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ABSTRACT

The success of deep learning in various complex tasks relies heavily on large
amounts of annotated data, which can be prohibitively expensive to acquire. Tech-
niques such as reinforcement learning with human feedback (RLHF) and direct
preference optimization (DPO) have emerged as methods for fine-tuning models
by leveraging human preferences, but they come with significant costs, especially
when applied to large-scale language models (LLMs). Recent efforts to reduce
these costs have focused on active preference optimization, which uses certainty-
based selection to minimize the annotation burden. However, the two-step process
of selecting uncertain input prompts and then acquiring completions can lead to sub-
optimal pairings, potentially limiting model learning capacity. This paper suggests
that divAPO eliminates suboptimal pairings that are typical of two-step methods
and enhances learning capacity by selecting the most informative preference pairs
in a single phase, taking into account both data distribution probabilities and pref-
erence model certainty. Through experiments on complicated Language tasks, we
demonstrate that our method achieves significant performance improvements over
existing approaches.

1 INTRODUCTION

The success of deep learning in a variety of intricate tasks is significantly influenced by the availability
of extensive, well-annotated data, which can be prohibitively expensive to acquire in practice.
Reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022) and direct preference
optimization (DPO) (Rafailov et al., 2024) are two techniques that have emerged in recent years as
approaches to fine-tuning models by leveraging human preferences. Nevertheless, these methods
result in substantial expenses, particularly when fine-tuning large models such as GPT (Brown, 2020)
or diffusion models (Ho et al., 2020), which necessitate a significant number of responses from human
participants with domain expertise, as well as large-scale language models (LLMs). In addition, the
generation of numerous responses for a single input prompt and their subsequent ranking are typical
characteristics of preference labels, necessitating a substantial quantity of responses (Ouyang et al.,
2022; Jiang et al., 2024; Ziegler et al., 2019; Liu et al., 2020). Nevertheless, it is imperative to identify
methods to optimize the data acquisition process, as the cost of preference labeling from all of these
responses can be substantial.

In this regard, to reduce these costs, recent research has explored the integration of active learning
(AL) strategies, such as active preference learning (APL) (Muldrew et al., 2024). APL suggests a
certainty-based selection strategy for correcting the overconfident prediction of DPO. According
to Figure 1 (a), this method involves a two-step selection process. First, predictive uncertainty
calculates the average entropy score of the output text token probability to identify informative input
prompts. Then, preference model certainty—which is defined using the implicit rewards gap of the
preference model, like DPO—acquires corresponding completions. These strategies aim to minimize
the annotation burden by intelligently selecting the most informative input prompt and completion
pairs for labeling.

Although this strategy effectively selects uncertain input prompts, it fails to consider the potential
informativeness of the input prompt and completion pairings from a fine-tuning perspective, which
could restrict the model’s overall learning capacity. Furthermore, no assurance selecting an input
prompt based on its uncertainty will produce a high-quality or well-informative completion pair,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM

1

4

2

3 Oracle

Input Prompt
Selected

Input Prompt

Input Prompt Selection
𝑥𝑥 = 𝑥𝑥𝑖𝑖

Completions Selection
y = (𝑦𝑦1, 𝑦𝑦3)

𝑦𝑦+ = 𝑦𝑦1
𝑦𝑦− = 𝑦𝑦3

Preference Optimization
D = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖+,𝑦𝑦𝑖𝑖−)

X informativeness

Y
 p

ai
r i

nf
or

m
at

iv
en

es
s

𝑥𝑥 = 𝑥𝑥𝑖𝑖

y = (𝑦𝑦1,𝑦𝑦3)

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖+,𝑦𝑦𝑖𝑖−)

(a) Active Preference Optimization with 2-step selection (b) Learning capacity of x-y pair

Figure 1: Overview of active preference optimization; (a) For selected input prompt x = xi and
completions y = (y1, y2, ...), the oracle then ranks preference as y+ (preferred) and y− (not preferred).
(b) Learning capacity of the input prompt - completions pair, where the x-axis and y-axis represent
the informativeness of the input prompt and the completions pair.

which could result in suboptimal pairs for model learning. For instance, input prompts that contain
philosophical content are more likely to be chosen due to their ambiguity, even though they are less
frequently encountered in everyday use. Nevertheless, the probability of the model encountering
difficulty in comprehending these prompts is elevated, resulting in summaries of inferior quality. The
x-axis in Figure 1 (b) represents the informativeness of the input prompt, such as uncertainty. The
blue region denotes the critical portion that the input prompt has selected. The informativeness of
completion pairs is represented by the y-axis, while the magenta region denotes the critical portion
that the completion pairs have selected. In active learning with preference optimization, the purple
portion is the most critical subset that we are striving to identify. In the 2-step selection, certain
informative pairs (shown in the pink region) are not selected under this strategy, even though they hold
a high value for fine-tuning from a broader perspective. This observation emphasizes the necessity of
an active learning strategy that simultaneously prioritizes both input prompts and completion pairs.

