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ABSTRACT

Deep learning has become essential in the biological species recognition task.
However, a significant challenge is the ability to continuously learn new or mu-
tated species with limited annotated samples. Since species within the same fam-
ily typically share similar traits, distinguishing between new and existing (old)
species during incremental learning often faces the issue of species confusion.
This can result in “catastrophic forgetting” of old species and poor learning of
new ones. To address this issue, we propose a Prototype Antithesis (PA) method,
which leverages the hierarchical structures in biological taxa to reduce confu-
sion between new and old species. PA operates in two steps: Residual Prototype
Learning (RPL) and Residual Prototype Mixing (RPM). RPL enables the model
to learn unique prototypes for each species alongside residual prototypes repre-
senting shared traits within families. RPM generates synthetic samples by blend-
ing features of new species with residual prototypes of old species, encouraging
the model to focus on species-unique traits and minimize species confusion. By
integrating RPL and RPM, the proposed PA method mitigates “catastrophic for-
getting” while improving generalization to new species. Extensive experiments
on CUB200, PlantVillage, and Tree-of-Life datasets demonstrate that PA signifi-
cantly reduces inter-species confusion and achieves state-of-the-art performance,
highlighting its potential for deep learning in biological data analysis.

1 INTRODUCTION

With advances in data science and computing, computer techniques are crucial in fields like biology,
offering solutions for species recognition and evolutionary analysis. However, limited data on newly
discovered or mutated species poses a challenge, as data annotation requires expertise and is costly.
Additionally, similar traits among species within the same family complicate recognition. These
issues—data scarcity and species similarity—can cause confusion between new and existing species
during continual learning, leading to poor performance on new species and forgetting of old ones.

To overcome this, we introduce the few-shot class-incremental learning paradigm to biological re-
search, allowing models to be trained on existing data and updated with only a few samples from new
species. This approach enables continuous learning from new species while preserving knowledge
of previously learned ones, addressing data limitations, and improving scalable species recognition.
It underscores the vital role of advanced deep learning in advancing biological discovery.

Few-shot class-incremental learning (FSCIL) typically faces two key challenges: “catastrophic for-
getting” and “over-fitting”. These issues arise when models must learn new classes with few sam-
ples and no access to previous data. Early methods address forgetting through knowledge distil-
lation, where the old model’s outputs guide the new model. However, when training samples for
new classes are limited, the model becomes more prone to over-fitting. Recent approaches Zhang
et al. (2021); Zhou et al. (2022) mitigate forgetting by freezing the feature extractor and selectively
updating classifier weights, preserving old class performance. However, in biological contexts, dis-
tinguishing between new and previously learned species presents an additional challenge due to their

*Correspondence to: Fang Wan (wanfang@ucas.ac.cn), Binghao Liu (liubinghao.lbh@alibaba-inc.com).

1



Published as a conference paper at ICLR 2025

Base session

…Data stream

Session 1

…

…

…

Prior works

PA (ours)

residual 
prototype mixing

confusion

: feature samples

: residual prototype

: species prototype

: prototype before PA 
residual 

prototype learning

Feature Space
Figure 1: Comparison of prior works and the Prototype Antithesis (PA) method. In incremental
learning, when similar new species resemble existing ones, their prototypes tend to be close, leading
to confusion during classification (upper). In contrast, our proposed PA addresses this issue by de-
composing the prototypes into two parts: the unique prototype specific to a species and the residual
prototype shared within its family. The residual prototype is employed in the residual prototype
mixing for new species learning, which maximizes the distance between similar species prototypes,
thereby reducing classification confusion. (Best viewed in color)

close evolutionary relationships. The similar traits of species within the same family make it difficult
for classifiers to differentiate between them. This complicates learning new classes and increases
inter-species confusion, reducing performance on previously learned species (Fig. 1, prior works).

In this study, we propose a Prototype Antithesis (PA) method to address these challenges. PA en-
courages the model to learn both the most discriminative prototypes unique to individual species
and the residual prototypes shared by species within the same family. During incremental learning,
PA generates new feature samples for model learning by combining residual prototypes from pre-
viously learned species with features from new species. This process not only helps the classifier
better distinguish between closely related new and old species, but also mitigates over-fitting caused
by the limited data available for new species, Fig. 1 (PA).

