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ABSTRACT

Multi-Agent Reinforcement Learning (MARL)—where multiple agents learn to
interact in a shared dynamic environment—permeates across a wide range of crit-
ical applications. While there has been substantial progress on understanding the
global convergence of policy optimization methods in single-agent RL, design-
ing and analysis of efficient policy optimization algorithms in the MARL setting
present significant challenges, which unfortunately, remain highly inadequately
addressed by existing theory. In this paper, we focus on the most basic setting
of competitive multi-agent RL, namely two-player zero-sum Markov games, and
study equilibrium finding algorithms in both the infinite-horizon discounted set-
ting and the finite-horizon episodic setting. We propose a single-loop policy op-
timization method with symmetric updates from both agents, where the policy
is updated via the entropy-regularized optimistic multiplicative weights update
(OMWU) method and the value is updated on a slower timescale. We show that,
in the full-information tabular setting, the proposed method achieves a finite-time
last-iterate linear convergence to the quantal response equilibrium of the regular-
ized problem, which translates to a sublinear last-iterate convergence to the Nash
equilibrium by controlling the amount of regularization. Our convergence results
improve upon the best known iteration complexities, and lead to a better under-
standing of policy optimization in competitive Markov games.

Keywords: zero-sum Markov game, entropy regularization, policy optimiza-
tion, global convergence, multiplicative updates

1 INTRODUCTION

Policy optimization methods (Williams, 1992; Sutton et al., 2000; Kakade, 2002; Peters and Schaal,
2008; Konda and Tsitsiklis, 2000), which cast sequential decision making as value maximization
problems with regards to (parameterized) policies, have been instrumental in enabling recent suc-
cesses of reinforcement learning (RL). See e.g., Schulman et al. (2015; 2017); Silver et al. (2016).
Despite its empirical popularity, the theoretical underpinnings of policy optimization methods re-
main elusive until very recently. For single-agent RL problems, a flurry of recent works has made
substantial progress on understanding the global convergence of policy optimization methods under
the framework of Markov Decision Processes (MDP) (Agarwal et al., 2020; Bhandari and Russo,
2019; Mei et al., 2020; Cen et al., 2021a; Lan, 2022; Bhandari and Russo, 2020; Zhan et al., 2021;
Khodadadian et al., 2021; Xiao, 2022). Despite the nonconcave nature of value maximization, (nat-
ural) policy gradient methods are shown to achieve global convergence at a sublinear rate (Agarwal
et al., 2020; Mei et al., 2020) or even a linear rate in the presence of regularization (Mei et al., 2020;
Cen et al., 2021a; Lan, 2022; Zhan et al., 2021) when the learning rate is constant.

Author are sorted alphabetically.
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Moving beyond single-agent RL, Multi-Agent Reinforcement Learning (MARL) is the next
frontier—where multiple agents learn to interact in a shared dynamic environment—permeating
across critical applications such as multi-agent networked systems, autonomous vehicles, robotics,
and so on. Designing and analysis of efficient policy optimization algorithms in the MARL setting
present significant challenges and new desiderata, which unfortunately, remain highly inadequately
addressed by existing theory.

1.1 POLICY OPTIMIZATION FOR COMPETITIVE RL

In this work, we focus on one of the most basic settings of competitive multi-agent RL, namely
two-player zero-sum Markov games (Shapley, 1953), and study equilibrium finding algorithms in
both the infinite-horizon discounted setting and the finite-horizon episodic setting. In particular,
our designs gravitate around algorithms that are single-loop, symmetric, with finite-time last-iterate
convergence to the Nash Equilibrium (NE) or Quantal Response Equilibrium (QRE) under bounded
rationality, two prevalent solution concepts in game theory. These design principles naturally come
up as a result of pursuing simple yet efficient algorithms: single-loop updates preclude sophisticated
interleaving of rounds between agents; symmetric updates ensure no agent will compromise its re-
wards in the learning process, which can be otherwise exploited by a faster-updating opponent; in
addition, asymmetric updates typically lead to one-sided convergence, i.e., only one of the agents is
guaranteed to converge to the minimax equilibrium in a non-asymptotic manner, which is less desir-
able; moreover, last-iterate convergence guarantee absolves the need for agents to switch between
learning and deployment; last but not least, it is desirable to converge as fast as possible, where the
iteration complexities are non-asymptotic with clear dependence on salient problem parameters.

Substantial algorithmic developments have been made for finding equilibria in two-player zero-sum
Markov games, where Dynamical Programming (DP) techniques have long been used as a funda-
mental building block, leading to prototypical iterative schemes such as Value Iteration (VI) (Shap-
ley, 1953) and Policy Iteration (PI) (Van Der Wal, 1978; Patek and Bertsekas, 1999). Different from
their single-agent counterparts, these methods require solving a two-player zero-sum matrix game
for every state per iteration. A considerable number of recent works (Zhao et al., 2022; Alacaoglu
et al., 2022; Cen et al., 2021b; Chen et al., 2021a) are based on these DP iterations, by plugging
in various (gradient-based) solvers of two-player zero-sum matrix games. However, these methods
are inherently nested-loop, which are less convenient to implement. In addition, PI-based methods
are asymmetric and come with only one-sided convergence guarantees (Patek and Bertsekas, 1999;
Zhao et al., 2022; Alacaoglu et al., 2022).

Going beyond nested-loop algorithms, single-loop policy gradient methods have been proposed re-
cently for solving two-player zero-sum Markov games. Here, we are interested in finding an ϵ-
optimal NE or QRE in terms of the duality gap, i.e. the difference in the value functions when either
of the agents deviates from the solution policy.

• For the infinite-horizon discounted setting, Daskalakis et al. (2020) demonstrated that the in-
dependent policy gradient method, with direct parameterization and asymmetric learning rates,
finds an ϵ-optimal NE within a polynomial number of iterations. Zeng et al. (2022) improved
over this rate using an entropy-regularized policy gradient method with softmax parameterization
and asymmetric learning rates. On the other end, Wei et al. (2021b) proposed an optimistic gra-
dient descent ascent (OGDA) method (Rakhlin and Sridharan, 2013) with direct parameterization
and symmetric learning rates,1 which achieves a last-iterate convergence at a rather pessimistic
iteration complexity.

• For the finite-horizon episodic setting, Zhang et al. (2022); Yang and Ma (2022) showed that the
weighted average-iterate of the optimistic Follow-The-Regularized-Leader (FTRL) method, when
combined with slow critic updates, finds an ϵ-optimal NE in a polynomial number of iterations.

A more complete summary of prior results can be found in Table 1 and Table 2. In brief, while there
have been encouraging progresses in developing computationally efficient policy gradient methods

1To be precise, Wei et al. (2021b) proved the average-iterate convergence of the duality gap, as well as the
last-iterate convergence of the policy in terms of the Euclidean distance to the set of NEs, where it is possible
to translate the latter last-iterate convergence to the duality gap (see Appendix. G). The resulting iteration
complexity, however, is much worse than that of the average-iterate convergence in terms of the duality gap,
with a problem-dependent constant that can scale pessimistically with salient problem parameters.
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for solving zero-sum Markov games, achieving fast finite-time last-iterate convergence with single-
loop and symmetric update rules remains a challenging goal.

1.2 OUR CONTRIBUTIONS

Motivated by the positive role of entropy regularization in enabling faster convergence of policy op-
timization in single-agent RL (Cen et al., 2021a; Lan, 2022) and two-player zero-sum games (Cen
et al., 2021b), we propose a single-loop policy optimization algorithm for two-player zero-sum
Markov games in both the infinite-horizon and finite-horizon settings. The proposed algorithm fol-
lows the style of actor-critic (Konda and Tsitsiklis, 2000), with the actor updating the policy via the
entropy-regularized optimistic multiplicative weights update (OMWU) method (Cen et al., 2021b)
and the critic updating the value function on a slower timescale. Both agents execute multiplicative
and symmetric policy updates, where the learning rates are carefully selected to ensure a fast last-
iterate convergence. In both the infinite-horizon and finite-horizon settings, we prove that the last
iterate of the proposed method learns the optimal value function and converges at a linear rate to the
unique QRE of the entropy-regularized Markov game, which can be further translated into finding
the NE by setting the regularization sufficiently small.

• For the infinite-horizon discounted setting, the last iterate of our method takes at most

Õ
(

|S|
(1− γ)4τ

log
1

ϵ

)
iterations for finding an ϵ-optimal QRE under entropy regularization, where Õ(·) hides logarith-
mic dependencies. Here, |S| is the size of the state space, γ is the discount factor, and τ is the
regularization parameter. Moreover, this implies the last-iterate convergence with an iteration
complexity of

Õ
(

|S|
(1− γ)5ϵ

)
for finding an ϵ-optimal NE.

• For the finite-horizon episodic setting, the last iterate of our method takes at most

Õ
(
H2

τ
log

1

ϵ

)
iterations for finding an ϵ-optimal QRE under entropy regularization, where H is the horizon
length. Similarly, this implies the last-iterate convergence with an iteration complexity of

Õ
(
H3

ϵ

)
for finding an ϵ-optimal NE.

Detailed comparisons between the proposed method and prior arts are provided in Table 1 and Ta-
ble 2. To the best of our knowledge, this work presents the first method that is simultaneously
single-loop, symmetric, and achieves fast finite-time last-iterate convergence in terms of the duality
gap in both infinite-horizon and finite-horizon settings. From a technical perspective, the infinite-
horizon discounted setting is in particular challenging, where ours is the first single-loop algorithm
that guarantees an iteration complexity of Õ(1/ϵ) for last-iterate convergence in terms of the du-
ality gap, with clear and improved dependencies on other problem parameters in the meantime.
In contrast, several existing works introduce additional problem-dependent constants (Daskalakis
et al., 2020; Wei et al., 2021b; Zeng et al., 2022) in the iteration complexity, which can scale rather
pessimistically—sometimes even exponentially—with problem dimensions (Li et al., 2021).

Our technical developments require novel ingredients that deviate from prior tools such as error
propagation analysis for Bellman operators (Perolat et al., 2015; Patek and Bertsekas, 1999) from a
dynamic programming perspective, as well as the gradient dominance condition (Daskalakis et al.,
2020; Zeng et al., 2022) from a policy optimization perspective. Importantly, at the core of our
analysis lies a carefully-designed one-step error contraction bound for policy learning, together with
a set of recursive error bounds for value learning, all of which tailored to the non-Euclidean OMWU
update rules that have not been well studied in the setting of Markov games.
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Solution
type Reference Iteration

complexity
Single
loop Symmetric Last-iterate

convergence

ϵ-NE

PI-based Methods
Zhao et al. (2022)

Alacaoglu et al. (2022)
Õ
(

∥1/ρ∥∞
(1−γ)3ϵ

)∗
✗ ✗ ✓

VI-based Methods
Cen et al. (2021b)

Chen et al. (2021a)
Õ
(

1
(1−γ)3ϵ

)
✗ ✓ ✓

Daskalakis et al. (2020) Polynomial∗ ✓ ✗ ✗

Zeng et al. (2022) Õ
(

|S|2∥1/ρ∥5
∞

(1−γ)14c4ϵ3

)∗
✓ ✗ ✓

Wei et al. (2021b)
Õ
(

|S|3
(1−γ)9ϵ2

)
✓ ✓ ✗

Õ
(

|S|5(|A|+|B|)1/2
(1−γ)16c4ϵ2

)
✓ ✓ ✓

This Work Õ
(

|S|
(1−γ)5ϵ

)
✓ ✓ ✓

ϵ-QRE

VI-based Methods
Cen et al. (2021b) Õ

(
1

(1−γ)3 log
2 1

ϵ

)
✗ ✓ ✓

Zeng et al. (2022) Õ
(

|S|2∥1/ρ∥5
∞

(1−γ)11c4τ3 log
1
ϵ

)∗
✓ ✗ ✓

This Work Õ
(

|S|
(1−γ)4τ log 1

ϵ

)
✓ ✓ ✓

Table 1: Comparison of policy optimization methods for finding an ϵ-optimal NE or QRE of two-player zero-
sum discounted Markov games in terms of the duality gap. Note that ∗ implies one-sided convergence, i.e.,
only one of the agents is guaranteed to achieve finite-time convergence to the equilibrium. Here, c > 0 refers
to some problem-dependent constant. For simplicity and a fair comparison, we replace various notions of
concentrability coefficient and distribution mismatch coefficient with a crude upper bound ∥1/ρ∥∞, where ρ is
the initial state distribution.

Solution
type Reference Iteration

complexity
Single
loop Symmetric Last-iterate

convergence

ϵ-NE

Zhang et al. (2022)
OFTRL Õ

(
H28/5

ϵ6/5

)
✓ ✓ ✗

Zhang et al. (2022)
modified OFTRL Õ

(
H4

ϵ

)
✓ ✓ ✗

Yang and Ma (2022)
OFTRL Õ

(
H5

ϵ

)
✓ ✓ ✗

This Work Õ
(
H3

ϵ

)
✓ ✓ ✓

ϵ-QRE This Work Õ
(
H2

τ log 1
ϵ

)
✓ ✓ ✓

Table 2: Comparison of policy optimization methods for finding an ϵ-optimal NE or QRE of two-player zero-
sum episodic Markov games in terms of the duality gap.

1.3 RELATED WORKS

Learning in two-player zero-sum matrix games. Freund and Schapire (1999) showed that
the average iterate of Multiplicative Weight Update (MWU) method converges to NE at a rate
of O(1/

√
T ), which in principle holds for many other no-regret algorithms as well. Daskalakis

et al. (2011) deployed the excessive gap technique of Nesterov and improved the convergence
rate to O(1/T ), which is achieved later by (Rakhlin and Sridharan, 2013) with a simple modifi-
cation of MWU method, named Optimistic Mirror Descent (OMD) or more commonly, OMWU.
Moving beyond average-iterate convergence, Bailey and Piliouras (2018) demonstrated that MWU
updates, despite converging in an ergodic manner, diverge from the equilibrium. Daskalakis and
Panageas (2018); Wei et al. (2021a) explored the last-iterate convergence guarantee of OMWU, as-
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suming uniqueness of NE. Cen et al. (2021b) established linear last-iterate convergence of entropy-
regularized OMWU without uniqueness assumption. Sokota et al. (2022) showed that optimistic
update is not necessary for achieving linear last-iterate convergence in the presence of regulariza-
tion, albeit with a more strict restriction on the step size.

Learning in two-player zero-sum Markov games. In addition to the aforementioned works on
policy optimization methods (policy-based methods) for two-player zero-sum Markov games (cf. Ta-
ble 1 and Table 2), a growing body of works have developed model-based methods (Liu et al., 2021;
Zhang et al., 2020; Li et al., 2022) and value-based methods (Bai and Jin, 2020; Bai et al., 2020; Chen
et al., 2021b; Jin et al., 2021; Sayin et al., 2021; Xie et al., 2020), with a primary focus on learning
NE in a sample-efficient manner. Our work, together with prior literatures on policy optimization,
focuses instead on learning NE in a computation-efficient manner assuming full-information.

Entropy regularization in RL and games. Entropy regularization is a popular algorithmic idea in
RL (Williams and Peng, 1991) that promotes exploration of the policy. A recent line of works (Mei
et al., 2020; Cen et al., 2021a; Lan, 2022; Zhan et al., 2021) demonstrated that incorporating entropy
regularization provably accelerates policy optimization in single-agent MDPs by enabling fast linear
convergence. While the positive role of entropy regularization is also verified in various game-
theoretic settings, e.g., two-player zero-sum matrix games (Cen et al., 2021b), zero-sum polymatrix
games (Leonardos et al., 2021), and potential games (Cen et al., 2022), it remains highly unexplored
the interplay between entropy regularization and policy optimization in Markov games with only a
few exceptions (Zeng et al., 2022).

1.4 NOTATIONS

We denote the probability simplex over a set A by ∆(A). We use bracket with subscript to index the
entries of a vector or matrix, e.g., [x]a for a-th element of a vector x, or simply x(a) when it is clear
from the context. Given two distributions x, y ∈ ∆(A), the Kullback-Leibler (KL) divergence from
y to x is denoted by KL

(
x ∥ y

)
=

∑
a∈A x(a)(log x(a) − log y(a)). Finally, we denote by ∥A∥∞

the maximum entrywise absolute value of a matrix A, i.e., ∥A∥∞ = maxi,j |Ai,j |.