In this paper, we present divAPO, a novel active learning strategy that is intended to enhance
preference learning by simultaneously evaluating the informativeness of the pairs and the diversity of
input prompt stimuli. Our approach considers both the data distribution probabilities and preference
model certainty regarding the completions pairs, allowing for a more comprehensive selection
of informative samples. Our method employs an input prompt-completions one-step selection
strategy, eliminating the sub-optimal candidate selection issue that arises when either input prompt
or completions is chosen first. We were able to select data more diversely by approximating the
distribution of input prompts and completions and incorporating the model’s assurance to modify this
distribution. By employing this approach, we were able to identify an optimal subset that effectively
balances diversity and informativeness, thereby improving the overall learning process. Furthermore,
we underscore the significance of input prompt diversity, as the repetitive sampling of similar data
points resulting from multiple overlapping input prompts and completion configurations within the
dataset can result from the selection of uncertain data alone.

We validate our approach through extensive experiments on various tasks, including IMDB movie
review generation, TL;DR text summarization, and Anthropic HH (helpfulness-harmlessness) single-
turn dialogue. Using large-scale, open-source LLMs with approximately 1–3 billion parameters,
our results demonstrate a significant performance improvement, with an increase up to 9.21%
over baseline methods. These findings underscore the effectiveness of our proposed method in
leveraging preference feedback for AL, contributing to both the theoretical understanding and
practical application of AL in the context of modern machine learning tasks. The source code is
available at https://anonymous.4open.science/r/divAPO-8A96.

2 RELATED WORK

2.1 PREFERENCE OPTIMIZATION

The rapid advancements in Large Language Models (LLMs) have highlighted the importance of
aligning models with intricate human preferences (Jiang et al., 2024). Preference optimization (PO)
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has emerged as a promising technique in fine-tuning these models, leading to a compelling model such
as ChatGPT (Ouyang et al., 2022). One of the pioneer approaches in this domain is Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022) that involves a two-stage process:
1) learning an auxiliary reward model on human preference datasets, and 2) fine-tuning LLMs to
align the reward with RL objectives, such as Proximal Policy Optimization (PPO) (Schulman, 2017),
P3O (Wu et al., 2023), and REINFORCE (Ahmadian et al., 2024).

As many studies have reported that RLHF often suffers from high variance and sensitivity to hy-
perparameters, Direct Preference Optimization (DPO) (Rafailov et al., 2024) has emerged as an
alternative by not requiring explicit reward modeling or RL training. DPO simplifies the training
process by directly maximizing the output likelihood of preferred data examples while reducing
that of non-preferred examples. Several variants of supervised loss of preference optimization have
been studied (Azar et al., 2024). SLiC-HF (Zhao et al., 2023) introduces a hinge-loss objective to
further separate preferred and non-preferred samples. IPO (Azar et al., 2024) replaces the traditional
sigmoid-based objective with a mean squared error (MSE) loss to enhance training stability. Despite
their promising results, the sample selection problem for constructing better preference datasets
remains underexplored, yet is crucial for further refining alignment processes.

2.2 ACTIVE LEANING FOR PREFERENCE OPTIMIZATION

Active Learning in NLP. AL is a well-established problem with a primary goal to maximize model
performance with minimal labeling costs by identifying the most informative samples and labeling
them with human oracle (Zhang et al., 2022; Cohn et al., 1994; Houlsby et al., 2011; Settles, 2009).
In NLP, there are two main traditional AL strategies commonly used (Zhang et al., 2022). One
strategy is based on the informativeness of data instances, utilizing factors such as the uncertainty
and disagreement of the models (Engelson & Dagan, 1996; Huang et al., 2024; Siddhant & Lipton,
2018). The other strategy is based on the representativeness of data instances (McCallum et al., 1998;
Settles & Craven, 2008; Zhao et al., 2020), which focuses on selecting representative samples that
can effectively capture the diversity of the underlying data distribution (Bloodgood & Callison-Burch,
2014; Eck et al., 2005; Zeng et al., 2019). These two directions are particularly necessary for
complex tasks including text generation or summarization, where the selected samples need to be
both informative (Zhao et al., 2020; Gal & Ghahramani, 2016; Gidiotis & Tsoumakas, 2023) and
representative (Sener & Savarese, 2017; Tsvigun et al., 2023; Perlitz et al., 2023). However, most
AL methods have traditionally focused on supervised learning scenarios, where only a single label is
required for annotating each data example, making them hard to directly apply to the PO framework,
which usually requires a pair of answers (or labels) to incorporate the human preference.

Active Preference Optimization. Recently, a few approaches have attempted to study active learning
for preference optimization. APL (Muldrew et al., 2024) particularly involves a two-step sample
selection process based on the sample uncertainty and DPO reward; it first roughly selects samples
with a high LLM output entropy, and then refines the choices by further selecting samples with a
high DPO reward gap between a pair of answers. While APL shows enhanced sample efficiency with
the two-step uncertainty-perspective selection, it lacks studies of the effect of diversity and does not
validate generalizability over various PO approaches, such as SLiC-HF.

3 PROBLEM STATEMENT

3.1 PRELIMINARY

Let Dp = {(x, y+, y−)} be a preference dataset of LLMs, where x denotes an input instruction and
(y+, y−) denotes its pairwise answer annotated by human as y+ is more preferable than y− to answer
the instruction x.