The PA method operates in two key steps: Residual Prototype Learning (RPL) and Residual Pro-
totype Mixing (RPM). RPL is conducted during base training and can be further divided into two
phases. In phase one, images are assigned with “species-level” labels, and those images are used for
classification training by calculating the cosine distance between the features and a set of randomly
initialized prototypes. After training, those prototypes converge to represent the most discrimina-
tive semantics of the corresponding species. In phase two, the species-unique and family-shared
semantics are decoupled by a bi-directional optimization process. Specifically, we first compute the
residuals between the features and their corresponding prototypes. Then these residual features are
assigned with “family-level” labels for training, while the original features are classified by species
labels. This bi-directional classification procedure ensures the convergence of species-unique and
family-shared traits into their respective prototypes, referred to as species prototypes and family
(residual) prototypes. RPM combines the residual prototypes of previously learned species with the
new species features using a feature-mixing strategy to generate synthetic feature samples. These
synthetic feature samples are labeled as their corresponding new species and are used to facilitate
model learning. To classify these synthetic features accurately, the model must capture distinctive
traits that differentiate them from residual prototypes and previously learned species, resulting in
a well-separated decision boundary. Additionally, the synthetic features act as augmented data, in-
creasing the number of training samples and helping to reduce over-fitting on the new species. Com-
prehensive experiments conducted on Tree-of-Life Stevens et al. (2024), as well as on the PlantVil-
lage Hughes & Salathé (2015) and CUB200 P. et al. (2010) datasets, demonstrate that our approach
achieves state-of-the-art performance.

The contributions of this study are listed below:
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• We propose a novel Prototype Antithesis (PA) method to address the challenges of species
confusion and over-fitting in few-shot class-incremental learning (FSCIL), particularly
within the biological domain.

• We introduce Residual Prototype Learning (RPL) and Residual Prototype Mixing (RPM)
to enable the model to capture both species-unique and family-shared traits, focusing on
distinguishing between similar new and old species while augmenting training samples.

• Our proposed PA method achieves state-of-the-art performance across both computer vi-
sion and biological benchmarks, demonstrating its superiority in addressing the unique
challenges of FSCIL.

2 RELATED WORKS

Biological Recognition. Biological data, characterized by its hierarchical category structure, is fre-
quently used in fine-grained classification tasks, such as those involving the CUB200 dataset P. et al.
(2010). These tasks are particularly difficult because subspecies within the same family often dis-
play highly similar appearances, making it challenging for models to differentiate them, especially
when new species are constantly being discovered. Moreover, these newly identified species often
come with limited samples, hindering the model’s ability to learn effectively. While recent work
like Bio-CLIP Stevens et al. (2024) has introduced foundation models for biological research, it
struggles with continual learning and tend to misclassify closely related species.

Few-shot Learning. The goal is to learn new classes with limited training samples. Existing meth-
ods have made significant progress through metric learning, meta-learning, and data augmentation.
Metric learning Vinyals et al. (2016); Snell et al. (2017); Sung et al. (2018); Zhang et al. (2020); Liu
et al. (2021); Yang et al. (2021a); Liu et al. (2021); Li et al. (2021) maps new class features into a
representation space learned from base classes with sufficient data. Meta-learning Finn et al. (2017);
Elsken et al. (2020); Sun et al. (2019) develops optimization strategies to enable models to general-
ize to new classes with limited data. Data augmentation Zhang et al. (2019); Li et al. (2020); Kim
et al. (2020); Yang et al. (2021b) generates synthetic samples to reduce overfitting and support new
class learning. However, these methods mainly focus on learning new classes and often overlook
the problem of forgetting old classes during incremental learning. GFSL Schonfeld et al. (2019)
addresses this by aligning old and new class distributions to mitigate forgetting, but it struggles with
large distribution gaps and risks class confusion when old and new classes are highly similar.

Incremental Learning. Incremental learning can be divided into task-incremental and class-
incremental learning, with the key difference being that task-incremental learning requires task IDs,
while class-incremental does not Masana et al. (2020). Existing methods fall into three categories:
memory replay, model regularization, and architecture configuration methods. Memory replay Re-
buffi et al. (2017); Chaudhry et al. (2018) methods store old class samples to prevent forgetting.
Model regularization Li & Hoiem (2018); Dhar et al. (2019) methods add terms to the loss func-
tion to reduce forgetting. Architecture configuration Serrà et al. (2018); Mallya & Lazebnik (2018)
methods use techniques like model pruning to adjust the feature space. However, these approaches
still face over-fitting issues, particularly with limited training samples for new classes.

