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ABSTRACT

In practical applications, the underlying constraint knowledge is often unknown and
difficult to specify. To address this issue, recent advances in Inverse Constrained
Reinforcement Learning (ICRL) have focused on inferring these constraints from
expert demonstrations. However, the ICRL approach typically characterizes con-
straint learning as a tri-level optimization problem, which is inherently complex
due to its interdependent variables and multiple layers of optimization. Considering
these challenges, a critical question arises: Can we implicitly embed constraint
signals into reward functions and effectively solve this problem using a classic
reward inference algorithm? The resulting method, known as Inverse Reward
Correction (IRC), merits investigation. In this work, we conduct a theoretical
analysis comparing the sample complexities of both solvers. Our findings confirm
that the IRC solver achieves lower sample complexity than its ICRL counterpart.
Nevertheless, this reduction in complexity comes at the expense of generalizability.
Specifically, in the target environment, the reward correction terms may fail to
guarantee the safety of the resulting policy, whereas this issue can be effectively
mitigated by transferring the constraints via the ICRL solver. Advancing our in-
quiry, we investigate conditions under which the ICRL solver ensures ε-optimality
when transferring to new environments. Empirical results across various envi-
ronments validate our theoretical findings, underscoring the nuanced trade-offs
between complexity reduction and generalizability in safety-critical applications.

1 INTRODUCTION

To solve decision-making problems in safety-critical applications, a crucial prerequisite is aligning the
decision process with the underlying constraints in the environment. To realize this vision, existing
safe Reinforcement Learning (RL) algorithms typically optimize a control policy based on a known
or manually-specified constraint (Liu et al., 2021; Gu et al., 2022). However, in many real-world
applications, the ground-truth constraints are often unknown. Moreover, given the inherent complexity
of environmental dynamics, safety constraints must accurately model the interdependencies among
numerous variables, which are difficult to capture solely with prior knowledge.

To resolve the above challenges, Inverse Constrained Reinforcement Learning (ICRL) designs a
data-driven constraint inference method to learn the constraints from expert demonstrations (Scobee
& Sastry, 2020). Specifically, an ICRL algorithm (Malik et al., 2021) typically addresses a tri-level
optimization problem involving the update of 1) the feasibility functions to represent constraints, 2)
the Lagrange parameters to balance reward maximization and constraint satisfaction, and 3) the policy
function to guide the agent’s behaviors. Under this setting, the variables subject to optimization
are interdependent, and the sub-optimality of one variable can influence the performance of the
others. To mitigate the complexity of this problem, Hugessen et al. (2024) proposed to simplify the
ICRL solver by incorporating the impact of both constraint and Lagrange parameters into a reward
correction term. This modification reduces the ICRL solver to a bi-level solver known as Inverse
Reward Correction (IRC) (Li et al., 2023). Hugessen et al. (2024) empirically demonstrated that
such simplification does not compromise the performance of constraint learning. These observations
raise significant questions about the necessity of explicitly modeling constraints. It remains unclear
whether the canonical reward learning framework is adequate for capturing an agent’s preferences
within a Constrained Markov Decision Process (CMDP).
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To address this issue, in this work, we conduct a rigorous study to understand the impact of modeling
constraints. Specifically, we theoretically and empirically compare the performance of IRC and ICRL
from the following perspectives:

Training Efficiency. Unlike previous studies that primarily compared IRC and ICRL via empirical
evaluations (Hugessen et al., 2024), we are the first to offer a theoretical quantification of training
efficiency for both IRC and ICRL solvers in capturing the safety preferences in expert agents’ deci-
sions. Achieving this objective, however, presents an inherent challenge due to the unidentifiability
of the optimal solution from expert demonstrations, making it an ill-posed problem (Ng et al., 2000).
Therefore, rather than modeling point-wise solutions, we follow Metelli et al. (2021) and propose
a theoretical framework by characterizing the feasible region. This approach allows us to calculate
the sample complexity of both IRC and ICRL. Our results indicate that ICRL requires more training
samples, which aligns with previous empirical findings in Hugessen et al. (2024). Besides, our theo-
retical results provide an in-depth analysis of the increased complexity. They demonstrate that ICRL
solvers additionally capture constraint-violating movements by utilizing known reward signals (Quan
et al., 2024). In the update of a CRL policy, these movements correspond to the decision-making
patterns that induce an increase in the Lagrange parameters.

Cross-environment Transferability. While previous constraint learning methods primarily focus
on imitating experts’ behavior (Scobee & Sastry, 2020; Liu et al., 2023; Hugessen et al., 2024), an
important motivation of inferring experts’ safety preferences aims to generalize this knowledge to
guide policy learning under similar contexts (Feng et al., 2023; Zhang et al., 2024). In this study, we
compare IRC and ICRL in terms of guaranteeing safety and optimality of policies across different
environments. We begin with an illustrative example to demonstrate situations where IRC could
potentially induce unsafe behaviors. We identify and summarize the necessary conditions under
which IRC leads to such unsafe behaviors and explain why the performance of ICRL is more robust
by explicitly modeling constraints. Regarding the optimality of generalized policies, we derive the
sub-optimality gap in transferring the constraint learned by ICRL. This result offers a theoretical
guarantee for studying how mismatches in environmental dynamics and reward signals affect the
acquisition of optimal policies based on learned constraints. In the absence of constraint satisfaction,
such results can not be extended to IRC.

Contributions. We compare the training efficiency and cross-environment transferability of IRC and
ICRL solvers to answer the critical question raised in the abstract.

• Following the theoretical framework from Metelli et al. (2021), we introduce the IRC solver
(Definition 3.3) to overcome the limitation of the IRL solver, which lacks a mechanism
to leverage existing reward signals and may not be compatible with different rewards.
Furthermore, we analyze the sample complexity of IRC (Section 4.1) and compare it with
existing results for ICRL (Yue et al., 2024), showing that IRC achieves lower sample
complexity than ICRL under the same optimality criterion (Theorem 4.2).

• We conduct a formal study of transferability in safety to compare IRC and ICRL. We show
that transferred cost functions by ICRL are guaranteed to preserve safety in overlapping
critical regions (Lemma 5.2), whereas transferred reward correction terms by IRC can be
offset by the difference in reward functions and transition dynamics between source and
target environments. (Theorem 5.3).

• Extending the transferability definition from Schlaginhaufen & Kamgarpour (2024, Def-
inition 3.1) from regular MDP settings to CMDP settings, we analyze the optimality of
constraint knowledge inferred by ICRL in target environments. Specifically, we define the
suboptimality gap under CMDP settings (Definition 5.5). Based upon this, we derive condi-
tions that limit the similarity between source and target environments to ensure ε-optimality
for ICRL (Theorem 5.7).

• Finally, we empirically validate our results on training efficiency and cross-environment
transferability in various environments (Section 6).

2 RELATED WORK

Inverse Constrained Reinforcement Learning (ICRL). Unlike IRL, which focuses primarily
on recovering reward functions, ICRL seeks to align with expert agents’ preferences by inferring
the constraints they adhere to. The bulk of existing ICRL algorithms update cost functions by
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maximizing the likelihood of generating expert demonstrations under the maximum (casual) entropy
framework (Scobee & Sastry, 2020). Subsequent works extended this approach from discrete to
continuous state-action spaces (Malik et al., 2021; Liu et al., 2023; Baert et al., 2023; Qiao et al., 2023;
Xu & Liu, 2024b; Quan et al., 2024). To improve training efficiency, Liu & Zhu (2022); Gaurav et al.
(2023) combined ICRL with bi-level optimization techniques. Towards theoretical groundings of
ICRL, Yue et al. (2024) recently proposed efficient constraint inference through exploration strategies
with tractable sample complexity. However, these works primarily evaluate their performance by
applying inferred constraints within the same environment used for learning. Although Xu & Liu
(2024a) considered transition discrepancies for policies under the robust optimization framework, the
challenge of transferring constraints to new environments remains largely unexplored.

Transferability in Inverse Reinforcement Learning (IRL). A significant application of IRL al-
gorithms is to guide policy learning in similar environments. However, obtaining guarantees of
transferability in unregularized settings is more challenging than in entropy-regularized contexts. To
facilitate knowledge transfer in unregularied settings, Metelli et al. (2021) assumed that the feasible
reward functions recovered remain valid in target environments, and Amin et al. (2017) reduced the
dimension of the reward class to state-only rewards. In contrast, entropy-regularized settings have
been explored more extensively. Cao et al. (2021) and Skalse et al. (2023) demonstrated that under
entropy regularization, the expert’s reward can be identified up to potential shaping transformations
(Ng et al., 1999). In addition, Rolland et al. (2022) showed that to guarantee transferability across
any transition laws, the expert’s reward must be identified up to a constant. Building upon these
insights, Cao et al. (2021) and Rolland et al. (2022) learned the reward function from multiple experts
who shared rewards but had sufficiently different transition laws distinguished by a specific rank
condition. Continuing this line of research, Schlaginhaufen & Kamgarpour (2024) extended this
approach to an offline setting and derived a sufficient condition for transferability to local changes in
the transition law when learning from a single expert. However, these methods focus on transferring
reward functions in regular MDPs, without addressing the generalization of constraints in CMDPs.