3.2 ACTIVE LEARNING FOR PREFERENCE OPTIMIZATION

Let θ be an initial LLM trained on general text corpus with SFT, and U = {xi}mi=1 be an unlabeled
instruction dataset for the target domain. To annotate this dataset with human preference, a human
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Figure 2: Overview of the divAPO. First, the distance-probability density is estimated (Section
4.2.1), followed by maximizing the preference model certainty (Section 4.2.2). The process begins
with the selection of an input prompt and output completions generated by a large language model
(LLM) trained with preference feedback. The embeddings of labeled and unlabeled input prompt and
completions are compared to find the optimal completion pair.

oracle is requested to assign a preference label between a pairwise answer (y[1], y[2])1. If the
human prefers the answer y[1] over y[2] then the annotated preference answer (y+, y−) = (y[1], y[2]),
otherwise (y+, y−) = (y[2], y[1]). Then, a problem of active learning for preference optimization
aims to find the most informative query set S ⊂ U , that is augmented to the preference labeled set
L = O(S) by an oracle O, within an annotation budget b by the following objective:

S∗ = argmax
S⊆U : |S|≤b

Alignment(θ̂) : θ̂ = argmin
θ

∑
(x,y+,y−)∈O(S)

Lpref (x, y
+, y−; θ), (1)

where Alignment(·) is the model’s alignment performance to human preference. This AL for PO
problem can be extended into the multi-round AL scenario by simply accumulating the labeled set L
throughout the AL rounds.

3.3 PREFERENCE MODEL CERTAINTY

With characteristics of the Bradley-Terry model, DPO has the implicit reward function r̂(x, y) =

β log pθ(y|x)
pθref

(y|x) where β is a hyperparameter that controls the proximity to the SFT model θref. The

preference model certainty R (Muldrew et al., 2024) for a data point xi is defined based on the
absolute difference between the model’s predictions for two responses y[1]i and y

[1]
i :

R(xi, y
[1]
i , y

[2]
i ) =

∣∣∣r̂(xi, y
[1]
i )− r̂(xi, y

[2]
i )

∣∣∣ . (2)

Data points with larger discrepancies can drive significant learning, especially when the model’s
confident predictions differ from the oracle’s evaluation. These discrepancies are crucial for improving
the model’s performance. This aligns with the DPO training objective, which emphasizes gradient
updates based on prediction deviations, allowing the model to focus on correcting its most notable
errors while the KL constraint ensures it stays close to its previous behavior.

4 DIVAPO

4.1 OBJECTIVE

We propose divAPO, a method for efficiently learning preferences with a limited budget on prefer-
ence annotations. By using a 1-step selection process, divAPO reduces suboptimality and directly
maximizes the objective for improved performance. The goal is to select a subset S to maximize the
preference model certainty, denoted as R(·), over the entire data distribution P (U). The inclusion
of P (U) directly into the objective function enables our method better to reflect the underlying

1This pairwise answer can be produced by the initial LLM θ or can be obtained by humans.
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distributional characteristics of the data. The objective function can be mathematically expressed as
follows:

S∗ = argmax
S⊆U :|S|=b

∑
xi∈S

(
P (xi) ·R(xi, y

[1]
i , y

[2]
i )

)
(3)

4.2 DIVAPO

In practice, the exact data distribution P (U) is unknown and cannot be directly computed. Therefore,
we introduce an approximated objective based on a distance-estimated probability (DEP) distribution
that effectively captures the data’s spatial properties. Using Definition 4.1 and Equation 6, the
objective function can be expressed as follows:

S∗ = argmax
S⊆U :|S|=b

∑
xi∈S

(
Pd(x

i, L) ·R(xi, y
[1]
i , y

[2]
i ))

)
(4)

This formulation ensures that the selected subset maximizes the overall expected preference model
certainty while considering the underlying data distribution via the distance estimated probability.
In Section 4.2.1, we first introduce a new metric, the distance estimated probability, that enables
estimating the P (U). Then, in Section 4.2.2, we introduce preference model certainty, which
represents learning capacity of preference optimization.

4.2.1 DISTANCE ESTIMATED PROBABILITY

We approximate P (U) using a distance-based probability metric, which we refer to as the distance-
estimated probability (DEP). This approximation is efficient for modeling distributions and facilitates
its use in our objective function. Formally, DEP is defined as follows:

Definition 4.1. (DISTANCE ESTIMATED PROBABILITY). The distance estimated probability
Pd(xi, L) of instance xi and labeled set L is formalized as

Pd(xi, L) =
dp(e(xi, y

[1]
i , y

[2]
i ), L)∑

xi∈U dp(e(xi, y
[1]
i , y

[2]
i ), L)

(5)

Here, e(xi, yi1, y
i
2) is the embedding of point xi with corresponding features yi1 and yi2, dp(·) rep-

resents the distance (Arthur & Vassilvitskii, 2006), can be based on various distance metrics (e.g.,
Euclidean, cosine).

4.2.2 MAXIMIXE EXPEXTED PREFERENCE MODEL CERTAINTY

As mentioned in the Section 3.3, the preference model certainty can be defined with the reward gap
of the implicit preference model.