2 ALGORITHM AND THEORY: THE INFINITE-HORIZON SETTING

2.1 PROBLEM FORMULATION

Two-player zero-sum discounted Markov game. A two-player zero-sum discounted Markov
game is defined by a tuple M = (S,A,B, P, r, γ), with finite state space S, finite action spaces of
the two players A and B, reward function r : S × A × B → [0, 1], transition probability kernel
P : S × A × B → ∆(S) and discount factor 0 ≤ γ < 1. The action selection rule of the max
player (resp. the min player) is represented by µ : S → ∆(A) (resp. ν : S → ∆(B)), where the
probability of selecting action a ∈ A (resp. b ∈ B) in state s ∈ S is specified by µ(a|s) (resp.
ν(b|s)). The probability of transitioning from state s to a new state s′ upon selecting the action pair
(a, b) ∈ A,B is given by P (s′|s, a, b).

Value function and Q-function. For a given policy pair µ, ν, the state value of s ∈ S is evaluated
by the expected discounted sum of rewards with initial state s0 = s:

∀s ∈ S : V µ,ν(s) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣s0 = s

]
, (1)

the quantity the max player seeks to maximize while the min player seeks to minimize. Here, the
trajectory (s0, a0, b0, s1, · · · ) is generated according to at ∼ µ(·|st), bt ∼ ν(·|st) and st+1 ∼
P (·|st, at, bt). Similarly, the Q-function Qµ,ν(s, a, b) evaluates the expected discounted cumulative
reward with initial state s and initial action pair (a, b):

∀(s, a, b) ∈ S ×A×B : Qµ,ν(s, a, b) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣s0 = s, a0 = a, b0 = b

]
. (2)
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For notation simplicity, we denote by Qµ,ν(s) ∈ R|A|×|B| the matrix [Qµ,ν(s, a, b)](a,b)∈A×B, so
that

∀s ∈ S : V µ,ν(s) = µ(s)⊤Qµ,ν(s)ν(s).

Shapley (1953) proved the existence of a policy pair (µ⋆, ν⋆) that solves the min-max problem
maxµ minν V

µ,ν(s) for all s ∈ S simultaneously, and that the mini-max value is unique. A set of
such optimal policy pair (µ⋆, ν⋆) is called the Nash equilibrium (NE) to the Markov game.

Entropy regularized two-player zero-sum Markov game. Entropy regularization is shown to
provably accelerate convergence in single-agent RL (Geist et al., 2019; Mei et al., 2020; Cen et al.,
2021a) and facilitate the analysis in two-player zero-sum matrix games (Cen et al., 2021b) as well
as Markov games (Cen et al., 2021b; Zeng et al., 2022). The entropy-regularized value function
V µ,ν
τ (s) is defined as

∀s ∈ S : V µ,ν
τ (s) = E

[ ∞∑
t=0

γt
(
r(st, at, bt)− τ logµ(at|st) + τ log ν(bt|st)

)∣∣∣s0 = s

]
,

(3)
where τ ≥ 0 is the regularization parameter. Similarly, the regularized Q-function Qµ,ν

τ is given by

∀(s, a, b) ∈ S ×A× B : Qµ,ν
τ (s) = r(s, a, b) + γEs′∼P (·|s,a,b) [V

µ,ν
τ (s′)] . (4)

It is known that (Cen et al., 2021b) there exists a unique pair of policy (µ⋆
τ , ν

⋆
τ ) that solves the

min-max entropy-regularized problem maxµ minν V µ,ν
τ (s), or equivalently

max
µ

min
ν

µ(s)⊤Qµ,ν
τ (s)ν(s) + τH

(
µ(s)

)
− τH

(
ν(s)

)
(5)

for all s ∈ S , and we call (µ⋆
τ , ν

⋆
τ ) the quantal response equilibrium (QRE) (McKelvey and Palfrey,

1995) to the entropy-regularized Markov game. We denote the associated regularized value function
and Q-function by V ⋆

τ (s) = V
µ⋆
τ ,ν

⋆
τ

τ (s) and Q⋆
τ (s, a, b) = Q

µ⋆
τ ,ν

⋆
τ

τ (s, a, b).

Goal. We seek to find an ϵ-optimal QRE or ϵ-QRE (resp. ϵ-optimal NE or ϵ-NE) ζ = (µ, ν) which
satisfies

max
s∈S,µ′,ν′

(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
≤ ϵ (6)

(resp. maxs∈S,µ′,ν′

(
V µ′,ν(s) − V µ,ν′

(s)
)

≤ ϵ) in a computationally efficient manner. In truth,
the solution concept of ϵ-QRE provides an approximation of ϵ-NE with appropriate choice of the
regularization parameter τ . Basic calculations tell us that

V µ′,ν(s)− V µ,ν′
(s) =

(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
+

(
V µ′,ν(s)− V µ′,ν

τ (s)
)
−
(
V µ,ν′

(s)− V µ,ν′

τ (s)
)

≤ V µ′,ν
τ (s)− V µ,ν′

τ (s) +
τ(log |A|+ log |B|)

1− γ
,

which guarantees that an ϵ/2-QRE is an ϵ-NE as long as τ ≤ (1−γ)ϵ
2(log |A|+log |B|) . For technical conve-

nience, we assume τ ≤ 1
max{1,log |A|+log |B|} throughout the paper.

Additional notation. For notation convenience, we denote by ζ the concatenation of a policy pair
µ and ν, i.e., ζ = (µ, ν). The QRE to the regularized problem is denoted by ζ⋆τ = (µ⋆

τ , ν
⋆
τ ). We use

shorthand notation µ(s) and ν(s) to denote µ(·|s) and ν(·|s). In addition, we write KL
(
µ(s) ∥µ′(s)

)
and KL

(
ν(s) ∥ ν′(s)

)
as KLs

(
µ ∥µ′) and KLs

(
ν ∥ ν′

)
, and let

KLs
(
ζ ∥ ζ ′

)
= KLs

(
µ ∥µ′)+ KLs

(
ν ∥ ν′

)
.

By a slight abuse of notation, KLρ
(
ζ ∥ ζ ′

)
denotes Es∼ρ

[
KLs

(
ζ ∥ ζ ′

)]
for ρ ∈ ∆(S).

2.2 SINGLE-LOOP ALGORITHM DESIGN

In this section, we propose a single-loop policy optimization algorithm for finding the QRE of
the entropy-regularized Markov game, which is generalized from the entropy-regularized OMWU
method (Cen et al., 2021b) for solving entropy-regularized matrix games, with a careful orchestrat-
ing of the policy update and the value update.

6



Published as a conference paper at ICLR 2023

Algorithm 1: Entropy-regularized OMWU for Discounted Two-player Zero-sum Markov Game
1 Input: Regularization parameter τ > 0, learning rate for policy update η > 0, learning rate for

value update {αt}∞t=1.
2 Initialization: Set µ(0), µ̄(0), ν(0) and ν̄(0) as uniform policies; and set

Q(0) = 0, V (0) = τ(log |A| − log |B|).

3 for t = 0, 1, · · · do
4 for all s ∈ S do in parallel
5 When t ≥ 1, update policy pair ζ(t)(s) as:{

µ(t)(a|s) ∝ µ(t−1)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

ν(t)(b|s) ∝ ν(t−1)(b|s)1−ητ exp(−η[Q(t)(s)⊤µ̄(t)(s)]b)
. (9a)

6 Update policy pair ζ̄(t+1)(s) as:{
µ̄(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

ν̄(t+1)(b|s) ∝ ν(t)(b|s)1−ητ exp(−η[Q(t)(s)⊤µ̄(t)(s)]b)
. (9b)

7 Update Q(t+1)(s) and V (t+1)(s) as
Q(t+1)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V (t)(s′)

]
V (t+1)(s) = (1− αt+1)V

(t)(s)

+αt+1

[
µ̄(t+1)(s)⊤Q(t+1)(s)ν̄(t+1)(s) + τH

(
µ̄(t+1)(s)

)
− τH

(
ν̄(t+1)(s)

)] .
(10)

Review: entropy-regularized OMWU for two-player zero-sum matrix games. We briefly re-
view the algorithm design of entropy-regularized OMWU method for two-player zero-sum matrix
game (Cen et al., 2021b). The problem of interest can be described as

max
µ∈∆(A)

min
ν∈∆(B)

µ⊤Aν + τH(µ)− τH(ν), (7)

where A ∈ R|A|×|B| is the payoff matrix of the game. The update rule of entropy-regularized
OMWU with learning rate η > 0 is defined as follows: ∀a ∈ A, b ∈ B,{

µ(t)(a) ∝ µ(t−1)(a)1−ητ exp(η[Aν̄(t)]a)

ν(t)(b) ∝ ν(t−1)(b)1−ητ exp(−η[A⊤µ̄(t)]b)
, (8a){

µ̄(t+1)(a) ∝ µ(t)(a)1−ητ exp(η[Aν̄(t)]a)

ν̄(t+1)(b) ∝ ν(t)(b)1−ητ exp(−η[A⊤µ̄(t)]b)
. (8b)

We remark that the update rule can be alternatively motivated from the perspective of natural policy
gradient (Kakade, 2002; Cen et al., 2021a) or mirror descent (Lan, 2022; Zhan et al., 2021) with opti-
mistic updates. In particular, the midpoint (µ̄(t+1), ν̄(t+1)) serves as a prediction of (µ(t+1), ν(t+1))
by running one step of mirror descent. Cen et al. (2021b) established that the last iterate of entropy-
regularized OMWU converges to the QRE of the matrix game (7) at a linear rate (1− ητ)t, as long
as the step size η is no larger than min

{
1

2∥A∥∞+2τ ,
1

4∥A∥∞

}
.

Single-loop algorithm for two-player zero-sum Markov games. In view of the similarity in
the problem formulations of (5) and (7), it is tempting to apply the aforementioned method to the
Markov game in a state-wise manner, where the Q-function assumes the role of the payoff matrix.
It is worth noting, however, that Q-function depends on the policy pair ζ = (µ, ν) and is hence
changing concurrently with the update of the policy pair. We take inspiration from Bai et al. (2020);
Wei et al. (2021b) and equip the entropy-regularized OMWU method with the following update rule
that iteratively approximates the value function in an actor-critic fashion:

Q(t+1)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V (t)(s′)

]
,

7
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where V (t+1) is updated as a convex combination of the previous V (t) and the regularized game
value induced by Q(t+1) as well as the policy pair ζ̄(t+1) = (µ̄(t+1), ν̄(t+1)):

V (t+1)(s) = (1− αt+1)V
(t)(s)

+ αt+1

[
µ̄(t+1)(s)⊤Q(t+1)(s)ν̄(t+1)(s) + τH

(
µ̄(t+1)(s)

)
− τH

(
ν̄(t+1)(s)

)]
.

(11)

The update of V becomes more conservative with a smaller learning rate αt, hence stabilizing the
update of policies. However, setting αt too small slows down the convergence of V to V ⋆

τ . A key
novelty—suggested by our analysis—is the choice of the constant learning rates α := αt = ητ
which updates at a slower timescale than the policy due to τ < 1. This is in sharp contrast to
the vanishing sequence αt = 2/(1−γ)+1

2/(1−γ)+t adopted in Wei et al. (2021b), which is essential in their
analysis but inevitably leads to a much slower convergence. We summarize the detailed procedure
in Algorithm 1. Last but not least, it is worth noting that the proposed method access the reward
via “first-order information”, i.e., either agent can only update its policy with the marginalized value
function Q(s)ν(s) or Q(s)⊤µ(s). Update rules of this kind are instrumental in breaking the curse
of multi-agents in the sample complexity when adopting sample-based estimates in (10), as we only
need to estimate the marginalized Q-function rather than its full form (Li et al., 2022; Chen et al.,
2021a).

2.3 THEORETICAL GUARANTEES

Below we present our main results concerning the last-iterate convergence of Algorithm 1 for solving
entropy-regularized two-player zero-sum Markov games in the infinite-horizon discounted setting.
The proof is postponed to Appendix A.

Theorem 1. Setting 0 < η ≤ (1−γ)3

32000|S| and αt = ητ , it holds for all t ≥ 0 that

max

{
1

|S|
∑
s∈S

KLs
(
ζ⋆τ ∥ ζ(t)

)
,

1

2|S|
∑
s∈S

KLs
(
ζ⋆τ ∥ ζ̄(t)

)
,
3η

|S|
∑
s∈S

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

}

≤ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t

; (12a)

and

max
s∈S,µ,ν

(
V µ,ν̄(t)

τ (s)− V µ̄(t),ν
τ (s)

)
≤ 6000|S|

(1− γ)3τ
max

{
8

(1− γ)2τ
,
1

η

}(
1− (1− γ)ητ

4

)t

.

(12b)

Theorem 1 demonstrates that as long as the learning rate η is small enough, the last iterate of Algo-
rithm 1 converges at a linear rate for the entropy-regularized Markov game. Compared with prior
literatures investigating on policy optimization, our analysis focuses on the last-iterate convergence
of non-Euclidean updates in the presence of entropy regularization, which appears to be the first of
its kind. Several remarks are in order, with detailed comparisons in Table 1.

• Linear convergence to the QRE. Theorem 1 demonstrates that the last iterate of Algorithm 1
takes at most Õ

(
1

(1−γ)ητ log 1
ϵ

)
iterations to yield an ϵ-optimal policy in terms of the KL di-

vergence to the QRE max
s∈S

KLs
(
ζ⋆τ ∥ ζ̄(t)

)
≤ ϵ, the entrywise error of the regularized Q-function∥∥Q(t) −Q⋆

τ

∥∥
∞ ≤ ϵ, as well as the duality gap max

s∈S,µ,ν

(
V µ,ν̄(t)

τ (s) − V µ̄(t),ν
τ (s)

)
≤ ϵ at once.

Minimizing the bound over the learning rate η, the proposed method is guaranteed to find an
ϵ-QRE within Õ

(
|S|

(1−γ)4τ log 1
ϵ

)
iterations, which significantly improves upon the one-side con-

vergence rate of Zeng et al. (2022).

• Last-iterate convergence to ϵ-optimal NE. By setting τ = (1−γ)ϵ
2(log |A|+log |B|) , this immedi-

ately leads to provable last-iterate convergence to an ϵ-NE, with an iteration complexity of
Õ
(

|S|
(1−γ)5ϵ

)
, which again outperforms the convergence rate in Wei et al. (2021b).

8
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Remark 1. The learning rate η is constrained to be inverse proportional to |S|, which is for the
worst case and can be potentially loosened for problems with a small concentration coefficient. We
refer interested readers to Appendix A for details.

3 ALGORITHM AND THEORY: THE EPISODIC SETTING

Episodic two-player zero-sum Markov game. An episodic two-player zero-sum Markov game
is defined by a tuple {S,A,B, H, {Ph}Hh=1, {rh}Hh=1}, with S being a finite state space, A and B
denoting finite action spaces of the two players, and H > 0 the horizon length. Every step h ∈ [H]
admits a transition probability kernel Ph : S ×A → ∆(S) and reward function rh : S ×A× B →
[0, 1]. Furthermore, µ = {µh}Hh=1 and {νh}Hh=1 denote the policies of the two players, where the
probability of the max player choosing a ∈ A (resp. the min player choosing b ∈ B) at time h is
specified by µh(a|s) (resp. νh(a|s)).

Entropy regularized value functions. The value function and Q-function characterize the ex-
pected cumulative reward starting from step h by following the policy pair µ, ν. For conciseness,
we only present the definition of entropy-regularized value functions below and remark that the their
un-regularized counterparts V µ,ν

h and Qµ,ν
h can be obtained by setting τ = 0. We have

V µ,ν
h,τ (s) = E

[
H∑

h′=h

[rh′(sh′ , ah′ , bh′)− τ logµh′(ah′ |sh′) + τ log νh′(bh′ |sh′)]
∣∣∣ sh = s

]
;

Qµ,ν
h,τ (s, a, b) = rh(s, a, b) + Es′∼Ph(·|s,a,b)

[
V µ,ν
h+1,τ (s

′)
]
.

The solution concept of NE and QRE are defined in a similar manner by focusing on the episodic
versions of value functions. We again denote the unique QRE by ζ⋆τ = (µ⋆

τ , ν
⋆
τ ).