3 PRELIMINARIES AND PROBLEM FORMULATION

Notation. Let X be a finite set and Y be a space. The notation YX represents the set of functions
f : X → Y . The probability measure over X is denoted as ∆X = {ν ∈ [0, 1]X :

∑
x∈X ν(x) = 1}

and we denote ∆Y
X as the set of functions X → ∆Y . We define min+x∈X f(x) returns the minimum

positive value of f over X . For a linear operator A, we denote its image by imA. Let cE represent the
underlying cost function obeyed by the expert and µE denote the expert occupancy measure. Let 1(·)
denote the indicator function. The expansion operator E : RS → RS×A satisfies (Ef)(s, a) = f(s).
The complete notation is provided in Appendix Table 1.

Constrained Markov Decision Process (CMDP). The environment is modeled as a stationary
CMDP Mc := (S,A, PT , r, c, ϵ, µ0, γ), where S and A are the finite state and action spaces,
with cardinalities S = |S| and A = |A|; PT (s

′|s, a) ∈ ∆S
S×A defines the transition distribution;

r ∈ [0, Rmax]
S×A and c ∈ [0, Cmax]

S×A denote the reward and cost functions; ϵ defines the
threshold of the constraint; µ0 ∈ ∆S denotes the initial state distribution; and γ ∈ [0, 1) is the
discount factor. The agent’s behavior is modeled by a policy π ∈ ∆A

S . This work focuses on the
stationary CMDP where the planning horizon H goes to infinity, and our theoretical results are mainly
based on a discrete finite state-action space.

Value and advantage functions. We define the action value functions in a CMDPMc for costs and
rewards as Qc,π

Mc
and Qr,π

Mc
. The superscript c or r specifies the actual costs or rewards evaluated. The

reward action-value function is Qr,π
Mc

(s, a) = Eπ,PT [
∑∞

t=0 γ
tr(st, at)] , and the reward advantage

function follows Ar,π
Mc

(s, a) = Qr,π
Mc

(s, a) − V r,π
Mc

(s), where the reward state-value function is
V r,π
Mc

(s) = Eπ[Q
r,π
Mc

(s, a)]. The same notation manner applies to cost value functions by replacing r
with c inMc.

Constrained Reinforcement Learning (CRL). Within a CMDP environment, CRL learns a policy
π that maximizes the cumulative rewards subject to a known constraint:

CRL(r, c) = max
π

Eµ0,π,PT

[ ∞∑
t=0

γtr(st, at)
]

s.t. Eµ0,π,PT

[ ∞∑
t=0

γtc(st, at)
]
≤ ϵ, (PI)

where ϵ > 0 indicates a soft constraint and ϵ = 0 represents a hard constraint.
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Inverse Constraint Inference (ICI). In many practical applications, constraints are not readily
available, requiring us to infer the constraints followed by expert agents based on their behavior.
A common solver for this ICI problem under the RL setting is known as Inverse Constrained
Reinforcement Learning (ICRL), which can be formally defined as follows:
Definition 3.1. (ICRL solver for constraint inference (Malik et al., 2021)). An ICRL solver is denoted
as SICRL(M, πE , r), whereM is aMc\c (CMDP without knowing the cost) and πE ∈ ∆A

S is an
expert’s policy. A cost representation c is a feasible solution from SICRL if and only if πE is an
optimal policy for the CMDPM∪ c (CMDP with c as costs). We denote by CSICRL the set of feasible
cost functions derived by SICRL.

Previous ICRL solvers (Scobee & Sastry, 2020; Malik et al., 2021) explicitly model constraints and
infer the cost function by alternatively optimizing the policy and the constraint function. In the phase
of policy optimization, they commonly solve a CRL problem (PI) by studying its Lagrangian dual:

D [CRL(r, c)] = min
λ>0

max
π
J (π, r − λc) + λϵ, (DI)

where J (π, r− λc) = Eµ0,π,PT

[∑∞
t=0 γ

t
(
r(st, at)− λc(st, at)

)]
. Paternain et al. (2019) showed

that CRL problems have zero duality gap:
Theorem 3.2. (CRL has zero duality gap (Paternain et al., 2019)). Suppose that r and c are bounded
and the Slater’s condition holds for (PI), then strong duality holds for (PI), i.e., PI∗ = DI∗.

Accordingly, the optimal policy in CRL objective (PI) can be equivalently solved by utilizing an
unconstrained objective (DI). Based on the dual representation of CRL problem, ICRL solvers are
essentially solving a tri-level optimization problem (Kim et al., 2023):

max
c

max
λ

min
π
J (πE , r − λc)− J (π, r − λc). (1)

Given the complexity of tri-level optimization, Hugessen et al. (2024) recently explored whether we
can 1) apply an IRL algorithm to recover r̃ = r − λc = r − c̃ by optimizing λ and c collectively in
c̃ = λc if the range of c̃ is a convex cone, and 2) learn an imitation policy by directly maximizing the
cumulative rewards E[

∑∞
t=0 γ

tr̃(st, at)] without considering the constrained optimization objective.
In this work, we formally define this method as Inverse Reward Correction (IRC) as follows.
Definition 3.3. (IRC solver for constraint inference (Li et al., 2023)). An IRC solver is denoted
as SIRC(M, πE , r). A correction term ∆r is a feasible solution from SIRC if and only if πE is an
optimal policy for (M\r) ∪ rc, where corrected rewards rc(s, a) = r(s, a) +∆r(s, a),∀(s, a). We
denote byRSIRC the set of feasible reward correction terms derived by SIRC.

For clarity, we simplify (M\r) ∪ rc to M∪ rc in the following discussion. Under this setting,
the correction term can play the role of negative collective cost function such that ∆r = −c̃. If
the negative optimal c̃ can be represented within the bounded range of the correction term, i.e.,
−c̃∗ = −λ∗c∗ ∈ range(∆r), where λ∗ and c∗ are optimal solutions of (1), the tri-level optimization
can be transferred to a bi-level one as defined in the following:

min
∆r

min
π
J (πE , r +∆r)− J (π, r +∆r). (2)

Hugessen et al. (2024) demonstrated that this simplification results in a more performant solver. In
the following sections, we will provide a more formal comparison of these solvers, focusing on their
sample complexity and transferability, i.e., performance in transferring to new environments.

4 TRAINING EFFICIENCY: A FORMAL STUDY OF SAMPLE COMPLEXITY

In this section, we compare the training efficiency of the aforementioned ICRL and IRC solvers by
deriving their sample complexity and analyzing their performance gaps.

4.1 SAMPLE COMPLEXITY OF THE IRC SOLVER

To compute the sample complexity of IRC solver, we adopt the theoretical framework from Metelli
et al. (2021) and define the feasible set of reward correction terms as follows:
Lemma 4.1. (Feasible reward correction set implicit). Let SIRC(M, πE , r) be an IRC solver. ∆r is
a feasible reward correction term, i.e., ∆r ∈ RSIRC if and only if for all (s, a) ∈ S ×A, it holds that:
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(i) if πE(a|s) > 0, then Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, then Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Intuitively, in a CMDP, reward function r alone does not align with the expert policy πE due to
potential constraint violations, i.e. πE(a|s) = 0 but Qr,πE

M∪r(s, a) > V r,πE

M∪r(s). The correction term
∆r adjusts the reward r so that r +∆r collectively ensures the optimality of the expert policy. This
approach differs from the IRL solver (Metelli et al., 2021; Lindner et al., 2022) in two key aspects: 1)
IRL lacks a mechanism to leverage the known reward function r for constraint inference, and 2) IRL
is not compatible with new reward signals in new environments.

To provide a fair comparison of sample complexity between the two solvers, we study a uniform
sampling exploration strategy facilitated by a generative model. We have detailed this strategy in
Appendix Algorithm 1. Let significance δ ∈ (0, 1). This strategy guarantees that with probability
greater than 1− δ, the Hausdorff distance dH between the ground-truth and estimated feasible reward
correction set, i.e.,RSIRC andRŜIRC

, is bounded.

In the case of the IRC solver, this Hausdorff distance is upper bounded by

dH(RSIRC ,RŜIRC
) ≤ max

(s,a)∈S×A
I∆r
k+1(s, a),with I∆r

k+1(s, a) =
2γRmax

1− γ

√
2ℓk+1(s, a)

N+
k+1(s, a)

, (3)

where N+
k+1(s, a) is the positive cumulative count of visitations to (s, a) (formally defined in

Appendix B.2) and ℓk+1(s, a) = log
(
12SA(N+

k+1(s, a))
2/δ

)
. Towards reducing this upper bound

below a targeted accuracy, we derive the sample complexity of the IRC solver, inspired by (Metelli
et al., 2021, Theorem 5.1).
Theorem 4.2. (Sample Complexity of the IRC Solver). If an IRC solver stops at iteration K with
updated accuracy εK , then with probability at least 1− δ it converges, with the number of samples
upper bounded by:

n ≤ Õ
(
4γ2R2

maxSA

(1− γ)4ε2K

)
, (4)

where Õ notation suppresses logarithmic terms.