Few-shot Class-Incremental Learning. Under few-shot class-incremental learning (FSCIL) set-
tings, the model is first trained on base classes with sufficient data and then required to generalize
to new classes with only a few samples. The primary challenges of FSCIL include not only ”catas-
trophic forgetting” but also the issue of ”over-fitting” due to limited training data. Feature topology
preservation methods Tao et al. (2020); Zhang et al. (2021) maintain the feature topology of old
classes using techniques like neural gas or decoupled training strategies to prevent forgetting. Net-
work regularization methods Akyürek et al. (2021); Kang et al. (2022) align the weight vectors of
new classes with those of old classes or selectively update model weights to learn new classes with-
out degrading the performance of old classes. Data generation methods Cheraghian et al. (2021);
Liu et al. (2023) generate synthetic feature samples to alleviate over-fitting during incremental learn-
ing. However, the confusion between new and old classes remains an unsolved problem in FSCIL.
Since the model can only access data from individual incremental sessions, it struggles to learn
well-separated decision boundaries between old and new classes, especially when these classes are
similar. This confusion can lead to both forgetting of old classes and poor learning of new ones,
which is the problem this study aims to address.
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Figure 2: The proposed Prototype Antithesis (PA) method consists of two components: RPL and
RPM. RPL has two phases: in phase one, images are encoded by the feature extractor θb and clas-
sified using “species-level” labels; in phase two, residuals between the base (old) species features
and species prototypes are calculated and classified using “family-level” labels, whereas the origi-
nal features continue to be classified by “species-level” labels. In RPM, these residual prototypes
are mixed with new species features to generate pseudo-samples, optimizing species prototypes and
refining the decision boundary. (Best viewed in color)

3 PRELIMINARY

Few-shot class-incremental learning can be broadly divided into two stages: the base training stage
and the incremental learning stage. During the base training stage, the model is trained using base
classes C(0), which have sufficient training data. In the incremental learning stage, the new classes
are divided into T groups, denoted as C(i), where i = 1, 2, . . . , T , corresponding to the T incremen-
tal sessions. In the ith incremental session, only the dataset D(i) for classes C(i) is available for model
learning. However, during evaluation, the model is required to classify both old and new classes from
the combined set {C(0), . . . , C(i)}. Importantly, for any i1 ̸= i2, we have C(i1)∩C(i2) = ∅, meaning
that the classes in different incremental sessions are mutually exclusive. This setup imposes the
challenge that the model must learn new classes without forgetting previously learned ones, despite
not having access to the data from older classes during the incremental sessions.

4 METHODOLOGY

In this section, we introduce the proposed PA method. First, we outline the flowchart of the base
training and incremental learning procedures. Next, we provide detailed explanations of the resid-
ual prototype learning and residual prototype mixing techniques. Finally, we present a theoretical
analysis of the proposed prototype antithesis method.

4.1 OVERVIEW

The structure of the proposed PA method is illustrated in Fig. 2. The model consists of a fea-
ture extractor θb, species prototypes θc = {µc0 ,µc1 ,µc2 , . . . }, and residual prototypes θr =
{µr0 ,µr1 ,µr2 , . . . }. We employ ResNet-18 as the feature extractor, which encodes images into
feature vectors. The prototypes, θc and θr, act as classifiers, using cosine distance between the
features and prototypes for classification. During base training, the feature extractor and prototypes
are optimized using the residual prototype learning strategy. In the incremental learning phase, the
species prototypes are further refined through residual prototype mixing, ensuring a well-separated
decision boundary between new and existing species. During the inference stage, the features of
both old and new species are classified solely by the prototypes, without incorporating the residual.

4.2 RESIDUAL PROTOTYPE LEARNING

In standard classification tasks, most existing methods focus on learning the most discriminative
representations, allowing classifiers to establish well-separated decision boundaries when all classes
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belong to a closed set. However, in few-shot class-incremental learning (FSCIL), where new classes
are introduced incrementally, previously learned decision boundaries may struggle to distinguish be-
tween new and old classes. For example, when new and old species belong to the same family (e.g.,
apple leaf and peach leaf), the classifier may confuse them due to their shared “leaf” characteristics.