Proposed method and convergence guarantee It is straightforward to adapt Algorithm 1 to the
episodic setting with minimal modifications, with detailed procedure showcased in Algorithm 2
(cf. Appendix B). The analysis, which substantially deviates from the discounted setting, exploits
the structure of finite-horizon MDP and time-inhomogeneous policies, enabling a much larger range
of learning rates as showed in the following theorem.
Theorem 2. Setting 0 < η ≤ 1

8H and αt = ητ , it holds for all h ∈ [H] and t ≥ Th := (H−h)Tstart

with Tstart = ⌈ 1
ητ logH⌉ that∥∥Q⋆

h,τ −Q
(t)
h

∥∥
∞ ≤ (1− ητ)t−ThtH−h; (13a)

max
s∈S,µ,ν

(
V µ,ν̄(t)

h,τ (s)− V µ̄(t),ν
h,τ (s)

)
≤ 4(1− ητ)t−Th max

{
8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)
. (13b)

Theorem 2 implies that the last iterate of Algorithm 2 takes no more than Õ
(
HTstart +

H
ητ log 1

ϵ

)
=

Õ
(
H
ητ log 1

ϵ

)
iterations for finding an ϵ-QRE. Minimizing the bound over the learning rate η,

Algorithm 2 is guaranteed to find an ϵ-QRE in Õ
(

H2

τ log 1
ϵ

)
iterations, which translates into

an iteration complexity of Õ
(

H3

ϵ

)
for finding an ϵ-NE in terms of the duality gap, i.e.,

maxs∈S,h∈[H],µ,ν

(
V µ,ν̄(t)

h (s)− V µ̄(t),ν
h (s)

)
≤ ϵ, by setting τ = O

(
ϵ

H(log |A|+log |B|)

)
.

4 DISCUSSION

This work develops policy optimization methods for zero-sum Markov games that feature single-
loop and symmetric updates with provable last-iterate convergence guarantees. Our approach yields
better iteration complexities in both infinite-horizon and finite-horizon settings, by adopting entropy
regularization and non-Euclidean policy update. Important future directions include investigating
whether larger learning rates are possible without knowing problem-dependent information a priori,
extending the framework to allow function approximation, and designing sample-efficient imple-
mentations of the proposed method.
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A ANALYSIS FOR THE INFINITE-HORIZON SETTING

Definition 1. Given ρ ∈ ∆(S) with ρ(s) > 0,∀s ∈ S, concentrability coefficient cρ(t) is defined as

cρ(t) = sup
x(l)∈AS ,1≤l≤t,

y(l)∈BS ,1≤l≤t

∥∥∥ρPx(1),y(1) · · ·Px(t),y(t)

ρ

∥∥∥
∞
,

where Px(l),y(l) ∈ R|S|×|S| is the state transition matrix induced by a pair of deterministic policy
x(l), y(l):

[Px(l),y(l) ]s,s′ = P (s′|s, x(l)(s), y(l)(s)).

Let Cρ be the maximum value of cρ(t) over t ≥ 0:

Cρ = sup
t≥0

cρ(t).

In addition, let Γ(ρ) be the set of all possible distribution over S induced by initial distribution ρ
and deterministic policy sequences, i.e.,

Γ(ρ) =

∞⋃
t=0

{
ρPx(1),y(1) · · ·Px(t),y(t) : x(l) ∈ AS , y(l) ∈ BS ,∀l ∈ [t]

}
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We make note that Theorem 1 is the direct corollary of following theorems, by setting ρ to the
uniform distribution over S, where Cρ admits a trivial upper bounded |S|.

Theorem 3. With 0 < η ≤ (1−γ)3

32000Cρ
, and αi = ητ , we have

max
{
KLρ

(
ζ⋆τ ∥ ζ(t)

)
,
1

2
KLρ

(
ζ⋆τ ∥ ζ̄(t)

)
, 3η E

s∼ρ

[∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

]}
≤ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t

.

Definition 2. We define regularized minimax mismatch coefficient by

C†
ρ,τ = max

{
max
µ

∥∥∥∥dµ,ν
†
τ (µ)

ρ

ρ

∥∥∥∥
∞
, max

ν

∥∥∥∥dµ
†
τ (ν),ν

ρ

ρ

∥∥∥∥
∞

}
.

Here, ν†τ (µ) denotes the optimal policy of the min player when the max player adopts policy µ:

ν†τ (µ) = argmin
ν

V µ,ν
τ (s),

and µ†
τ (ν) is defined in a symmetric way. The discounted state visitation distribution dµ,νρ is defined

as

dµ,νρ (s) = (1− γ) E
s0∼ρ

[ ∞∑
t=0

γtP (st = s|s0)

]
.

Note that this definition parallels that of the (unregularized) minimax mismatch coefficient in
(Daskalakis et al., 2020).

Theorem 4. With 0 < η ≤ (1−γ)3

32000Cρ
, and αi = ητ , we have

max
s∈S,µ,ν

(
V µ,ν̄(t)

τ (s)− V µ̄(t),ν
τ (s)

)
≤ 6000∥1/ρ∥∞

(1− γ)3τ
max

{ 8

(1− γ)2τ
,
1

η

}(
1− (1− γ)ητ

4

)t

,

and

max
µ,ν

(
V µ,ν̄(t)

τ (ρ)− V µ̄(t),ν
τ (ρ)

)
≤

6000C†
ρ,τ

(1− γ)3τ
max

{ 8

(1− γ)2τ
,
1

η

}(
1− (1− γ)ητ

4

)t

.

We start with the following lemma. The proof can be found in Appendix C.1. For notational sim-
plicity, we set Q(−1) = 0, ζ̄(−1) = ζ̄(0) and α0 = 1. It follows from the update rule (9a) that
ζ̄(1) = ζ(0) = ζ̄(0).
Lemma 1. It holds for any step size 0 < η ≤ 1/τ and t ≥ 0 that

KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLρ

(
ζ⋆τ ∥ ζ(t)

)
+

(
1− ητ − 4η

1− γ

)
KLρ

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

)
+
(
1− 2η

1− γ

)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLρ

(
ζ̄(t) ∥ ζ(t)

)
− 2η

1− γ
KLρ

(
ζ̄(t) ∥ ζ̄(t−1)

)
≤ E

s∼ρ

[
2η

∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞ +

4η2

1− γ

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞ +

12η2

1− γ

∥∥Q(t−1)(s)−Q(t)(s)
∥∥
∞

]
.

(14)

It remains to bound the terms on the right hand side of (14). By a slight abuse of notation, we denote∥∥Q(t+1) −Q⋆
τ

∥∥
Γ(ρ)

= sup
χ∈Γ(ρ)

E
s∼χ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

]
,

and ∥∥Q(t+1) −Q(t)
∥∥
Γ(ρ)

= sup
χ∈Γ(ρ)

E
s∼χ

[∥∥Q(t+1)(s)−Q(t)(s)
∥∥
∞

]
.

The following two lemmas establish a set of recursive bounds that relate{∥∥Q(l+1)(s)−Q⋆
τ (s)

∥∥
Γ(ρ)

}
l=0,··· ,t and

{∥∥Q(l+1)(s)−Q(l)(s)
∥∥
Γ(ρ)

}
l=0,··· ,t with{

KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)}
l=0,··· ,t−1

:

14
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Lemma 2. With 0 < η ≤ min{(1− γ)/180, (1− γ)2/48}, it holds for all t ≥ 1 that

∥∥Q(t+1) −Q(t)
∥∥
Γ(ρ)

≤ 1 + γ

2

t∑
l=1

αl,t

∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

+
4Cρ
η

·
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
,

(15)
Here, αl,t is defined as

αl,t = αl

t∏
i=l+1

(1− αi).

When t = 0, we have
∥∥Q(1)(s)−Q(0)(s)

∥∥
Γ(ρ)

≤ 2.

Proof. The proof can be found in Appendix C.2.

Lemma 3. With 0 < η ≤ (1− γ)2/16, it holds for all t ≥ 1 that∥∥Q(t+1) −Q⋆
τ

∥∥
Γ(ρ)

≤ 1 + γ

2
·

t∑
l=0

αl,t

(∥∥Q(l) −Q⋆
τ

∥∥
Γ(ρ)

+
2η

1− γ

∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

)
+ 2α0,t. (16)

When t = 0, we have
∥∥Q(t+1) −Q⋆

τ

∥∥
Γ(ρ)

≤ 2γ
1−γ .

Proof. The proof can be found in Appendix C.3.

The following lemma further demystify the complicated recursive bounds showed in Lemma 2 and
3.
Lemma 4. Let λl,t be defined as

λl,t = αl

t∏
i=l+1

(
1− 1− γ

4
· αi

)
.

Under the assumption of Lemma 2 and 3, it holds for all t ≥ 0 that
t∑

l=0

λl+1,t+1

[
η
∥∥Q⋆

τ −Q(l+1)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(l+1) −Q(l)

∥∥
Γ(ρ)

]
≤ 6250ηCρ

(1− γ)3

t−1∑
l=0

λl+1,t+1KL
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

550η

(1− γ)2
λ0,t+1

Proof. The proof can be found in Appendix C.4.

We are now ready to prove our main results. Averaging (14) with weight λ gives
t∑

l=0

λl+1,t+1

[
KLρ

(
ζ⋆τ ∥ ζ(l+1)

)
− (1− ητ)KLρ

(
ζ⋆τ ∥ ζ(l)

)
+
(
1− 2η

1− γ

)
KLρ

(
ζ(l+1) ∥ ζ̄(l+1)

)
+ 3η E

s∼ρ

[∥∥Q(l+1)(s)−Q⋆
τ (s)

∥∥
∞

]
+
(
1− ητ − 4η

1− γ

)
KLρ

(
ζ̄(l+1) ∥ ζ̄(l)

)
− 2η

1− γ
KLρ

(
ζ̄(l) ∥ ζ̄(l−1)

)]
≤

t∑
l=0

λl+1,t+1 E
s∼ρ

[
5η

∥∥Q(l+1)(s)−Q⋆
τ (s)

∥∥
∞ +

4η2

1− γ

∥∥Q(l+1)(s)−Q(l)(s)
∥∥
∞ +

13η2

1− γ

∥∥Q(l−1)(s)−Q(l)(s)
∥∥
∞

]

≤ 5

t∑
l=0

λl+1,t+1 E
s∼ρ

[
η
∥∥Q⋆

τ (s)−Q(l+1)(s)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(l+1)(s)−Q(l)(s)

∥∥
Γ(ρ)

]

15
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≤ 31250ηCρ
(1− γ)3

t−1∑
l=0

λl+1,t+1KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

2750η

(1− γ)2
λ0,t+1

for all t ≥ 0. Rearranging terms, we have

αt+1

[
KLρ

(
ζ⋆τ ∥ ζ(t+1)

)
+
(
1− 2η

1− γ

)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

] ]
+

t∑
l=1

(λl,t+1 − (1− ητ)λl+1,t+1)KLρ
(
ζ⋆τ ∥ ζ(l)

)
+

t−1∑
l=0

[
λl+1,t+1

(
1− ητ − 4η

1− γ
− 31250ηCρ

(1− γ)3

)
− λl+2,t+1

2η

1− γ

]
KL

(
ζ̄(l+1) ∥ ζ̄(l)

)
≤ 2750η

(1− γ)2
λ0,t+1 + (1− ητ)λ1,t+1KLρ

(
ζ⋆τ ∥ ζ(0)

)
≤

( 2750η

(1− γ)2
+ η

)
λ0,t+1.

With 0 < η ≤ (1−γ)3

32000Cρ
, and αi = ητ , we have λl,t+1 − (1− ητ)λl+1,t+1 ≥ 0 (c.f. (40)), and

λl+1,t+1

(
1− ητ − 4η

1− γ
− 31250ηCρ

(1− γ)3

)
− λl+2,t+1

2η

1− γ

= ητ

t+1∏
j=l+3

(
1− 1− γ

4
αj

)[
(1− 1− γ

4
ητ)

(
1− ητ − 4η

1− γ
− 31250ηCρ

(1− γ)3

)
− 2η

1− γ

]
≥ 0.

It follows that

KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
+
(
1− 2η

1− γ

)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

]
≤

( 2750

(1− γ)2τ
+

1

τ

)(
1− (1− γ)ητ

4

)t+1

<
3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t+1

.

(17)

This proves the bound of KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
and 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

]
in Theorem 3.

Note that the bound holds trivially for KLρ
(
ζ⋆τ ∥ ζ(0)

)
and 3η E

s∼ρ

[∥∥Q(0)(s)−Q⋆
τ (s)

∥∥
∞

]
. It re-

mains to bound KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
.

Lemma 5. With 0 < η ≤ (1− γ)/8, we have

1

2
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
≤ (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+

2η

1− γ
KLs

(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

Proof. See Appendix C.5.

Combining the above Lemma with (17) gives

1

2
KLρ

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

)
≤ (1− ητ)

(
KLρ

(
ζ⋆τ ∥ ζ(t)

)
+
(
1− 2η

1− γ

)
KLρ

(
ζ(t) ∥ ζ̄(t)

)
+ 3η E

s∼ρ

[∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

] )
≤ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t+1

.

We are now ready to bound the duality gap. Before proceeding, we introduce the following two
lemmas:

16
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Lemma 6. It holds for any policy pair µ, ν that

max
µ′,ν′

(
V µ′,ν
τ (ρ)− V µ,ν′

τ (ρ)
)
≤

2C†
ρ,τ

1− γ
E

s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)]

(18)

and

max
s∈S,µ′,ν′

(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
≤ 2∥1/ρ∥∞

1− γ
E

s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)]

. (19)

Proof. Note that (19) is a slight generalization of (Wei et al., 2021b, Lemma 32) . The proof can be
found in Appendix C.6.

Lemma 7 ((Cen et al., 2021b, Lemma 4)). It holds for all s ∈ S and policy pair µ, ν that

max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)
≤ 4

(1− γ)2τ
KLs

(
ζ⋆τ ∥ ζ

)
+ τKLs

(
ζ ∥ ζ⋆τ

)
.

Putting all pieces together, we arrive at

max
µ,ν

(
V µ,ν̄(t)

τ (ρ)− V µ̄(t),ν
τ (ρ)

)
≤

2C†
ρ,τ

1− γ

( 4

(1− γ)2τ
KLρ

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ τKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

))
≤

2C†
ρ,τ

1− γ
max

{ 8

(1− γ)2τ
,
1

η

}(1
2
KLρ

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

))
≤

6000C†
ρ,τ

(1− γ)3τ
max

{ 8

(1− γ)2τ
,
1

η

}(
1− (1− γ)ητ

4

)t

.

We omit the proof for maxs∈S,µ,ν

(
V µ,ν̄(t)

τ (s) − V µ̄(t),ν
τ (s)

)
as it follows virtually the same argu-

ment.

B ANALYSIS FOR THE EPISODIC SETTING

Throughout the analysis, we restrict our choice of value update step size to αt = ητ . We start with
the following lemma which parallels Lemma 11 in the episodic Markov game setting:
Lemma 8. With 0 < η ≤ 1/τ , it holds for all s ∈ S, h ∈ [H] and t ≥ 0 that

max
{∥∥µ̄(t+1)

h (s)− µ
(t+1)
h (s)

∥∥
1
,
∥∥ν̄(t+1)

h (s)− ν
(t+1)
h (s)

∥∥
1

}
≤ 2ηH. (22)

In addition, we have

max{∥ log ζ(t)h (s)∥∞, ∥ log ζ̄(t)h (s)∥∞∥ log ζ⋆h,τ (s)∥∞} ≤ 2H

τ
(23)

Lemma 9. With 0 < η ≤ 1
8H , it holds for all 0 ≤ t1 ≤ t2, h ∈ [H] and s ∈ S that

KLs
(
ζ⋆h,τ ∥ ζ

(t2)
h

)
+ (1− 4ηH)KLs

(
ζ
(t2)
h ∥ ζ̄(t2)h

)
≤ (1− ητ)t2−t1

(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))
+ 4η

t2∑
l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
τ (s)

∥∥
∞.

Proof. See Appendix D.1.

