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Technological advancements of the past decade have transformed cancer research, improving
patient survival predictions through genotyping and multimodal data analysis. However, there is no
comprehensive machine-learning pipeline for comparing methods to enhance these predictions. To
address this, a versatile pipeline using The Cancer Genome Atlas (TCGA) data was developed,
incorporating various data modalities such as transcripts, proteins, metabolites, and clinical factors.
This approach manages challenges like high dimensionality, small sample sizes, and data
heterogeneity. By applying different feature extraction and fusion strategies, notably late fusion
models, the effectiveness of integrating diverse data types was demonstrated. Late fusion models
consistently outperformed single-modality approaches in TCGA lung, breast, and pan-cancer
datasets, offering higher accuracy and robustness. This research highlights the potential of
comprehensive multimodal data integration in precision oncology to improve survival predictions for
cancer patients. The study provides a reusable pipeline for the research community, suggesting future
work on larger cohorts.

Improving survival predictions (such as overall survival [OS] and
progression-free survival) in cancer patients is a crucial step in the effort to
achieve biological insights and assist clinicians in making more informed
clinical decisions. Recent advances in high-throughput sequencing tech-
nologies and other molecular assays (such as genomic, transcriptomic,
epigenomic, and proteomic methods) have provided a breadth of inde-
pendent measurements from patients.

Comprehensive integrated analysis of multi-omics data can be used to
discover the complex mechanisms underlying cancer development and
progression. Training predictive models using information from multiple
sources can lead to improved model predictions, and many examples,
including biological1–3 and nonbiological4–6 applications, are reported in the
literature. Different data modalities can provide complementary informa-
tion about patient outcomes, includingOS.Whenmodalities are correlated,
they can help to reduce the variance in these predictions by producingmore
robustmodels, which is especially useful whenworkingwith datawith a low
signal-to-noise ratio or a high degree of missingness5,7,8.

Combining data frommultiplemodalities is challenging, however, and
the optimal way to achieve it is largely problem-specific9–13. Beyond the
additional computational and memory burden incurred by increasing the

dimensions of the feature space (i.e., biomarkers that constitute model
inputs, or independent variables), introducing additional datamodalities for
a given patient sample also has statistical implications. Because the sample
size (number of patients) is fixed, increasing the size of the feature space
leads to an increased risk of overfitting and thus the need for regularization.
Yet another complication is data heterogeneity. Different modalities might
consist of different data types, such as imaging, time-series, text, and tabular
data, and often require specific preprocessing and expertise in analysis,
modeling, and interpretation. The need for extensive and coherent com-
parisons across the various multimodal methods is raised repeatedly in
several review studies1,3,14–16.

Multimodal data fusion in “omics” data sets usually suffers from low
sample size to feature space ratios. In addition, most individual features are
irrelevant or onlyweakly relevant to the outcome (low signal-to-noise ratio).
Some modalities suffer from sparsity of the signal (e.g., mutations) or high
degrees of missingness (clinical data), whereas others require batch nor-
malization (gene expression). In addition, the presence of intermodality and
intramodality correlations is high17–20. These challenges downgrade the
potential of multimodal data fusion to add value for biological applications
by increasing the likelihood of multimodal-based model overfitting.
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The existing literature on data fusion methods using multi-omics data
for the prediction ofOS in cancer patients, although quite extensive1,3,14–16, is
characterized by several shortcomings. These include greater emphasis on
unsupervised feature reduction methods, linear predictive modeling for
survival prediction, modality fusion approaches that ignore the properties
commonly characterizing omics data, and a lack of standardized evaluation
approaches that would allow comparison across different methods. The
need for extensive and coherent comparisons across the variousmultimodal
methods is a common theme of several reviews1,3,14–16. Here we summarize
the four points we identified as key components in the construction and
evaluation of data fusion strategies: dimensionality reduction, survival
models, fusion strategies, and evaluation.

The broad term “dimensionality reduction” encompasses any technique
that reduces the size of the feature space. It can refer to “feature selection”
techniques that return a subset of the original feature dimensions or to
“feature extraction” techniques that return a new, smaller feature set con-
sisting of dimensions that are functions of subsets of the original features.
Bioinformatics data sets typically have a very low ratio of samples to number
of dimensions, making dimensionality reduction critical for protecting sur-
vivalmodels against overfitting.Although typically a relatively small subset of
genomic features contributes to survival prediction21,22, only a few dimen-
sionalitymethodshave been explored in the context of survival analysis in the
literature, which concentrates mostly on unsupervised methods such as
principal component analysis or autoencoders23. Supervised feature selection
methods are limited to the use of univariate Cox proportional hazards (PH)
models or training multivariate Cox PH models with Lasso regression (L1-
regularization) to impose sparsity 21,24,25. Thesemethodshave the advantageof
accounting for right-censoring of the data, but are quite slow and scale poorly
as the feature space increases. They are incapable of accounting for nonlinear
correlations with the target (OS time) or for interactions among variables. As
such, they limit opportunities for downstream analysis. A range of feature
selection methods like Spearman correlation26 and various information-
theoretic approaches27–31 can address some of these issues.

We expected the outcome of a survival model (OS time) to be non-
linearly related to its inputs (biomarkers from the various modalities). Yet
the literature largely relies on linear Cox PH models22,24,32. More recently,
deep learning models have also been examined in a few relevant works33–36,
but several nonlinear alternatives, like gradient boosting37 or random
forests38, are absent from most comparisons. These methods have demon-
strated success in survival modeling39–42 and, although more flexible than
linear models, they are equipped with inductive biases that enforce reg-
ularization with much less hyperparameter tuning than deep neural net-
works. Consequently, gradient boosting, random forest, and heterogeneous
ensembles43–45 typically outperform deep neural networks on tabular
data46–48 like multi-omics features. Interestingly, although some of these
methods have been widely adopted in other biomedical49,50 and non-
biomedical51–53 settings, we were not able to findmuch information on their
use in survival analysis.