R(xi, y
[1]
i , y

[2]
i ) =

∣∣∣r̂(xi, y
[1]
i )− r̂(xi, y

[2]
i )

∣∣∣ (6)

Data points with larger discrepancies can drive significant learning, especially when the model’s
confident predictions differ from the oracle’s evaluation. These discrepancies are crucial for improving
the model’s performance. This aligns with the DPO training objective, which emphasizes gradient
updates based on prediction deviations, allowing the model to focus on correcting its most notable
errors while the KL constraint ensures it stays close to its previous behavior.

Once the data distribution has been estimated, we incorporate the preference model certainty for
each data point to adjust the sampling probabilities. The expected preference model certainty for a
subset of the data is computed by multiplying the distance estimated probability-derived probability
by the preference model certainty of each instance in the subset. We normalize the preference model
certainty across the dataset and apply a weighting factor to emphasize the importance of certain
instances based on their relative distance and contribution to the learning process.
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4.3 GREEDY SELECTION ALGORITHM

Given that our objective function, which incorporates DEP and the preference model certainty, is
NP-hard, solving it directly is computationally intractable. As a result, we employ a greedy selection
algorithm to approximate the optimal solution. The objective function satisfies the properties of
monotonicity and submodularity, which ensures that the return of the function increases monotonically
as new examples are added to the subset. Moreover, the marginal benefit of adding a new example
diminishes as the subset grows. These properties justify the use of a greedy algorithm, as the solution
is guaranteed to be within a constant factor of the optimal solution, as demonstrated in A.

In Theorem 4.2, we guarantee the selected subset S obtained by our greedy solution achieves a
(1− 1/e)-approximation of the optimum.
Theorem 4.2. Since Eq. (4), denoted as OBJ , is a monotone, submodular, and non-negative function
on x, the greedy solution provides a set with a (1− 1/e)-approximation of the optimum. Formally,

OBJ(S) ≥ (1− 1/e) ·OBJ(S∗). (7)

Proof. We prove the monotonicity and submodularity of Eq. (4). If the two conditions are satisfied,
Eq. (7) naturally holds. See Appendix A for the complete proof.

The k-means++ seeding algorithm inspires our greedy selection process. We iteratively select data
points by measuring the p-norm distance between the unlabeled preference data points and the
currently selected subset S . For each unlabeled data point, we compute its distance to the nearest data
point in S, and this distance is used to derive a sampling probability. At each step, we compute the
DEP for the unlabeled data points and multiply this by their normalized preference model certainty.
The data point with the highest combined score is then selected and added to the subset S . The greedy
sample selection can be employed as in Algorithm 1.

Algorithm 1 Greedy Selection Algorithm of divAPO

INPUT: Unlabeld Data set U = {xi}mi=1, Target subset size s, Embedding function e, Initial model
θ0, Oracle O, Active learning round R

OUTPUT: Optimal subset S∗
1: S ← ∅
2: θt ← θ0
3: Xp := {xi, y

[1]
i , ..., y

[n]
i }mi=1 ← Generate(θt, U )

4: for r← 1 to R do
5: repeat

6: dp(e(xi, y
[1]
i , y

[2]
i ), L)← minxj∈L

(∑
k |e(xi, y

[1]
i , y

[2]
i )− e(xj , y

[1]
j , y

[2]
j )|p

) 1
p

7: Pd(xi, L)← dp(e(xi, y
[1]
i , y

[2]
i ), L)/

∑
xi∈U dp(e(xi, y

[1]
i , y

[2]
i ), L)

8: R(xi, yi1, y
i
2)←

∣∣∣r̂(xi, y
[1]
i )− r̂(xi, y

[2]
i )

∣∣∣
9: {x∗, y

+
∗ , y

−
∗ } ← arg max

x′∈U\S

(
Pd(x

i, e) ·R(xi, yi1, y
i
2)
)

10: until |S| = s
11: S ← S ∪ {x∗, y

+
∗ , y

−
∗ }, Xp ← Xp − S

12: θt+1 ← Finetune(θ0, θt, S)

Time Complexity Analysis. The time complexity of the divAPO strategy can be understood by
breaking down its key components. The primary computational steps include embedding extraction,
reward calculation, and diverse point selection using a clustering-based approach. First, embeddings
are calculated for all samples, which requires O(m · d), where m is the number of unlabeled data
points and d is the dimensionality of embeddings. Next, rewards for each sample are computed
with complexity O(m). To calculate distance estimated probability, we use the p-norm distance
between embeddings, with complexity O(m · k · d), where k is the number of querys. Overall, the
dominant factor is the clustering process, yielding an overall time complexity of O(m · k · d) per
query iteration.
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Figure 3: Win-rate comparison using the DPO and SLiC-HF loss function. (a) IMDB shows win-rate
versus human-provided positive review data of test set; (b) TL;DR presents win-rate versus human-
provided summaries on test prompts; (c) HH-rlhf displays win-rate versus the initial model. The
x-axis represents the size of the acquired dataset used for fine-tuning at the evaluation point.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Tasks and Datasets. We evaluated LLM alignment performance across several datasets, including
IMDB (Maas et al., 2011), TL;DR(Völske et al., 2017), and HH-RLHF(Bai et al., 2022). IMDB
consists of 25K movie reviews, and the task focuses on continuously generating positive reviews
from a short initial review. TL;DR contains 117K Reddit posts, and the task is to generate summaries
of those posts. HH-RLHF consists of 170K dialogues between humans and automated assistants, and
the task aims to increase the assistant answer’s helpfulness while decreasing its harmlessness.