Lemma 10. With 0 < η ≤ 1
8H , it holds for all 0 < t1 ≤ t2, 2 ≤ h ≤ H and s ∈ S that∣∣Q(t2)

h−1(s, a, b)−Q⋆
h−1,τ (s, a, b)

∣∣
≤ 2(1− ητ)t2−t1H + 10ητ E

s′∼Ph−1(·|s,a,b)

[
t2−1∑

l=t1−1

(1− ητ)t2−1−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞

]
+ τ(1− ητ)t2−t1 E

s′∼Ph−1(·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(t1−1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1−1)
h ∥ ζ̄(t1−1)

h

)]
.
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Algorithm 2: Entropy-regularized OMWU for Episodic Two-player Zero-sum Markov Game
1 Input: Regularization parameter τ > 0, learning rate for policy update η > 0, learning rate for

value update {αt}∞t=1.
2 Initialization: Set µ(0), µ̄(0), ν(0) and ν̄(0) as uniform policies; set

Q(0) = 0, V (0) = τ(log |A| − log |B|).

for t = 0, 1, · · · do
3 for all h ∈ [H], s ∈ S do in parallel
4 When t ≥ 1, update policy pair ζ(t)h (s) as:{

µ
(t)
h (a|s) ∝ µ

(t−1)
h (a|s)1−ητ exp(η[Q

(t)
h (s)ν̄

(t)
h (s)]a)

ν
(t)
h (b|s) ∝ ν

(t−1)
h (b|s)1−ητ exp(−η[Q

(t)
h (s)⊤µ̄

(t)
h (s)]b)

. (20a)

5 Update policy pair ζ̄(t+1)
h (s) as:{

µ̄
(t+1)
h (a|s) ∝ µ

(t)
h (a|s)1−ητ exp(η[Q

(t)
h (s)ν̄

(t)
h (s)]a)

ν̄
(t+1)
h (b|s) ∝ ν

(t)
h (b|s)1−ητ exp(−η[Q

(t)
h (s)⊤µ̄

(t)
h (s)]b)

. (20b)

6 Update Q
(t+1)
h (s) and V

(t+1)
h (s) as

Q
(t+1)
h (s, a, b) = rh(s, a, b) + Es′∼Ph(·|s,a,b)

[
V

(t)
h+1(s

′)
]

V
(t+1)
h (s) = (1− αt+1)V

(t)
h (s)

+αt+1

[
µ̄
(t+1)
h (s)⊤Q

(t+1)
h (s)ν̄

(t+1)
h (s) + τH

(
µ̄
(t+1)
h (s)

)
− τH

(
ν̄
(t+1)
h (s)

)] .

(21)

Proof. See Appendix D.2.

We prove Theorem 2 by induction. By definition, we have∥∥Q⋆
H,τ −Q

(0)
H

∥∥
∞ =

∥∥Q⋆
H,τ

∥∥
∞ ≤ 1,

and
∥∥Q⋆

H,τ −Q
(t)
H

∥∥
∞ =

∥∥rH − rH
∥∥
∞ = 0 for t > 0. So (13a) holds trivially for h = H . When

the statement holds for some h, we can invoke Lemma 10 with t1 = Th + 1 and t2 = t ≥ Th−1,
which yields∥∥Q(t)

h−1 −Q⋆
h−1,τ

∥∥
≤ 2(1− ητ)t−Th−1H + 10ητ E

s′∼P (·|s,a,b)

[
t−1∑
l=Th

(1− ητ)t−1−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞

]

+ τ(1− ητ)t−Th−1 E
s′∼P (·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

)]
≤ 2(1− ητ)t−Th−1H + 10ητ E

s′∼P (·|s,a,b)

[
t−1∑
l=Th

(1− ητ)t−Th−1lH−h

]

+ τ(1− ητ)t−Th−1 E
s′∼P (·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

)]
≤ (1− ητ)t−Th−1(1− ητ)Tstart−1

[
10H + 10ητtH−h+1

]
,

where the last step results from

τ
(
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

))
18



Published as a conference paper at ICLR 2023

≤ τ
(∥∥logµ⋆

h,τ (s)− logµ
(Th)
h (s)

∥∥
∞ +

∥∥log ν⋆h,τ (s)− log ν
(Th)
h (s)

∥∥
∞

+
∥∥logµ(Th)

h (s)− log µ̄
(Th)
h (s)

∥∥
∞ +

∥∥log ν(Th)
h (s)− log ν̄

(Th)
h (s)

∥∥
∞

)
≤ 8H.

Therefore, with Tstart = ⌈ 1
ητ logH⌉ we can guarantee that∥∥Q(t)

h−1 −Q⋆
h−1,τ

∥∥ ≤ 10(1− ητ)t−Th−1(1− ητ)Tstart−1
[
H + ητtH−h+1

]
≤ (1− ητ)t−Th−1tH−h+1.

This completes the proof for (13a). Regarding (13b), we start by the following lemmas, which are
simply Lemma 5 and Lemma 7 applied to the episodic setting:
Lemma 5A. With 0 < η ≤ 1

8H , we have

1

2
KLs

(
ζ⋆h,τ ∥ ζ̄

(t+1)
h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
≤ (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄(t)h

)
+ 2η

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞.

Lemma 7A. It holds for all h ∈ [H], s ∈ S and policy pair µ, ν that

max
µ′,ν′

(
fs(Q

⋆
h,τ , µ

′
h, νh)− fs(Q

⋆
τ , µh, ν

′
h)
)
≤ 4H2

τ
KLs

(
ζ⋆h,τ ∥ ζh

)
+ τKLs

(
ζh ∥ ζ⋆h,τ

)
.

Combining Lemma 9 with Lemma 5A and Lemma 7A, we conclude that for 0 ≤ t1 ≤ t2 − 1,

max
µ,ν

(
fs(Q

⋆
h,τ , µh, ν̄

(t2)
h )− fs(Q

⋆
τ , µ̄

(t2)
h , νh)

)
≤ 4H2

τ
KLs

(
ζ⋆h,τ ∥ ζ̄

(t2)
h

)
+ τKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

)
≤ max

{8H2

τ
,
1

η

}(1
2
KLs

(
ζ⋆h,τ ∥ ζ̄

(t2)
h

)
+ ητKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

))
≤ max

{8H2

τ
,
1

η

}(
(1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t2−1)
h

)
+ 2ηHKLs

(
ζ
(t2−1)
h ∥ ζ̄(t2−1)

h

)
+ 2η

∥∥Q(t2−1)
h (s)−Q⋆

h,τ (s)
∥∥
∞

)
≤ max

{8H2

τ
,
1

η

}(
(1− ητ)t2−t1

(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))
+ 6η

t2∑
l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞

)
.

It is straightforward to verify that the above inequality holds for 0 ≤ t1 ≤ t2, by omitting the third
step. Substitution of (13a) into the above inequality yields

max
µ,ν

(
fs(Q

⋆
h,τ , µh, ν̄

(t)
h )− fs(Q

⋆
τ , µ̄

(t)
h , νh)

)
≤ max

{8H2

τ
,
1

η

}(
(1− ητ)t−Th

(
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

))
+ 6η

t∑
l=Th

(1− ητ)t−l(1− ητ)l−Th lH−h
)

≤ (1− ητ)t−Th max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)
. (24)

We prove the following results instead, where (13b) is a direct conclusion of (25) by summing the
two inequalities.

max
s∈S,µ

(
V µ,ν̄(t)

h,τ (s)− V ⋆
h,τ (s)

)
≤ 2(1− ητ)t−Th max

{
8H2

τ , 1
η

}(
8H
τ + 6ηtH−h+1

)
max
s∈S,µ

(
V ⋆
h,τ (s)− V µ̄(t),ν

h,τ (s)
)
≤ 2(1− ητ)t−Th max

{
8H2

τ , 1
η

}(
8H
τ + 6ηtH−h+1

) (25)
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We prove by induction. Note that when h = H , we have V µ,ν
H,τ (s) = fs(rH , µH , νH) =

fs(Q
⋆
H,τ , µH , νH) and the claim holds by invoking (24). When the claim holds for some 2 ≤

h ≤ H , we have

V µ,ν̄(t)

h−1,τ (s)− V ⋆
h−1,τ (s)

= µh−1(s)
⊤Qµ,ν̄(t)

h−1,τ (s)ν̄
(t)
h−1(s) + τH

(
µh−1(s)

)
− τH

(
ν̄
(t)
h−1(s)

)
− µ⋆

h−1,τ (s)
⊤Q⋆

h−1,τ (s)ν
⋆
h−1,τ (s) + τH

(
µ⋆
h−1,τ (s)

)
− τH

(
ν⋆h−1,τ (s)

)
= fs(Q

⋆
h−1,τ , µh−1, ν̄

(t)
h−1)− fs(Q

⋆
h−1,τ , µ

⋆
h−1,τ , ν

⋆
h−1,τ ) + µh−1(s)

⊤(Qµ,ν̄(t)

h−1,τ (s)−Q⋆
h−1,τ (s)

)
ν̄
(t)
h−1(s)

≤ fs(Q
⋆
h−1,τ , µh−1, ν̄

(t)
h−1)− fs(Q

⋆
h−1,τ , µ̄

(t)
h−1, ν

⋆
h−1,τ ) + max

s′∈S

[
V µ,ν̄(t)

h,τ (s′)− V ⋆
h,τ (s

′)
]

≤ max
µ′
h−1,ν

′
h−1

(
fs(Q

⋆
h−1,τ , µ

′
h−1, ν̄

(t)
h−1)− fs(Q

⋆
h−1,τ , µ̄

(t)
h−1, ν

′
h−1)

)
+max

s′∈S

[
V µ,ν̄(t)

h,τ (s′)− V ⋆
h,τ (s

′)
]

≤ (1− ητ)t−Th−1 max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+2
)

+ 2(1− ητ)t−Th max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)

≤ 2(1− ητ)t−Th−1 max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+2
)
.

Taking maximum over µ verifies the claim for h − 1, thereby finishing the proof. The bound for
max
s∈S,µ

(
V ⋆
h,τ (s) − V µ̄(t),ν

h,τ (s)
)

can be established by following a similar argument and is therefore

omitted.

C PROOF OF KEY LEMMAS FOR THE DISCOUNTED SETTING

C.1 PROOF OF LEMMA 1

Before proceeding, we shall introduce the following lemma that quantifies the distance between two
consecutive updates, whose proof can be found in Appendix E.1.

Lemma 11. For 0 < η ≤ 1/τ , it holds for all s ∈ S and t ≥ 0 that

max
{∥∥µ̄(t+1)(s)− µ(t+1)(s)

∥∥
1
,
∥∥ν̄(t+1)(s)− ν(t+1)(s)

∥∥
1

}
≤ 2η

1− γ

and that
max

{∥∥µ̄(t+1)(s)− µ̄(t)(s)
∥∥
1
,
∥∥ν̄(t+1)(s)− ν̄(t)(s)

∥∥
1

}
≤ 6η

1− γ
.

For notational simplicity, we use x
1
= y to denote equivalence up to a global shift for two vectors

x, y:
x = y + c · 1

for some constant c ∈ R. Taking logarithm on the both sides of the update rule (9a), we get{
logµ(t+1)(s)− (1− ητ) logµ(t)(s)

1
= ηQ(t+1)(s)ν̄(t+1)(s)

log ν(t+1)(s)− (1− ητ) log ν(t)(s)
1
= −ηQ(t+1)(s)⊤µ̄(t+1)(s)

. (26)

On the other hand, it holds for the optimal policies (µ⋆
τ , ν

⋆
τ ) that{

ητ logµ⋆
τ (s)

1
= ηQ⋆

τ (s)ν
⋆
τ (s)

ητ log ν⋆τ (s)
1
= −ηQ⋆

τ (s)
⊤µ⋆

τ (s)
. (27)

Subtracting (27) from (26) and taking inner product with ζ̄(t+1)(s)− ζ⋆τ (s) gives
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〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)− ζ⋆τ (s)
〉

= η
〈
µ̄(t+1)(s)− µ⋆

τ (s), Q
(t+1)(s)ν̄(t+1)(s)−Q⋆

τ (s)ν
⋆
τ (s)

〉
− η

〈
ν̄(t+1)(s)− ν⋆τ (s), Q

(t+1)(s)⊤µ̄(t+1)(s)−Q⋆
τ (s)

⊤µ⋆
τ (s)

〉
= η

〈
µ̄(t+1)(s)− µ⋆

τ (s), (Q
(t+1)(s)−Q⋆

τ (s))ν̄
(t+1)(s)

〉
− η

〈
ν̄(t+1)(s)− ν⋆τ (s), (Q

(t+1)(s)−Q⋆
τ (s))

⊤µ̄(t+1)(s)
〉

= −η
〈
µ⋆
τ (s), (Q

(t+1)(s)−Q⋆
τ (s))ν̄

(t+1)(s)
〉
+ η

〈
ν⋆τ (s), (Q

(t+1)(s)−Q⋆
τ (s))

⊤µ̄(t+1)(s)
〉

≤ 2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞.

(28)

We rewrite the LHS as〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)− ζ⋆τ (s)
〉

= −
〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ

⋆
τ (s)

〉
+
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ̄(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)
〉

+
〈
log ζ(t+1)(s)− log ζ̄(t+1)(s), ζ̄(t+1)(s)

〉
− (1− ητ)

〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)

〉
= KLs

(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+ (1− ητ)KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
+ KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
−
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉
+ (1− ητ)KLs

(
ζ̄(t) ∥ ζ(t)

)
− (1− ητ)

〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉
.

Rearranging terms, we have

KLs
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+ (1− ητ)KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
+ KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLs

(
ζ̄(t) ∥ ζ(t)

)
−
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉
− (1− ητ)

〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉
≤ 2η

∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞.

It remains to bound
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉
and〈

log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)
〉
. Note that〈

log µ̄(t+1)(s)− logµ(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)
〉

= η
〈
Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)

〉
≤ η

∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)
∥∥
1

∥∥µ̄(t+1)(s)− µ(t+1)(s)
∥∥
1
.

(29)

We bound
∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)

∥∥
1

as∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)
∥∥
1

≤
∥∥Q(t+1)(s)

(
ν̄(t)(s)− ν̄(t+1)(s)

)∥∥
1
+

∥∥(Q(t)(s)−Q(t+1)(s)
)
ν̄(t)(s)

∥∥
1

≤ 2

1− γ

∥∥ν̄(t)(s)− ν̄(t+1)(s)
∥∥
1
+

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞.

Plugging the above inequality into (29) and invoking Young’s inequality yields〈
log µ̄(t+1)(s)− logµ(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)

〉
≤ η

1− γ

(∥∥ν̄(t+1)(s)− ν̄(t)(s)
∥∥2
1
+

∥∥µ̄(t+1)(s)− µ(t+1)(s)
∥∥2
1

)
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+ η
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞

∥∥µ̄(t+1)(s)− µ(t+1)(s)
∥∥
1

≤ 2η

1− γ
KLs

(
ν̄(t+1) ∥ ν̄(t)

)
+

2η

1− γ
KLs

(
µ(t+1) ∥ µ̄(t+1)

)
+

2η2

1− γ

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞,

where the last step results from Pinsker’s inequality and Lemma 11. Similarly, we have〈
log ν̄(t+1)(s)− log ν(t+1)(s), ν̄(t+1)(s)− ν(t+1)(s)

〉
≤ 2η

1− γ
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+

2η

1− γ
KLs

(
ν(t+1) ∥ ν̄(t+1)

)
+

2η2

1− γ

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞.

Combining the above two inequalities gives〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉
≤ 2η

1− γ
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+

2η

1− γ
KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
+

4η2

1− γ

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞.

By a similar argument, when t ≥ 1:〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉
= η

〈
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s), µ̄(t+1)(s)− µ̄(t)(s)

〉
− η

〈
Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s), ν̄(t+1)(s)− ν̄(t)(s)

〉
≤ 2η

1− γ
KLs

(
ζ̄(t) ∥ ζ̄(t−1)

)
+

2η

1− γ
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ η

(∥∥µ̄(t+1)(s)− µ̄(t)(s)
∥∥
1
+
∥∥ν̄(t+1)(s)− ν̄(t)(s)

∥∥
1

)∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

≤ 2η

1− γ
KLs

(
ζ̄(t) ∥ ζ̄(t−1)

)
+

2η

1− γ
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+

12η2

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞.

Note that the above inequality trivially holds for t = 0, since log ζ(0)(s) = log ζ̄(0)(s).

Putting pieces together, we conclude for that

KLs
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+

(
1− ητ − 4η

1− γ

)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
+
(
1− 2η

1− γ

)
KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLs

(
ζ̄(t) ∥ ζ(t)

)
− 2η

1− γ
KLs

(
ζ̄(t) ∥ ζ̄(t−1)

)
≤ 2η

∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞ +

4η2

1− γ

∥∥Q(t)(s)−Q(t+1)(s)
∥∥
∞ +

12η2

1− γ

∥∥Q(t−1)(s)−Q(t)(s)
∥∥
∞.

Averaging s over the distribution ρ completes the proof.