4.2 SAMPLE COMPLEXITY OF THE ICRL SOLVER

Following a similar theoretical framework, Yue et al. (2024) derived the sample complexity for the
ICRL solver by defining the following representation of the feasible cost set. We briefly recap and
discuss the results below. Appendix B.6 provides a detailed review.
Lemma 4.3. (Feasible cost set implicit (Yue et al., 2024, Lemma 4.3)). Under (Yue et al., 2024,
Assumption 4.1) and let SICRL(M, πE , r) be an ICRL solver. c is a feasible cost, i.e., c ∈ CSICRL if and
only if ∀(s, a) ∈ S ×A:

(i) if πE(a|s) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0;
(ii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0;

(iii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) ≤ 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0.

Remark 4.4. In contrast to the representation for the set of feasible reward corrections in Lemma 4.1,
this feasible cost set differentiates the values of the cost value function based on whether the
advantage values are above or below zero. Intuitively, when Ar,πE

M∪c(s, a) > 0, the action a represents
a movement aimed at achieving rewards that exceed those of the expert. Such actions are likely to be
unsafe and thus violate the underlying constraints (Quan et al., 2024), leading to an increase in the
Lagrange multiplier λ in (1) to penalize the relevant policies.

Similarly, to compute the sample complexity of ICRL solver, we utilize the strategy in Appendix
Algorithm 1. Guaranteed by the strategy, the corresponding Hausdorff distance dH between the
ground-truth and estimated feasible cost set, i.e., CSICRL and CŜICRL

, is upper bounded by

dH(CSICRL , CŜICRL
) ≤ max

(s,a)∈S×A
I c
k+1(s, a),with I c

k+1(s, a) =
σ

(1− γ)2

√
ℓk+1(s, a)

2N+
k+1(s, a)

,
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where σ =
√
3γCmax

(
Rmax(3 + γ)/min+

∣∣Ar,πE

M∪c

∣∣+ (1− γ)
)

.

Theorem 4.5. (Sample Complexity of ICRL solver (Yue et al., 2024, Theorem C.9)). If an ICRL
solver terminates at iteration K with the updated accuracy εK , then with probability at least 1− δ, it
converges with a number of samples upper bounded by

n ≤ Õ
(

γ2σ2SA

(1− γ)6ε2K

)
. (5)

Discussion. By comparing Theorem 4.2 with Theorem 4.5, we observe that the sample complexity
of the ICRL solver exceeds that of the IRC solver by a factor of 1/(1 − γ)2. This increase arises
from the need to estimate the advantage function under the expert policy, i.e., Ar,πE

M∪c, which dictates

whether to impose additional costs on the current state-action pair. As we explained above, Ar,πE

M∪c

is closely related to the update of Lagrange multiplier λ (i.e., λ should increase when Ar,πE

M∪c > 0).
The additional complexity is also reflected in the distinction between tri-level optimization (1) and
bi-level optimization (2), where the Lagrange multiplier λ must converge to its optimal λ∗ so that
feasible cost set can be established.

5 CROSS-ENVIRONMENT TRANSFERABILITY: GENERALIZING THE SAFETY
AND OPTIMALITY OF CONSTRAINTS

Beyond cloning the behaviors of expert agents, a critical application of the inverse optimization
methods (including IRL, ICRL, and IRC) is inferring the generalizable oracle signals (e.g., rewards
or constraints) that can guide the behaviors of agents under similar environments. Denote the source
CMDP asMc = (S,A, PT , r, c, ϵ, µ0, γ) and the target CMDP asM′

c = (S,A, P ′
T , r

′, c, ϵ, µ0, γ),
where they can be different in the reward function and the transition model (i.e., r′ ̸= r, P ′

T ̸= PT ).
Under this setting, unlike previous studies (Cao et al., 2021; Rolland et al., 2022) where the underlying
oracle signals (e.g., rewards) can be inferred from multiple environments and expert demonstrations,
our study adheres to the common ICI problem setting, assuming access to only a single expert within
a specific environment. Building upon this, we study the transferability of learned constraints across
both different transition dynamics and varying reward functions.

5.1 GENERALIZING SAFETY GUARANTEES ACROSS DIVERSE ENVIRONMENTS

Transferring the recovered reward correction term ∆r or the cost function c introduces new challenges
that remain largely unexplored in the ICI literature since there is no guarantee that ∆r or c with the
known new reward function r′ and new transition model P ′

T will make the new expert policy (π′)E

constraint satisfying in the target CMDPM′
c. That is to say, transferred ∆r or c may lead to unsafe

policies excluded from the feasible region in the target environment.

𝑠𝑐

𝑟𝑆 𝜏1 = 2, 𝑟𝑆 𝜏2 = 1

𝑠𝑐
IRC: Δ ǁ𝑟 = −1 − 𝛽
ICRL: 1ℳ𝑐 𝑠𝑐 = 0

infer

transfer

Down 

Winds

Higher

Rewards

Source Env Target Env

𝜏1 𝜏2 𝜏2𝜏1

𝑟𝑇 𝜏1 = 2 + 𝛽, 𝑟𝑇 𝜏2 = 1 − 𝛽
∵ 2 + 𝛽 − 1 − 𝛽 > 1 − 𝛽

∴ 𝜏∗ = 𝜏1

Figure 1: An example showing that transferring ∆r and
constraint 1Mc(sc) = 0 learned in the source environment
(left) to the target environment (right) induces different opti-
mal policies (τ1 denotes the optimal path and τ2 denotes the
second-best path).

Challenges in Ensuring Safety with
IRC Solutions. Although the IRC
solver is more sample-efficient in
training within the source environ-
ment, it struggles to guarantee safety
in the target environment, as illus-
trated in Figure 1. Consider a hard
constraint scenario; soft constraints
will be discussed later. In the source
environment, trajectory τ1 (with a re-
ward rS(τ1) = 2) has a larger re-
ward than τ2 (rS(τ2) = 1), but the
expert agent prefers τ2 since τ1 passes
through an unsafe state sc. To align
with the expert’s demonstration, the
IRC solver learns a reward correction
term ∆r(sc) = −1 − β (where β >
0), ensuring that rS(τ1) +∆r(τ1) =
1 − β < 1 = rS(τ2) + ∆r(τ2) (note that ∆r(τ2) = 0 since τ2 does not pass through sc). How-
ever, when this reward correction term is transferred to a similar but not identical target envi-
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ronment—where the reward functions and transition dynamics slightly differ (rT (τ1) = 2 + β,
rT (τ2) = 1− β)—the correction term becomes inapplicable. The reward correction term renders
the unsafe path τ1 as seemingly safe, with rT (τ1) + ∆r(τ1) = 1 ≥ 1 − β = rT (τ2) + ∆r(τ2),
misleading the agent to choose the hazardous τ1.

In essence, the reward correction terms reflect the extent of penalization applied to constraint-violating
actions in the source environment. These penalties can be easily offset by increasing the gains on
penalized actions or decreasing the gains on other actions in the target environment. Comparably, the
ICRL solvers do not have such difficulty since they learn a hard constraint that invalidates any visit
to sc (e.g., the feasibility 1Mc(sc) = 0). Such a constraint guarantees that the agent always selects
the feasible state-action pairs under both the source and target environments. This is because the
cost function directly decides the boundaries of the feasible region, a modification that cannot be
compensated for in the same manner as correction terms.

A Formal Study of Transferability in Safety. Transferability with single expert knowledge requires
similarity restrictions between source and target environments (Metelli et al., 2021, Assumption
4.1) (Schlaginhaufen & Kamgarpour, 2024, Theorem 3.10). In the context of safety, we expect the
learned constraint knowledge remains at least partially active in the target environment, i.e., the
two constrained critical regions overlap so that the learned constraint information can be effectively
reused. This property is characterized as follows:
Assumption 5.1. (Similarity). Let (M, πE , r) and (M′, (π′)E , r′) represent the source and target
input of both solvers. The intersection of their constraint violating state-action pairs is not empty:
G = {(s, a) | Ar,πE

M∪c(s, a) > 0} ∩ {(s, a) | Ar,(π′)E

M′∪c (s, a) > 0} ≠ ∅.

Under this assumption, we begin by addressing the hard constraint scenario, in which the ICRL solver
produces the cost function ĉ that can be safely transferred to the target CMDP, ensuring safety within
G. This property is illustrated in the following lemma:
Lemma 5.2. Suppose a hard constraint scenario. For any (s′, a′) ∈ G, the feasible cost function ĉ
inferred by the ICRL solver can prevent the visitation to (s′, a′) under target CMDP.

