g(x̄t, z̄t)∥] + ηz

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]
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+ 2ηz
Lg

δ

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥] + 2ηz

Lg

δ

1

K

K∑
k=1

E[∥z(k)t − z̄t∥] +
1

δ
ηxηzLg +

1

δ

η2zLg

2

+ 2ηz
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , z

(k)
t )− 1

K

K∑
k=1

w
(k)
1,t ∥] +

1

δ

η2xLg

2
+

1

δ

η2xLg∗

2
. (35)

By setting ηx ≤ µ
2Lg

ηz , we complete the proof.

Lemma C.8. Given Assumption 3.1 and ηx ≤ ηy
µ

2Lhδ

, where Lhδ
= δLf + Lg , we obtain that

1

δ

1

T

T−1∑
t=0

E[∥∇2hδ(x̄t, ȳt)∥] ≤
2( 1δE[hδ(x̄0, ȳ0)− h∗

δ(x̄0)]− 1
δE[hδ(x̄T , ȳT )− h∗

δ(x̄T )])

ηyT

+ 4
1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥]

+ 4
1

δ

1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥]

+ 4

(
Lf +

Lg

δ

)
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥] + 4

(
Lf +

Lg

δ

)
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥]

+ 2
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥] + 1

δ
2ηxLhδ

+
1

δ
ηyLhδ

+
1

δ

η2xLhδ

ηy
+

1

δ

η2xLh∗
δ

ηy
. (36)

Proof. Given Assumptions 3.1, it is easy to know that hδ(x, y) = δf(x, y)+ g(x, y) is Lhδ
-smooth

with Lhδ
= δLf + Lg .

Then, based on its smoothness, we obtain

1

δ
E[hδ(x̄t+1, ȳt+1)] ≤

1

δ
E[hδ(x̄t+1, ȳt)] +

1

δ
E[⟨∇2hδ(x̄t+1, ȳt), ȳt+1 − ȳt⟩] +

1

δ

Lhδ

2
E[∥ȳt+1 − ȳt∥2]

=
1

δ
E[hδ(x̄t+1, ȳt)]− ηyE[⟨

1

δ
∇2hδ(x̄t+1, ȳt),

1

K

K∑
k=1

q
(k)
t

∥q(k)t ∥
⟩] + 1

δ

η2yLhδ

2
E[∥ 1

K

K∑
k=1

q
(k)
t

∥q(k)t ∥
∥2]

(a)
=

1

δ
E[hδ(x̄t+1, ȳt)] +

1

δ

η2yLhδ

2

−ηyE[⟨
1

δ
∇2hδ(x̄t+1, ȳt)− q̄t,

1

K

K∑
k=1

q
(k)
t

∥q(k)t ∥
⟩]︸ ︷︷ ︸

T1

−ηyE[⟨q̄t,
1

K

K∑
k=1

q
(k)
t

∥q(k)t ∥
⟩]︸ ︷︷ ︸

T2

, (37)

where (a) holds due to ∥ q
(k)
t

∥q(k)
t ∥

∥ = 1.

For T1, we bound it as follows:

T1 ≤ ηyE[∥
1

δ
∇2hδ(x̄t+1, ȳt)− q̄t∥∥

1

K

K∑
k=1

q
(k)
t

∥q(k)t ∥
∥]

≤ ηyE[∥
1

δ
∇2hδ(x̄t+1, ȳt)− q̄t∥]

≤ ηyE[∥
1

δ
∇2hδ(x̄t+1, ȳt)−

1

δ
∇2hδ(x̄t, ȳt)∥] + ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)− q̄t∥]

(a)

≤ ηyLhδ

1

δ
E[∥x̄t+1 − x̄t∥] + ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)− q̄t∥]
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(b)
=

1

δ
ηxηyLhδ

+ ηyE[∥
1

δ
∇2hδ(x̄t, ȳt)− q̄t∥] , (38)

where (a) holds due to Assumption 3.1, and (b) holds due to ∥ p
(k)
t

∥p(k)
t ∥

∥ = 1.

Similar to the proof of Lemma C.6, for T2, we bound it as follows:

T2 ≤ ηy
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥]− ηyE[∥q̄t∥]

≤ ηy
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥]− ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)∥] + ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)− q̄t∥] . (39)

Then, we obtain

1

δ
E[hδ(x̄t+1, ȳt+1)] ≤

1

δ
E[hδ(x̄t+1, ȳt)]− ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)∥] +

1

δ

η2yLhδ

2
+

1

δ
ηxηyLhδ

+ ηy
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥] + 2ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)− q̄t∥] . (40)

For E[∥ 1
δ∇2hδ(x̄t, ȳt)− q̄t∥], we bound it as follows:

E[∥1
δ
∇2hδ(x̄t, ȳt)− q̄t∥]

= E[∥1
δ
∇2hδ(x̄t, ȳt)− v̄t∥]

≤ E[∥∇2f(x̄t, ȳt)− v̄1,t∥] + E[∥1
δ
∇2g(x̄t, ȳt)−

1

δ
v̄2,t∥]

≤ E[∥∇2f(x̄t, ȳt)−
1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )∥] + E[∥ 1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥]

+
1

δ
E[∥∇2g(x̄t, ȳt)−

1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )∥] + 1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥]

(a)

≤
(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥] +

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥]

+ E[∥ 1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥]

+
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥] , (41)

where (a) holds due to Assumption 3.1.