C.2 PROOF OF LEMMA 2

Proof. By definition of Q, it holds for t ≥ 1 that∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣ ≤ γEs′∼P (·|s,a,b)

[∣∣V (t)(s′)− V (t−1)(s′)
∣∣] . (30)

We denote by fs(Q,µ, ν) the one-step entropy-regularized game value at state s, i.e.,

fs(Q,µ, ν) = µ(s)⊤Q(s)ν(s) + τH(µ(s))− τH(ν(s)).

We further simplify the notation by introducing

f (t)
s = fs(Q

(t), µ̄(t), ν̄(t))

22



Published as a conference paper at ICLR 2023

By recursively applying the update rule V (t)(s) = (1− αt)V
(t−1)(s) + αtf

(t)
s , we get

V (t)(s) = α0,tV
(0) +

t∑
l=1

αl,tfs(Q
(l), µ̄(l), ν̄(l)) =

t∑
l=0

αl,tf
(l)
s .

Since α0 = 1, it follows that
t∑

l=0

αl,t = α0 = 1

So we have ∣∣V (t)(s)− V (t−1)(s)
∣∣ = αt

∣∣f (t)
s − V (t−1)(s)

∣∣
= αt

t−1∑
l=0

αl,t−1

∣∣f (t)
s − f (l)

s

∣∣
≤ αt

t−1∑
l=0

αl,t−1

t−1∑
j=l

∣∣f (j+1)
s − f (j)

s

∣∣
(31)

The next lemma enables us to upper bound
∣∣f (t+1)

s − f
(t)
s

∣∣ with
∥∥Q(t+1)(s)−Q(t)(s)

∥∥
∞ and

KLs
(
ζ̄(t+1) ∥ ζ̄(t)

)
(as well as their (t − 1)−th iteration counter parts). The proof is postponed

to Appendix E.2.

Lemma 12. For any t ≥ 0, η ≤ (1− γ)/180, we have∣∣f (t+1)
s − f (t)

s

∣∣ ≤ ∥∥∥Q(t+1)(s)−Q(t)(s)
∥∥∥
∞

+
(3
η
+

4

1− γ

)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+

12η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

2

1− γ
KLs

(
ζ̄(t) ∥ ζ̄(t−1)

)
.

Plugging the above lemma into (31),∣∣V (t)(s)− V (t−1)(s)
∣∣

≤ αt

t−1∑
l=0

αl,t−1

t−1∑
j=l

[∥∥Q(j+1)(s)−Q(j)(s)
∥∥
∞ +

(3
η
+

4

1− γ

)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−1∑
l=0

αl,t−1

t−1∑
j=l

[
12η

1− γ

∥∥Q(j)(s)−Q(j−1)(s)
∥∥
∞ +

2

1− γ
KLs

(
ζ̄(j) ∥ ζ̄(j−1)

)]

≤ αt

t−1∑
l=0

αl,t−1

t−1∑
j=l

[(
1 +

12η

1− γ

)∥∥Q(j+1)(s)−Q(j)(s)
∥∥
∞ +

(3
η
+

6

1− γ

)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−1∑
l=0

αl,t−1

[
12η

1− γ

∥∥Q(l)(s)−Q(l−1)(s)
∥∥
∞ +

2

1− γ
KLs

(
ζ̄(l) ∥ ζ̄(l−1)

)]

≤
t−1∑
j=0

αj+1

j∑
l=0

αl,t−1

[(
1 +

12η

1− γ

)∥∥Q(j+1)(s)−Q(j)(s)
∥∥
∞ +

(3
η
+

6

1− γ

)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−2∑
l=0

αl+1,t−1

[
12η

1− γ

∥∥Q(l+1)(s)−Q(l)(s)
∥∥
∞ +

2

1− γ
KLs

(
ζ̄(l+1) ∥ ζ̄(l)

)]
,

where the last step is due to αt ≤ αj for all j ≤ t. To continue, by definition of α we have
αtαl+1,t−1 ≤ αl+1,t−1(1− αt) = αl+1,t for 0 ≤ l < t, and that

αj+1

j∑
l=0

αl,t−1 = αj+1

j∑
l=0

( t−1∏
i=l+1

(1− αi)−
t−1∏
i=l

(1− αi)
)
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= αj+1

t−1∏
i=j+1

(1− αi)

≤ αj+1

t∏
i=j+2

(1− αi) = αj+1,t.

Plugging into the inequality above gives∣∣V (t)(s)− V (t−1)(s)
∣∣

≤
t−1∑
j=0

αj+1,t

[(
1 +

12η

1− γ

)∥∥Q(j+1)(s)−Q(j)(s)
∥∥
∞ +

(3
η
+

6

1− γ

)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+

t−2∑
l=0

αl+1,t

[
12η

1− γ

∥∥Q(l+1)(s)−Q(l)(s)
∥∥
∞ +

2

1− γ
KLs

(
ζ̄(l+1) ∥ ζ̄(l)

)]

≤
t−1∑
l=0

αl+1,t

[(
1 +

24η

1− γ

)∥∥Q(l+1)(s)−Q(l)(s)
∥∥
∞ +

4

η
KLs

(
ζ̄(l+1) ∥ ζ̄(l)

)]
.

Plugging the above inequality into (30) leads to∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣

≤ γ E
s′∼P (·|s,a,b))

{
t−1∑
l=0

αl+1,t

[(
1 +

24η

1− γ

)∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]}

.

When η ≤ (1−γ)2

48γ , we have γ(1 + 24η
1−γ ) ≤

1+γ
2 and hence that∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)

∣∣
≤ E

s′∼P (·|s,a,b))

{
1 + γ

2

t−1∑
l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]}

.

Let x(t+1) ∈ AS and y(t+1) ∈ BS be defined as

(x(t+1)(s), y(t+1)(s)) = arg max
(a,b)∈A×B

∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣.

It follows that ∀χ ∈ Γ(ρ), we have χPx(t+1),y(t+1) ∈ Γ(ρ) and hence

E
s∼χ

[∥∥Q(t+1)(s)−Q(t)(s)
∥∥
∞

]
= E

s∼χ,

a=x(t+1)(s),

b=y(t+1)(s)

[∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣]

≤ E
s′∼χP

x(t+1),y(t+1)

[
1 + γ

2

t−1∑
l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]]

≤ 1 + γ

2

t−1∑
l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
Γ(ρ)

+
4

η
·
∥∥∥χPx(t+1),y(t+1)

ρ

∥∥∥
∞
KLρ

(
ζ̄(l+1) ∥ ζ̄(l)

)]

≤ 1 + γ

2

t−1∑
l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
Γ(ρ)

+
4Cρ
η

KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)]
. (32)

Taking supremum over χ ∈ Γ(ρ) completes the proof.

When t = 0, we have
∥∥Q(0)(s)−Q(1)(s)

∥∥
Γ(ρ)

=
∥∥Q(1)(s)

∥∥
Γ(ρ)

≤ 2.
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C.3 PROOF OF LEMMA 3

Note that if suffices to show for t ≥ 0, s ∈ S, (a, b) ∈ A× B:∣∣Q(t+1)(s, a, b)−Q⋆
τ (s, a, b)

∣∣
≤ 1 + γ

2
· E
s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ

∥∥Q(l)(s′)−Q(l−1)(s′)
∥∥
∞

]]
+ 2α0,t.

(33)

The remaining step follows a similar argument as (32) and is therefore omitted.

For t ≥ 0, we have

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b) = γEs′∼P (·|s,a,b)

[
V (t)(s′)− V ⋆

τ (s
′)
]

= γEs′∼P (·|s,a,b)

[
t∑

l=0

αl,t(f
(l)
s′ − f⋆

s′)

]
. (34)

We start by decomposing f
(t)
s − f⋆

s as

f (t)
s − f⋆

s = fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

⋆
τ , µ

⋆
τ , ν

⋆
τ )

=
(
fs(Q

(t), µ̄(t), ν̄(t))− fs(Q
(t), µ̄(t), ν⋆τ )

)
+ fs(Q

(t), µ̄(t), ν⋆τ )− fs(Q
⋆
τ , µ

⋆
τ , ν

⋆
τ )

≤
(
fs(Q

(t), µ̄(t), ν̄(t))− fs(Q
(t), µ̄(t), ν⋆τ )

)
+ fs(Q

⋆
τ , µ̄

(t), ν⋆τ )− fs(Q
⋆
τ , µ

⋆
τ , ν

⋆
τ )

+
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞

≤ fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

(t), µ̄(t), ν⋆τ ) +
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞.

We bound the first two terms with the following lemma:

Lemma 13. It holds for all t ≥ 0, s ∈ S and ν(s) ∈ ∆(B) that

fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

(t), µ̄(t), ν)

=
〈
ν̄(t)(s)− ν(s), Q(t)(s)⊤µ̄(t)(s)

〉
− τH(ν̄(t)(s)) + τH(ν⋆τ (s))

≤ 2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

2

1− γ

(
KLs

(
µ̄(t) ∥µ(t−1)

)
+ KLs

(
µ(t−1) ∥ µ̄(t−1)

))
− 1

η

(
1− 4η

1− γ

)
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)
+

1− ητ

η
KLs

(
ν ∥ ν(t−1)

)
− 1

η
KLs

(
ν ∥ ν(t)

)
.

Proof. See Appendix E.3.

Applying Lemma 13 with ν(s) = ν⋆τ (s) gives

f (t)
s − f⋆

s ≤
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

+
1− ητ

η
KLs

(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)
− 1

η

(
1− 4η

1− γ

)
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)
+

2

1− γ

(
KLs

(
µ̄(t) ∥µ(t−1)

)
+ KLs

(
µ(t−1) ∥ µ̄(t−1)

))
(35)
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By a similar argument, we can derive

f⋆
s − f (t)

s ≤
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

+
1− ητ

η
KLs

(
µ⋆
τ ∥µ(t−1)

)
− 1

η
KLs

(
µ⋆
τ ∥µ(t)

)
− 1

η

(
1− 4η

1− γ

)
KLs

(
µ(t) ∥ µ̄(t)

)
− 1− ητ

η
KLs

(
µ̄(t) ∥µ(t−1)

)
+

2

1− γ

(
KLs

(
ν̄(t) ∥ ν(t−1)

)
+ KLs

(
ν(t−1) ∥ ν̄(t−1)

))
.

(36)

Computing (35) + 1−γ
4 · (36) gives

(1− 1− γ

4
)(f (t)

s − f⋆
s )

≤ (1 +
1− γ

4
)
[∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

]
+

1− ητ

η

[
KLs

(
ν⋆τ ∥ ν(t−1)

)
+

1− γ

4
KLs

(
µ⋆
τ ∥µ(t−1)

)]
− 1

η

[
KLs

(
ν⋆τ ∥ ν(t)

)
+

1− γ

4
KLs

(
µ⋆
τ ∥µ(t)

)]
+

2

1− γ

[
KLs

(
µ(t−1) ∥ µ̄(t−1)

)
+

1− γ

4
KLs

(
ν(t−1) ∥ ν̄(t−1)

)]
− 1

η

(
1− 4η

1− γ

)[1− γ

4
KLs

(
µ(t) ∥ µ̄(t)

)
+ KLs

(
ν(t) ∥ ν̄(t)

)]
+ (

2

1− γ
− 1− ητ

η
· 1− γ

4
)KLs

(
µ̄(t) ∥µ(t−1)

)
+ (

2

1− γ
· 1− γ

4
− 1− ητ

η
)KLs

(
ν̄(t) ∥ ν(t−1)

)
.

(37)
With 0 < η ≤ (1− γ)2/16, we have ( 2

1−γ − 1−ητ
η · 1−γ

4 ) ≤ 0, ( 2
1−γ · 1−γ

4 − 1−ητ
η ) ≤ 0, and

1

η

(
1− 4η

1− γ

)
· 1− γ

4
≥ 2

1− γ
· 1

1− ητ
.

To proceed, we introduce a shorthand notation

G(t)(s) =
1

η

[
KLs

(
ν⋆τ ∥ ν(t)

)
+

1− γ

4
KLs

(
µ⋆
τ ∥µ(t)

)]
+

2

(1− γ)(1− ητ)

[
KLs

(
µ(t) ∥ µ̄(t)

)
+ KLs

(
ν(t) ∥ ν̄(t)

)]
.

We can then write (37) as

(1− 1− γ

4
)(f (t)

s − f⋆
s ) ≤ (1 +

1− γ

4
)
[∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

]
+ (1− ητ)G(t−1)(s)−G(t)(s). (38)

Note that when t = 0, we have

f (0)
s − f⋆

s = τ log |A| − τ log |B| − µ⋆
τ (s)

⊤Q⋆
τ (s)ν

⋆
τ (s)− τH(µ⋆

τ (s)) + τH(ν⋆τ (s))

= max
µ(s)

min
ν(s)

fs(Q
(0), µ, ν)−max

µ(s)
min
ν(s)

fs(Q
⋆
τ , µ, ν)

≤
∥∥Q(0)(s)−Q⋆

τ (s)
∥∥
∞. (39)

Substitution of (38) and (39) into (34) gives

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b)

= γEs′∼P (·|s,a,b)

[
t∑

l=0

αl,t(f
(l)
s′ − f⋆

s′)

]
≤ γEs′∼P (s,a,b)

[
α0,t

∥∥Q(0)(s′)−Q⋆
τ (s

′)
∥∥
∞

]
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+ γ · 1 + (1− γ)/4

1− (1− γ)/4
E

s′∼P (s,a,b)

[
t∑

l=1

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ

∥∥Q(l)(s′)−Q(l−1)(s′)
∥∥
∞

]]

+
γ

1− (1− γ)/4
E

s′∼P (s,a,b)

[
(1− ητ)

t∑
l=1

αl,tG
(l−1)(s′)−

t∑
l=1

αl,tG
(l)(s′)

]
.

Note that

(1− ητ)

t∑
l=1

αl,tG
(l−1)(s′)−

t∑
l=1

αl,tG
(l)(s′)

≤
t−1∑
l=1

((1− ητ)αl+1,t − αl,t)G
(l)(s′) + α1,tG

(0)(s′)

≤ α1,tG
(0)(s′) ≤ 2α0,tητG

(0)(s′) ≤ 2α0,t,

where the second step is due to

(1− ητ)αl+1,t − αl,t = ((1− ητ)αl+1 − αl(1− αl+1))

t∏
j=l+2

αj

≤ ((1− ητ)αl+1 − αl+1 + αlαl+1)

t∏
j=l+2

αj

= αl+1(αl − ητ)

t∏
j=l+2

αj ≤ 0. (40)

So we conclude that

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b)

≤ γ · 1 + (1− γ)/4

1− (1− γ)/4
E

s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ

∥∥Q(l)(s′)−Q(l−1)(s′)
∥∥
∞

]]
+ 2α0,t

≤ 1 + γ

2
· E
s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ

∥∥Q(l)(s′)−Q(l−1)(s′)
∥∥
∞

]]
+ 2α0,t.

The other side of (33) can be obtained by computing 1−γ
4 · (35) + (36) and following a similar

argument, and is therefore omitted.

For t = 0, we have
∣∣Q(1)(s, a, b)−Q⋆

τ (s, a, b)
∣∣ ≤ γmaxs′∈S |f (0)

s′ − f⋆
s′ | ≤

2γ
1−γ .

C.4 PROOF OF LEMMA 4

For t ≥ 1, let

ut = η
∥∥Q⋆

τ (s)−Q(t)(s)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
Γ(ρ)

.

It follows that

u1 ≤ 2γη

1− γ
+

24η2

(1− γ)3
≤ 1.
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When t ≥ 1, invoking Lemma 2 and Lemma 3 gives

ut+1 ≤
(
1− 1− γ

2

) t∑
l=1

αl,t

[
η
∥∥Q(l) −Q⋆

τ

∥∥
Γ(ρ)

+
( 2η2

1− γ
+

12η2

(1− γ)2

)∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

]
+

48ηCρ
(1− γ)2

t∑
l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+ 2α0,tη + α0,tη

∥∥Q(0) −Q⋆
τ

∥∥
Γ(ρ)

≤
(
1− 1− γ

3

) t∑
l=1

αl,tul +
48ηCρ
(1− γ)2

t∑
l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
α0,t.

(41)
Let

βl,t = αl

t∏
i=l+1

(
1− 1− γ

3
· αi

)
.