Algorithms. We compare divAPO with a random sample selection, Uniform, and three conventional
AL approaches for supervised learning, Entropy (Kadavath et al., 2022), Certainty (Muldrew et al.,
2024), and Coreset (Sener & Savarese, 2017), and one AL approach for preference optimization,
APL (Muldrew et al., 2024). Entropy selects samples with a high average entropy score of the output
text token probability. Certainty selects the pair completions where the model’s implicit reward
value is high. Coreset selects a subset of examples that maximize the distance coverage to the entire
training set in the embedding space of SentenceBert (Reimers, 2019). APL performs sample selection
by a two-step uncertainty-based filtering, that first roughly selects samples with a high LLM output
entropy, and refines the choices by further selecting samples with a high DPO reward gap.

Implementation Details. We validate our experiment using two promising preference optimization
approaches, DPO and SLiC-HF. For the initial backbone LLM, we employ GPT-2 (Radford et al.,
2019) for IMDB dataset, Pythia-1B (Biderman et al., 2023) for TL;DR dataset, and Pythia-2.8B for
HH-RLHF dataset. All the backbone LLMs are trained by SFT first, and then used for preference
optimization. For the experiments, we followed the hyperparameter setup used in (Muldrew et al.,
2024), utilizing the ADAM optimizer with a learning rate 1e-06. We trained 30 epochs for IMDB
data and 50 epochs for TL;DR and HH-rlhf data. A batch size of 32 was employed, and each
query round included a query size of 128 samples with a total of 6 rounds. Additionally, we set the
hyperparameter β to 0.2. To calculate embeddings for divAPO, we use the same sentence embedding
model, all-MiniLM-L6-v2 SentenceBERT, with CoreSet. We repeated every experiment 5 times and
reported the average value. All experiments were conducted using a 48GB A6000 GPU. Further
implementation details can be found in Appendix B.
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PO DPO SLiC-HF

Data IMDB TL;DR HH-rlhf IMDB TL;DR HH-rlhf

Uniform 61.32±0.13 59.03±0.26 56.14±0.13 64.06±0.27 62.61±0.45 56.27±0.13

Entropy 60.93±0.41 59.86±0.67 56.92±0.48 63.27±0.71 63.98±0.51 57.24±0.14

Certainty 62.50±0.68 61.21±0.89 56.75±0.38 63.47±0.61 65.24±0.54 57.92±0.52

Coreset 59.37±0.48 60.92±0.60 55.58±0.48 62.69±0.96 62.22±0.56 57.12±1.1

APL 63.28±0.55 61.29±0.38 57.34±0.55 64.45±0.82 64.57±0.52 57.69±0.90

OURS 64.84±0.22 63.21±0.47 57.73±0.32 65.38±0.91 65.74±0.58 59.10±0.56

Table 1: Win-rate performance comparison across IMDB, TL;DR, and HH-rlhf datasets with DPO
and SLiC-HF loss functions. We calculated the mean and standard deviation of three experimental
runs from the most recent round’s win rate to determine each result.

Evaluation. We use GPT-4o-mini as the oracle for evaluating preference, based on many studies
indicating that OpenAI’s GPT-4, when appropriately prompted, aligns closely with human judg-
ments (Rafailov et al., 2024; Muldrew et al., 2024). We further validate that its recent cost-efficient
variant, GPT-4o-mini, also provides consistent and high-quality responses. See Appendix C for more
detailed explanations. Therefore, we prompt GPT-4o-mini to evaluate the LLM response on three
criteria: (1) relevance to the task, (2) grammatical accuracy, and (3) sentence consistency. Given these
detailed score rubrics, GPT-4o-Mini determines which model’s output response is more preferred,
with the final metric referred to as “win-rate". We present the prompt in Appendix D.

5.2 MAIN RESULTS

Figures 3, along with Table 1, present the performance comparison of various active learning
strategies across the IMDB, TL;DR, and HH-rlhf datasets using the DPO and SLiC-HF loss functions.
The results demonstrate that our proposed method, divAPO, consistently outperforms the baseline
approaches—Random, Entropy, APL, Certainty, and Coreset—across all datasets and loss functions.

Across all datasets and configurations, Figure 3 shows our proposed method, divAPO, consistently
outperforms the baseline approaches—Random, Entropy, APL, Certainty, and Coreset. In the IMDB
dataset, divAPO achieves the highest win-rate in both the DPO and SLiC-HF settings, demonstrating
its ability to effectively leverage informative samples as the dataset size increases. The trend is similar
for the TL;DR and HH-rlhf datasets, where divAPO shows the most significant improvements in
performance, particularly as the acquired dataset size grows. These results highlight the superiority
of our method in maximizing model performance by balancing preference optimization and diversity
within the selected samples, outperforming the baselines in all cases.

Table 1 summarizes the win-rate results from the last round of the experiments, calculated as the
mean and standard deviation across three experimental runs. divAPO consistently delivers the highest
win-rate across all datasets, both for the DPO and SLiC-HF loss functions. This demonstrates
the effectiveness of divAPO in leveraging a more informed sample selection process, effectively
optimizing preference learning and leading to superior fine-tuning performance compared to existing
active learning strategies. These results confirm that divAPO not only generalizes well across different
datasets but also significantly improves the model’s performance by maximizing learning capacity
through its novel 1-step selection strategy. This highlights the robustness and effectiveness of our
method in preference optimization scenarios, making it a reliable choice for active learning tasks.