By combining the above two inequalities, we obtain

1

δ
E[hδ(x̄t+1, ȳt+1)] ≤

1

δ
E[hδ(x̄t+1, ȳt)]− ηyE[∥

1

δ
∇2hδ(x̄t, ȳt)∥] +

1

δ

η2yLhδ

2
+

1

δ
ηxηyLhδ

+ ηy
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥] (42)

+ 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥] + 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥]

+ 2ηyE[∥
1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥]
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+ 2ηy
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥] . (43)

In addition, due to the smoothness of hδ(x, y), we further obtain

1

δ
E[hδ(x̄t+1, ȳt)] ≤

1

δ
E[hδ(x̄t, ȳt)] +

1

δ
E[⟨∇1hδ(x̄t, ȳt), x̄t+1 − x̄t⟩] +

1

δ

Lhδ

2
E[∥x̄t+1 − x̄t∥2]

=
1

δ
E[hδ(x̄t, ȳt)] +

1

δ

Lhδ

2
E[∥x̄t+1 − x̄t∥2]

+ E[⟨1
δ
∇1hδ(x̄t, ȳt)−

1

δ
∇h∗

δ(x̄t), x̄t+1 − x̄t⟩] + E[⟨1
δ
∇h∗

δ(x̄t), x̄t+1 − x̄t⟩]

=
1

δ
E[hδ(x̄t, ȳt)] +

1

δ

η2xLhδ

2
E[∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥2] + E[⟨1

δ
∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩

− ηxE[⟨
1

δ
∇1hδ(x̄t, ȳt)−

1

δ
∇xhδ(x̄t, y

∗
δ (x̄t)),

1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
⟩]]

(a)

≤ 1

δ
E[hδ(x̄t, ȳt)] + ηx

1

δ
E[∥∇1hδ(x̄t, ȳt)−∇1hδ(x̄t, y

∗
δ (x̄t))∥]

+ E[⟨1
δ
∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩] +

1

δ

η2xLhδ

2
(b)

≤ 1

δ
E[hδ(x̄t, ȳt)] + ηx

Lhδ

δ
E[∥ȳt − y∗δ (x̄t)∥] + E[⟨1

δ
∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩] +

1

δ

η2xLhδ

2
(c)

≤ 1

δ
E[hδ(x̄t, ȳt)] + ηx

1

δ

Lhδ

µ
E[∥∇2hδ(x̄t, ȳt)∥] + E[⟨1

δ
∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩] +

1

δ

η2xLhδ

2
,

(44)

where (a) holds due to ∥ p
(k)
t

∥p(k)
t ∥

∥ = 1 and ∇h∗
δ(x̄t) = ∇xhδ(x̄t, y

∗
δ (x̄t)) = ∇1hδ(x̄t, y

∗
δ (x̄t)) +

∇y∗δ (x̄t)∇2hδ(x̄t, y
∗
δ (x̄t)) = ∇1hδ(x̄t, y

∗
δ (x̄t)), (b) holds due to Assumption 3.1, and (c) holds

due to Lemma C.3.

Furthermore, due to the smoothness of h∗
δ(xt) as shown in Lemma C.4, we obtain

1

δ
h∗
δ(x̄t+1) ≥

1

δ
h∗
δ(x̄t) +

1

δ
⟨∇h∗

δ(x̄t), x̄t+1 − x̄t⟩ −
1

δ

Lh∗
δ

2
∥x̄t+1 − x̄t∥2

=
1

δ
h∗
δ(x̄t) +

1

δ
⟨∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩ −

1

δ

η2xLh∗
δ

2
∥ 1

K

K∑
k=1

p
(k)
t

∥p(k)t ∥
∥2

=
1

δ
h∗
δ(x̄t) +

1

δ
⟨∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩ −

1

δ

η2xLh∗
δ

2
. (45)

Then, we obtain

1

δ
h∗
δ(x̄t)−

1

δ
h∗
δ(x̄t+1) ≤ −1

δ
⟨∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩+

1

δ

η2xLh∗
δ

2
. (46)

Finally, we obtain

1

δ
E[hδ(x̄t+1, ȳt+1)]−

1

δ
E[h∗

δ(x̄t+1)]

=
1

δ
E[hδ(x̄t+1, ȳt+1)]−

1

δ
E[hδ(x̄t+1, ȳt)] +

1

δ
E[hδ(x̄t+1, ȳt)]−

1

δ
E[hδ(x̄t, ȳt)]

+
1

δ
E[hδ(x̄t, ȳt)]−

1

δ
E[h∗

δ(x̄t)] +
1

δ
E[h∗

δ(x̄t)]−
1

δ
E[h∗

δ(x̄t+1)]