The success of early fusion in othermultimodal settings6,54–56 has led to
recent approaches for modeling predictions of OS in cancer patients with
the use of early and intermediate fusion strategies (i.e., data-level fusion).
These settings differ from the typical bioinformatics setting, the most
important differentiating factor being the number of available data points
relative to the input dimensions. For instance, the training set used by Jain
et al.56 contains 1.8–6 billion data points (for the different modalities),
whereas The Cancer Genome Atlas (TCGA) data set involves sample sizes
on the order of 10–103, depending on cancer type. In the formermultimodal
application, the feature space is on the order of 103, whereas for TCGA the
feature space is on the order of 105. Thus, in the case of multimodal models
trained on TCGA57, late fusion methods (i.e., prediction-level fusion) pre-
sent an opportunity to outperformearly fusion approaches, due to increased
resistance to overfitting16,58, ease of addressing data heterogeneity, and the
ability to more naturally weigh each modality based on its informativeness
of OS without being affected by the highly imbalanced dimensionalities
across modalities3,16.

Manymultimodalmodels forOSprediction that have been reported in
the literature suffer from compromised evaluation practices1. Many fail to
account for the considerable uncertainty arising from different training-test
set splits of the data, either by omitting multiple splits
altogether21,22,24,34,35,58–60, or, even if not, by only reporting average C-indices
over them without the accompanying CIs32,36,61. Most lack comparisons
spanning different modality combinations or different data fusion
approaches. Many even lack direct comparisons against unimodal
approaches21,22,24,25,33,34. Finally, someworksproposemultimodal approaches
in name only, reporting the learning algorithm data from multiple mod-
alities (early fusion) that produced a unimodal model (which used features
from only one modality). Characteristic examples include Chai et al.33,
where the model ultimately only uses mRNA gene expression features, and
Wulczyn et al.62, where unimodal models outperform the multimodal
alternative.Any study that doesnot report the featuresof thefinalmodel, the
contribution of each modality, or compare performance against unimodal
models risks encountering this issue. As a result, most works do not provide
a clear answer to whether modalities should be combined and, if so, which
ones to use and how to combine them.

Results
Multimodal data integration pipeline
The AstraZeneca–artificial intelligence (AZ-AI) multimodal pipeline,
developed in the context of this work by the AstraZeneca Oncology Data
Science Team, is a Python library for multimodal feature integration and
survival prediction. It can be used to preprocess and reduce the dimen-
sionality of tabular data sets (unimodal or multimodal) and to train and
evaluate survival models. Its functionalities include several preprocessing
and imputation options, flexibility regarding when to integrate modalities
(Fig. 1), a range of feature reduction approaches (Table 1) and survival
modeling methods (Table 2), and rigorous evaluation (as described in
“Pipeline overview”), including the option to report the models’ feature
importance. An outline of the pipeline is provided in Fig. 2.

The library can be used to replicate and extend the results presented in
this paper. It has already been successfully used for constructing state-of-
the-art early integration multimodal models combining clinical and radi-
ological features for OS prediction in lung cancer patients in a forthcoming
paper by Patwardhan et al.63 The setting examined in this paper is quite
different from that of those investigators. As a result, different methods
proved more successful in each application. In the work by Patwardhan
et al., the data consist of only two modalities, the number of total features
was on the order of 102–103, and the number of data pointswas on the order
of 103, all being complete cases (no need for data imputation). This paper
examines data sets of four to seven modalities, with missing entries and the
total number of features on the order of 103–105, and the number of data
points being 10–103, depending on cancer type (approaching 104 only for
pan-cancer models). As a result, the risk of overfitting here is considerably
higher. In the setting of Padwardhan et al., early and intermediate fusion
strategies and nonlinear and nonmonotonic feature selection methods
(mutual information) worked best. In our setting, late fusion strategies and
linear or monotonic feature selection methods (Pearson and Spearman
correlation) outperformed the other approaches. In both cases, ensemble
survival models outperformed single models. This comparison demon-
strates that different approaches to multimodal fusion are better suited to
different settings. Simpler feature selectionmethods and late fusionaremore
suitable for situations in which the risk of overfitting is high, forming
ensembles of multiple survival models is always beneficial, and our AZ-AI
multimodal pipeline is flexible enough to provide a solidmultimodal fusion
solution in different settings.

Results on using late fusion in TCGA cancer patients
Throughout this paper, we report the average test set C-index and 95%
confidence interval (CI) across 10 runs. The experimental setup, proposed
late fusion strategy, and details on the evaluation and the data set are all
described in Methods (“Data”). Unless stated otherwise, the results
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correspond to the feature selectionmethodbeingSpearmancorrelationwith
OS and the survival model being a heterogeneous ensemble of all models
listed in Table 2.

Performance of multimodal versus unimodal models across dif-
ferent cancer types
For each cancer type in TCGA, we calculated the advantage (henceforth
referred to as the “delta”) of the multimodal approach over unimodal
models as the difference in average C-index between themultimodalmodel

and the best unimodal model:

d ¼ Cmultimodal�Cbest unimodal

Figure 3 shows the d across all 33 TCGA cancer types. In 25 of 33
cancer types (76% of the independent data sets), the deltas were positive,
supporting the hypothesis that late fusion multimodal models generally
outperform unimodal models. This result is statistically significant
(P = 0.001) under aWilcoxon signed-rank test against the null hypothesis of

Fig. 1 | Summary of late, early, and intermediatemultimodal data fusion strategies. aDescription of strategies and their advantages, disadvantages, and alternative names
used in the literature. b Visual explanation.