5.3 ABLATION STUDIES

Effect of diversity(γ). The preference model certainty and the diversity of the preference dataset are
both essential factors in preference learning. To understand the factors that enhance the performance
of divAPO, we assessed it with a variety of diversity parameters, γ ∈ {0.0, 0.5, 1.0, 2.0, 5.0, 10.0},
to examine the influence of response quality and diversity on the performance of the fine-tuned
models. The results in Figure 4 (a) show that divAPO achieves the highest performance with γ = 2.0,
outperforming configurations with either higher or lower γ values. We experimented on the IMDB
dataset, and subsequently applied this optimal using γ = 2.0 to experiments of other datasets. The
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(a) Diversity parameter γ. (b) Learning capacity of candidates. (c) Embedding of APL and divAPO.

Figure 4: Ablation studies. (a) Performance comparison of divAPO with varying diversity parameters
showing the best performance at γ = 2.0; (b) highlights the importance of completion informativeness
over prompt informativeness for improving model performance; (c) The distribution of data selected
by APL and divAPO methods, showing clustering patterns that suggest potential selection biases in
certain data regions.

significance of these factors is underscored by this discovery, which is consistent with prior research
that has emphasized the necessity of harmonizing diversity and reward gap in the development of an
effective preference dataset.

Learning capacity of a gray area. As referenced in Figure 1 (b), we conducted a comparison between
two types of data: those with low prompt informativeness but high completion informativeness, and
those with high prompt informativeness but low completion informativeness. This experiment was
carried out using the IMDB dataset under the DPO loss function. The results in Figure 4 (b) showed
a clear trend, data with higher completion informativeness significantly outperformed the data with
higher prompt informativeness. This demonstrates that focusing on the completion’s informativeness
provides more valuable learning signals than relying on prompt informativeness alone. The findings
suggest that the strategy of selecting prompts first and generating completions as a secondary step
may be sub-optimal, especially in scenarios where the model needs to learn from the richness of
the completion data. This supports the hypothesis that informative completions play a crucial role
in optimizing preference-based models like DPO, offering a more refined learning process that
ultimately leads to superior results.

Embedding space of selected point. In the embedding space visualization in Figure 4 (c) using the
IMDB dataset under the DPO loss function, we observed an important pattern when applying the
2-step selection method. The selected samples tended to cluster in one particular region of the space,
indicating a concentration of data types within a specific category. This region primarily consisted
of the input that was either the same or contained difficult content, which was over-represented in
the selected dataset. As a result, the GPT model’s performance declined, as it did not have sufficient
exposure to a broader range of completions. This uneven distribution of selected data highlights a
key limitation of the 2-step approach, which can lead to biased or skewed learning outcomes when
the diversity of the data space is not adequately covered. This imbalance underscores the importance
of ensuring a more even data distribution during the active learning process to prevent such gaps in
model performance.

6 CONCLUSION

In this work, we introduced divAPO, a novel active learning strategy that addresses the limitations of
existing approaches in preference optimization. By simultaneously considering the distance estimated
probability and preference model certainty, our method overcomes the shortcomings of traditional two-
step selection processes, which often lead to suboptimal data pairings. Our one-step selection strategy
ensures that the model learns from a more diverse and informative subset of data, thereby enhancing
its overall learning capacity. Extensive experiments on multiple datasets, including IMDB, TL;DR,
and HH-rlhf, demonstrated the effectiveness of our approach, with performance improvements of
up to 9.21% compared to baseline methods. These findings underscore the importance of balancing
diversity and preference model certainty in active learning for preference-based optimization.

9
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Active Preference Optimization via Maximizing Learning Capacity
(Supplementary Material)

A PROOF

We conclude Theorem 4.2 by demonstrating the monotonicity and submodularity of Eq.(4) in A.1
and A.2. This is based on the widely accepted observation that the monotonicity and submodularity
of a combinatorial objective ensure that the greedy selection process results in an objective value that
is within (1− 1/e) of the optimum (Feige, 1998).

A.1 PROOF OF MONOTONICITY

Monotonicity means that adding an element to the subset S does not decrease the value of the
objective function. Formally, it should hold that:

f(S ∪ {xj}) ≥ f(S)

The objective function is given as:

f(S) =
∑
xi∈S

Pd(x
i, L) ·R(xi, y

[1]
i , y

[2]
i )

where Pd(x
i, L) is the Distance Estimated Probability, defined as:

Pd(x
i, L) =

dp(e(xi, y
[1]
i , y

[2]
i ), L)∑

xi∈X dp(e(xi, y
[1]
i , y

[2]
i ), L)

and R(xi, y
[1]
i , y

[2]
i ) is the Preference Model Certainty, defined as:

R(xi, y
[1]
i , y

[2]
i ) =

∣∣∣r̂(xi, y
[1]
i )− r̂(xi, y

[2]
i )