≤ 1

δ
E[hδ(x̄t, ȳt)]−

1

δ
E[h∗

δ(x̄t)]
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− ηyE[∥
1

δ
∇2hδ(x̄t, ȳt)∥] +

1

δ

η2yLhδ

2
+

1

δ
ηxηyLhδ

+ ηy
1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥]

+ 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥] + 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥]

+ 2ηyE[∥
1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥]

+ 2ηy
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥]

+ ηx
1

δ

Lhδ

µ
E[∥∇2hδ(x̄t, ȳt)∥] + E[⟨1

δ
∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩] +

1

δ

η2xLhδ

2

− 1

δ
E[⟨∇xhδ(x̄t, y

∗
δ (x̄t)), x̄t+1 − x̄t⟩] +

1

δ

η2xLh∗
δ

2

=
1

δ
E[hδ(x̄t, ȳt)]−

1

δ
E[h∗

δ(x̄t)] +

(
ηx

Lhδ

µ
− ηy

)
1

δ
E[∥∇2hδ(x̄t, ȳt)∥] + ηy

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥]

+ 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥] + 2ηy

(
Lf +

Lg

δ

)
1

K

K∑
k=1

E[∥ȳt − y
(k)
t ∥]

+ 2ηyE[∥
1

K

K∑
k=1

∇2f
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
1,t ∥] +

1

δ

η2xLhδ

2
+

1

δ

η2xLh∗
δ

2

+ 2ηy
1

δ
E[∥ 1

K

K∑
k=1

∇2g
(k)(x

(k)
t , y

(k)
t )− 1

K

K∑
k=1

v
(k)
2,t ∥] +

1

δ

η2yLhδ

2
+

1

δ
ηxηyLhδ

. (47)

By setting ηx ≤ ηy
µ

2Lhδ

, we complete the proof.

C.3 BOUNDING CONSECUTIVE UPDATES

Lemma C.9. Given Assumptions 3.1-3.3, we obtain
K∑

k=1

E[∥x(k)
t+1 − x

(k)
t ∥] ≤ 4ηx

1− λ
K ;

K∑
k=1

E[∥y(k)t+1 − y
(k)
t ∥] ≤ 4ηy

1− λ
K ;

K∑
k=1

E[∥z(k)t+1 − z
(k)
t ∥] ≤ 4ηz

1− λ
K . (48)

Proof.

E[∥Xt+1 −Xt∥2F ] = E[∥(Xt − ηxP̂t)E −Xt∥2F ]
≤ 2E[∥XtE −Xt∥2F ] + 2η2xE[∥P̂tE∥2F ]
= 2E[∥(Xt − X̄t)(E − I)∥2F ] + 2η2xE[∥P̂tE∥2F ]
≤ 2E[∥Xt − X̄t∥2F ∥E − I∥22] + 2η2xE[∥P̂t∥2F ∥E∥22]
(a)

≤ 8E[∥Xt − X̄t∥2F ] + 2η2xE[∥P̂t∥2F ]

≤ 8E[∥Xt − X̄t∥2F ] + 2η2x

K∑
k=1

E[∥ p
(k)
t

∥p(k)t ∥
∥2]

≤ 8E[∥Xt − X̄t∥2F ] + 2η2xK
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(b)

≤ 8η2xλ
2

(1− λ)2
K + 2η2xK

(c)

≤ 10η2x
(1− λ)2

K , (49)

where (a) holds due to ∥E − I∥2 ≤ 2 and ∥E∥2 ≤ 1, (b) holds due to Lemma C.28, and (c) holds
due to λ < 1.

Then, we obtain

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥] =

√√√√( K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥]

)2

≤

√√√√K

K∑
k=1

E[∥x(k)
t+1 − x

(k)
t ∥2] =

√
K
√
E[∥Xt+1 −Xt∥2F ] ≤

4ηx
1− λ

K . (50)

The other two inequalities can be proved in a same approach.

Lemma C.10. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥u(k)
1,t − u

(k)
1,t−1∥] ≤ γx

K∑
k=1

E[∥∇1f
(k)(x

(k)
t−1, y

(k)
t−1)−∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥]

+ γx

K∑
k=1

E[∥u(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)∥] +

4ηxLf

1− λ
K +

4ηyLf

1− λ
K . (51)

Proof.

K∑
k=1

E[∥u(k)
1,t − u

(k)
1,t−1∥]

=

K∑
k=1

E[∥(1− γx)(u
(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )) +∇1f

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t )− u

(k)
1,t−1∥]

≤
K∑

k=1

E[∥∇1f
(k)(x

(k)
t , y

(k)
t ; ξ

(k)
t )−∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥]

+ γx

K∑
k=1

E[∥u(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)∥]

+ γx

K∑
k=1

E[∥∇1f
(k)(x

(k)
t−1, y

(k)
t−1)−∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥]

≤ Lf

K∑
k=1

E[∥x(k)
t − x

(k)
t−1∥] + Lf

K∑
k=1

E[∥y(k)t − y
(k)
t−1∥]

+ γx

K∑
k=1

E[∥u(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)∥]

+ γx

K∑
k=1

E[∥∇1f
(k)(x

(k)
t−1, y

(k)
t−1)−∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥]

(a)

≤ 4ηxLf

1− λ
K +

4ηyLf

1− λ
K + γx

K∑
k=1

E[∥u(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)∥]

+ γx

K∑
k=1

E[∥∇1f
(k)(x

(k)
t−1, y

(k)
t−1)−∇1f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥] , (52)
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where (a) holds due to Lemma C.9.