It follows that for t ≥ 0,
t+1∑
l=1

αl,t+1ul

= (1− αt+1)

t∑
l=1

αl,tul + αt+1ut+1

≤
(
1− 1− γ

3
· αt+1

) t∑
l=1

αl,tul + αt+1
48ηCρ
(1− γ)2

·
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
αt+1α0,t

≤
t+1∏
l=2

(
1− 1− γ

3
· αl

)
α1,1u1 +

48ηCρ
(1− γ)2

t∑
i=1

βi+1,t+1

i∑
l=1

αl,iKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ

t∑
i=1

α0,iβi+1,t+1

≤ β1,t+1u1 +
48ηCρ
(1− γ)2

t∑
l=1

t∑
i=l

αl,iβi+1,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ

t∑
i=1

α0,iβi+1,t+1

≤ 200ηCρ
(1− γ)2

t∑
l=1

βl,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

18η

1− γ
β0,t+1, (42)

where the last step is due to the following lemma. Similar lemma has appeared in prior works (see
i.e., (Wei et al., 2021b, Lemma 36)). Our version features a simpler proof, which is postponed to
Appendix E.4.
Lemma 14. Let two sequences {δi}, {ξi} be defined as

δi = 1− c1αi, and ξi = 1− c2αi,

where the constants c1, c2 satisfiy 0 < c1 < c2 < 1
2αi

. For l ≤ t, let δl,t = αl

∏d
i=l+1 δi and

ξl,t = αl

∏d
i=l+1 ξi. We have

t∑
i=l

ξl,iδi+1,t ≤
(
1 +

2

c2 − c1

)
δl,t.

Substitution of (42) into (41) gives

ut+1 ≤
(
1− 1− γ

3

) t∑
l=1

αl,tul +
48η

(1− γ)2

t∑
l=1

αl,tKL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
α0,t

≤ 200ηCρ
(1− γ)2

t∑
l=1

βl,tKL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

18η

1− γ
β0,t +

48ηCρ
(1− γ)2

t∑
l=1

αl,tKL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
α0,t

≤ 250ηCρ
(1− γ)2

t∑
l=1

βl,tKL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ
β0,t.
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for t ≥ 1. It is straightforward to verify that the above inequality holds for t = 0 as well.

So we conclude that
t∑

l=0

λl+1,t+1ul+1 =

t∑
i=0

λi+1,t+1ui+1

≤
t∑

i=0

λi+1,t+1

[ 250ηCρ
(1− γ)2

i∑
l=1

βl,iKL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ
β0,i

]
=

250ηCρ
(1− γ)2

t∑
l=1

t∑
i=l

βl,iλi+1,t+1KL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ

t∑
i=0

β0,iλi+1,t+1

≤ 6250ηCρ
(1− γ)3

t∑
l=1

λl,t+1KL
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

550η

(1− γ)2
λ0,t+1

=
6250ηCρ
(1− γ)3

t−1∑
l=0

λl+1,t+1KL
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

550η

(1− γ)2
λ0,t+1,

where the penultimate step invokes Lemma 14.

C.5 PROOF OF LEMMA 5

Taking logarithm on the both sides of the update rule (9b), we get{
log µ̄(t+1)(s)− (1− ητ) logµ(t)(s)

1
= ηQ(t)(s)ν̄(t)(s)

log ν̄(t+1)(s)− (1− ητ) log ν(t)(s)
1
= −ηQ(t)(s)⊤µ̄(t)(s)

. (43)

Subtracting (27) from (43) and taking inner product with ζ̄(t+1)(s)− ζ⋆τ (s) gives

〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)− ζ⋆τ (s)
〉

= η
〈
µ̄(t+1)(s)− µ⋆

τ (s), Q
(t)(s)ν̄(t)(s)−Q⋆

τ (s)ν
⋆
τ (s)

〉
− η

〈
ν̄(t+1)(s)− ν⋆τ (s), Q

(t)(s)⊤µ̄(t)(s)−Q⋆
τ (s)

⊤µ⋆
τ (s)

〉
≤ η

〈
µ̄(t+1)(s)− µ⋆

τ (s), Q
(t)(s)

(
ν̄(t)(s)− ν⋆τ (s)

)〉
− η

〈
ν̄(t+1)(s)− ν⋆τ (s), Q

(t)(s)⊤
(
µ̄(t)(s)− µ⋆

τ (s)
)〉

+ 2η
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞

≤ η
〈
µ̄(t+1)(s)− µ⋆

τ (s), Q
(t)(s)

(
ν̄(t)(s)− ν̄(t+1)(s)

)〉
− η

〈
ν̄(t+1)(s)− ν⋆τ (s), Q

(t)(s)⊤
(
µ̄(t)(s)− µ̄(t+1)(s)

)〉
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

≤ 2η

1− γ

(
2KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ KLs

(
ζ(t) ∥ ζ̄(t)

))
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

LHS can be written as〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)− ζ⋆τ (s)
〉

= −
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ

⋆
τ (s)

〉
+
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄

(t+1)(s)
〉

= KLs
(
ζ⋆τ ∥ ζ̄(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+ (1− ητ)KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
.

So we conclude that(
1− 4η

1− γ

)
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
29



Published as a conference paper at ICLR 2023

+
(
1− ητ − 2η

1− γ

)
KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
≤ 2η

1− γ
KLs

(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

With 0 < η ≤ 1−γ
8 , we have

1

2
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
≤ (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+

2η

1− γ
KLs

(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

C.6 PROOF OF LEMMA 6

We have
V µ,ν
τ (s)− V ⋆

τ (s) = µ(s)⊤Qµ,ν
τ (s)ν(s) + τH

(
µ(s)

)
− τH

(
ν(s)

)
− µ⋆

τ (s)
⊤Q⋆

τ (s)ν
⋆
τ (s)− τH

(
µ⋆
τ (s)

)
+ τH

(
ν⋆τ (s)

)
= µ(s)⊤Qµ,ν

τ (s)ν(s)− µ(s)⊤Q⋆
τ (s)ν(s) + fs(Q

⋆
τ , µ, ν)− fs(Q

⋆
τ , µ

⋆
τ , ν

⋆
τ )

= γ E
a∼µ(·|s),
b∼ν(·|s),

s′∼P (·|s,a,b)

[V µ,ν
τ (s′)− V ⋆

τ (s
′)] + fs(Q

⋆
τ , µ, ν)− fs(Q

⋆
τ , µ

⋆
τ , ν

⋆
τ ).

Applying the inequality recursively and averaging s over ρ, we arrive at

V µ,ν
τ (ρ)− V ⋆

τ (ρ) =
1

1− γ
E

s′∼dµ,ν
ρ

[fs′(Q
⋆
τ , µ, ν)− fs′(Q

⋆
τ , µ

⋆
τ , ν

⋆
τ )] , (44)

which is the well-known performance difference lemma applied to the setting of Markov games. It
follows that

V
µ†
τ (ν),ν

τ (ρ)− V ⋆
τ (ρ) =

1

1− γ
E

s′∼d
µ
†
τ (ν),ν

ρ

[
fs′(Q

⋆
τ , µ

†
τ (ν), ν)− fs′(Q

⋆
τ , µ

⋆
τ , ν

⋆
τ )
]

≤ 1

1− γ
E

s′∼d
µ
†
τ (ν),ν

ρ

[
fs′(Q

⋆
τ , µ

†
τ (ν), ν)− fs′(Q

⋆
τ , µ, ν

⋆
τ )
]

≤ 1

1− γ
E

s′∼d
µ
†
τ (ν),ν

ρ

[
max
µ′,ν′

(
fs′(Q

⋆
τ , µ

′, ν)− fs′(Q
⋆
τ , µ, ν

′)
)]

(45)

≤
C†
ρ,τ

1− γ
E

s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)]

.

A similar argument gives V ⋆
τ (ρ)−V

µ,ν†
τ (µ)

τ (ρ) ≤ C†
ρ,τ

1−γ E
s∼ρ

[
maxµ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)]

.

Summing the two inequalities proves (18). Alternatively, we continue from (45) and show that

V
µ†
τ (ν),ν

τ (s)− V ⋆
τ (s) ≤

1

1− γ
E

s′∼d
µ
†
τ (ν),ν

s

[
max
µ′,ν′

(
fs′(Q

⋆
τ , µ

′, ν)− fs′(Q
⋆
τ , µ, ν

′)
)]

≤ ∥1/ρ∥∞
1− γ

E
s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q
⋆
τ , µ, ν

′)
)]

.

Summing the inequality with the one for V ⋆
τ (s) − V

µ,ν†
τ (µ)

τ (s) and taking maximum over s ∈ S
completes the proof for (19).

D PROOF OF KEY LEMMAS FOR THE EPISODIC SETTING

D.1 PROOF OF LEMMA 9

Following the similar argument of arriving (28), we have〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ

(t)
h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)− ζ⋆h,τ (s)

〉
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≤ 2η
∥∥Q(t+1)

h (s)−Q⋆
h,τ (s)

∥∥
∞.

We rewrite LHS as〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ

(t)
h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)− ζ⋆h,τ (s)

〉
= −

〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ

(t)
h (s)− ητ log ζ⋆h,τ (s), ζ

⋆
h,τ (s)

〉
+
〈
log ζ̄

(t+1)
h (s)− (1− ητ) log ζ

(t)
h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)

〉
+
〈
log ζ

(t+1)
h (s)− log ζ̄

(t+1)
h (s), ζ̄

(t+1)
h (s)

〉
= KLs

(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− ητ)KLs

(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
+ KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
−

〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ

(t+1)
h (s)

〉
.

Rearranging terms gives

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− ητ)KLs

(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
+ KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
−
〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ

(t+1)
h (s)

〉
≤ 2η

∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞.

(46)

Note that 〈
log µ̄

(t+1)
h (s)− logµ

(t+1)
h (s), µ̄

(t+1)
h (s)− µ

(t+1)
h (s)

〉
= η

〈
Q

(t)
h (s)ν̄

(t)
h (s)−Q

(t+1)
h (s)ν̄

(t+1)
h (s), µ̄

(t+1)
h (s)− µ

(t+1)
h (s)

〉
≤ η

∥∥Q(t)
h (s)ν̄

(t)
h (s)−Q

(t+1)
h (s)ν̄

(t+1)
h (s)

∥∥
1

∥∥µ̄(t+1)
h (s)− µ

(t+1)
h (s)

∥∥
1
.

(47)

We bound
∥∥Q(t)

h (s)ν̄
(t)
h (s)−Q

(t+1)
h (s)ν̄

(t+1)
h (s)

∥∥
1

as∥∥Q(t)
h (s)ν̄

(t)
h (s)−Q

(t+1)
h (s)ν̄

(t+1)
h (s)

∥∥
1

≤
∥∥Q(t+1)

h (s)
(
ν̄
(t)
h (s)− ν̄

(t+1)
h (s)

)∥∥
1
+

∥∥(Q(t)
h (s)−Q

(t+1)
h (s)

)
ν̄
(t)
h (s)

∥∥
1

≤ 2H
∥∥ν̄(t)h (s)− ν̄

(t+1)
h (s)

∥∥
1
+

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞

≤ 2H
∥∥ν̄(t+1)

h (s)− ν
(t)
h (s)

∥∥
1
+ 2H

∥∥ν(t)h (s)− ν̄
(t)
h (s)

∥∥
1
+

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞.

Plugging the above inequality into (47) and invoking Young’s inequality yields〈
log µ̄

(t+1)
h (s)− logµ

(t+1)
h (s), µ̄

(t+1)
h (s)− µ

(t+1)
h (s)

〉
≤ ηH

(∥∥ν̄(t+1)
h (s)− ν

(t)
h (s)

∥∥2
1
+

∥∥ν(t)h (s)− ν̄
(t)
h (s)

∥∥2
1
+ 2

∥∥µ̄(t+1)
h (s)− µ

(t+1)
h (s)

∥∥2
1

)
+ η

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞

∥∥µ̄(t+1)
h (s)− µ

(t+1)
h (s)

∥∥
1

≤ 2ηHKLs
(
ν̄
(t+1)
h ∥ ν(t)h

)
+ 2ηHKLs

(
ν
(t)
h ∥ ν̄(t)h

)
+ 4ηHKLs

(
µ
(t+1)
h ∥ µ̄(t+1)

h

)
+ 2η2H

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞,

where the last step results from Pinsker’s inequality and Lemma 8. Similarly, we have〈
log ν̄

(t+1)
h (s)− log ν

(t+1)
h (s), ν̄

(t+1)
h (s)− ν

(t+1)
h (s)

〉
≤ 2ηHKLs

(
µ̄
(t+1)
h ∥µ(t)

h

)
+ 2ηHKLs

(
µ
(t)
h ∥ µ̄(t)

h

)
+ 4ηHKLs

(
ν
(t+1)
h ∥ ν̄(t+1)

h

)
+ 2η2H

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞.

Summing the above two inequalities gives〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ

(t+1)
h (s)

〉
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≤ 2ηHKLs
(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄(t)h

)
+ 4ηHKLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
+ 4η2H

∥∥Q(t)
h (s)−Q

(t+1)
h (s)

∥∥
∞

≤ 2ηHKLs
(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄(t)h

)
+ 4ηHKLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
+

η

2

(∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ +

∥∥Q(t+1)
h (s)−Q⋆

h,τ (s)
∥∥
∞

)
,

where the second step invokes triangular inequality and the fact that η ≤ 1
8H . Plugging the above

inequality into (46) gives

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− η(τ + 2H))KLs

(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
+ (1− 4ηH)KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
− 2ηHKLs

(
ζ
(t)
h ∥ ζ̄(t)h

)
≤ 5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞.

With η ≤ 1
8H , we have (1− ητ)(1− 4ηH) ≥ 2ηH and 1− η(τ + 2H) ≥ 0. It follows that

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
≤ (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄(t)h

)
+

5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞

≤ (1− ητ)
(
KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− 4ηH)KLs

(
ζ
(t)
h ∥ ζ̄(t)h

))
+

5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞.

Therefore, it holds for 0 ≤ t1 < t2 that

KLs
(
ζ⋆h,τ ∥ ζ

(t2)
h

)
+ (1− 4ηH)KLs

(
ζ
(t2)
h ∥ ζ̄(t2)h

)
+ ητKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

)
≤ (1− ητ)t2−t1

(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄t1h

))
+

t2∑
t′=t1+1

(1− ητ)t2−l
[5η
2

∥∥Q(l)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(l−1)
h (s)−Q⋆

τ (s)
∥∥
∞

]
≤ (1− ητ)t2−t1

(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))
+ 4η

t2∑
l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
τ (s)

∥∥
∞.

D.2 PROOF OF LEMMA 10

For t2 > 0, we have

Q
(t2)
h−1(s, a, b)−Q⋆

h−1,τ (s, a, b)

= E
s′∼Ph−1(·|s,a,b)

[
V

(t2−1)
h (s′)− V ⋆

h,τ (s
′)
]

= E
s′∼Ph−1(·|s,a,b)

[
(1− ητ)t2−t1

(
V

(t1−1)
h (s′)− V ⋆

h,τ (s
′)
)

+ ητ

t2−1∑
l=t1

(1− ητ)t2−1−l
(
fs′(Q

(t1), µ̄
(t1)
h , ν̄

(t1)
h )− fs′(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

)]

≤ (1− ητ)t2−t12H + E
s′∼Ph−1(·|s,a,b)

[
ητ

t2−1∑
l=t1

(1− ητ)t2−1−l
(
fs′(Q

(l)
h , µ̄

(l)
h , ν̄

(l)
h )− fs′(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

)]
.

(48)
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We start by decomposing f
(t)
s − f⋆

s as

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

=
(
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

(t)
h , µ̄

(t)
h , ν⋆h,τ )

)
+ fs(Q

(t)
h , µ̄

(t)
h , ν⋆h,τ )− fs(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

≤
(
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

(t)
h , µ̄

(t)
h , ν⋆h,τ )

)
+ fs(Q

⋆
τ , µ̄

(t), ν⋆h,τ )− fs(Q
⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

+
∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞

≤ fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

(t)
h , µ̄

(t)
h , ν⋆h,τ ) +

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞.

Note that Lemma 13 can be applied to the episodic setting by simply replacing 1/(1 − γ) with H ,
which yields

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

≤
∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q

(t−1)
h (s)

∥∥
∞

+
1− ητ

η
KLs

(
ν⋆h,τ ∥ ν

(t−1)
h

)
− 1

η
KLs

(
ν⋆h,τ ∥ ν

(t)
h

)
− 1

η

(
1− 4ηH

)
KLs

(
ν
(t)
h ∥ ν̄(t)h

)
− 1− ητ

η
KLs

(
ν̄
(t)
h ∥ ν(t−1)

h

)
+ 2H

(
KLs

(
µ̄
(t)
h ∥µ(t−1)

h

)
+ KLs

(
µ
(t−1)
h ∥ µ̄(t−1)

h

))
.