∣∣∣
We calculate the value of the objective function after adding a new element xj to S:

f(S ∪ {xj}) =
∑
xi∈S

Pd(x
i, L) ·R(xi, y

[1]
i , y

[2]
i ) + Pd(x

j , L) ·R(xj , y
[1]
j , y

[2]
j )

Since both Pd(x
j , L) ≥ 0 and R(xj , y

[1]
j , y

[2]
j ) ≥ 0 by definition, we have:

f(S ∪ {xj}) ≥ f(S)

A.2 PROOF OF SUBMODULARITY

We are given the following objective function:

S∗ = arg max
S⊆X :|S|=b

∑
xi∈S

Pd(x
i, L) ·R(xi, y

[1]
i , y

[2]
i )

where Pd(x
i, L) is the Distance Estimated Probability, and R(xi, y

[1]
i , y

[2]
i ) is the Preference Model

Certainty.

To prove submodularity, we need to show that for any sets S ⊆ T , the marginal gain of adding an
element xj to a smaller set S is greater than or equal to the marginal gain of adding xj to the larger
set T . Formally, we want to prove the following inequality:
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f(S ∪ {xj})− f(S) ≥ f(T ∪ {xj})− f(T ), where S ⊆ T

For the set S, the marginal gain of adding xj is:

f(S ∪ {xj})− f(S) = Pd(x
j , L) ·R(xj , y

[1]
j , y

[2]
j )

Similarly, for the set T , the marginal gain of adding xj is:

f(T ∪ {xj})− f(T ) = Pd(x
j , L) ·R(xj , y

[1]
j , y

[2]
j )

Both Pd(x
i, L) and R(xi, y

[1]
i , y

[2]
i ) exhibit diminishing marginal returns, which leads to submodu-

larity. Let’s analyze both terms:

- Distance Estimated Probability Pd(x
i, L): This term is based on the distance function dp, which

measures the distance between point xi’s embedding and the label set L. As more elements are added
to the set, the relative contribution of each new element to the probability distribution decreases,
especially as new elements become more similar to existing ones. Thus, Pd(x

i, L) tends to diminish
as the size of the set grows, even though it may not be strictly concave.

- Preference Model Certainty R(xi, y
[1]
i , y

[2]
i ): This term measures the gap between the model’s

predicted preferences for two different labels. As the set grows and more data is available, the
model becomes more confident, and the relative uncertainty or disagreement between the predictions
decreases. This leads to a diminishing contribution of additional elements as the set size increases.

Since both Pd(x
i, L) and R(xi, y

[1]
i , y

[2]
i ) are affected by diminishing returns, the marginal contribu-

tion of a new element xj to a smaller set S will be greater than or equal to its marginal contribution
to a larger set T .

Thus, we can conclude that:

f(S ∪ {xj})− f(S) ≥ f(T ∪ {xj})− f(T )

Since the diminishing marginal returns property holds for both Pd(x
i, L) and R(xi, y

[1]
i , y

[2]
i ), the

objective function satisfies the submodularity condition. Therefore, the function exhibits diminishing
marginal returns as the size of the subset increases, proving submodularity.

B IMPLEMENTATION DETAILS

Data IMDB TL;DR HH-rlhf

Data size 25k 117k 170k
Model used Pre-trained GPT-2 Pre-trained Pythia 1b Pre-trained Pythia 2.8b
Optimizer ADAM lr: 1e-06 ADAM lr: 1e-06 ADAM lr: 1e-06
Finetuning Epochs 30 50 50
Mini-batch size 32 32 32
Prompt query 128 128 128
β for KL term 0.2 0.2 0.2

Table 2: Experimental settings for active preference optimization with IMDN, TL;DR, and HH-rlhf.

Temperature adjustment. We employ temperature-scaled sampling, which involves scaling the
logits before applying the softmax function to modify the probability distribution over the next
token. The distribution is sharpened by a low temperature T < 1, which results in the model being
more conservative and confident in its predictions, which often results in less diverse outputs. The
distribution is flattened by a high-temperature T > 1, which increases the diversity of the output by
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Figure 5: (a) Self-consistency of GPT models. (b) Agreement Rate with GPT-4. (a) shows average
self-consistency of preference labels provided by GPT-3.5-turbo, GPT-4o-mini, GPT-4o, GPT-4-
turbo and GPT-4 across 64 prompt completion pairs. Each model provided two preference labels
for each prompt completion pair. (b) shows agreement rate with GPT-4 across different sampling
temperatures. GPT-4o and GPT-4o-mini show slightly higher agreement rates with GPT-4 compared
to GPT-3.5-turbo and GPT-4-turbo, especially at lower temperatures.

increasing the likelihood of selecting less probable tokens. The sampling is effectively transformed
into greedy decoding when the temperature is zero (T = 0). In our experiments, we employ T = 0.7
during training, T = 0.1 during testing, and T = 0.05 for the GPT-4o-mini oracle to encourage
reduced variance.

Data pre-processing Every input prompt for IMDB is chosen at random at the start of a review.
Here, the only processing we perform is to truncate the input prompt at random to a set of tokens,
8–16 tokens, chosen at random. We selected Reddit posts with between 200 and 1000 characters
for TL;DR and HH-rlhf The primary cause of this was the GPUs’ memory constraints during the
model-training process. In the end, we eliminated trailing space tokens.