Lemma C.11. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥u(k)
2,t − u

(k)
2,t−1∥] ≤ γx

K∑
k=1

E[∥∇1g
(k)(x

(k)
t−1, y

(k)
t−1)−∇1g

(k)(x
(k)
t−1, y

(k)
t−1; ζ

(k)
t )∥]

+ γx

K∑
k=1

E[∥u(k)
2,t−1 −∇1g

(k)(x
(k)
t−1, y

(k)
t−1)∥] +

4ηxLg

1− λ
K +

4ηyLg

1− λ
K . (53)

Lemma C.12. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥u(k)
3,t − u

(k)
3,t−1∥] ≤ γx

K∑
k=1

E[∥∇1g
(k)(x

(k)
t−1, z

(k)
t−1)−∇1g

(k)(x
(k)
t−1, z

(k)
t−1; ζ

(k)
t )∥]

+ γx

K∑
k=1

E[∥u(k)
3,t−1 −∇1g

(k)(x
(k)
t−1, z

(k)
t−1)∥] +

4ηxLg

1− λ
K +

4ηzLg

1− λ
K . (54)

Lemma C.13. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥v(k)1,t − v
(k)
1,t−1∥] ≤ γy

K∑
k=1

E[∥∇2f
(k)(x

(k)
t−1, y

(k)
t−1)−∇2f

(k)(x
(k)
t−1, y

(k)
t−1; ξ

(k)
t )∥]

+ γy

K∑
k=1

E[∥u(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)∥] +

4ηxLf

1− λ
K +

4ηyLf

1− λ
K . (55)

Lemma C.14. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥v(k)2,t − v
(k)
2,t−1∥] ≤ γy

K∑
k=1

E[∥∇2g
(k)(x

(k)
t−1, y

(k)
t−1)−∇2g

(k)(x
(k)
t−1, y

(k)
t−1; ζ

(k)
t )∥]

+ γy

K∑
k=1

E[∥u(k)
2,t−1 −∇1g

(k)(x
(k)
t−1, y

(k)
t−1)∥] +

4ηxLg

1− λ
K +

4ηyLg

1− λ
K . (56)

Lemma C.15. Given Assumptions 3.1-3.3, for t > 0, we obtain

K∑
k=1

E[∥w(k)
1,t − w

(k)
1,t−1∥] ≤ γz

K∑
k=1

E[∥∇2g
(k)(x

(k)
t−1, z

(k)
t−1)−∇2g

(k)(x
(k)
t−1, z

(k)
t−1; ζ

(k)
t )∥]

+ γz

K∑
k=1

E[∥w(k)
1,t−1 −∇2g

(k)(x
(k)
t−1, z

(k)
t−1)∥] +

4ηxLg

1− λ
K +

4ηzLg

1− λ
K . (57)

Lemmas C.11 - C.15 can be easily proved by following Lemma C.10.

C.4 BOUNDING GRADIENT ERRORS

Lemma C.16. Given Assumptions 3.1-3.3, we obtain

K∑
k=1

E[∥u(k)
1,t −∇1f

(k)(x
(k)
t , y

(k)
t )∥] ≤ (1− γx)

t 2
√
2σK

B
1−1/s
0

+
4(ηx + ηy)Lf

(1− λ)
√
γx

√
K + 2

√
2γ1−1/s

x σK .

(58)

Proof. When t > 0, based on Algorithm 1, we obtain

u
(k)
1,t −∇1f

(k)(x
(k)
t , y

(k)
t )
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= (1− γx)(u
(k)
1,t−1 −∇1f

(k)(x
(k)
t−1, y

(k)
t−1)) + (1− γx)

(
∇1f

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t )

−∇1f
(k)(x

(k)
t−1, y

(k)
t−1; ξ

(k)
t )−∇1f

(k)(x
(k)
t , y

(k)
t ) +∇1f

(k)(x
(k)
t−1, y

(k)
t−1)

)
+ γx(∇1f

(k)(x
(k)
t , y

(k)
t ; ξ

(k)
t )−∇1f

(k)(x
(k)
t , y

(k)
t ))

= (1− γx)
t(u

(k)
1,0 −∇1f

(k)(x
(k)
0 , y

(k)
0 )) +

t∑
j=1

(1− γx)
t−j+1

(
∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )

−∇1f
(k)(x

(k)
j−1, y

(k)
j−1; ξ

(k)
j ) +∇1f

(k)(x
(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j , y

(k)
j )
)

+

t∑
j=1

γx(1− γx)
t−j(∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j , y

(k)
j )) . (59)

Then, we obtain
K∑

k=1

E[∥u(k)
1,t −∇1f

(k)(x
(k)
t , y

(k)
t )∥]