However, the reward correction term learned by the IRC solver fail to guarantee safety in the target
environment. In the following, we identify the condition under which ∆r is not transferable.
Theorem 5.3. Suppose a hard constraint scenario. At state s, let aE denote the expert action, aC
denote the action that satisfies (s, aC) ∈ G and aO denote the other actions. ∀r′ ∈ [0, Rmax]

S×A

and ∀P ′
T ∈ ∆S

S×A, if ∃s ∈ S , ∀ aE , aO ∈ A, ∃ aC ∈ A that satisfies the following conditions, then
the reward correction term ∆r constructed by such Q-functions leads to unsafety in the target CMDP,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) ≥ 0, Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aO)) ≥ 0,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aE)),

Qr+∆r ,πE

M∪(r+∆r)(e(s,aO) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aO)),

where Y = (IS×A − γPT π
E), Y ′ = (IS×A − γP ′

T (π
′)E) and e(s,a) denotes a vector with value of

1 at index (s, a) and 0 elsewhere.

The first two inequalities, obtained from Lemma 4.1, ensure the optimality of the source expert policy
πE . The last two inequalities state that unsafe actions will be chosen if increments in the Q function
of constraint-violating actions larger than that of other actions after transfer. To numerically validate
the above theorem, we conduct a detailed analysis of the example shown in Figure 1 in Appendix B.7.

Extension to Soft Constraint. The above results pertain to hard constraint scenarios. In cases
of the soft constraint, i.e., threshold ϵ > 0 in (PI), any (s, a) can be visited by feasible policies
because the cost of visiting (s, a) can always be mitigated via the power of discount factor γ < 1.
In this sense, cost functions, like reward correction terms, reflect the degree of penalization for
constraint-violating actions that can be compensated by new transition dynamics and expert policies.
Although the recovered cost function no longer guarantees safety in G, it still outperforms inferred
reward correction terms in the sense that it resists the variation between source and target reward
functions. Detailed analyses and additional evaluations are presented in Appendix B.8.2.
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5.2 GENERALIZING OPTIMALITY GUARANTEES ACROSS DIVERSE ENVIRONMENTS

The analysis mentioned above primarily focuses on ensuring safety (satisfying constraints) in the
target environment. However, it does not guarantee that the underlying policy is optimal in terms of
reward maximization. In this context, a trivial solution could involve blocking many state-action pairs
deviating from expert trajectories. While this approach ensures safety, it compromises the optimality
of the solution. In this section, moving a step further from safety guarantees, we establish theoretical
foundations for the optimality of policies trained under the estimated hard constraint. As safety takes
precedence over optimality, the IRC solver is not discussed in this context.

Transferability in Optimality for ICRL Solver. Guaranteeing the optimality of transferred cost
functions to target environments requires sufficient knowledge of the environment landscape. To
achieve this goal, we recognize the difficulty of obtaining optimality guarantees under unregularized
settings (Schlaginhaufen & Kamgarpour, 2024, Remark 3.12) and emphasize that exploration is
crucial for obtaining theoretical guarantees of transferability.
Assumption 5.4. (Exploration). Let F={s ∈ S | ∃a ∈ A : c(s, a) = 0} be the state feasible region,
and Q =

{
µ ∈ RS×A

+ : (E − γP )⊤µ = (1− γ)µ0

}
⊆∆S×A be the set of occupancy measures that

satisfies the Bellman flow constraints. We assume that for any s ∈ F and µ ∈ Q, the state occupancy
measure µ(s) :=

∑
a µ(s, a) is lower bounded by a positive constant, i.e., µ(s) ≥ µmin > 0.

To ensure the policy can exhibit exploratory behavior, we adjust the CRL objective (PI) by assuming
the optimal policy maximizes the regularized objective in the following:

π∗ = argmax
π

Eµ0,π,PT

[ ∞∑
t=0

γt
(
r(st, at)− λ∗ · c(st, at) + h(π(·|st))

)]
, (6)

where the Shannon entropy regularizer h(π(·|s)) := −αEπ[log π(a|s)] and the weighting term
α > 0. Additionally, we model the influence of policy by deriving the occupancy measure µ. As
a result, the dual representation of the CRL problem (DI) can be recast as a convex optimization
problem (Altman, 2021; Puterman, 2014):

CRLPT (r, c) := argmax
µ∈Q

J(r, λ∗, c, µ),with J(r, λ∗, c, µ) = ⟨r − λ∗c, µ⟩ − Eµ[h(π
µ)], (7)

where µ(s, a) = (1− γ)Eπ,PT

[∑∞
t=0 γ

t1(st = s, at = a)
]

and πµ(a|s) = µ(s, a)/µ(s).

Under this formulation, to quantify the performance of a given occupancy measure µ under an
inferred cost function c, we define the sub-optimality gap as follows:

ℓ r,λ
∗

PT
(c, µ) := max

µ′∈Q
J(r, λ∗, c, µ′)− J(r, λ∗, c, µ). (8)

Based on this definition, we are ready to define the transferability of optimality across the source
environmentMc and the target environmentM′

c with different reward and transition functions.
Definition 5.5. (ε-transferability). For some fixed ε > 0, we say the inferred cost function ĉ is
ε-transferable to some new reward function r′ ∈ [0, Rmax]

S×A and transition law P ′
T ∈ ∆S×A

S if
ℓ
r′,(λ′)∗

P ′
T

(ĉ,CRL(cE)) ≤ ε.

Intuitively, ε-transferability quantifies how well the inferred cost function ĉ captures the preference of
expert behaviors in a different environment. Specifically, the expert policy is ε-optimal relative to the
optimal policy derived under ĉ. When the gap is large, it indicates that certain feasible state-action
pairs are overly penalized, potentially leading to suboptimal policy decisions. Conversely, when the
gap is small, the estimated cost function ĉ accurately explains the expert’s behaviors,

A key element in bounding this suboptimality gap in target environments is to constrain the simi-
larity between source and target transition laws (Schlaginhaufen & Kamgarpour, 2024). To reflect
corresponding feasible cost sets CSICRL while solving the unidentifiability issues in inverse problems,
we map a transition law PT to a subspace UPT := im(E − γPT ) via potential shaping transforma-
tion (Ng et al., 1999). The expert’s optimality is ensured by this transformation via the cost affine
subspace c + UPT ⊆ CSICRL . A detailed discussion of this transition subspace for cost equivalence
is provided in Appendix B.29. Given the high dimensionality of this subspace, we utilize principal
angles to provide a more refined measure of similarity and dissimilarity between them.
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Definition 5.6. (Principal angles (Galántai, 2013)) Let V,W ⊆ Rn be two subspaces of dimension
m ≤ n. The principal angles 0 ≤ θ1(V,W) ≤ . . . ≤ θm(V,W) =: θmax(V,W) ≤ π/2 between V
andW are defined recursively via

cos(θi(V,W)) = max
v∈V,w∈W

⟨v, w⟩ s.t. ∥v∥2 = ∥w∥2 = 1, ⟨v, vj⟩ = ⟨w,wj⟩ = 0, j = 1, . . . , i− 1,

where vj , wj are the maximizers corresponding to the angle θj . For two transition laws PT 1, PT 2,
we define θi(PT 1, PT 2) := θi(UPT 1

,UPT 2
) and θmax(PT 1, PT 2) := θmax(UPT 1

,UPT 2
).

Theorem 5.7. Let P ′
T be the transition law in the target environment and d1 = ∥[cE − ĉ]UP ′

T
∥2.

Suppose that Assumption 5.4 holds. If ℓ r
′,(λ′)∗

PT
(ĉ,CRL(cE)) ≤ ε1, ĉ is ε-transferable to P ′

T with

ε = 2max
{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
/η, (9)

where σR and η are regularity constants, given in Appendix B.26.

The above theorem establishes that a small margin between two transition laws, combined with strong
explainability of the recovered cost under the target reward function in the source environment, ensures
that the recovered cost is ε-optimal in the target environment. We observe that the transferability
in optimality of cost is affected by two key factors. The first factor is the discrepancy between the
source and target CMDP, which encompasses: 1) the difference in rewards and Lagrange multipliers,
captured by ε1, and 2) the discrepancy in transition dynamics, indicated by θmax. The second factor
is the estimation error associated with the recovered cost ĉ, denoted by d1.

6 EMPIRICAL EVALUATION
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Figure 2: Four different Gridworld environments.

We empirically evaluate the ICRL solver against
the IRC solver in four different constrained grid-
world environments. For each gridworld envi-
ronment, source and target environments dif-
fer in reward functions and transition dynamics.
Also, we present a series of visualizations to of-
fer deeper insights into the discrepancy between
the two solvers in constraint inference.

Experiment Setting. The experimental settings are primarily based on a public ICRL benchmark (Liu
et al., 2023). In our experiments, we focus on evaluating the training efficiency and transferability of
the ICRL and IRC solvers. The results are assessed using two key metrics:1) discounted cumulative
rewards, which quantify the total rewards achieved by the learned policy. 2) discounted cumulative
costs, which calculate the total costs incurred by the policy. We compare the uniform sampling
strategy (Appendix Algorithm 1) of the ICRL and IRC solvers.