(49)

By a similar argument,

fs(Q
⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )− fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )

≤
∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q

(t−1)
h (s)

∥∥
∞

+
1− ητ

η
KLs

(
µ⋆
h,τ ∥µ

(t−1)
h

)
− 1

η
KLs

(
µ⋆
h,τ ∥µ

(t)
h

)
− 1

η

(
1− 4ηH

)
KLs

(
µ
(t)
h ∥ µ̄(t)

h

)
− 1− ητ

η
KLs

(
µ̄
(t)
h ∥µ(t−1)

h

)
+ 2H

(
KLs

(
ν̄
(t)
h ∥ ν(t−1)

h

)
+ KLs

(
ν
(t−1)
h ∥ ν̄(t−1)

h

))
.

(50)

Computing (49) + 2
3 · (50) gives

1

3

[
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

]
≤ 5

3

[∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q

(t−1)
h (s)

∥∥
∞

]
+

1− ητ

η

[
KLs

(
ν⋆h,τ ∥ ν

(t−1)
h

)
+

2

3
KLs

(
µ⋆
h,τ ∥µ

(t−1)
h

)]
− 1

η

[
KLs

(
ν⋆h,τ ∥ ν

(t)
h

)
+

2

3
KLs

(
µ⋆
h,τ ∥µ

(t)
h

)]
+ 2H

[
KLs

(
µ
(t−1)
h ∥ µ̄(t−1)

h

)
+

2

3
KLs

(
ν
(t−1)
h ∥ ν̄(t−1)

h

)]
− 1

η

(
1− 4ηH

)[2
3
KLs

(
µ
(t)
h ∥ µ̄(t)

h

)
+ KLs

(
ν
(t)
h ∥ ν̄(t)h

)]
+
(
2H − 1− ητ

η
· 2
3

)
KLs

(
µ̄(t) ∥µ(t−1)

)
+

(
2H · 2

3
− 1− ητ

η

)
KLs

(
ν̄(t) ∥ ν(t−1)

)
. (51)

With η ≤ 1
8H , we have

2H − 1− ητ

η
· 2
3
≤ 0, 2H · 2

3
− 1− ητ

η
≤ 0, and

1

η
(1− ητ)(1− 4ηH) · 2

3
≥ 2H.

Let

G
(t)
h (s) = KLs

(
ν⋆h,τ ∥ ν

(t)
h

)
+

2

3
KLs

(
µ⋆
h,τ ∥µ

(t)
h

)
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+
2

3
(1− 4ηH)

[
KLs

(
µ
(t)
h ∥ µ̄(t)

h

)
+ KLs

(
ν
(t)
h ∥ ν̄(t)h

)]
.

We can simplify (51) as

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q

⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

≤ 5
[∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q

(t−1)
h (s)

∥∥
∞

]
+

1− ητ

η
G

(t−1)
h (s)− 1

η
G

(t)
h (s).

Plugging the above inequality into (48) gives

Q
(t2)
h−1(s, a, b)−Q⋆

h−1,τ (s, a, b)

≤ (1− ητ)t2−t12H

+ E
s′∼Ph−1(·|s,a,b)

[
5ητ

t2−1∑
l=t1

(1− ητ)t2−1−l
(∥∥Q(l)

h (s′)−Q⋆
h,τ (s

′)
∥∥
∞ + 2ηH

∥∥Q(l)
h (s′)−Q

(l−1)
h (s′)

∥∥
∞

)]
+ E

s′∼Ph−1(·|s,a,b)

[
τ(1− ητ)t2−t1G

(t1−1)
h (s′)

]
≤ (1− ητ)t2−t12H

+ 10ητ E
s′∼Ph−1(·|s,a,b)

[
t2−1∑

l=t1−1

(1− ητ)t2−1−l
∥∥Q(l)

h (s′)−Q⋆
h,τ (s

′)
∥∥
∞

]
+ τ(1− ητ)t2−t1 E

s′∼Ph−1(·|s,a,b)

[
KLs′

(
ζ⋆h,τ ∥ ζ

(t1−1)
h

)
+ (1− 4ηH)KLs′

(
ζ
(t1−1)
h ∥ ζ̄(t1−1)

h

)]
.

E PROOF OF AUXILIARY LEMMAS

E.1 PROOF OF LEMMA 11

We first single out a set of bounds for V (t) and Q(t), which can be obtained by a simple induction:

∀(s, a, b) ∈ S ×A× B,

{
− τ log |B|

1−γ ≤ V (t)(s) ≤ 1+τ log |A|
1−γ

−γτ log |B|
1−γ ≤ Q(t)(s, a, b) ≤ 1+γτ log |A|

1−γ

. (52)

We invoke the following lemma to bound several key quantities that will be helpful in the analysis.
Lemma 15 ((Mei et al., 2020, Lemma 24)). Let π, π′ ∈ ∆(A) such that π(a) ∝ exp(θ(a)), π′(a) ∝
θ′(a) for some θ, θ′ ∈ R|A|. It holds that∥∥π − π′∥∥

1
≤

∥∥θ − θ′
∥∥
∞.

With this lemma in mind, for any t ≥ 0, it follows that∥∥µ̄(t+1)(s)− µ(t+1)(s)
∥∥
1
≤ min

c∈R

∥∥log µ̄(t+1)(s)− logµ(t+1)(s)− c · 1
∥∥
∞

≤ η
∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)

∥∥
∞

≤ η · 1 + γτ(log |A|+ log |B|)
1− γ

≤ 2η

1− γ
,

and a similar argument reveals that∥∥ν̄(t+1)(s)− ν(t+1)(s)
∥∥
1
≤ 2η

1− γ
.

Next we make note of the fact that when t ≥ 1,

µ̄(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(ηQ(t)(s)ν̄(t)(s))

∝ µ̄(t)(a|s)1−ητ exp
(
η
[
Q(t)(s)ν̄(t)(s) + (1− ητ)(Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s))

])
∝ µ̄(t)(a|s) exp(ηw(t)(a)),

(53)

34



Published as a conference paper at ICLR 2023

where

w(t) = Q(t)(s)ν̄(t)(s) + (1− ητ)
(
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

)
− τ log µ̄(t)(s)

satisfies∥∥w(t)
∥∥
∞

≤
∥∥Q(t)(s)ν̄(t)(s)

∥∥
∞ +

∥∥τ log µ̄(t)(s)
∥∥
∞ + (1− ητ)

∥∥Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)
∥∥
∞

≤ 2

1− γ
+

2

1− γ
+

2(1− ητ)

1− γ
≤ 6

1− γ
,

where the second step is due to the following bound:

∀t ≥ 0, s ∈ S, max
{∥∥log ζ(t)(s)∥∥∞,

∥∥log ζ̄(t)(s)∥∥∞}
≤ 2

(1− γ)τ
. (54)

Recall that when t = 0, we have µ̄(t+1) = µ̄(0). So we have

∀s ∈ S, t ≥ 0,
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1
≤ 6η

1− γ
.

It remains to prove the claim (54).

Proof. It is worth noting that µ(t)(s) can be always written as µ(t)(a|s) ∝ exp(w(t)(a)/τ) for some
w(t) ∈ R|A| satisfying

∀a ∈ A, −γτ log |B|
1− γ

≤ w(t)(a) ≤ 1 + γτ log |A|
1− γ

.

To see this, note that the claim trivially holds for t = 0 with w(0) = 0. When the statement holds
for some t ≥ 0, we have

µ(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(ηQ(t+1)(s)ν̄(t+1)(s))

∝ exp
(
((1− ητ)w(t) + ητQ(t+1)(s)ν̄(t+1)(s))/τ

)
∝ exp

(
w(t+1)/τ

)
,

with w(t+1) = (1 − ητ)w(t) + ητQ(t+1)(s)ν̄(t+1)(s). We conclude that the claim holds for t + 1
by recalling (52). It then follows straightforwardly that

µ(t)(a1)

µ(t)(a2)
= exp

(w(t)(a1)− w(t)(a2)

τ

)
≤ exp

(1 + γτ(log |A|+ log |B|)
(1− γ)τ

)
for any a1, a2 ∈ A. This allows us to show that

min
a∈A

µ(t)(a) ≥ 1

|A| exp
( 1+γτ(log |A|+log |B|)

(1−γ)τ

) ∑
a∈A

µ(t)(a) =
1

|A| exp
( 1+γτ(log |A|+log |B|)

(1−γ)τ

) ,
which gives

∥ logµ(t)∥∞ ≤ 1 + γτ(log |A|+ log |B|)
(1− γ)τ

+ log |A| ≤ 1

(1− γ)τ
+

log |A|+ γ log |B|
1− γ

≤ 2

(1− γ)τ
.

E.2 PROOF OF LEMMA 12

We decompose the term fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q

(t), µ̄(t), ν̄(t)) as follows:

fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q

(t), µ̄(t), ν̄(t))

= fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q

(t), µ̄(t+1), ν̄(t+1)) + fs(Q
(t), µ̄(t+1), ν̄(t+1))− fs(Q

(t), µ̄(t), ν̄(t))
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= µ̄(t+1)(s)⊤
(
Q(t+1)(s)−Q(t)(s)

)
ν̄(t+1)(s)

+ fs(Q
(t), µ̄(t+1), ν̄(t))− fs(Q

(t), µ̄(t), ν̄(t)) + fs(Q
(t), µ̄(t), ν̄(t+1))− fs(Q

(t), µ̄(t), ν̄(t))

+
[
fs(Q

(t), µ̄(t+1), ν̄(t+1)) + fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

(t), µ̄(t+1), ν̄(t))− fs(Q
(t), µ̄(t), ν̄(t+1))

]

Note that
∣∣µ̄(t+1)(s)⊤

(
Q(t+1)(s) −Q(t)(s)

)
ν̄(t+1)(s)

∣∣ ≤ ∥∥Q(t+1)(s)−Q(t)(s)
∥∥
∞. For the terms

in the bracket, we have∣∣∣[fs(Q(t), µ̄(t+1), ν̄(t+1)) + fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

(t), µ̄(t+1), ν̄(t))− fs(Q
(t), µ̄(t), ν̄(t+1))

]∣∣∣
=

∣∣∣(µ̄(t+1)(s)− µ̄(t)(s)
)⊤

Q(t)(s)
(
ν̄(t+1)(s)− ν̄(t)(s)

)∣∣∣
≤ 2

1− γ
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
.

It remains to bound the two difference terms
∣∣fs(Q(t), µ̄(t+1), ν̄(t)) − fs(Q

(t), µ̄(t), ν̄(t))
∣∣ and∣∣fs(Q(t), µ̄(t), ν̄(t+1))− fs(Q

(t), µ̄(t), ν̄(t))
∣∣. To proceed, we show that

fs(Q
(t), µ̄(t), ν̄(t))− fs(Q

(t), µ̄(t+1), ν̄(t))

=
〈
µ̄(t)(s)− ν̄(t+1)(s), Q(t)(s)⊤µ̄(t)(s)

〉
+ τH(µ̄(t)(s))− τH(µ̄(t+1)(s))

=
〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)⊤ν̄(t)(s) + (1− ητ)

(
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

)〉
+ τH(µ̄(t)(s))− τH(µ̄(t+1)(s))

− (1− ητ)
〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

〉
= −1

η
KLs

(
µ̄(t) ∥ µ̄(t+1)

)
− 1− ητ

η
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
− (1− ητ)

〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

〉
(55)

Here, the third step results from Lemma 17 along with (53). Recall from previous discussion (cf.
(53)) that µ̄(t+1)(a|s) ∝ µ̄(t)(a|s) exp(ηw(t)(s)) with some w(t) ∈ R|B| satisfying∥∥w(t)

∥∥
∞ ≤ 6

1− γ
.

We can ensure that ∥ηw(t)∥∞ ≤ 1/30 with η−1 ≥ 180
1−γ , and the next lemma guarantees

KLs
(
µ̄(t) ∥ µ̄(t+1)

)
≤ 2KLs

(
µ̄(t+1) ∥ µ̄(t)

)
in this case.

Lemma 16. Let w ∈ R|A|, π, π′ ∈ ∆(A) satisfy, for each a ∈ A, π′(a) ∝ π(a) exp(w(a)) with
∥w∥∞ ≤ 1

30 . It holds that
KL

(
π ∥π′) ≤ 2KL

(
π′ ∥π

)
.

Therefore, we can continue (55) by showing that∣∣fs(Q(t), µ̄(t+1), ν̄(t))− fs(Q
(t), µ̄(t), ν̄(t))

∣∣
≤ 1

η
KLs

(
µ̄(t) ∥ µ̄(t+1)

)
+

1− ητ

η
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1

∥∥Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s))
∥∥
∞

≤ 3

η
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

+
∥∥Q(t)(s)

∥∥
∞

∥∥µ̄(t+1)(s)− µ̄(t)(s)
∥∥
1

∥∥ν̄(t)(s)− ν̄(t−1)(s)
∥∥
1

≤
(3
η
+

2

1− γ

)
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+

2

1− γ
KLs

(
µ̄(t) ∥ µ̄(t−1)

)
+

6η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

One can bound
∣∣fs(Q(t), µ̄(t), ν̄(t))−fs(Q

(t), µ̄(t), ν̄(t+1))
∣∣ with similar argument. Putting all pieces

together, we arrive at∣∣fs(Q(t+1), µ̄(t+1), ν̄(t+1))− fs(Q
(t), µ̄(t), ν̄(t))

∣∣
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≤
∥∥∥Q(t+1)(s)−Q(t)(s)

∥∥∥
∞

+
(3
η
+

4

1− γ

)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+

2

1− γ
KLs

(
ζ̄(t) ∥ ζ̄(t−1)

)
+

12η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞.

E.3 PROOF OF LEMMA 13〈
ν̄(t)(s)− ν⋆τ (s), Q

(t)(s)⊤µ̄(t)(s)
〉
− τH(ν̄(t)(s)) + τH(ν⋆τ (s))

=
〈
ν̄(t)(s)− ν(t)(s), Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)

〉
+
〈
ν̄(t)(s)− ν(t)(s), Q(t−1)(s)⊤µ̄(t−1)(s)

〉
− τH(ν̄(t)(s)) + τH(ν(t)(s))

+
〈
ν(t)(s)− ν⋆τ (s), Q

(t)(s)⊤µ̄(t)(s)
〉
− τH(ν(t)(s)) + τH(µ⋆

τ (s))

=
〈
ν̄(t)(s)− ν(t)(s), Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)

〉
+

1− ητ

η
KLs

(
ν(t) ∥ ν(t−1)

)
− 1

η
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)
+

1− ητ

η
KLs

(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)
− 1− ητ

η
KLs

(
ν(t) ∥ ν(t−1)

)
≤

∥∥ν̄(t)(s)− ν(t)(s)
∥∥
1

∥∥Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)
∥∥
∞

− 1

η
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)
+

1− ητ

η
KLs

(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)
.

(56)
The second step results from the following three-point lemma:

Lemma 17 (Regularized 3-point lemma). Let x ∈ ∆(A) be defined as

x(a) ∝ y(a)1−ητ exp(−ηw(a))

for some w ∈ R|A| and y ∈ ∆(A). It holds for all z ∈ ∆(A) that

η

1− ητ

[〈
x− z, w

〉
− τH(x) + τH(z)

]
= KL

(
z ∥ y

)
− 1

1− ητ
KL

(
z ∥x

)
− KL

(
x ∥ y

)
.

We bound the first term in (56) as follows:∥∥ν̄(t)(s)− ν(t)(s)
∥∥
1

∥∥Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)
∥∥
∞

≤
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

(∥∥(Q(t)(s)−Q(t−1)(s)
)⊤

µ̄(t−1)(s)
∥∥
∞ +

∥∥Q(t)(s)
(
µ̄(t)(s)− µ̄(t−1)(s)

)∥∥
∞

)
≤

∥∥ν̄(t)(s)− ν(t)(s)
∥∥
1

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

2

1− γ

∥∥ν̄(t)(s)− ν(t)(s)
∥∥
1

∥∥µ̄(t)(s)− µ̄(t−1)(s)
∥∥
1

≤ 2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

1

1− γ

[
2
∥∥ν̄(t)(s)− ν(t)(s)

∥∥2
1

+
∥∥µ̄(t)(s)− µ(t−1)(s)

∥∥2
1
+
∥∥µ(t−1)(s)− µ̄(t−1)(s)

∥∥2
1

]
≤ 2η

1− γ

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

4

1− γ
KLs

(
ν(t) ∥ ν̄(t)

)
+

2

1− γ
KL

(
µ̄(t)(s) ∥µ(t−1)(s)

)
+

2

1− γ
KL

(
µ(t−1)(s) ∥ µ̄(t−1)(s)

)
.