≤ (1− γx)
t

K∑
k=1

E[∥u(k)
1,0 −∇1f

(k)(x
(k)
0 , y

(k)
0 )∥]

+

K∑
k=1

E[∥
t∑

j=1

(1− γx)
t−j+1

(
∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )

+∇1f
(k)(x

(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j , y

(k)
j )
)
∥]

+

K∑
k=1

E[∥γx
t∑

j=1

(1− γx)
t−j(∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j , y

(k)
j ))∥] . (60)

For the first term on the right-hand side of Eq. (60), we bound it as follows:
K∑

k=1

E[∥u(k)
1,0 −∇1f

(k)(x
(k)
0 , y

(k)
0 )∥]

=

K∑
k=1

E[∥ 1

B0

B0∑
b=1

∇1f
(k)(x

(k)
0 , y

(k)
0 ; ξ

(k)
0,b )−∇1f

(k)(x
(k)
0 , y

(k)
0 )∥]

=

K∑
k=1

1

B0
E[∥

B0∑
b=1

(∇1f
(k)(x

(k)
0 , y

(k)
0 ; ξ

(k)
0,b )−∇1f

(k)(x
(k)
0 , y

(k)
0 ))∥]

(a)

≤
K∑

k=1

2
√
2

B0
E[(

B0∑
b=1

∥∇1f
(k)(x

(k)
0 , y

(k)
0 ; ξ

(k)
0 )−∇1f

(k)(x
(k)
0 , y

(k)
0 )∥s) 1

s ]

(b)

≤
K∑

k=1

2
√
2

B0
(

B0∑
b=1

E[∥∇1f
(k)(x

(k)
0 , y

(k)
0 ; ξ

(k)
0 )−∇1f

(k)(x
(k)
0 , y

(k)
0 )∥s]) 1

s

(c)

≤ 2
√
2K

B
1−1/s
0

σ , (61)

where B0 represents the batch size in the initial iteration, (a) holds due to Lemma C.5, (b) holds
due to Hölder’s inequality, and (c) holds due to Assumption 3.2.

To bound the second term on the right-hand side of Eq. (60), we first bound the following one:
K∑

k=1

E[∥
t∑

j=1

(1− γx)
t−j+1

(
∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )
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+∇1f
(k)(x

(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j , y

(k)
j )
)
∥2]

=

K∑
k=1

t∑
j=1

(1− γx)
2(t−j+1)E[∥∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )

+∇1f
(k)(x

(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j , y

(k)
j )∥2]

≤
K∑

k=1

t∑
j=1

(1− γx)
2(t−j+1)E[∥∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )∥2]

≤
K∑

k=1

t∑
j=1

(1− γx)
2(t−j+1)L2

f (E[∥x
(k)
j − x

(k)
j−1∥

2] + E[∥y(k)j − y
(k)
j−1∥

2])

=

t∑
j=1

(1− γx)
2(t−j+1)L2

f (E[∥Xj −Xj−1∥2F ] + E[∥Yj − Yj−1∥2F ])

(a)

≤
t∑

j=1

(1− γx)
2(t−j+1)L2

f

(
10η2x

(1− λ)2
K +

10η2y
(1− λ)2

K

)

≤ 1

1− (1− γx)2
L2
f

(
10η2x

(1− λ)2
K +

10η2y
(1− λ)2

K

)
(b)

≤ 10η2x
(1− λ)2

L2
f

γx
K +

10η2y
(1− λ)2

L2
f

γx
K , (62)

where (a) holds due to Eq. (49), and (b) holds due to γx < 1.

Then, we bound the second term on the right-hand side of Eq. (60) as follows:

K∑
k=1

E[∥
t∑

j=1

(1− γx)
t−j+1

(
∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
j )

+∇1f
(k)(x

(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j , y

(k)
j )
)
∥]

≤ 4ηxLf

(1− λ)
√
γx

√
K +

4ηyLf

(1− λ)
√
γx

√
K . (63)

For the third term on the right-hand side of Eq. (60), we bound it as follows:

E[∥
t∑

j=1

γx(1− γx)
t−j(∇1f

(k)(x
(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j , y

(k)
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(a)

≤ 2
√
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2E


 t∑

j=1

γs
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(k)(x
(k)
j , y

(k)
j )∥s

1/s


(b)

≤ 2
√
2

E

 t∑
j=1

γs
x(1− γx)

s(t−j)∥∇1f
(k)(x

(k)
j , y

(k)
j ; ξ

(k)
j )−∇1f

(k)(x
(k)
j , y

(k)
j )∥s

1/s

(c)

≤ 2
√
2

 t∑
j=1

γs
x(1− γx)

s(t−j)

1/s

σ , (64)
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where (a) holds due to Lemma C.5, (b) holds due to Hölder’s inequality, and (c) holds due to
Assumption 3.2.