Table 1 | Dimensionality reduction methods included in the pipeline

Dimensionality reduction
method

Subset of original
dimensions

Nonlinear
(target)

Supervised Accounts for feature
interactions

Accounts for
censoring

Incorporates domain
knowledge

Filter correlated features
(Pearson)

Y N N Ya N N

Filter low-value variance Y N N N N N

Linear correlation (Pearson) Y N Y N N N

Monotonic correlation
(Spearman)

Y Yb Y N N N

Univariate linear Cox PH
models

Y N Y N Y N

MIM Y Y Y N N N

JMI Y Y Y Yc N N

CMIM Y Y Y Y N N

Pathways Nd Y N N N Y

Relevant gene lists Y Y Ne N N Y

Autoencoders N Y N Yf N N
aPairwise interactions, linear, not with regard to target.
bMonotonic.
cPairwise interactions, nonlinear, with regard to target.
dBiologically meaningful.
ePresumed relevant for overall survival.
fDependent on architecture, not with regard to target.
CMIM conditional mutual information, JMI joint mutual information,MIM mutual information maximization.
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no multimodal advantage (d = 0). Aligned with our expectations of the
impact of the sample size, the multimodal advantage d positively correlated
with the training set size. The associated Pearson correlation r(d, sample
size) = 0.361 is statistically significant (P = 0.039). Finally, d also positively
correlateswith theperformance of the best unimodalmodel. In otherwords,
the better the best unimodal model, the larger the advantage of using it in
multimodalmodels.Thismight seemcounterintuitive, but it is largelydue to
our late fusion strategy, which, because it combines all unimodal models
into amultimodal model, requires at least one strong base model to achieve
good performance. That said, this finding might also indicate other
mechanismsworth exploring, such as the presence of strong cross-modality
correlations; if this is the case, then when one modality is predictive of OS,
others would be as well, and combining them into multimodal models
would further improve results. The associated Pearson correlation adjusted
by weighting data sets by sample size radj(d, Cbest unimodal) = 0.365 is statis-
tically significant (P = 0.029).

Summarizing the above results, we found that multimodal models
trained under our proposed late fusion strategy tended to outperform
unimodal models across TCGA cancer types. We also found that the
advantage of multimodal models increased with sample size and with the
performance of unimodal models.

Comparing multimodal with unimodal models in NSCLC
Within the TCGA data, non–small-cell lung carcinoma (NSCLC) was the
most well-represented cancer type, with more than 1000 patients having a
diagnosis of lung adenocarcinoma (LUAD) or lung squamous cell carci-
noma (LUSC). We therefore discuss the NSCLC results in more detail. In
addition, we includedmore modalities than we did for other TCGA cancer
types, allowing a more comprehensive analysis.

In Fig. 4, we compare the performance of unimodal models from each
available modality against multimodal models trained under our proposed
late fusion strategy (FUSED). Fig. 4a shows results formodels trained jointly
on NSCLC patients, and Fig. 4b, c show results on its two subtypes (LUAD
and LUSC) separately (joint treatment of both subtypes of NSCLC is
common in the literature35,64). Univariate Cox PH models were used for
feature selection. Similar results obtained for all indications included in the
TCGA data set are provided in Supplementary Fig. 1.

Regarding individualmodalities, Fig. 4 suggests that each carried some
signal for predictingOS, since unimodalmodels of anymodality (except for
mutations, in the case of LUSCpatients) attained an averageC-index of >0.5
onnewdata.Not all individualmodalitieswere equally predictive ofOS. For
example, across all NSCLC patients, clinical and demographic features
(CLIN) constituted the best individual modality, mainly due to including
cancer stage, a strongpredictor ofOS.They are followedbygene expressions
(EXP), with mutations (MUT) the weakest individual modality, possibly
because of its binary treatment. The high variance across runs (which jus-
tifies our evaluation strategy) permits us to compare only the average per-
formance of each modality.

Comparing unimodalmodels to themultimodalmodel, we observed a
small advantage in terms of average C-index of the multimodal model over
even thebest individualmodality (here: clinical features).Wealso found that
the variance of themultimodalmodelswas considerably reduced despite the
increased feature space. The results applied to patients of both NSCLC
subtypes, although the advantage of multimodal models was reduced,
possibly due to the smaller sample size. These observations generally hold
beyond NSCLC across all TCGA indications (see Supplementary Fig. 1).

The relative importance of each modality in the multimodal model
(based on the weights calculated on the validation set) correlated well with

Table 2 | Survival modeling methods included in the pipeline

Survival model
method

Nonlinear Description Implementation

CPH-L2 N Cox PH model with Ridge (L2-norm) regularization Scikit-survival54

CPH-EN N Cox PH model with Elastic Net (combined L1-norm and L2-norm) regularization Scikit-survival54

RSF Y Random survival forest model25,26 Scikit-survival54

CPH-GB Y Gradient-boosted1,15CoxPH losswith regression trees asbase learner. Thepartial likelihoodof thePHmodel is
optimized as described in Raschka78.

Scikit-survival54

CLS-GB Y Gradient boosting1,15 with component-wise least squares as base learner21 Scikit-survival54

DS Y Deep neural network trained under a Cox PH loss (DeepSurv)31 PyCox34

ENS Ya Heterogeneous ensemble of any combination of the abovemodels weighted by their respective validation set
performances, per Eq. 1

Custom

aNonlinear, provided at least ONE base model with non-zero weight is nonlinear.