To address this issue, the model needs to differentiate between “shared” and “unique” traits of
species, which is the goal of the proposed Residual Prototype Learning (RPL), Fig. 2 (left). RPL
operates in two phases, in phase one, given training samples X(0) from the base species, the feature
extractor θb and species prototypes θc are jointly trained to classify the base species. The training
objective for phase one is formulated as follows:

argmin
θb,θc

L(Y(0), Ŷ(0);θb,θc)

s.t. Ŷ(0) = cos(F(0);θc), F(0) = f(X(0);θb),

(1)

where L is the classification loss, f represents the feature extraction process, cos calculates the
cosine similarity between the feature and each prototype individually, resulting in a set of scores, and
Y(0) are the “species-level” labels. After training, the learned species prototypes capture the most
discriminative features of the base species. In phase two, for any base species i, given the features
F

(0)
i and the species prototype µci (where µci ∈ θc), the residual features are computed as Ri =

F
(0)
i − µci . Here, Ri contains both secondary discriminative features and background features,

with the secondary discriminative features likely representing traits shared across the family. To
decouple “family-level” traits from background noise and the species prototypes (since the most
discriminative features might also include some “family-level” characteristics), we assign “family-
level” labels to the residual features and classify them by calculating the cosine distance between
the residual features and the prototypes. Meanwhile, the original features F(0)

i are classified based
on their “species-level” labels. The optimization objective for base species i in phase two is as:

argmin
θr,θc

[
L(Yr

i , Ŷ
r
i ;θr,θc) + L(Y(0)

i , Ŷ
(0)
i ;θr,θc)

]
s.t. Ŷr

i = cos(Ri;θc,θr), Ŷ
(0)
i = cos(F

(0)
i ;θc,θr),

(2)

where Yr
i and Y

(0)
i denote the “family-level” and “species-level” labels, respectively. The bi-

directional optimization process defined in Eq. 2 ensures that the residual prototypes θr converge
towards “family-level” traits, while simultaneously driving the species prototypes θc to focus on
“species-unique” traits. These prototypes are jointly optimized to refine the decision boundary, ef-
fectively distinguishing between traits that are unique to a species and those shared across the family.
Please note that if a single species is restricted to a specific environment during base training, envi-
ronmental features might be misinterpreted as species-specific traits. This issue can be resolved by
enhancing the diversity of the data used during the base training phase.

4.3 RESIDUAL PROTOTYPE MIXING

Inspired by human’s reference-based learning Kriegeskorte & Douglas (2018), we propose Resid-
ual Prototype Mixing (RPM), which drives the model to learn new species by referencing existing
knowledge, Fig. 2 (right). The residual prototypes, optimized by Eq. 2, represent family-shared
traits likely to appear in closely related species during new species learning. To address this poten-
tial confusion, we mix the residual prototypes of old species with new species features to encourage
the model to capture the unique characteristics of the new species.

Specifically, in the tth incremental session, given the residual prototypes θr and features F(t), the
features of the kth new species are represented as F(t)

k , where this species belongs to the jth family.
We generate synthetic feature samples as S(t)

k = F
(t)
k +µrj , and these synthetic feature samples are

assigned their original “species-level” labels for classification, with the optimization process for the
kth species formulated as:

argmin
θc

L
(
Y

(t)
k , Ŷ

(t)
k ;θc,θr

)
s.t. Ŷ

(t)
k = cos

(
S
(t)
k ;θc,θr

)
,

(3)
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where Y
(t)
k denotes the “species-level” labels. To explicitly explain the optimization process of

Eq. 3, we decompose the new species features into species-unique and the other (family-shared
and background) features: F(t)

k = F
(t)
ku + F

(t)
ko , where F

(t)
ku and F

(t)
ko are orthogonal, meaning they

represent non-overlapping features. Consequently, the synthetic features are expressed as: S
(t)
k =(

F
(t)
ko + µrj

)
+ F

(t)
ku = F

′(t)
ko + F

(t)
ku, where F

′(t)
ko = F

(t)
ko + µrj represents the other features

enhanced with family-shared traits. For the new species prototypes, the limited training data makes it
challenging for the model to learn accurate prototypes. Consequently, these prototypes often contain
coarse semantic information, combining both the most and second most discriminative features,
which are decomposed into family-shared (residual) and species-unique components: µck = µrj +

µcku. Thus, the cosine similarity between S
(t)
k , µck , and µrj are calculated as:

cos(S
(t)
k ;µck) =

(
F

′(t)
ko + F

(t)
ku

)
·
(
µrj + µcku

)∥∥∥S(t)
k

∥∥∥ · ∥µck∥
, cos(S

(t)
k ;µrj ) =

(
F

′(t)
ko + F

(t)
ku

)
· µrj∥∥∥S(t)

k

∥∥∥ ·
∥∥µrj

∥∥ . (4)