Finally, when t > 0, from t∑
j=1

(1− γx)
s(t−j)

1/s

≤
(

1

1− (1− γx)s

)1/s

≤
(

1

1− (1− γx)

)1/s

≤ γ−1/s
x , (65)

we obtain
K∑

k=1

E[∥u(k)
1,t −∇1f

(k)(x
(k)
t , y

(k)
t )∥]

≤ (1− γx)
t 2

√
2K

B
1−1/s
0

σ +
4ηxLf

(1− λ)
√
γx

√
K +

4ηyLf

(1− λ)
√
γx

√
K + 2

√
2γ1−1/s

x σK . (66)

Based on Eq. (61), it is easy to know that this upper bound also holds when t = 0.

Lemma C.17. Given Assumptions 3.1-3.3, we obtain

K∑
k=1

E[∥u(k)
2,t −∇1g

(k)(x
(k)
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(k)
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t 2
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√
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√
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√
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x σK .

(67)

Lemma C.18. Given Assumptions 3.1-3.3, we obtain

K∑
k=1

E[∥u(k)
3,t −∇1g

(k)(x
(k)
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t 2
√
2ηy

B
1−1/s
0

x+
4(ηx + ηz)Lg

(1− λ)
√
γx

√
K + 2

√
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x σK .

(68)

Lemma C.19. Given Assumptions 3.1-3.3, we obtain
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(69)

Lemma C.20. Given Assumptions 3.1-3.3, we obtain
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(70)

Lemma C.21. Given Assumptions 3.1-3.3, we obtain
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(71)

Lemmas C.17 - C.21 can be easily proved by following Lemma C.16.

Lemma C.22. Given Assumptions 3.1-3.3, we obtain

1

T

T−1∑
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E[∥ 1

K

K∑
k=1

u
(k)
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1

K
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√
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2
√
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Proof. When t > 0, same as the proof of Lemma C.16, we obtain
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Then, for the first term on the right-hand side of Eq. (73), we obtain

E[∥ 1

K
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(u
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(k)(x
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(a)
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√
2

B
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0

σ ,

(74)
where (a) holds due to Eq. (61).

To bound the second term on the right-hand side of Eq. (73), we first bound the following one:
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, (75)

where (a) holds due to Eq. (49), and (b) holds due to γx < 1.

Then, we bound the second term on the right-hand side of Eq. (60) as follows:

E[∥
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t−j+1 1
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37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026
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For the third term on the right-hand side of Eq. (73), we bound it as follows:
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where (a) holds due to Lemma C.5, (b) holds due to Hölder’s inequality, and (c) holds due to
Assumption 3.2.

Finally, when t > 0, from K∑
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(78)

we obtain
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Similarly, it is easy to know that this upper bound also holds when t = 0. Then, we obtain
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Lemma C.23. Given Assumptions 3.1-3.3, we obtain

1

T

T−1∑
t=0

E[∥ 1

K

K∑
k=1

u
(k)
2,t −

1

K

K∑
k=1

∇1g
(k)(x

(k)
t , y

(k)
t )∥]

≤ 1

γxT

2
√
2σ

B
1−1/s
0

+
4(ηx + ηy)Lg

(1− λ)
√
γx

1√
K

+
2
√
2γ

1−1/s
x σ

K1−1/s
. (81)

Lemma C.24. Given Assumptions 3.1-3.3, we obtain
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Lemma C.25. Given Assumptions 3.1-3.3, we obtain
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Lemma C.26. Given Assumptions 3.1-3.3, we obtain
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Lemma C.27. Given Assumptions 3.1-3.3, we obtain
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C.5 BOUNDING CONSENSUS ERRORS

Lemma C.28. Given Assumptions 3.1-3.3, we obtain
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Proof.
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where (a) holds because E is a doubly stochastic matrix, (b) holds due to Assumption 3.3, (c) holds
due to a = λ

1−λ .

Then, we obtain
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The other two inequalities can be proved in a same approach.

Lemma C.29. Given Assumptions 3.1-3.3, we obtain

1

T

T−1∑
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1

K

K∑
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E[∥p(k)t − p̄t∥]

≤ 2λ
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(k)
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1

δ
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1

δ
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(k)
0 )∥] + λ
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4
√
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√
K
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(
1 +
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δ
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σ
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√
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(
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)
+
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√
K
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(
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δ

)
+
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√
K

(1− λ)5/2

(
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δ

)
+

4ηzλ
√
K
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Lg

δ

+
λ
√
K

T (1− λ)3/2
2
√
2σ

B
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0

(
1 +

2

δ

)
+

2
√
2γ

2−1/s
x λ

√
K

(1− λ)3/2
σ

(
1 +

2

δ

)
+

4ηx
√
γxλ
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(
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2Lg

δ

)
+

4ηy
√
γxλ

(1− λ)5/2

(
Lf +

2Lg

δ

)
. (89)

Proof. When t > 0, similar to the proof of Lemma C.28, we obtain
1

K
E[∥Pt − P̄t∥2F ]

=
1

K
E[∥(Pt−1 − Ut−1 + Ut)E − (P̄t−1 − Ūt−1 + Ūt)∥2F ]
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(a)

≤ λ2 1

K
E[∥(Pt−1 − Ut−1 + Ut)− (P̄t−1 − Ūt−1 + Ūt)∥2F ]