Fig. 2 | Overview of the AZ-AI multimodal pipe-
line. Shown is a brief outline of the pipeline’s main
steps and functionalities. Fig. 1 shows a classification
of multimodal fusion strategies. The pipeline allows
for any of these, depending onwhich of its execution
steps are run “per modality” or “jointly”.
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the performance of each unimodalmodel (based on average C-index on the
test set) (see Supplementary Fig. 2). Inspecting the weights also verified that
the multimodal model did not reduce to a unimodal model (no weight was
equal to 0, meaning all modalities were considered).

Exhaustive comparison of all modality combinations in NSCLC
Figure 5 shows the average test set C-index for all possible modality com-
binations on NSCLC patients, under all models included in the study. The
results suggest that adding more modalities leads to improved survival
predictions (in the worst, best, and average cases). The performance
improvement appeared to plateau after including the two to three most
informative modalities, and adding more beyond this point conferred
diminishing benefits. In addition, excluding the best individual modality
(here: clinical) from the fusedmodel resulted in a large drop in performance
(≤4–7.5%, depending on the subpopulation) between combinations of
modalities that did anddidnot include clinical features. Similar results on all
cancer types for modalities EXP, MUT, reverse-phase protein array, and
CLIN are included in Fig. 6.While results vary considerably by cancer type,
the best-performing combinations typically—but not always—include
more modalities, as the proposed late fusion approach limits the risk of
overfitting if irrelevant features (modalities) are included. Moreover, the
best-performing combinations typically—but not always—include the best-
performing individual modalities. We observe this in the NSCLC results
(Fig. 5), where excluding the most informative modality (CLIN) causes a
noticeable drop in performance.On the other hand,we see that even though
across cancer types EXP seems to be the highest ranked individualmodality,
it is outranked by combinations excluding it [CLIN, RPPA].

Exhaustivemodality combination plots such as the one shown in Fig. 5
are a useful tool for determining whether adding modalities improves
performance and by how much, as well as which modalities should be
combined. Such aplotwould be computationally intensive toproduce for an
early fusion strategy, but it can be efficiently obtained under a late fusion
strategy, as all underlying unimodal models are already trained.

PANCANCERmodel results
Figure 7 shows the results of a comparison of the performance of unimodal
models and multimodal models trained on the subset of all TCGA patients
(PANCANCER). The multimodal model significantly outperformed all
unimodal models (P < 0.0001), including the best-performing individual
modality (clinical features), and exhibited decreased variance. For all TCGA
stages and cancer types, multimodal (FUSED) models had an average
(±standard deviation) test set C-index of 0.785 ± 0.005, whereas the best
unimodal (CLIN) had an average test set C-index of 0.763 ± 0.007 across 10
runs. On this larger sample of patients, our proposed late fusion strategy
clearly showed benefits over unimodalmodels. To our knowledge, these are
the top-performing results attained by TCGA pan-cancer models34,65. In
contrast to individual cancer types (e.g., NSCLC in Fig. 4), aggregating over
all 33 indications, we found no noticeable differences on the modality level
between early-stage patients (Fig. 4a) and late-stage patients (Fig. 4b)
(additional details in Supplementary Fig. 3).

In these subpopulations, cancer stage (clinical feature) was removed.
For both groups, clinical features and gene expressions were tied for best
individual modalities for predictingOS. Among the clinical features, cancer
type is an important indicator of OS. A likely explanation for gene

Fig. 3 | [Right] Table showing the advantage d of multimodal versus best
unimodal model in terms of average C-index across all 33 TCGA cancer types.
The table also lists the average C-index of the best unimodalmodel and the size of the
training set per cancer type (entries listed in decreasing order). [Left, top] Multi-
modal advantage d versus training set size. The two quantities are positively

correlated (blue trend line added for emphasis). Advantage d and training set size are
also positively correlated. [Left, bottom] Associated histogram of advantage d with
density fit shown. Dashed line denotes no advantage (d = 0). Multimodal models
dominate the best unimodal ones in 25 of the 33 indications (d > 0).
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expression being equally predictive is that, because different types of cancers
affect different tissues and different tissues are characterized by distinctive
gene expression profiles, gene expression is used by themodel as a proxy for
cancer type. This is a reminder that information from different modalities
can overlap. Nevertheless, obtaining the same information from different
data sources can decrease the multimodal model’s uncertainty. This is
another advantage of multimodal models, evidence for which is shown in
these results.

Pan-cancer models are not uncommon in the multi-omics
literature34,65, as the larger sample size lowers the risk of overfitting (which
increases as more modalities are added). The clinical usefulness of pan-
cancer models is limited, however, as they are trained and evaluated on 33
different types of cancers. We included these results primarily to showcase
the power of our proposed fusion strategy on a larger data set. However,
theremight still be benefits in themultimodal setting of trainingmodels on a

pan-cancer level to make predictions on individual cancer types (see Sup-
plementary Fig. 4).

Discussion
We observed a consistent advantage of multimodal data fusion in these
experiments. Multimodal models outperformed the best unimodal models
on 24 of 33 TCGA cancer types. These models exhibited reduced variance
and better average predictive performance, showing clear superiority in
larger sample sizes. We found that adding modalities yielded diminishing
benefits but did not adversely affect performance in pan-cancer models.
Finally, we found that in pan-cancer models, where the sample size was
larger, the multimodal advantage was particularly pronounced. Under our
proposed late fusion strategy, we concluded that we should combine any
available omics data. We expect larger benefits with larger training sets and
more informative individual modalities.