Substitution of the above inequality into (56) completes the proof.

E.4 PROOF OF LEMMA 14

We have

δl,t = αl

t∏
i=l+1

(1− c1αi)
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= αl

t∏
i=l+1

(1− c2αi + (c2 − c1)αi)

= αl(c2 − c1)αl+1

t∏
i=l+2

(1− c2αi + (c2 − c1)αi) + αl(1− c2αl+1)

t∏
i=l+2

(1− c2αi + (c2 − c1)αi)

= αl

t∑
i=l+1

(c2 − c1)αi ·
i∏

j=l+1

(1− c2αj) ·
t∏

k=i+1

(1− c1αk) + αl

t∏
i=l+1

(1− c2αi)

= (c2 − c1)

t∑
i=l+1

ξl,iδi,t + ξl,t.

Rearranging terms,
t∑

i=l

ξl,iδi+1,t = αlδl+1,t +

t∑
i=l+1

ξl,iδi+1,t

=
αl+1

1− c1αl+1
δl,t +

t∑
i=l+1

ξl,iδi,t ·
αi+1

αi(1− c1αi+1)

≤ δl,t + 2

t∑
i=l+1

ξl,iδi,t = δl,t +
2

c2 − c1
(δl,t − ξl,t) ≤

(
1 +

2

c2 − c1

)
δl,t,

where the inequality is due to αl+1 ≤ α ≤ 1/2 and 1− c1αl ≥ 1/2 for all l ≥ 1.

E.5 PROOF OF LEMMA 16

Proof. For any x > −1, it holds that

log(1 + x) ≤ x− x2

2
+

x3

3

≤ x− x2

2
+

|x3|
3

= x−
(1
2
− |x|

3

)
x2,

and that

log(1 + x) ≥ x− x2

2
+

x3

3(1 + x)3

≥ x− x2

2
− |x3|

3(1 + x)3
= x−

(1
2
+

|x|
3(1 + x)3

)
x2.

Therefore, when x > − 1
10 , we have (1 + x)3 > 2

3 and thus

x−
(1
2
+

|x|
2

)
x2 ≤ log(1 + x) ≤ x−

(1
2
− |x|

3

)
x2.

Let c be a shorthand notation for
∥∥w∥∥∞. The following lemma is standard (see, e.g., (Mei et al.,

2020, Lemma 23), (Cen et al., 2021a, Lemma 3)), which ensures that
∥∥log π − log π′

∥∥
∞ ≤ 2c.

Lemma 18. Let π, π′ ∈ ∆(A) satisfy π(a) ∝ exp(θ(a)) and π′(a) ∝ exp(θ′(a)) for some θ, θ′ ∈
R|A|. It holds that ∥∥log π − log π′∥∥

∞ ≤ 2
∥∥θ − θ′

∥∥
∞.

Since c < 1/30, we have∣∣∣ π(a)
π′(a)

− 1
∣∣∣ = ∣∣∣ exp( log

π(a)

π′(a)

)
− exp(0)

∣∣∣ ≤ | log π(a)− log π′(a)|max
{
1,

π(a)

π′(a)

}
≤ 2c exp(|2c|) ≤ 3c, ∀a ∈ A.
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Therefore, we can bound KL
(
π ∥π′) as

KL
(
π ∥π′) = ∑

a∈A
π(a) log

π(a)

π′(a)

≤
∑
a∈A

π(a)
( π(a)

π′(a)
− 1−

(1
2
− c

)( π(a)

π′(a)
− 1

)2)
= χ2(π;π′)−

(1
2
− c

) ∑
a∈A

π(a)
( π(a)

π′(a)
− 1

)2

≤ χ2(π;π′)−
(1
2
− c

)
(1− 3c)

∑
a∈A

π′(a)
( π(a)

π′(a)
− 1

)2

=
(
1−

(1
2
− c

)
(1− 3c)

)
χ2(π;π′).

(57)

On the other hand, we have

KL
(
π′ ∥π

)
=

∑
a∈A

π′(a) log
π′(a)

π(a)

≥
∑
a∈A

π′(a)
(π′(a)

π(a)
− 1− 1 + 3c

2

(π′(a)

π(a)
− 1

)2)
= χ2(π′;π)− 1 + 3c

2

∑
a∈A

π′(a)
(π′(a)

π(a)
− 1

)2

≥ χ2(π′;π)− (1 + 3c)2

2

∑
a∈A

π(a)
(π′(a)

π(a)
− 1

)2

= (1− (1 + 3c)2

2
)χ2(π′;π).

(58)

By definition, we have

χ2(π;π′) =
∑
a∈A

π′(a)
( π(a)

π′(a)
− 1

)2

=
∑
a∈A

(
π(a)− π′(a)

)2
π′(a)

≤
∥∥π/π′∥∥

∞

∑
a∈A

(
π′(a)− π(a)

)2
π(a)

≤ (1 + 3c)χ2(π′;π).

(59)

Combining (57), (58) and (59) gives

KL
(
π ∥π′) ≤ (1 + 3c) ·

1−
(
1/2− c

)
(1− 3c)

1− (1 + 3c)2/2
KL

(
π′ ∥π

)
.

It is straightforward to verify that the factor is less than 2 when c ≤ 1/30.

E.6 PROOF OF LEMMA 17

Proof. We have

KL
(
z ∥ y

)
= −H(z) +H(y)−

〈
z − y, log y

〉
= −H(z) +H(x)−

〈
z − x, log y

〉
−H(x) +H(y)−

〈
x− y, log y

〉
= −H(z) +H(x)−

〈
z − x, log x

〉
−H(x) +H(y)−

〈
x− y, log y

〉
−
〈
z − x, log y − log x

〉
= KL

(
z ∥x

)
+ KL

(
x ∥ y

)
− η

1− ητ

〈
z − x,w + τ log x

〉
.

Rearranging terms gives
η

1− ητ

〈
x− z, w

〉
= KL

(
z ∥ y

)
− KL

(
z ∥x

)
− KL

(
x ∥ y

)
+

ητ

1− ητ

〈
z − x, log x

〉
.
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Adding ητ
1−ητ (−H(x) +H(z)) to both sides, we are left with

η

1− ητ

[〈
x− z, w

〉
− τH(x) + τH(z)

]
= KL

(
z ∥ y

)
− KL

(
z ∥x

)
− KL

(
x ∥ y

)
− ητ

1− ητ

(
−H(z) +H(x)−

〈
z − x, log x

〉)
= KL

(
z ∥ y

)
− 1

1− ητ
KL

(
z ∥x

)
− KL

(
x ∥ y

)
.

F FURTHER DISCUSSION REGARDING APPROXIMATE ALGORITHMS

In this section we verify the convergence of the proposed method equipped with inexact value up-
dates in the infinite-horizon setting, where (10) in Algorithm 1 is replaced by

Q(t+1)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)
[
V (t)(s′)

]
+ αtδ

(t)(s, a, b)

V (t+1)(s) = (1− αt+1)V
(t)(s)

+αt+1

[
µ̄(t+1)(s)⊤Q(t+1)(s)ν̄(t+1)(s) + τH

(
µ̄(t+1)(s)

)
− τH

(
ν̄(t+1)(s)

)] .
or equivalently

Q(t+1)(s, a, b) = (1− αt)Q
(t)(s, a, b)

+ αt

[
r(s, a, b) + γEs′∼P (·|s,a,b)

[
µ̄(t)(s)⊤Q(t)(s)ν̄(t)(s) + τH

(
µ̄(t)(s)

)
− τH

(
ν̄(t)(s)

)]
+ δ(t)(s, a, b)

]
.

Here, δ(s, a, b)(t+1) ∈ R represents the error due to approximate evaluation. For simplicity we focus
on the case where the policy update rules (9a), (9b) remain unchanged. The following theorems
reveal that the algorithm converges linearly to the QRE until it reaches an error floor determined by∥∥δ(i)∥∥

Γ(ρ)
:

Theorem 5. With 0 < η ≤ (1−γ)3

32000Cρ
, and αi = ητ , we have

max
{
KLρ

(
ζ⋆τ ∥ ζ(t)

)
,
1

2
KLρ

(
ζ⋆τ ∥ ζ̄(t)

)
, 3η E

s∼ρ

[∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

]}
≤ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t

+
1500

(1− γ)τ
max
0≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

.

Theorem 6. With 0 < η ≤ (1−γ)3

32000Cρ
, and αi = ητ , we have

max
s∈S,µ,ν

(
V µ,ν̄(t)

τ (s)− V µ̄(t),ν
τ (s)

)
≤ 2∥1/ρ∥∞

1− γ
max

{ 8

(1− γ)2τ
,
1

η

}
·
[ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t

+
1500

(1− γ)τ
max
0≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

]
,

and

max
µ,ν

(
V µ,ν̄(t)

τ (ρ)− V µ̄(t),ν
τ (ρ)

)
≤

2C†
ρ,τ

1− γ
max

{ 8

(1− γ)2τ
,
1

η

}(
1− (1− γ)ητ

4

)t

·
[ 3000

(1− γ)2τ

(
1− (1− γ)ητ

4

)t

+
1500

(1− γ)τ
max
0≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

]
.

We remark that
∥∥δ(t)∥∥

Γ(ρ)
can be bounded either by ϵstat or Cρϵstat with evaluation error guarantee

maxs∈S
∥∥δ(t)(s)∥∥∞ ≤ ϵstat and E

s∼ρ

[∥∥δ(t)(s)∥∥∞]
≤ ϵstat respectively.

The remaining part of this section outlines the proof for the above Theorems. For simplicity, we
only highlight the key difference from the previous proof due to evaluation error and omit the proof
for corresponding lemmas. We first remark that Lemma 1 depends solely on the policy update rules
and hence still holds. The error propagation of {δ(l)} is captured by the following lemmas which
parallels Lemma 2 and Lemma 16:
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Lemma 19. With 0 < η ≤ min{(1− γ)/180, (1− γ)2/48}, it holds for all t ≥ 1 that

∥∥Q(t+1) −Q(t)
∥∥
Γ(ρ)

≤ 1 + γ

2

t∑
l=1

αl,t

∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

+
4Cρ
η

·
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+ αt

∥∥δ(t)∥∥
Γ(ρ)

+ αt−1

∥∥δ(t−1)
∥∥
Γ(ρ)

. (60)

When t = 0, we have
∥∥Q(1)(s)−Q(0)(s)

∥∥
Γ(ρ)

≤ 2 + α0

∥∥δ(0)∥∥
Γ(ρ)

.

Lemma 20. With 0 < η ≤ (1− γ)2/16, it holds for all t ≥ 1 that∥∥Q(t+1) −Q⋆
τ

∥∥
Γ(ρ)

≤ 1 + γ

2
·

t∑
l=0

αl,t

(∥∥Q(l) −Q⋆
τ

∥∥
Γ(ρ)

+
2η

1− γ

∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

)
+ 2α0,t + αt

∥∥δ(t)∥∥
Γ(ρ)

(61)

When t = 0, we have
∥∥Q(1) −Q⋆

τ

∥∥
Γ(ρ)

≤ 2γ
1−γ + α0

∥∥δ(0)∥∥
Γ(ρ)

.

Following the similar argument in Lemma 4, we can show that
Lemma 21. Under the assumption of Lemma 19 and 20, it holds for all t ≥ 0 that

t∑
l=0

λl+1,t+1

[
η
∥∥Q⋆

τ −Q(l+1)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(l+1) −Q(l)

∥∥
Γ(ρ)

]
≤ 6250ηCρ

(1− γ)3

t−1∑
l=0

λl+1,t+1KL
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

550η

(1− γ)2
λ0,t+1 + 60η

t∑
l=0

λl+1,t+1αl

∥∥δ(l)∥∥
Γ(ρ)

.

With αl = ητ for l ≥ 1, we have
t∑

l=0

λl+1,t+1αl

∥∥δ(l)∥∥
Γ(ρ)

≤ λ1,t+1

∥∥δ(0)∥∥
Γ(ρ)

+ max
1≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

t∑
l=1

λl+1,t+1αl

≤ λ1,t+1

∥∥δ(0)∥∥
Γ(ρ)

+
4

1− γ
max
1≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

≤ 5

1− γ
max
0≤i≤t

∥∥δ(i)∥∥
Γ(ρ)

.

It is then straightforward to put together the above lemmas in a similar way to the proof in Appendix
A to obtain Theorem 5 and 6.

G FURTHER DISCUSSION REGARDING WEI ET AL. (2021B)

This section demonstrates how the last-iterate convergence result in Wei et al. (2021b, Theorem 2)
in terms of the Euclidean distance to the set of NEs can be translated to that of the duality gap. Given
any policy pair ζ = (µ, ν) and a NE ζ⋆ = (µ⋆, ν⋆), we can invoke performance difference lemma
(44) and obtain:

V µ,ν(ρ)− V ⋆(ρ) =
1

1− γ
E

s′∼dµ,ν
ρ

[
µ(s′)⊤Q⋆(s′)ν(s′)− µ⋆(s′)⊤Q⋆(s′)ν⋆(s′)

]
≤ 1

1− γ
E

s′∼dµ,ν
ρ

[
max
µ′

µ′(s′)⊤Q⋆(s′)ν(s′)− µ⋆(s′)⊤Q⋆(s′)ν⋆(s′)

]
=

1

1− γ
E

s′∼dµ,ν
ρ

[
max
µ′

µ′(s′)⊤Q⋆(s′)ν(s′)−max
µ′

µ′(s′)⊤Q⋆(s′)ν⋆(s′)

]
≤ 1

1− γ
E

s′∼dµ,ν
ρ

[
max
µ′

µ′(s′)⊤Q⋆(s′)
(
ν(s′)− ν⋆(s′)

)]
≤ 1

(1− γ)2
E

s′∼dµ,ν
ρ

[∥∥ν(s′)− ν⋆(s′)
∥∥
1

]
.
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Setting µ to the best-response policy of ν, i.e., µ = µ†(ν) := argmaxµ V
µ,ν(ρ), we get

max
µ′

V µ′,ν(ρ)− V ⋆(ρ) = V µ†(ν),ν(ρ)− V ⋆(ρ)

≤ 1

(1− γ)2
E

s′∼d
µ†(ν),ν
ρ

[∥∥ν(s′)− ν⋆(s′)
∥∥
1

]
≤

∥∥dµ†(ν),ν
ρ

∥∥
∞

(1− γ)2

∑
s∈S

∥∥ν(s)− ν⋆(s)
∥∥
1
.

Similarly, we have

V ⋆(ρ)−min
ν′

V µ,ν′
(ρ) ≤

∥∥dµ,ν†(µ)
ρ

∥∥
∞

(1− γ)2

∑
s∈S

∥∥µ(s′)− µ⋆(s′)
∥∥
1
.

Taken together, the duality gap can be bounded by the policy’s ℓ1 distance to NE (µ⋆, ν⋆) as

max
µ′,ν′

[
V µ′,ν(ρ)− V µ,ν′

(ρ)
]
≤ 1

(1− γ)2

∑
s∈S

(∥∥ν(s′)− ν⋆(s′)
∥∥
1
+

∥∥µ(s′)− µ⋆(s′)
∥∥
1

)
≤ |S|1/2(|A|+ |B|)1/2

(1− γ)2

[∑
s∈S

(∥∥ν(s′)− ν⋆(s′)
∥∥2
2
+

∥∥µ(s′)− µ⋆(s′)
∥∥2
2

)]1/2
,

where the second step results from Cauchy-Schwarz inequality. Finally, recall from Wei et al.
(2021b, Theorem 2) that it takes at most

O
(

|S|2

η4c4(1− γ)4ϵ2

)
iterations to ensure

1

|S|
∑
s∈S

(∥∥ν(s′)− ν⋆(s′)
∥∥2
2
+
∥∥µ(s′)− µ⋆(s′)

∥∥2
2

)
≤ ϵ2,

with η2 = O((1 − γ)5|S|−1). Putting pieces together and minimizing the bound over η, this leads
to an iteration complexity of

O
(
|S|5(|A|+ |B|)1/2

(1− γ)16c4ϵ2

)
to achieve ϵ-NE in a last-iterate fashion.
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