≤ λ2(1 + 1/a)
1

K
E[∥Pt−1 − P̄t−1∥2F ] + λ2(1 + a)

1

K
E[∥Ut − Ut−1 − (Ūt − Ūt−1)∥2F ]

≤ λ2(1 + 1/a)
1

K
E[∥Pt−1 − P̄t−1∥2F ] + λ2(1 + a)

1

K
E[∥Ut − Ut−1∥2F ]

(b)

≤ λ
1

K
E[∥Pt−1 − P̄t−1∥2F ] +

λ2

1− λ

1

K
E[∥Ut − Ut−1∥2F ]

≤ λt 1

K
E[∥P0 − P̄0∥2F ] +

t∑
j=1

λt−j λ2

1− λ

1

K
E[∥Uj − Uj−1∥2F ] , (90)

where (a) holds due to Assumption 3.3, (b) holds due to a = λ
1−λ .

For 1
KE[∥P0 − P̄0∥2F ], we bound it as follows:

1

K
E[∥P0 − P̄0∥2F ] =

1

K
E[∥U0E − Ū0∥2F ] =

1

K
E[∥(U0 − Ū0)(E − 11T

K
)∥2F ]

≤ 1

K
E[∥U0 − Ū0∥2F ∥E − 11T

K
∥22] ≤ λ2 1

K
E[∥U0 − Ū0∥2F ] . (91)

Then, we obtain

1

K
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√√√√ 1
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(
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≤
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K
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√

1

K
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≤
√
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1

K
E[∥U0 − Ū0∥2F ] +

√√√√ t∑
j=1

λt−j
λ2

1− λ

1

K
E[∥Uj − Uj−1∥2F ]

(a)

≤ λ1+t/2 1√
K

K∑
k=1

E[∥u(k)
0 − ū0∥] +

t∑
j=1

λ(t−j)/2 λ√
1− λ

1√
K

K∑
k=1

E[∥u(k)
j − u

(k)
j−1∥]

(b)

≤ λ1+t/2 1√
K

K∑
k=1

E[∥u(k)
0 − ū0∥] +

t∑
j=1

λ(t−j)/2 λ√
1− λ

1√
K

K∑
k=1

E[∥u(k)
1,j − u

(k)
1,j−1∥]

+

t∑
j=1

λ(t−j)/2 λ√
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1

δ

1√
K
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k=1

E[∥u(k)
2,j − u

(k)
2,j−1∥]

+

t∑
j=1

λ(t−j)/2 λ√
1− λ

1

δ

1√
K

K∑
k=1

E[∥u(k)
3,j − u

(k)
3,j−1∥] , (92)

where (a) and (b) hold due to
√∑n

i=1 ai ≤
∑n

i=1

√
ai for any ai ≥ 0 and n > 1.

Note that this upper bound also holds when t = 0 according to Eq. (91).

Then, due to Lemmas C.10 - C.12, we obtain

1

K

K∑
k=1

E[∥p(k)t − p̄t∥]

≤ λ1+t/2 1√
K

K∑
k=1

E[∥u(k)
0 − ū0∥]
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δ
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√
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δ
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Therefore, we obtain
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T
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1

K
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1
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1
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+
4ηx

√
K

1− λ
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(
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2Lg

δ

)
1

T
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+
4ηy

√
K

1− λ
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(
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δ

)
1

T
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4ηz

√
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δ

1

T
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(94)

Note that ∇1f
(k)(x

(k)
j−1, y

(k)
j−1; ξ

(k)
j ) is computed with the samples in the j ≥ 1-th iteration, where

the batch size is 1, then for any j ∈ {1, · · · , t}, we obtain

E[∥∇1f
(k)(x

(k)
j−1, y

(k)
j−1)−∇1f

(k)(x
(k)
j−1, y

(k)
j−1; ξ

(k)
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= E[(∥∇1f
(k)(x
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(k)
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(k)
j−1; ξ

(k)
j )∥s)1/s]

(a)

≤ (E[∥∇1f
(k)(x
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(k)
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(k)(x
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(k)
j−1; ξ

(k)
j )∥s])1/s

(b)

≤ σ , (95)

where (a) holds due to Hölder’s inequality, and (b) holds due to Assumption 3.2.

Similarly, we obtain

E[∥∇1g
(k)(x

(k)
j−1, y

(k)
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(k)(x
(k)
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(k)(x
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(k)
j )∥] ≤ σ . (96)

Then, we obtain
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Then, based on Lemmas C.16, C.17, C.18, we obtain

1

T
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1

K
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+
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Because

1

T

T−1∑
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√
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we obtain
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For
∑K

k=1 E[∥u
(k)
0 − ū0∥], we bound it as follows:
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0 − ū0∥] =

K∑
k=1

E[∥u(k)
1,0 +

1

δ
u
(k)
2,0 +

1

δ
u
(k)
3,0 −

1

K

K∑
j=1

(u
(j)
1,0 +

1

δ
u
(j)
2,0 +

1

δ
u
(j)
3,0)∥]