Fig. 4 | Performance of multimodal models (FUSED) versus unimodal models of
each modality for NSCLC patients. Results shown for a all NSCLC patients,
b LUAD patients only, and c LUSC patients only. The average test set C-index and
95% CI across 10 runs are reported. The red dashed line denotes random prediction

performance (C-index = 0.5). The blue dashed line denotes the average C-index of
the best individual modality (here: clinical features). Multimodal models out-
performed all unimodal models on average and had lower variance. See Supple-
mentary Fig. 1 for other TCGA cancer types.
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Across the different subpopulations examined, clinical features and
gene expressions generally carried a stronger signal for predicting OS than
other modalities (e.g., mutations). This could reflect the limitation of our
modeling (e.g., binary encoding ofmutations), butmost likely it is due to the
models being inherently more informative. For example, clinical features
includevariables like “cancer type” and “cancer stage,”which are expected to
be strong predictors of OS. We hypothesize that gene expression acts as a
proxy for “cancer type” (different tissues have different gene expression
profiles) and, possibly to some extent, “cancer stage.” As a result, multi-
modal models that do not use these modalities tend to be inferior to those
that do, and addingmoremodalities tends to confer onlyminor advantages
(mostly in terms of reduced variance). This might reflect modeling limita-
tions or could be evidence that the various omics modalities are largely
redundant given gene expression. More uncorrelated sources of informa-
tion, like imaging data, could also be beneficial, and early works, including
those by Patwardhan et al.63, Cheerla and Gevaert34, and Wulczyn et al.62

suggest that this is the case.
Other interesting findings include the observation that all modalities

were usedby the resultingmultimodalmodels, and their relative importance
roughly agreed with their predictiveness of OS (Supplementary Fig. 2). Our
initial exploration into differences across cancer stages suggests that the role
of protein expressions and mutations in late-stage NSCLC and breast
invasive carcinoma (BRCA) patients in determining OS is greater than in

early stages (Supplementary Figs. 3 and 4). Finally, we demonstrated an
example of a multimodal pan-cancer model outperforming models trained
on a single cancer type (Supplementary Fig. 1).

The pipeline described in “Pipeline Overview” above is in no way
exhaustive but is quite extensive and can be easily adapted to include new
methods. It would be especially useful for benchmarking and exploring
general tendencies (e.g., early vs. late fusion). The proposed fusion strategy,
however, does have limitations. As a late fusion method, it cannot capture
cross-modality feature interactions. We did not choose it by an exhaustive
search over the possibilities offered by the AZ-AI multimodal pipeline but
rather for its simplicity, flexibility, and scalability, and because it yields
consistently good results that demonstrate the added benefit of multimodal
data fusion (as suggested by our results). On different data sets (e.g., with
larger sample size–to–dimensionality ratio, higher signal-to-noise ratio, or
higher degree of cross-modality interactions), we donot necessarily expect it
to outperform other approaches, but its qualitative advantages (simplicity,
flexibility, and scalability) will still hold. Bioinformatics data sets typically
consist of various modalities, such as genomic, transcriptomic, epigenomic,
proteomic, lifestyle, and phenotypic. Multimodal data fusion offers the
potential to improvepatient outcomesandgainnovel insights by combining
information across modalities. Multiple strategies can be used to integrate
multimodal data, however, and they are highly problem-specific; identifying
an appropriate approach for a given setting is challenging. The literature on

Fig. 5 | Average test set C-index for each of the 27-1 possible modality combi-
nations for NSCLC patients. C-index of each modality combination (blue points)
on the subset of a all NSCLC TCGA patients (LUAD and LUSC), b LUAD patients
only, and c LUSC patients only. The black crosses indicate the average C-index
across allmultimodalmodels trained on kmodalities, where k is equal to the number
shown on the x axes (black trend line added for emphasis). On average, the more
modalities added, the better the resultingmodel. The red dashed linesmark the effect

of not including the best individualmodality in themultimodal fusion. Also shown is
the average test set C-index and 95% CI for: (i) the worst individual modality
(orange), (ii) the best individual modality (green), (iii) the best modality combina-
tion excluding the clinical features (light blue), (iv) the best modality combination
(gold), and (v) the multimodal fusion of all seven modalities (purple). We note the
diminishing benefit of adding more modalities and the high “price” of excluding the
best individual modality (here: clinical features).
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predictingOS in cancer patients is fragmented and inconsistent, and several
promising methods remain underexplored. A consistent and rigorous
comparison of multimodal methods against one another and against
unimodalmodels is alsomissing fromthe currently available literature. Such
comparisons are necessary to determine whether different omics data sets
should be combined and, if so, which ones should be used and how they
should be combined.

To answer these questions, we implemented the AZ-AI multimodal
pipeline, which allows us to train, evaluate, and compare a large number of
multi-omics methods for survival analysis. We identified a late fusion
strategy that consistently demonstrated the advantages of multimodal data
fusion ofCLINs,DNAmutations, gene-codingRNAexpressions, long non-
coding RNA expressions, microRNA expressions, methylations, and pro-
tein expressions for the prediction of OS in patients in TCGA. This
advantage was consistently demonstrated across individual TCGA cancer
types and on pan-cancer models. Multimodal models exhibited reduced
variance and better average predictive performance, showing clear super-
iority in larger sample sizes. Finally, we found that addingmodalities did not
harm performance, although the benefits diminished. We therefore con-
clude that, with our proposed strategy, we should combine different omics
data sets.

Clinical and demographic data, along with data on differential gene
expression, were found to be the most informative modalities overall. Our
initial explorations into differences between early- and late-stage NSCLC
and BRCA patients suggest an increased role of protein expressions and
mutations in patients with late-stage disease in determining OS. A pro-
mising future direction would be to further explore the relative importance
of modalities for different patient subpopulations, especially in relation to a
given treatment. Beyond themodality level, identifying key biomarkers that
drive the predictionwould require the use ofmodel interpretabilitymethods
such as permutation feature importance (included in theAZ-AImultimodal
pipeline) or Shapley Additive exPlanations (SHAP)66.