To avoid misclassifying S
(t)
k as the jth family label, the difference term of Eq. 4 ∆cos =

cos(S
(t)
k ;µck)− cos(S

(t)
k ;µrj ) must be maximized. As cosine similarity depends only on the angle

between vectors, we assume µck and µrj are unit vectors, and the difference term simplifies to*:

∆cos =
F

(t)
ku·µcku∥∥∥S(t)

k

∥∥∥ . Since only µcku is the optimization target, maximizing ∆cos equals maximiz-

ing F
(t)
ku · µcku, which enhances the alignment between the unique features of the new species and

its prototype, improving the model’s ability to focus on distinctive features. Furthermore, we mix
new species features with all previously learned residual prototypes to generate additional synthetic
features. The features mixed with unrelated family (residual) prototypes are then used as augmented
training data to help reduce model over-fitting.

4.4 THEORETICAL ANALYSIS

We analyze Prototype Antithesis (PA) from the perspective of prototype independence and sample
concentration. Given prototypes θc = {µc0 ,µc1 ,µc2 , ...} including both old and new species, we
define the class separability (CS) as:

CS =
∥µci − µcj∥22∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
, (5)

where i and j denote any two different species, while fm and fv represent their feature samples. In
this formulation, the numerator measures the independence or separation of the species prototypes
µci and µcj (unit vectors), while the denominator reflects the concentration of samples around their
respective species prototype, quantifying how well the samples align with their class center. The
goal of a classification model is to maximize class separability, where the large separation between
species prototypes and tight concentration of samples around their respective prototypes leads to
better classification performance. Without loss of generality, let us assume that the prototypes of
an old species µci and a new species µcj are related as µcj = µ̂ci + δ, ∥µ̂ci∥ ∈ [0, 1], where µ̂ci
represents the similar parts with µci , and δ is orthogonal to µci and µ̂ci , representing the unique
parts. Substituting this into Equation 5, we can rewrite the class separability as†:

CS =
1 + δ2 − µ̂ci · (2− µ̂ci)∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
. (6)

While all methods minimize the denominator using classification loss, the key difference lies in the
numerator. The term µ̂ci(2 − µ̂ci) is monotonically increasing over the interval [0, 1]. In conven-
tional approaches, when the new species prototype µcj is similar to the old one µci , µ̂ci becomes
large, indicating prototype overlap and reducing the numerator in Eq. 6. However, PA reduces this
overlap by emphasizing species-unique features (δ), decreasing µ̂ci , thereby increasing the numera-
tor in Eq. 6 and improving class separability.

*The proof is included in the “Appendix”.
†Please refer to the “Appendix” for the detailed derivation.
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Table 1: Ablation experiments of the proposed “RPL” and “RPM”. The baseline method is a
standard classification network consisting of a feature extractor and a classifier. “Meanold” and
“Meannew” denote the average accuracy of old and new species across all incremental sessions.

Baseline RPL RPM Accuracy in each session (%)
Meanold Meannew PD ↓0 1 2 3 4

✓ 99.47 93.83 90.76 90.47 86.21 95.63 81.58 13.26
✓ ✓ 99.47 94.21 93.56 92.12 88.86 96.89 84.17 10.61
✓ ✓ ✓ 99.50 95.83 93.45 93.24 90.51 98.47 86.59 8.99

5 EXPERIMENTS

We conduct comprehensive experiments on several public datasets for model analysis, and compare
our proposed method with the state-of-the-art methods under FSCIL settings.

5.1 EXPERIMENT SETTINGS

Datasets. We adopt CUB200 P. et al. (2010), PlantVillage Hughes & Salathé (2015), and Tree-
of-Life Stevens et al. (2024) as benchmarks. In the FSCIL task, classes are split into base and
incremental categories. Under the N -way K-shot setting, the incremental classes are divided into
T groups, corresponding to the T incremental sessions. In each session, N classes are presented
for training, with each class containing K samples. For the CUB200 dataset, 100 classes are used
as base classes, and the remaining 100 classes are divided into 10 sessions (T = 10), with each
session containing 10 classes (10-way) and 5 samples per class (5-shot). In the PlantVillage dataset,
19 classes serve as base classes, while the remaining 20 classes form incremental classes under a
5-way 5-shot setting. For the Tree-of-Life dataset, we randomly sample 100 classes for evaluation,
where 60 are base classes, and the remaining 40 are split into groups under the 5-way 5-shot setting.