≤
K∑

k=1

E[∥u(k)
1,0 −

1

K

K∑
j=1

u
(j)
1,0∥] +

K∑
k=1

E[∥1
δ
u
(k)
2,0 −

1

K

K∑
j=1

1

δ
u
(j)
2,0∥] +

K∑
k=1

E[∥1
δ
u
(k)
3,0 −

1

K

K∑
j=1

1

δ
u
(j)
3,0∥]

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

≤
K∑

k=1

E[∥∇1f
(k)(x

(k)
0 , y

(k)
0 ; ξ

(k)
0 )− 1

K

K∑
j=1

∇1f
(j)(x

(j)
0 , y

(j)
0 ; ξ

(j)
0 )∥]

+
1

δ

K∑
k=1

E[∥∇1g
(k)(x

(k)
0 , y

(k)
0 ; ζ

(k)
0 )− 1

K

K∑
j=1

∇1g
(j)(x

(j)
0 , y

(j)
0 ; ζ

(j)
0 )∥]

+
1

δ

K∑
k=1

E[∥∇1g
(k)(x

(k)
0 , z

(k)
0 ; ζ

(k)
0 )− 1

K

K∑
j=1

∇1g
(j)(x

(j)
0 , z

(j)
0 ; ζ

(j)
0 )∥] . (101)

For the first term on the last step of Eq. (101), we bound it as follows:
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where (a) holds due to Eq. (61)

Similarly, we bound the second term on the last step of Eq. (101) as follows:
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By combining them together, we obtain

K∑
k=1

E[∥u(k)
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Finally, we obtain
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Lemma C.30. Given Assumptions 3.1-3.3, we obtain
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Proof. Following the proof of Lemma C.29, for any t ≥ 0, we obtain
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Based on Lemma C.13 and Lemma C.14, we obtain
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Then, we obtain
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For the first term on the last step of Eq. (110), we bound it as follows:
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Similarly, we bound the second term on the last step of Eq. (110) as follows:
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By combining them together, we obtain
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Finally, we obtain
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Lemma C.31. Given Assumptions 3.1-3.3, we obtain
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Proof. Following the proof of Lemma C.29, we obtain
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Based on Lemma C.15, we obtain
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Then, we obtain
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For
∑K

k=1 E[∥w
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0 − w̄0∥], we bound it as follows:
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Finally, we obtain
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C.6 PROOF OF THEOREM 4.1

Proof. By plugging the inequalities in Lemmas C.8, C.7 into Lemma C.6, we obtain
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E[∥ȳt − y
(k)
t ∥]

+

(
2
Lg

δ
+

8L2
g

µ

1

δ

)
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥z(k)t − z̄t∥]

+
1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥p̄t − p
(k)
t ∥] + 4(δLf + Lg)

µ

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥q̄t − q
(k)
t ∥] + 4Lg

µ

1

T

T−1∑
t=0

1

K

K∑
k=1

E[∥r̄t − r
(k)
t ∥]

+
ηxLΦ

2
+

1

δ

4ηx(δLf + Lg)
2

µ
+

1

δ

2ηy(δLf + Lg)
2

µ
+

1

δ

η2x
ηy

2(δLf + Lg)
2

µ
+

1

δ

η2x
ηy

2Lh∗
δ
(δLf + Lg)

µ

+
1

δ

4ηxL
2
g

µ
+

1

δ

2ηzL
2
g

µ
+

1

δ

η2x
ηz

2L2
g

µ
+

1

δ

η2x
ηz

2Lg∗Lg

µ
. (121)

By plugging Lemmas C.22, C.23, C.24, C.25, C.26, C.27, C.28, C.29, C.30, C.31 into the above
inequality and setting ηy = ηx

4(δLf+Lg)
µ and ηz = ηx
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µ , we obtain
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Because κ > 1, 1 − λ < 1, γx < 1, γy < 1, γz < 1, s ∈ (1, 2], LΦ = O(ℓκ3), Lh∗
δ
= O(ℓκ), and

Lg∗ = O(ℓκ), it can be simplified to the following inequality:
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We set
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Then, we can obtain
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Because s ∈ (1, 2] and x̄0 = x0, ȳ0 = y0, z̄0 = z0, it is easy to verify that the following terms
marked by blue are high-order terms compared to 1
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On the one hand, both 1
δE[hδ(x0, y0) − hδ(x0, y

∗
δ (x0))] and 1

δE[g(x0, z0) − g(x0, y
∗(x0))] are

affected by 1
δ , to avoid the degeneration of the convergence rate, we can provide good initial

points (x0, y0) and (x0, z0) such that E[hδ(x0, y0) − hδ(x0, y
∗
δ (x0))] ≤ δ and E[g(x0, z0) −

g(x0, y
∗(x0))] ≤ δ can mitigate the adverse affect from 1

δ . Since both hδ(x, y) and g(x, z) sat-
isfy the µ-PL condition with respect to the second variable, we can use a gradient descent method
to obtain such solutions, which has a linear convergence rate and therefore does not affect the
other terms in Eq. (126). On the other hand, we haveE[∥∇Φ(x̄t) − ∇Φδ(x̄t)∥] ≤ O(δℓκ3) =
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