Our results, alongwith those of Patwardhan et al.63 support the claims of
others3,16,58 that late fusion is more successful than early fusion in settings
where there is high signal-to-noise ratio and low sample size–to–dimensions
ratio, due to a decreased risk of overfitting. A detailed exploration of problem

characteristics such as these and others (e.g., degree of intramodality and
intermodality correlations) in relation to an optimal fusion strategy, which is
possiblewith theuse of theAZ-AImultimodal pipeline, is left for futurework.

Finally, it would be interesting to explore more ways of incorporating
domainknowledge into themodels.Workingwithpathways andgene sets is
a promising direction that could reduce multimodal model dimensionality
by leveraging knowledge of the underlying biology and could allow more
successful intermediate fusion approaches for more biologically inter-
pretable insights to be drawn from the models.

Methods
In this work, we address the gaps in the current literature on multimodal
models by introducing the AZ-AI multimodal pipeline for the extensive
exploration of multimodal fusion strategies that include several under-
explored approaches. We developed a framework for the extensive
exploration of multimodal fusion strategies that allows for rigorous eva-
luation of multimodal fusion approaches against one another and against
unimodal models. We demonstrate the advantage of multimodal data
fusion for the cancer patient OS endpoint and outline individual con-
tributions of different modalities. Applying our framework to the TCGA
data set, we identify a flexible, ensemble-based, late fusion strategy that
consistently takes advantage of additional modalities across independent
patient subpopulations for improving OS prediction.

OS prediction
We trainedmodels on the task of predictingOS in patient data fromTCGA.
In this context, OS measures the length of time (in days) from the date of
diagnosis to a patient’s death by any cause. Monitoring OS requires longer
follow-up times than other survival endpoints and is affected by deaths due
tononcancer causes.Nevertheless,OS is oneof themost commonendpoints
used in practice because there is minimal ambiguity in defining an OS
event67,68.

As with any survival modeling task, the influence of censoring69,70 can
complicate the analysis and introduce bias. Although most survival mod-
eling methods listed in Table 3 account for right-censoring, most dimen-
sionality reduction methods presented in Table 4 do not. We used the

Fig. 6 | Ranking of each modality combination for each TCGA cancer type.
Relative rank (1: best performing to 15: worst performing) attained by eachmodality
combination per cancer type is based on the average C-index of the corresponding
survival models across all train/test splits. In case of ties, combinations using fewer
modalities are ranked higher, to favor more parsimonious solutions. Rows

correspond to modality combinations, columns to cancer types, the last column
showing the average rank attained by each modality combination across all cancer
types. The modality combinations are ordered according to their average rank (top:
best performing, bottom: worst performing).
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concordance index (C-index)71 as the most frequently used evaluation
metric for the goodness-of-fit of survival models. The C-index is a measure
of rank correlation between predicted risk scores and observed survival
times. A C-index of 0.5 corresponds to a model whose ranking of predicted
patient survival times is no better than random, whereas a C-index of 1
corresponds to a model whose ranking of predicted survival times perfectly
matches that of true survival times.

Data
The TCGA project (2006–2018)57 molecularly characterized more than
20,000 primary cancer samples andmatched normal samples, spanning
33 cancer types. From these samples, the project produced multiple
types of omics data (genomic, epigenomic, transcriptomic, and pro-
teomic), which are listed along with any corresponding demographic,
clinical, and imaging data for each sample. Table 3 lists the 33 cancer

types in TCGA, along with the number of data points for each, after
excluding patients with follow-up times of <1 day. Table 4 lists the
modalities included in the experiments along with any preprocessing
the samples underwent.

Pipeline overview
Figure 2 provides a summary of the AZ-AI multimodal pipeline. After
specifying the subset of interest (cancer type[s] and stage[s],modalities to be
included), the data are split into a training set and a test set, the former to be
used for feature selection and trainingmodels, and the latter used exclusively
for the final evaluation. The user specifies the desired train-test split ratio
and (optionally) any variable(s) bywhich the split is to be stratified. Thedata
then undergoes optional preprocessing, such as normalizing continuous
features or imputing missing data. The transformations applied are learned
on the training data and then applied to both training and test data. For

Fig. 7 | Performance of multimodal models (FUSED) versus unimodal models of
each modality trained on TCGA patients of all cancer types (PANCANCER).
Results shown for patients of a all stages, b late stages (III andV), and c early stages (I,
II). Average test set C-index and 95%CIs across 10 runs are reported. The red dashed

line denotes random prediction performance (C-index = 0.5). The blue dashed line
denotes average C-index of best individual modality (here: clinical features). Mul-
timodal models significantly outperformed all unimodal models and had lower
variance.

https://doi.org/10.1038/s41698-025-00917-6 Article

npj Precision Oncology |           (2025) 9:128 9

www.nature.com/npjprecisiononcology


example, we performed median imputation by using the training set’s
median on both the training and the test sets. Next, the (optional) dimen-
sionality reduction step is employed (see “Dimensionality reduction”), again
basedon the training set. The chosen survivalmodels are then trainedon the
training set. Auser-specified fraction of the training data is (optionally) used
as a validation set to determine the weights of the ensemble (see “Survival
modeling”) and of eachmodality in late fusionmultimodalmodels (see Fig.
1, Late Fusion Strategy). During model training, fivefold cross-validation is
applied to identify the optimal hyperparameter setup under a grid search.
The final model is then trained on the full training set and evaluated on the
held-out test set. We repeated the entire process multiple times (“runs”) on
different training-validation-test splits and computed the average C-index
for the test set and the 95% CIs for each modality combination (see “Eva-
luation”). The different steps of the pipeline can be executed jointly or per
individual modality, giving rise to different multimodal data fusion strate-
gies (see “Fusion Strategies”). The user can select multiple cancer types and
train a combinedmodel or separate ones for each. Finally, there is the added

option to report aggregate permutation feature importances72,73 across all
runs, affording some degree of model interpretability.