C GPT AS ORACLE EVALUATOR

Using GPT as Oracle.

In traditional active learning settings, an oracle is often a human labeler who annotates unlabeled
data. For many tasks, this involves providing a clear, singular label, which the oracle then uses to
guide the model. However, in tasks requiring preference judgments, where labels are given based on
relative evaluation, an immediate and adaptable oracle is needed to handle the latest model-generated
responses. Given the impracticality of conducting objective experiments with multiple human judges
for every evaluation, we leverage the language model APIs provided by OpenAI for fine-tuning
and evaluation processes. Research from the DPO paper indicates that OpenAI’s GPT-4, when
appropriately prompted, aligns closely with human judgments, demonstrating strong agreement.

Cost-efficient GPT model. One notable drawback of using GPT-4 as the oracle model is its high cost
and latency. In response, several alternative models such as GPT-3.5-turbo, GPT-4-turbo, GPT-4o,
and GPT-4o-mini have been proposed since the publication of the DPO paper. To determine the most
suitable model, we conducted a consistency test using 64 prompts and their associated completions to
generate preference labels twice. As depicted in Figure 5, GPT-4o, and GPT-4o-mini exhibit over 90%
consistency across 64 data points, with GPT-4 and GPT-4o-mini also demonstrating high response
similarity exceeding 90%. Consequently, for a more cost-effective active learning framework, we
opted to use GPT-4o-mini as the oracle model.

Prompt Design. Utilizing GPT models as oracles necessitates carefully designed prompts tailored
to each specific task. Different prompts are employed depending on the nature of the task, as
detailed in the appendix. Prompts are evaluated based on their effectiveness in reflecting human
preferences, grammatical correctness, functional performance, and consistency of responses, with
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selection criteria similar to those used in the APL paper. This approach ensures that the prompts
are not only task-appropriate but also optimize the performance of the oracle in generating reliable
preference labels.

D PROMPT FOR ORACLE GPT

D.1 IMDB SENTIMENT GPT-4O-MINI WIN RATE PROMPT

You are a helpful assistant who evaluates the quality \
and positive sentiment of movie reviews. \
Which of the following movie reviews is better? \
The best one will be the one with the most positive sentiment, \
which also is grammatically correct, consistent, and \
avoids repetition.

Prompt: <prompt>

Review A: <Review A>

Review B: <Review B>

FIRST provide a one-sentence comparison of the two reviews, \
explaining which you prefer and why. SECOND, on a new line, \
state only "A" or "B" to indicate your choice. You must choose \
A or B for the preferred answer even if neither review is \
very good. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

D.2 SUMMARIZATION GPT-4O-MINI WIN RATE PROMPT

You are a helpful assistant that evaluates the quality of \
summaries. Which of the following summaries does a better \
job summarizing the most important points in the given \
forum post, without including unimportant or irrelevant \
details that are grammatically correct, consistent, and \
avoid repetition?

Post: <post>

Summary A: <Summary A>

Summary B: <Summary B>

FIRST provide a one-sentence comparison of the two summaries, \
explaining which you prefer and why. SECOND, on a new line, \
state only "A" or "B" to indicate your choice. You must choose \
A or B for the preferred answer even if neither summary is very \
good. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

D.3 CHATBOT GPT-4O-MINI WIN RATE PROMPT

You are a helpful assistant that evaluates the quality of \
chatbot. For the following query to a chatbot, which response \
is more helpful?
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Query: <the user query>

Response A: <either the test method or baseline>
Response B: <the other response>

FIRST provide a one-sentence comparison of the two responses \
and explain which you feel is more helpful. SECOND, on a new \
line, state only "A" or "B" to indicate which response is \
more helpful. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

E LIMITATION AND POTENTIAL NEGATIVE SOCIETAL IMPACT

Limitation. While the proposed method offers a novel approach to Active Learning with Preference
Optimization, there are several limitations to consider. First, the method’s effectiveness is highly
dependent on the quality and diversity of the preference feedback. In cases where the feedback
is biased or incomplete, the model’s learning capacity may be restricted, potentially resulting in
suboptimal performance. Second, the 1-step selection strategy, while efficient, may struggle to scale
effectively in extremely large datasets due to computational constraints, particularly when calculating
distance-estimated probabilities (DEP) and reward gaps across massive data pairs. Additionally,
while our approach maximizes learning capacity for a specific task, it may not generalize well to
tasks with highly distinct structures or feedback modalities, limiting its broader applicability.

Potential Negative Societal Impact. The widespread application of Active Learning with Preference
Optimization could have unintended societal consequences. By prioritizing human preferences,
models trained using this method might inadvertently reinforce biases present in the feedback data,
especially in cases where feedback reflects socially biased or exclusionary viewpoints. If such models
are deployed in sensitive applications, such as recommendation systems or content moderation,
they could perpetuate or exacerbate inequalities, including discrimination based on race, gender,
or socioeconomic status. Furthermore, reliance on human feedback at scale may introduce ethical
concerns regarding labor exploitation, particularly in crowdsourced settings where annotators are
compensated at low wages. These societal impacts highlight the need for careful consideration of
feedback sources and post-hoc auditing of models trained using AL-PO methods to mitigate harmful
biases and ensure ethical deployment.
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