In Figure 2, we design four distinct Gridworld environments for both source and target environments,
each characterized by unique constraints. The agent’s goal is to navigate from a starting location
(blue) to a target location (red) while avoiding constraints (black). The expert policy is trained under
ground-truth constraints. Four source environments exhibit a stochasticity of p = 0.05, i.e., the agent
takes a uniformly randomized action with that probability, while four target environments feature a
higher stochasticity of p = 0.1. All rewards are assigned at the target location, with identical values
of 1 in four source environments and 2, 7, 7, 15 in four respective target environments.

Figure 3 demonstrates the learned cost functions by the ICRL solver at each state and the learned
reward correction terms by the IRC solver at each state, in the source environments in four Gridworld
settings (from left to right, Gridworld-1,2,3,4). Figure 4 demonstrates the accumulated rewards and
costs of resulting policies learned under inferred reward correction terms by the IRC solver and
cost functions by the ICRL solver at each iteration. In the source environments, we observe that
the IRC solver converges more quickly than the ICRL solver, indicating higher training efficiency.
However, in the target environments, we find that inferred reward correction terms lead to unsafe
policies (costs exceeding 0), whereas recovered cost functions ensure both safety (costs converging to
0) and optimality (rewards converging to the expert). For continuous environments, we leverage the
Maximum Entropy framework of ICRL (Malik et al., 2021) and IRC solvers (Hugessen et al., 2024)
where the two solvers are designed to recover constraint knowledge that best explains the expert
demonstrations from an offline dataset. Check Appendix C and D for more experimental results and
implementation details.
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Figure 3: Learned constraint information by the ICRL solver (top) and the IRC solver (bottom).
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Figure 4: Training curves of discounted cumulative rewards (top), costs (bottom) for the ICRL (red)
and IRC (blue) solvers across four Gridworld environments. The expert’s rewards and costs are
represented in grey. Solid and dashed lines correspond to source and target environments, respectively.

7 CONCLUSION

Summary. In this paper, we study the novel challenge of transferring learned constraint information
from source to target environments. Constraint information can be either implicit reward correction
terms by IRC solvers or explicit cost functions by ICRL solvers. We compare both solvers regarding
training efficiency and transferability. First, we evaluate their training efficiencies. While the IRC
solver is guaranteed faster convergence, the additional sample complexity required by the ICRL
solver proves essential for ensuring both safety and optimality in new environments. Under hard
constraints, the recovered cost functions strictly prevent the agent in target environments from entering
overlapping critical regions, whereas the inferred reward correction terms can be easily offset by
variations in transition laws and reward functions, leading to insufficient constraint representation. We
also derive conditions that limit the similarity between source and target environments to ensure the
optimality for the ICRL solver. Empirical studies across various environments validate our findings.

Limitations and Future Work. Our research initiates intriguing avenues for future studies. First,
extending our approach to incorporate demonstrations from multiple experts, including sub-optimal
ones would be a valuable contribution to the field. Second, deriving sufficient and necessary condi-
tions to guarantee the transferability of constraint information under arbitrary reward functions and
transition dynamics presents an intriguing avenue for exploration. Lastly, we believe that extending
to more complex and scalable tasks, particularly those in real-world applications, could offer valuable
insights into the practical challenges and opportunities involved in transferring constraint information.
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A GENERAL NOTATIONS AND NOMENCLATURE

In Table 1, we report the explicit definition of notations and nomenclature applied in our paper.

B DEFINITIONS, THEOREMS, AND PROOFS

B.1 ADDITIONAL DEFINITIONS

Definition B.1. (Hausdorff distance). (Rockafellar & Wets, 2009). Let (M,d) be a metric space. The
Hausdorff distance dH between two non-empty subsets A ⊆M and B ⊆M with distance function
d is defined as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)

}
where:

• infb∈B d(a, b) denotes the shortest distance from a point a ∈ A to all points in set B.

• supa∈A infb∈B d(a, b) is the maximum of these shortest distances for all points in A.

• Similarly, supb∈B infa∈A d(b, a) represents the maximum shortest distance from all points
in B to set A.

Definition B.2. (Affine space). An affine subspace A of a vector space V is defined as:

A = v0 +W = {v0 + w | w ∈W},
where v0 is a fixed vector in V and W is a linear subspace of V .
Definition B.3. (Operator). Let f ∈ RS and g ∈ RS×A. We denote by P and π the operators
induced by the transition model p and by the policy π, i.e.,(Pf)(s, a) =

∑
s′∈S p(s′|s, a)f(s′) and

(πg)(s) =
∑

a∈A π(a|s)g(s, a). Moreover, the expansion operator (Ef)(s, a) = f(s). Given π ∈

13
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Table 1: General Notations and Nomenclature
Symbol Name Signature

S State space /
A Action space /
r/r′ Source/Target reward function RS×A

PT /P
′
T Source/Target transition model ∆S

S×A
πE/(π′)E Source/Target expert policy ∆A

S
cE Underlying expert cost function RS×A

c Cost function RS×A

∆r Reward correction term RS×A

V r1,π
M∪r Reward state-value function for r1 of π inM∪ r RS

Qr1,π
M∪r Reward action-value function for r1 of π inM∪ r RS×A

Ar1,π
M∪r Reward advantage function for r1 of π inM∪ r RS×A

V c,π
M∪c Cost state-value function for c of π inM∪ c RS

Qc,π
M∪c Cost action-value function for c of π inM∪ c RS×A

V r,π
M∪c Cost state-value function for r of π inM∪ c RS

Qr,π
M∪c Cost action-value function for r of π inM∪ c RS×A

SIRC IRC solver /
RSIRC Set of feasible reward correction terms {RS×A}
SICRL ICRL solver /
CSICRL Set of feasible cost functions {RS×A}
ε Target accuracy R+

δ Significancy (0, 1)
θ Principal angle [0, π/2]

∥ · ∥∞ Infinity norm /
E Expansion operator RS → RS×A

∆A
S , we denote with (Bπg)(s, a) = g(s, a)1 {π(a|s)>0} and (Bπg)(s, a) = g(s, a)1 {π(a|s)>0}

and (B
π
g)(s, a) = g(s, a)1 {π(a|s) = 0}.

Definition B.4. (Inifinity norm). For a vector a, we define the vector infinity norm as ||a||∞ =
maxi|ai|. For a matrix A, we define the matrix infinity norm as ||A||∞ = maxi

∑
j |Aij |.

B.2 ESTIMATING THE TRANSITION MODEL AND EXPERT POLICY

We define how we estimate the transition model and the expert policy in Algorithm 1.

We record the returns of a state-action pair (s, a) by observing a next state s′ ∼ P (·|s, a), and the pref-
erence of expert agents aE ∼ πE(·|s) in each visited state. For iteration k, we denote by nk(s, a, s

′)
the number of times we observe the transition tuple (s, a, s′). Denote nk(s, a) =

∑
s′∈S nk(s, a, s

′)
and nk(s) =

∑
a∈A nk(s, a). For the expert policy and the transition model estimation, we

define the cumulative counts Nk(s, a, s
′) =

∑k
j=1 nj(s, a, s

′), Nk(s, a) =
∑k

j=1 nj(s, a) and

Nk(s) =
∑k

j=1 nj(s). Finally, we represent the estimated transition model and expert policy as
follows:

P̂T k(s
′|s, a) = Nk(s, a, s

′)

N+
k (s, a)

, π̂E
k (a|s) =

Nk(s, a)

N+
k (s)

, (10)

where x+ = max{1, x}.

B.3 UNIFORM SAMPLING STRATEGY FOR EACH SOLVER

To acquire desired information, the agent utilizes the uniform sampling strategy to query a generative
model. Specifically, the agent can always query a generative model about a state-action pair (s, a) to
receive a next state s′ ∼ P (·|s, a) and about a state s to receive an expert action aE ∼ πE(·|s).

14
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Algorithm 1 Uniform Sampling Strategy With a Generative Model
Input: significance δ ∈ (0, 1), target accuracy ε, maximum number of samples per iteration nmax

Initialize k ← 0, ε0 = 1
1−γ

while εk > ε do
Collect ⌈nmax

SA ⌉ samples from each (s, a) ∈ S ×A
For IRC solver, update accuracy εk+1 = 1

1−γ max
(s,a)∈S×A

I∆r
k+1(s, a)

For ICRL solver, update accuracy εk+1 = 1
1−γ max

(s,a)∈S×A
Ick+1(s, a)

Update π̂E
k+1 and P̂T k+1 according to Appendix B.2.

k ← k + 1
end while

B.4 THEORETICAL RESULTS OF THE IRL SOLVER

In this part, we discuss the IRL solver for constraint inference, which forms the theoretical foundation
of the IRC solver.