Dimensionality reduction. Table 1 lists the various dimensionality
reduction methods explored. These include both feature selection
methods (which return a subset of the original features) and feature
extraction methods (which transform the original features), as well as
both linear and nonlinearmethods, univariate andmultivariatemethods,
and others. Combinations are also possible. For instance, we can first
select a subset of the original features by filtering out the least variant ones
and then discard features that are highly correlated with other selected
ones (both steps unsupervised).We can then train autoencoders to obtain
a latent representation of the data (also unsupervised) and, finally, select
features that are informative ofOS by training univariate Cox PHmodels.

There is also the option to specify lists of genes of interest to include for
certainmodalities. An exhaustive exploration of these approaches and their
combinations is beyond the scope of thiswork, but the provided code can be
used to expand on what is presented here. We included the option to limit
the risk of overfitting for feature selection approaches by selecting only the
most stable features. This can be achieved by applying the feature selection
method on k bootstraps of the training set and retaining only those features
that are selected in at least kmin of the bootstraps by the feature selection
method. A bootstrap is generated by uniformly sampling with replacement
Ntrain data points from the original training set of size Ntrain.

Survival modeling. Table 2 shows the various survival model families
included in the pipeline. “ENS” denotes a heterogeneous ensemble of
models from all other families listed.

Let us denote with fi the ith constituent survivalmodel in the ensemble
(trained on the training set).We denote with fi(x) the prediction of model fi
on a data point (patient) with feature vector x. To obtain the ensemble’s
prediction fENS(x) on the samedatapoint, thepredictionsof eachbasemodel
(survival risk scores) are first normalized to lie within [0, 1], and then the
normalized predictions of all models on the same data point x are linearly
combined via weights wi by:

f ENS xð Þ ¼
P

i wif iðxÞP
i wi

ð1Þ

The weight wi of each model is determined based on its performance
(C-index, Ci) on either the training set or on a separate validation set by:

wi ¼
Ci � 0:5;Ci ≥Cmin

0;Ci<Cmin

�

;Cmin>0:5 ð2Þ

To obtain the results shown, we followed the latter approach. Once the
weights wi were determined on the validation set, retraining the base lear-
ners fi on the combined training and validation set tended to further
improve performance, as measured on the held-out test set. We suggest
following this approach unless the sample size is too small, in which case we
advise using the training set to determine the weights.

Equation 2 weighs the prediction of each model proportionally to its
edge over the random survival model performance (C = 0.5). Weighted
ensembles of this form are common in the literature74,75. We also added a
minimal performance Cmin > 0.5 required to include the model in the
ensemble43. This confers some robustness to the final prediction; poorly
performing models are excluded because in small data sets, a perceived
better-than-random performance can easily be due to chance. The optimal
value of Cmin is problem-specific, but we found that any Cmin > 0.5 can
improve the ensemble’s performance.

Fusion strategies. A common categorization of multimodal data inte-
gration methods is based on when the various modalities are combined
and gives rise to three broad classes of fusion strategies: early, late, and
intermediate3,10,11,16,76. The relative effectiveness of each depends heavily

Table 3 | Cancer types included in TCGA

Abbreviation Cancer type No. of
samples

BRCA Breast invasive carcinoma 1017

UCEC Uterine corpus endometrial carcinoma 513

LGG Brain lower-grade glioma 509

HNSC Head and neck squamous cell carcinoma 499

PRAD Prostate adenocarcinoma 493

LUAD Lung adenocarcinoma 491

THCA Thyroid carcinoma 489

LUSC Squamous cell lung cancer 470

SKCM Skin cutaneous melanoma 450

BLCA Bladder urothelial carcinoma 406

STAD Stomach adenocarcinoma 402

COAD Colon adenocarcinoma 398

KIRC Kidney renal clear-cell carcinoma 367

LIHC Liver hepatocellular carcinoma 357

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

286

KIRP Kidney renal papillary cell carcinoma 277

SARC Sarcoma 234

OV Ovarian serous cystadenocarcinoma 207

ESCA Esophageal carcinoma 183

PCPG Pheochromocytoma and paraganglioma 178

PAAD Pancreatic adenocarcinoma 168

GBM Glioblastoma multiforme 155

READ Rectal adenocarcinoma 141

TGCT Testicular germ cell tumors 128

THYM Thymoma 118

LAML Acute myeloid leukemia 110

MESO Mesothelioma 81

UVM Uveal melanoma 80

ACC Adrenocortical carcinoma 79

KICH Kidney chromophobe 65

UCS Uterine carcinosarcoma 57

DLBC Lymphoid neoplasm, diffuse large B-cell
lymphoma

37

CHOL Cholangiocarcinoma 36

PANCANCER All of the above cancer types 9481
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on the prediction task and the amount of data available3,16. Fig. 1 describes
each approach and provides a visual explanation along with its respective
advantages and disadvantages, as well as alternative names used in the
literature.