Model Training. To maintain consistency with prior work, we use a ResNet-18 pretrained on Ima-
geNet as the feature extractor for the CUB-200 dataset, while for the PlantVillage and Tree-of-Life
datasets, we also use ResNet-18 as the backbone. The optimizer is SGD, with a “milestone” learn-
ing rate decay strategy. For data pre-processing, we apply image normalization, random cropping,
random resizing, and horizontal flipping for data augmentation. During base training, we use a batch
size of 128 and an initial learning rate of 0.004, training for 100 epochs. In the incremental learning
phase, the classifier is optimized over 100 epochs with a learning rate of 0.01. We conducted 5
experiments with different seeds on the fixed datasets and reported the averaged results to minimize
randomness. All experiments were performed using Pytorch 1.11.0 on Nvidia A800 GPUs.

Evaluation. We adopt “classification accuracy” and “performance drop (PD)” as the evaluation
metrics. “Classification accuracy” validates the discriminating ability of the model, and it is defined
as accuracy = TP+TN

TP+TN+FP+FN , where TP, TN, FP and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively. “PD” measures the model forgetting
and is defined as PD = accuracy(0) − accuracy(T ), where accuracy(0) and accuracy(T ) denote
the model performance in the 0-th and T -th sessions, respectively.

5.2 ABLATION STUDY

Table 2: Comparison of “CAM”, “Grad-CAM”
and the proposed “RPL”.

Method Meanold Meannew Similarity
CAM 95.31% 81.25% 6.53%

Grad-CAM 95.32% 79.82% 8.15%
RPL 98.47% 86.59% 1.89%

To rigorously assess the effectiveness of our
proposed approach, we perform ablation exper-
iments on the PlantVillage dataset.

Residual Prototype Learning. As seen in Ta-
ble 1, the proposed RPL increases performance
on old species by 1.26% and on new species by
2.59% over the baseline. This is attributed to
the model’s ability to classify both unique and
shared features of the base species, resulting in
a more compact decision boundary that supports learning in both old and new species.
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Figure 3: t-SNE visualization of feature distributions comparing models with and without Prototype
Antithesis (PA). Without PA, the features of new species overlap with those of similar old species.
In contrast, with PA, the new species features are pushed away from the residual features, effec-
tively distinguishing the new and old species and creating a well-separated decision boundary. (Best
viewed in color)

Residual Prototype Mixing. Table 1 demonstrates that combining RPL with RPM boosts old and
new species performance by 2.84% and 5.01%, respectively, and decreases “PD” by 4.37%. RPM
reduces the overlap of shared components between new and old species, effectively minimizing
species confusion. Together, RPL and RPM work synergistically to reduce “old species forgetting”
while enhancing “new species generalization”.

Feature decomposition strategy. To assess the effectiveness of different feature decomposition
strategies, we use CAM Zhou et al. (2016) and Grad-CAM Selvaraju et al. (2017) to distinguish be-
tween unique and common features. Specifically, we set a threshold to extract the highest-response
regions from the feature maps as unique features, while the secondary-high-response regions rep-
resent common features. As shown in Table 2, RPL achieves the highest mean accuracy and the
lowest similarity between unique and common features, which can be attributed to its bi-directional
optimization that more effectively decouples unique features from shared ones.

5.3 MODEL ANALYSIS

In this section, we further conduct comprehensive experiments for detailed statistical results and
visualization.

Tr
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l

Predicted label Predicted label
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Figure 4: Confusion matrix of the baseline method and
our proposed PA approach. Compared with the baseline
method, PA significantly reduces the false prediction among
old and new species, alleviating species confusion.

Feature distribution. We employ t-
SNE to visualize the feature distribu-
tions of similar old and new species,
as well as the residual feature distri-
butions. As depicted in Fig.3(left),
without the proposed prototype an-
tithesis, feature samples of the old
and new species overlap at the edges
of the distribution. However, with
the introduction of the prototype an-
tithesis, the distance between the new
species and the residual features is
maximized, making the features of
the new and old species more distin-
guishable (Fig.3(right)). This adjust-
ment optimizes the decision bound-
ary and reduces species confusion.