Inverse Reinforcement Learning (IRL). Typically, IRL solvers recover the reward function from
expert demonstrations, where the environment is always considered to be safe. To employ IRL for
inferring constraints in environments with safety issues, we need to modify the original formalization
of the IRL problem (Ng et al., 2000) as follows.
Definition B.5. (IRL solver for constraint inference). An IRL solver can be depicted as a function of
a pair SIRL(M, πE), whereM is aMc\c (CMDP without knowing the cost) and πE ∈ ∆A

S is an
expert’s policy. A corrected reward function rc is a feasible solution from SIRL, if and only if πE is
an optimal policy for (M\r) ∪ rc. We denote byRSIRL the set of feasible reward functions.
Lemma B.6. (Feasible reward set implicit) (Metelli et al., 2021, Lemma 3.1). Let SIRL(M, πE) be
an IRL solver. A reward function rc ∈ RSIRL if and only if for all (s, a) ∈ S ×A, the following holds:

• if πE(a|s) > 0, Qrc,πE

M∪rc(s, a) = V rc,πE

M∪rc (s),

• if πE(a|s) = 0, Qrc,πE

M∪rc(s, a) ≤ V rc,πE

M∪rc (s).

Lemma B.7. (Metelli et al., 2021, Lemma B.1). Let SIRL(M, πE) be an IRL solver. A Q-function
satisfies the condition of Lemma B.6 if and only if there exist ζ ∈ RS×A

≥0 and V r ∈ RS such that:

Qr,πE

M∪rc = −BπE

ζ + EV r. (11)

Furthermore, ∥V r∥∞ ≤ ∥Qr
M∪rc∥∞ and the the expansion operator E satisfies (Ef)(s, a) = f(s).

Lemma B.8. (Feasible reward set explicit) (Metelli et al., 2021, Lemma 3.2). Let SIRL(M, πE) be an
IRL solver. A reward function rc ∈ RSIRL if and only if there exist ζ ∈ RS×A

≥0 and V r ∈ RS such that

rc = −BπE

ζ + (E − γPT )V
r. (12)

Lemma B.9. (Error Propagation) (Metelli et al., 2021, Theorem 3.1). Let SIRL(M, πE) and

ŜIRL(M̂, π̂E) be two instances of IRL solver. Then, for any rc ∈ RSIRL such that rc = −BπE

ζ +
(E − γPT )V

r and ∥rc∥∞ ≤ Rmax, there exists r̂c ∈ RŜIRL
such that element-wise it holds that:

|rc − r̂c| ≤ B
πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)
V r

∣∣∣ . (13)

Furthermore, ∥ζ∥∞ ≤ Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ .

Theorem B.10. (Sample Complexity of the IRL Solver) (Metelli et al., 2021, Theorem 5.1). If an IRL
solver stops at iteration K with accuracy εK , then with probability at least 1− δ it converges, with a
number of samples upper bounded by:

n ≤ Õ
(
γ2R2

maxSA

(1− γ)4ε2K

)
. (14)
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Proof. The above result can be obtained by settingM′ =M and γ′ = γ in (Metelli et al., 2021,
Theorem 5.1).

Remark B.11. In IRL solvers, although r in the CMDP is independent of the cost function c, rc
indeed captures the information of underlying constraint signals for enabling the imitating agent to
reproduce πE . However, the IRL solver lacks a mechanism to leverage the known reward function r
for constraint inference. Moreover, since rc relies on the current reward function, directly transferring
rc to CMDPs with different reward functions is highly risky. Therefore, it is necessary to adjust
the IRL solver’s settings to accommodate changes in the reward function. Li et al. (2023) propose
modifying imperfect reward functions to align them with expert behaviors, but this approach lacks
tractable sample complexity. To address these limitations, we propose a modified version of the IRL
solver, the Inverse Reward Correction (IRC) solver in the main paper.

B.5 THEORETICAL RESULTS OF THE IRC SOLVER

In this part, we provide additional discussion regarding the IRC solver for constraint inference.

Inverse Reward Correction (IRC). Based on the known r, IRC solvers learn a reward correction term
∆r(s, a) to capture constraint signals. The goal of IRC solvers is to enable the imitating agent to match
expert demonstrations by following the corrected rewards: rc(s, a) = r(s, a) +∆r(s, a),∀(s, a) ∈
S ×A.

Lemma 4.1. (Feasible reward correction set implicit). Let SIRC(M, πE , r) be an IRC solver. ∆r is a
feasible reward correction term, i.e., ∆r ∈ RSIRC if and only if for all (s, a) ∈ S ×A, it holds that:

(i) if πE(a|s) > 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Proof. From Lemma B.6 and the decomposition that rc(s, a) = r(s, a)+∆r(s, a),∀(s, a), we have,

(i) if πE(a|s) > 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Corollary B.12. (Feasible reward correction set implicit). Let SIRC(M, πE , r) be an IRC solver. Let
∆r ∈ RS×A, then ∆r is a feasible reward correction term, i.e., ∆r ∈ RSIRC if and only if for all
(s, a) ∈ S ×A, it holds that:

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) = −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s).

Proof. Note that, for any given policy π, Q-function and V-function are both linear towards re-
ward function, i.e., Qr1+r2,π

M∪(r1+r2)
= Qr1,π

M∪(r1+r2)
+Qr2,π

M∪(r1+r2)
and V r1+r2,π

M∪(r1+r2)
= V r1,π

M∪(r1+r2)
+

V r2,π
M∪(r1+r2)

. Thus, inheriting from Lemma 4.1, we obtain,

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) + Qr,πE

M∪(r+∆r)(s, a) = V r,πE

M∪(r+∆r)(s) +

V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) + Qr,πE

M∪(r+∆r)(s, a) ≤ V r,πE

M∪(r+∆r)(s) +

V ∆r ,πE

M∪(r+∆r)(s).

By simple transposition, we derive,

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) = −Qr,πE

M∪(r+∆r)(s, a) + V r,πE

M∪(r+∆r)(s) +

V ∆r ,πE

M∪(r+∆r)(s),
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(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −Qr,πE

M∪(r+∆r)(s, a) + V r,πE

M∪(r+∆r)(s) +

V ∆r ,πE

M∪(r+∆r)(s).

By Ar,π
M∪r1

(s, a) = Qr,π
M∪r1

(s, a)− V r,π
M∪r1

(s), we have,

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) = −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s).

Lemma B.13. Let SIRC(M, πE , r) be an IRC solver. A Q-function satisfies the condition of Lemma
4.1 if and only if there exist ζ ∈ RS×A

⩾0 and V r ∈ RS such that:

Q∆r ,πE

M∪(r+∆r) = −B
πE

ζ −Ar,πE

M∪(r+∆r) + EV r. (15)

Proof. The proof can be easily derived from from (Metelli et al., 2021, Lemma B.1.).

Lemma B.14. (Feasible reward correction set explicit). Let SIRC(M, πE , r) be an IRC solver. ∆r is
a feasible reward correction term, i.e., ∆r ∈ RSIRC if and only if there exist ζ ∈ RS×A

≥0 and V r∈RS

such that:

∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r. (16)

Proof. From Bellman equation (Sutton & Barto, 2018), ∆r =
(
IS×A − γPT π

E
)
Q∆r ,πE

M∪(r+∆r) and

r =
(
IS×A − γPT π

E
)
Qr,πE

M∪(r+∆r).

∆r =
(
IS×A − γPT π

E
)
Q∆r ,πE

M∪(r+∆r)

=
(
IS×A − γPT π

E
)(
−BπE

ζ −Ar,πE

M∪(r+∆r) + EV r

)
= −BπE

ζ −Ar,πE

M∪(r+∆r) + EV r + γPT π
EAr,πE

M∪(r+∆r) − γPT V
r

= −BπE

ζ −
(
IS×A − γPT π

E
)
Ar,πE

M∪(r+∆r) + (E − γPT )V
r

= −BπE

ζ −
(
IS×A − γPT π

E
) (

Qr,πE

M∪(r+∆r) − EV r,πE

M∪(r+∆r)

)
+ (E − γPT )V

r

= −BπE

ζ −
(
IS×A − γPT π

E
)
Qr,πE

M∪(r+∆r) +
(
IS×A − γPT π

E
)
EV r,πE

M∪(r+∆r) + (E − γPT )V
r

= −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r, (17)

where the last equality utilizes πEE = IS .

Lemma B.15. (Error Propagation). Let SIRC(M, πE , r) and ŜIRC(M̂, π̂E , r̂) be two instances of

IRC solver. Then, for any ∆r ∈ RSIRC such that ∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) +

(E − γPT )V
r, there exists ∆̂r ∈ RŜIRC

such that element-wise it holds that:∣∣∣∆r − ∆̂r
∣∣∣ ≤ B

πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)∣∣∣ . (18)

Furthermore, ∥ζ∥∞ ≤ 2Rmax

1−γ , ∥V r,πE

M∪(r+∆r)∥∞ ≤
Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ .

Proof. From Lemma B.14, we can express ∆r and ∆̂r as,

∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r (19)

∆̂r = −Bπ̂E

ζ̂ − r + (E − γP̂T )V
r,π̂E

M̂∪(r+∆r)
+ (E − γP̂T )V̂

r (20)

17
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Since we look for the existence of ∆̂r , we provide a specific choice of ζ̂ and V̂ r: ζ̂ = B
πE

ζ and
V̂ r = V r + V r,πE

M∪(r+∆r) − V r,π̂E

M̂∪(r+∆r)

∆r − ∆̂r = −BπE

Bπ̂E

ζ − γ
(
PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)

(21)

By taking the absolute value and applying the triangular inequality, we obtain:∣∣∣∆r − ∆̂r
∣∣∣ ≤ B

πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)∣∣∣ . (22)

Note that the L∞-norms of value function ∥V r,πE

M∪(r+∆r)∥∞ ≤
Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ . Then, by
Lemma B.13, ∥ζ∥∞ ≤ 2Rmax

1−γ .

Theorem 4.2. (Sample Complexity of the IRC Solver). If an IRC solver stops at iteration K with
accuracy εK , then with probability at least 1 − δ it converges, with a number of samples upper
bounded by:

n ≤ Õ
(
4γ2R2

maxSA

(1− γ)4ε2K

)
. (23)

Proof. Compare Lemma B.15 for the IRC solver with Lemma B.9 for the IRL solver. Using the
proof techniques from (Metelli et al., 2021, Theorem 5.1), we derive the following sample complexity
for the IRC solver.

Remark B.16. Compared to the IRL solver, the IRC solver utilizes the known reward signals for
constraint inference. This method treats r as "imperfect" rewards and learns a correction term
∆r(s, a) to incorporate constraint signals. Note that the IRC solver does not explicitly model the
constraints during inference. Instead, the solver considers an unconstrained RL problem instead of
CRL (Liu et al., 2021) during policy update.

B.6 THEORETICAL RESULTS OF THE ICRL SOLVER

In this part, we provide additional discussion regarding the ICRL solver for constraint inference.

Inverse Constrained Reinforcement Learning (ICRL). ICRL solvers infer the constraint respected
by the expert agents from their demonstration data. An ICRL solver admits the following assumptions.
Assumption B.17. Either of the following two statements holds:
(i) The constraint in Eq. (PI) is a hard constraint such that ϵ = 0;
(ii) The constraint in Eq. (PI) is a soft constraint such that ϵ > 0, and the expert policy is deterministic.

Lemma 4.3. (Feasible cost set implicit (Yue et al., 2024, Lemma 4.3)). Under Assumption B.17,
and let SICRL(M, πE , r) be an ICRL solver, then c is a feasible cost, i.e., c ∈ CSICRL if and only if
∀(s, a) ∈ S ×A:

(i) if πE(a|s) > 0, i.e., (s, a) follows the expert policy:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0. (24)

(ii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) > 0, i.e., (s, a) violates the constraint:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0. (25)

(iii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) ≤ 0, i.e., (s, a) is in the non-critical region:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0. (26)

Lemma B.18. Let SICRL(M, πE , r) be an ICRL solver. A Q-function satisfies the condition of
Lemma 4.3 if and only if there exists ζ ∈ RS×A

≥0 and V c ∈ RS such that:

Qc,πE

M∪c = Ar,πE

M∪cζ + EV c, (27)

where the expansion operator E satisfies (Ef)(s) = f(s, a).
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Lemma B.19. (Feasible cost set explicit (Yue et al., 2024, Lemma 4.4)). Let SICRL(M, πE , r) be an
ICRL solver. c is a feasible cost, i.e., c ∈ CSICRL if and only if there exist ζ ∈ RS×A

≥0 and V c ∈ RS

such that:

c = Ar,πE

M∪cζ + (E − γPT )V
c. (28)

Similarly, we show how the estimation error on the environmental dynamic and on the expert policy
propagates to the cost function.
Lemma B.20. (Error Propagation)(Yue et al., 2024, Lemma 4.5). Let SICRL(M, πE , r) and
ŜICRL(M̂, π̂E , r) be two instances of ICRL solvers. For any c ∈ CSICRL satisfying c = Ar,πE

M∪cζ +(E−
γPT )V

c and ∥c∥∞ ≤ Cmax, there exists ĉ ∈ CŜICRL
such that element-wise it holds that:

|c− ĉ| ≤ γ
∣∣∣(PT − P̂T )V

c
∣∣∣+ ∣∣∣Ar,πE

M∪c −Ar,π̂E

M̂∪r

∣∣∣ ζ. (29)

Furthermore, ∥V c(s)∥∞ ≤ Cmax/(1− γ) and ∥ζ∥∞ ≤ Cmax/min+(s,a) |A
r,πE

M∪c|.
Lemma B.21. (Yue et al., 2024, Lemma 4.6) For a given policy π, let Ar,π

M∪r denote the reward
advantage function based on the original MDPM. For an estimated policy π̂, let Ar,π̂

M̂∪c
denote the

reward advantage function based on the estimated MDP M̂. Then, we have∣∣∣Ar,π
M∪c −Ar,π̂

M̂∪c

∣∣∣ ≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣+ γ(1 + γ)

1− γ

∣∣∣(π − π̂)PT V
r,π
M

∣∣∣. (30)

Theorem 4.5. (Sample Complexity of ICRL solver(Yue et al., 2024, Theorem C.9)). If an ICRL
solver terminates at iteration K with the updated accuracy εK , then with probability at least 1− δ, it
converges with a number of samples upper bounded by

n ≤ Õ
(

γ2σ2SA

(1− γ)6ε2K

)
. (31)

where σ =
√
3γCmax

(
Rmax(3 + γ)/min+

∣∣Ar,πE

M∪c

∣∣+ (1− γ)
)

.

Remark B.22. Compared with the IRC solver, the ICRL solver considers a CMDP environment
instead of an MDP one, so it explicitly models constraints during policy updates.

B.7 NUMERICAL ANALYSIS OF THE EXAMPLE IN FIGURE 1

As illustrated in Figure 1, the basic environment contains 2× 5 grids, where the agent navigates from
the starting location (0, 0) (the left bottom corner) to the target location (0, 4) (the left top corner)
with four possible actions, i.e., going up, down, left and right. In the source environment, (0, 4)
(colored blue) is assigned with a reward of 10, (0, 2) (colored orange) contains an absolute constraint
that must not be accessed, while all other locations are assigned with 0 rewards and 0 costs. Discount
factor γ = 0.7 and the agent has a probability of 0.1 to execute a random action. Figure 5 illustrates
the source environment, optimal value function, and optimal policy at each state.

Under the current reward function r((0, 4)) = 10, the agent chooses to go upward at (0, 1), which
violates the hard constraint and deviates from the expert policy. In order to guide the agent to go right
at (0, 1) instead of going up, a feasible reward correction is ∆r((0, 2)) = −3, which, together with
reward function r((0, 4)) = 10, ensures the optimality of the expert policy.

Suppose we have a target environment, with r′((0, 4)) = 20, and a stochasticity of 0.4 to the right
column of the environment (the stochasticity of the left column remains 0.1), under which the reward
value function is shown in Figure 6 (middle). r′ with ∆r((0, 2)) = −3 generate the policy in Figure
6 (right). We observe that ∆r((0, 2)) = −3 is not enough to penalize the going up action at (0, 1).

Next, we validate Theorem 5.3. At state (0, 1), aE = Right, aC = Up, aO1 = Down, aO2 = Left.
Through numerical calculation, we derive the following results which match the results of Theorem
5.3. Here, we simplify Qr+∆r ,πE

M∪c as Qr+∆r .

• Qr+∆r (aE)−Qr+∆r (aC) = 0.556 ≥ 0;
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• Qr+∆r (aE)−Qr+∆r (aO1 ) = 1.011 ≥ 0; Qr+∆r (aE)−Qr+∆r (aO2 ) = 0.609 ≥ 0;

• Qr+∆r (aE)−Qr+∆r (aC) = 0.556 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aE ] = 3.446;

• Qr+∆r (aO1 )−Qr+∆r (aC) = −0.455 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aO1 ] = 3.711;

Qr+∆r (aO2 )−Qr+∆r (aC) = −0.053 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aO2 ] = 3.565.

Figure 5: The basic environment (left), the source reward value function under r and PT (middle),
and the expert policy of the example in Figure 1 (right).

Figure 6: The basic environment (left), the target reward value function under r′ and P ′
T (middle),

and the generated policy (right).

B.8 THEORETICAL RESULTS OF TRANSFERABILITY IN SAFETY

B.8.1 THE HARD CONSTRAINT SCENARIO

Lemma 5.2. Suppose a hard constraint scenario. For any (s′, a′) ∈ G, the feasible cost function ĉ
inferred by the ICRL solver (3.1) can prevent the visitation to (s′, a′) in the target CMDP.