Proposed late-fusion method. Our proposed late fusion strategy is
summarized in Fig. 8. It mimics the ensemble construction technique
presented above in the section “Survival modeling.” Each modality con-
tributes amodel fj, which itself can be an ensemble of the formof Eq. 1. The
individual modality predictions are then aggregated using Eq. 1. As before,
the models fj are trained on the training set and the weights wj are deter-
mined based on the validation set performance by Eq. 2. The predictions
fj(x) can be interpreted as the unimodal risk scores for a patientwith feature
vector x and the final ensemble prediction fFUSED(x) as the multimodal risk
score. The normalizedweightwj/∑j wj of the jthmodality can be interpreted
as its relative importance in determining OS in the given setting.

Evaluation. With very few exceptions32,33,62, studies in the existing lit-
erature use a simple evaluation scheme consisting of performing a
single train-test split of the data. Assuming best practices are followed

and no data leakage is taking place, this is a sensible practice for
evaluating a single model on the given train-test split. Some studies32,33

go a step further and repeat the model generation process multiple
times, reporting average performance and, in the case of Chai et al.33 a
measure of variance of the performance of final models yielded on the
same train-test split under their proposed methodologies. This is a
sensible way of evaluating the modeling process on the given train-
test split.

These evaluation practices, however, ignore the variability
resulting from the data split itself, which can be very large, especially
in small data sets. One implication is that any results reported (the
produced models and their respective performance) are tied to a
specific train-test split. This limits reproducibility and renders
comparisons across studies meaningless. In the multimodal setting,
this practice also hinders comparisons across modality combinations.
Train-test split stratification is typically performed on one or more
clinical features, but the resulting split can vary greatly in the dis-
tribution of nonclinical features. Different splits can therefore favor
different modalities. This variability gives rise to the often-
contradictory results reported in the literature.

Fig. 8 | Proposed heterogeneous weighted
ensemble-based late fusion strategy. Schematic
description of the strategy, with steps 1–4 detailing
the implementation process, as well as the subset of
the data used in each step. The equation to obtain the
final multimodal (FUSED) prediction using the
individual unimodal models is also provided.

Table 4 | Modalities included in this work and their preprocessing

Modality abbreviation General description & preprocessing notes No. of features

CLIN • Clinical and demographic features
• Included here: age, gender, race, cancer stage
• Cancer stage is omitted in early- and late-stage models.

4

EXP • RNA expression of protein-coding genes (gene expression)
• Differential expression in normal tissues
• Selected 1500 most variable across all indications
• Selected 1000 most variable per indication

1000 (per individual indication)
1130 (NSCLC)
1500 (PANCANCER)

MUT • DNA mutations (binarized; 0: wild type, 1: mutation)
• Included only those with $$VEP_[impact] = ‘high’$
• Selected 1500 most variable across all indications
• Selected 1000 most variable per indication

1000 (per individual indication)
1292 (NSCLC)

METH • DNA methylation probes (beta values)
• Retained only those features with <80% missing values
• Retained only those probes found in CpG islands, within 1500 base pairs upstream of the transcriptional
start site (Chaudhury et al. 2018)

• Included only differentially methylated regions for selected genes in EXP
• Selected 25,000 most variable across all indications
• Selected 1000 most variable per indication

1000 (per individual indication)
1660 (NSCLC)

MIRNA •microRNA expression
• Retained only those features with <80% missing values

867

RPPA • Reverse-phase protein array (protein expression) 198

LNCRNA • Long non-coding RNA expression
• Extracted from mRNA expression, according to the list in Li et al.81

• Retained only those features with <80% missing values

1952

mRNAmessenger RNA.
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Our goal was to answer the question, “Should we combine modalities,
and if so, which ones and how?” To claim that one combination of mod-
alities has an advantage over another, or even that there is indeed benefit in
combiningmodalities, it is necessary to evaluate themodelingprocess across
train-test splits under different modality combinations. We thus propose
what is known in the machine learning literature as “repeated holdout
validation”77–80 as a more appropriate choice of validating the results in this
setting. For each modality combination, we trained multiple models on
different training sets and evaluated eachon the corresponding held-out test
set, reporting average performance and 95% CIs.

Experimental setup. For all results presented here, unless stated
otherwise, we constructed multimodal models using the strategy
described above in the section “Proposed late fusion method.” We first
split the dataset into 80% training and 20% test data. For numerical
features, we performed median imputation and then selected the top 25
features on each modality by Spearman correlation with OS time. For
mutations, we provided a prespecified list of the top 25 genes associated
with each indication as identified by AstraZeneca’s Biological Insights
Knowledge Graph (BIKG) [78]. BIKG combines relevant data for drug
development from public and internal data sources. On the selected
feature subset, 80% of the available training data is then used to train
survival models and perform hyperparameter optimization by using
fivefold cross-validation. The remaining 20% of the training set was used
as a validation set. We then evaluated the models by predicting the OS of
the test data (20% of the total data). We repeated the process 10 times on
different train-validation test splits and computed the average test set
C-index and 95%CIs for eachmodality combination. The variance across
runs can be very high, especially whenmodeling smaller subsets of TCGA
(see Table 4 for sample sizes of each subpopulation). Therefore, we
repeated the train-test split multiple times when comparing the relative
importance of each individual modality or modality combination. We
rounded results to the third decimal digit. For both unimodal and mul-
timodal models, unless stated otherwise, we report the results of
ensembles of survival models of all families shown in Table 2, except DS
(excluded due to its relatively slow hyperparameter optimization),
combined under Eq. 1. We set Cmin = 0.53 for Eq. 2.

Data availability
Thedata sets (TCGA)utilized in this study are available at https://portal.gdc.
cancer.gov/.

Code availability
Thepipeline andanalysis code are available at https://github.com/kmhl548_
azu/multimodal_pipeline.
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