Confusion Matrix. We plot the con-
fusion matrix for both the baseline method and our proposed PA method. As shown in Fig. 4, the
PA method significantly reduces false classifications between old and new species. These results
demonstrate that PA effectively minimizes confusion between new and old species, mitigating for-
getting of old species while enhancing learning for new species.
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Table 3: Performance comparison on the CUB200 dataset. “*” indicates results that were re-
implemented using the official code.

Method Accuracy in each session (%)
PD ↓0 1 2 3 4 5 6 7 8 9 10

TOPIC Tao et al. (2020) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 42.40
SPPR Zhu et al. (2021) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 31.35
SFMS Cheraghian et al. (2021) 68.78 59.37 59.32 54.96 52.58 49.81 48.09 46.32 44.33 43.43 43.23 25.55
FSLL Mazumder et al. (2021) 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 17.38
CEC Zhang et al. (2021) 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57
Meta-FSCIL Chi et al. (2022) 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 23.26
FACT Zhou et al. (2022) 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 18.96
SOFTNet Kang et al. (2023) 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75 21.32
WaRP Kim et al. (2023) 77.74 74.15 70.82 66.90 65.01 62.64 61.40 59.86 57.95 57.77 57.01 20.73
BiDist Zhao et al. (2023) 79.12 74.99 70.87 67.30 65.89 63.45 61.40 60.11 58.61 58.23 57.48 21.64
NC-FSCIL Yang et al. (2023) 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 21.01
OrCo* Ahmed et al. (2024) 74.72 66.06 64.72 62.88 61.89 59.69 58.95 59.03 57.24 57.79 57.18 17.54
TEEN Wang et al. (2024) 77.26 76.13 72.81 68.16 67.77 64.40 63.25 62.29 61.19 60.32 59.31 18.13
PA(ours) 78.69 75.59 72.71 68.71 68.37 65.77 64.75 63.59 62.76 62.02 61.19 17.50
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Figure 5: Performance on the PlantVillage and Tree-of-Life datasets.

5.4 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We compare PA against state-of-the-art methods on both computer vision benchmarks (e.g.,
CUB200) and biological datasets (e.g., PlantVillage and Tree-of-Life).

CUB200: As shown in Table 3, our proposed PA outperforms the TEEN and OrCo by 1.88% and
4.01%, as well as achieving a lower “PD” compared to most other methods. PlantVillage: From
Fig. 5(a) we can see that PA outperforms other methods with significant margins. The categories in
the PlantVillage dataset (different leaves with disease) share many common traits, and the significant
improvement in performance shows PA’s superiority in distinguishing closely related old and new
species. Tree-of-Life: PA outperforms OrCo Ahmed et al. (2024) and BiDist Zhao et al. (2023)
by 6.26% and 1.28% on this challenging dataset, respectively, Fig. 5(b). This result confirms PA’s
robustness in handling high-diversity biological data.

6 CONCLUSION

In this paper, we propose a Prototype Antithesis (PA) method to address the issue of species con-
fusion in biological few-shot class-incremental learning. The PA method comprises Residual Pro-
totype Learning (RPL) and Residual Prototype Mixing (RPM). RPL decomposes species-unique
and family-shared (residual) prototypes, while RPM generates synthetic samples by blending new
species features with residual prototypes. Together, RPL and RPM optimize the decision bound-
ary between old and new species, mitigating “old species forgetting” and enhancing “new species
learning”. PA offers a novel perspective for recognizing biological species and traits using few-shot
class-incremental learning.
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A APPENDIX

A.1 DERIVATION OF ∆cos.

The ∆cos in section 4.3 is calculated as below:
∆cos = cos(S

(t)
k , µck)− cos(S
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=

(
F

′(t)
ko + F

(t)
ku

)
·
(
µrj + µcku

)∥∥∥S(t)
k

∥∥∥ · ∥µck∥
−

(
F

′(t)
ko + F

(t)
ku

)
· µrj∥∥∥S(t)

k

∥∥∥ ·
∥∥µrj

∥∥
=

F
′(t)
ko · µrj + F

′(t)
ko · µcku + F

(t)
ku · µrj + F

(t)
ku · µcku − F

′(t)
ko · µrj − F

(t)
ku · µrj∥∥∥S(t)

k

∥∥∥ ·
∥∥µrj

∥∥
=

F
′(t)
ko · µcku + F

(t)
ku · µcku∥∥∥S(t)

k

∥∥∥ ·
∥∥µrj

∥∥ .

(7)

Since F
′(t)
ko are orthogonal to µcku (there are no overlap between them), F′(t)

ko · µcku is equal to 0,
and µrj is unit vector, thus Eq. 7 can be rewrite as:

∆cos = cos(S
(t)
k , µck)− cos(S

(t)
k , µrj )

=
F

(t)
ku · µcku∥∥∥S(t)

k

∥∥∥ .
(8)
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Table 4: Performance comparison on the PlantVillage dataset. “*” indicates results that were re-
implemented using the official code.

Method Accuracy in each session (%)
PD ↓0 1 2 3 4

Ft-CNN 99.89 82.33 36.11 34.38 28.53 71.47
CEC* 99.53 92.46 90.13 88.35 85.01 14.52
FACT* 99.47 93.33 90.69 90.00 86.15 13.32
TEEN* 99.50 90.83 90.56 86.38 85.19 14.31
BiDist* 99.51 91.25 84.14 81.18 78.97 20.54
NC-FSCIL* 99.48 96.05 93.59 92.88 89.13 10.35
OrCo* 99.58 84.25 75.24 64.77 60.82 38.76
PA (ours) 99.50 95.83 93.45 93.24 90.51 8.99

This is consistent with the result presented in Section 4.3.

A.2 DERIVATION OF EQ. 6 IN THE PAPER.

The class separability in section 4.4 is written as:

CS =
∥µci − (µ̂ci + δ)∥22∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
,

=
µci

2 + µ̂2
ci + δ2 + 2 · δ · µ̂ci − 2 · µci · (µ̂ci + δ)∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
.

(9)

Since δ is orthogonal to µci and µ̂ci , and µci is unit vector, Eq. 10 is rewritten as:

CS =
1 + µ̂2

ci + δ2 − 2 · µci · µ̂ci∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
,

=
1 + δ2 − µ̂ci · (2− µ̂ci)∑Ni

m=1(1− cos(fm;µci)) +
∑Nj

v=1(1− cos(fv;µcj ))
,

(10)

which aligns with Eq. 6 in the paper.

A.3 PERFORMANCE ON THE PLANTVILLAGE DATASET

We present the detailed classification accuracy on the PlantVillage dataset in Table 4. The results
show that our method significantly outperforms other methods in the final session and achieves the
smallest performance drop.

A.4 PERFORMANCE ON THE TREE-OF-LIFE DATASET

The detailed results on the Tree-of-Life dataset are shown in Table 5. Our proposed PA method out-
performs most methods while delivering comparable performance (slightly lower) than NC-FSCIL.
Unlike NC-FSCIL, however, our method does not require prior knowledge of the total number of
unknown classes, making it more scalable and practical.

B DATASETS STATISTICS

CUB200. The CUB-200-2011 dataset contains 11,788 images of birds, categorized into 200 fine-
grained subclasses (species) and 37 broader classes (families). PlantVillage. The PlantVillage
dataset contains 54,306 images of plant leaves, categorized into 38 fine-grained subclasses (species)
and 14 broader classes (families). The images include healthy and diseased leaves, making it a
widely used benchmark for plant disease classification and recognition tasks. Tree-of-Life. We
randomly sampled 13,487 images from 100 species in the Tree-of-Life dataset, spanning 42 families.
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Table 5: Performance comparison on the Tree-of-Life dataset. “*” indicates results that were re-
implemented using the official code.

Method Accuracy in each session (%)
PD ↓0 1 2 3 4 5 6 7 8

Ft-CNN 49.98 41.25 36.53 34.42 31.64 31.20 29.15 28.32 27.91 22.07
CEC* 49.68 43.35 39.02 37.71 35.56 34.87 32.41 32.21 29.33 20.35
FACT* 48.33 45.25 39.25 39.00 35.20 35.33 32.17 32.43 29.71 18.62
TEEN* 49.33 43.00 38.25 37.60 34.40 33.83 32.00 33.00 30.57 18.76
BiDist* 49.67 45.43 41.25 38.44 35.80 33.45 33.33 32.15 30.86 18.81
NC-FSCIL* 49.89 46.52 42.08 41.23 37.56 36.49 34.45 34.21 32.42 17.47
OrCo* 49.33 45.14 39.25 35.56 33.20 30.91 30.83 27.54 25.86 23.47
PA (ours) 49.67 46.75 41.75 41.00 37.68 36.67 34.33 34.57 32.14 17.53

This dataset exhibits high diversity, making it a challenging benchmark for the few-shot incremental
learning task.
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