Proof. For any (s′, a′) ∈ G and efficiently small cost estimation error ε, there must be ĉ(s′, a′) > 0
by the ICRL solver, which bans action a′ at state s′. When transferred in a hard constraint scenario to
a target CMDP, this ĉ(s′, a′) will also ban this action a′ at state s′, since any policy with π(a′|s′) > 0
definitely leads to a violation of the hard constraint.
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Theorem 5.3. Suppose a hard constraint scenario. At state s, let aE denote the expert action , aC
denote the action that satisfies (s, aC) ∈ G and aO denote the other actions. ∀r′ ∈ [0, Rmax]

S×A

and ∀P ′
T ∈ ∆S

S×A, if ∃s ∈ S, ∀ aE , aO ∈ A, ∃ aC ∈ A that satisfies the following condition, then
the reward correction term ∆r constructed by such Q-functions violates safety in the target CMDP,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) ≥ 0, Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aO)) ≥ 0,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aE)),

Qr+∆r ,πE

M∪(r+∆r)(e(s,aO) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aO)),

where Y = (IS×A − γPT π
E), Y ′ = (IS×A − γP ′

T (π
′)E) and e(s,a) denotes a vector with value of

1 at the index (s, a) and 0 elsewhere.

Proof. For better readability, we denote Qr′ = Q
r′+∆r ,(π′)E

M′∪(r′+∆r) and Qr = Qr+∆r ,πE

M∪(r+∆r). Since, at each
state s ∈ S , the agent chooses its action based on the maximum Q-function, we study the Q-function
in the source and target CMDP.

Qr(s, a) = (IS×A − γPT π
E)−1rc(s, a) = (IS×A − γPT π

E)−1[r(s, a) +∆r(s, a)]

Qr′(s, a) = (IS×A − γP ′
T (π

′)E)−1(rc)′(s, a) = (IS×A − γP ′
T (π

′)E)−1[r′(s, a) +∆r(s, a)]

Due to the optimality of the expert policy, the Q-function of the expert action is the maximum in the
source CMDP. We next show how the Q-function in the target CMDP is shifted.

Qr(s, a) = (IS×A − γPT π
E)−1 [r +∆r ] (s, a) (32)

Qr′(s, a), = (IS×A − γP ′
T (π

′)E)−1 [r′ +∆r ] (s, a)

= (IS×A − γP ′
T (π

′)E)−1
[
r′ − r + (IS×A − γPT π

E)Qr
]
(s, a)

= (Y ′)−1 [(r′ − r) + Y Qr] (s, a)

= (Y ′)−1 [(r′ − r) + (Y − Y ′ + Y ′)Qr] (s, a)

= (Y ′)−1 [(r′ − r) + (Y − Y ′)Qr] (s, a) +Qr(s, a). (33)

Based on Eq. (33), we have

Qr′(s, aE) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aE) +Qr(s, aE)

Qr′(s, aC) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aC) +Qr(s, aC)

Qr′(s, aO) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aO) +Qr(s, aO). (34)

The first two inequalities result from Lemma 4.1, aiming to ensure the optimality of expert policy.
The third and fourth inequalities are derived by substituting Eqs. (34) into Qr′(s, aE) < Qr′(s, aC)

and Qr′(s, aO) < Qr′(s, aC) to construct target Q-functions that drive the agent choose constraint-
violating actions aC .

Given Y = (IS×A − γPT π
E) and Y ′ = (IS×A − γP ′

T (π
′)E), we have

Y − Y ′ = γ(P ′
T (π

′)E − PT π
E)

= γ[P ′
T (π

′)E − PT (π
′)E + PT (π

′)E − PT π
E ]

= γ[(P ′
T − PT )(π

′)E ]︸ ︷︷ ︸
A: transition difference term

+ γ[PT ((π
′)E − πE)]︸ ︷︷ ︸

B: expert policy difference term

. (35)

Based on (35), we can further split the increment from Qr(s, a) to Qr′(s, a) in (33) into:

Qr′(s, a)−Qr(s, a) =

(Y ′)−1 (r′ − r)︸ ︷︷ ︸
reward transfer shift

+ (Y ′)−1AQr︸ ︷︷ ︸
transition transfer shift

+ (Y ′)−1BQr︸ ︷︷ ︸
expert policy transfer shift

 (s, a) (36)
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B.8.2 EXTENSION TO THE SOFT CONSTRAINT SCENARIO

In this part, we extend our theory from the hard constraint scenario to the soft constraint scenario.
Unlike the hard constraint scenario, where we construct a constraint set that a sensible agent should
never visit, the soft constraint scenario is more complex. Given a threshold ϵ > 0, no matter how large
the constraint on a state-action pair (s, a) is, it is always possible to visit (s, a) after a sufficiently
large number of steps, because the cost of visiting (s, a) can be reduced via the power of discount
factor γ < 1.

For IRC solvers, in the soft constraint scenario, safety is also not guaranteed by the transferred reward
correction term in the target environment. Lemma 5.3 still applies, as long as G ≠ ∅. Choosing aC at
state s and follows the expert policy (π′)E in any other state definitely violates the constraint, since

A
r,(π′)E

M′∪r′ (s, a) > 0 and the target expert policy (π′)E is optimal.

The primary difference between the hard and soft constraint scenarios is that the cost functions
inferred by the ICRL solver may not be transferable. However, we demonstrate that the ICRL solver
inherently offers better transferability in safety, because it is not affected by reward transfer shifts,
compared with the IRC solver.

In the soft constraint scenario, the cost function c(s, a) constructed by such Q-functions may not be

transferable in the target CMDP, since for (s, a) ∈ G, Qc,(π′)E

M′∪c (s, a)− V
c,(π′)E

M′∪c (s) > 0 (situation (ii)
in Lemma 4.3) is not necessarily satisfied.

Since at each state s ∈ S, the agent examines whether this action is executable based on the cost
Q-function, we study the cost Q-function in the source and target CMDP.

Qc(s, a) = Q
c,(π)E

M∪c =
[
(IS×A − γPT π

E)−1c
]
(s, a) (37)

Qc′(s, a) = Q
c,(π′)E

M′∪c =
[
(IS×A − γP ′

T (π
′)E)−1c

]
(s, a) (38)

Similar to the transferability of reward correction terms, we further discuss the influence of different
reward functions, transition models, and expert policies on the transferability of cost functions. Since
cost Q-functions of constraint-violating actions are larger than that of the expert action to ensure the
optimality of expert policy, we next show how the cost Q-function in the target CMDP is shifted.

From (37) and (38), we obtain

Qc′(s, a) = [(Y ′)−1Y Qc](s, a)

= [(Y ′)−1(Y − Y ′ + Y ′)Qc](s, a)

= [(Y ′)−1(Y − Y ′)Qc](s, a) + Qc(s, a) (39)

Given (35), the increment in cost Q-functions can be split into:

Qc′(s, a)−Qc(s, a) =

 (Y ′)−1AQc︸ ︷︷ ︸
transition transfer shift

+ (Y ′)−1BQc︸ ︷︷ ︸
expert policy transfer shift

 (s, a) (40)

By comparing (36) with (40), we can clearly see the difference in transferring reward correction terms
and cost functions. Transferring the cost function by the ICRL solver is influenced by: 1) transition
shift, and 2) expert policy shift. Transferring the reward correction term by IRC is influenced by: 1)
reward shift, 2) transition shift, and 3) expert policy shift.

At state s, for aC ∈ G, we further distinguish two cases. Let aC1 denote the action that satisfies
(s, aC1) ∈ {(s, a)|Ar,πE

M∪c(s, a) > 0} ∩ {(s, a)|Ar,(π′)E

M′∪c (s, a) > 0} and aC2 denote the action that

satisfies (s, aC2) ∈ {(s, a)|Ar,πE

M∪c(s, a) > 0}\{(s, a)|Ar,(π′)E

M′∪c (s, a) > 0}.
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Based on Eq. (39), we have

Qc′(s, aE) = [(Y ′)−1(Y − Y ′)Qc](s, aE) +Qc(s, aE)

Qc′(s, aO) = [Y ′)−1(Y − Y ′)Qc](s, aO) +Qc(s, aO)

Qc′(s, aC1) = [(Y ′)−1(Y − Y ′)Qc](s, aC1) +Qc(s, aC1)

Qc′(s, aC2) = [(Y ′)−1(Y − Y ′)Qc](s, aC2) +Qc(s, aC2)

Qc′(s, (a′)E) = [(Y ′)−1(Y − Y ′)Qc](s, (a′)E) +Qc(s, (a′)E)

A sufficient condition that the ICRL solver fails would be choosing aC1 in the target CMDP. Specifi-
cally, we should show the condition under which with new reward function r′ and new transition P ′

T ,
∃s ∈ S, ∀ aE ∈ A and ∀ aO ∈ A, ∃ aC1 ∈ A: Qc′(s, (a′)E) > Qc′(s, aC1) (aC1 does not violate
the constraint but achieves higher rewards). We formally state this condition in the following lemma.
Lemma B.23. ∀r′ ∈ [0, Rmax]

S×A and ∀P ′
T ∈ ∆S

S×A, if ∃s ∈ S, ∀ aE ∈ A and ∀ aO ∈ A, ∃
aC1 ∈ A that satisfies the following condition, then the cost function c constructed by such cost
Q-functions is non-transferable in the target CMDP,

Qc(s, aE) < Qc(s, aC1), Qc(s, aE) < Qc(s, aC2), Qr(s, aE) ≥ Qr(s, aO)

[(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,(a′)E)) < 0 (41)

where e(s,a) denotes a vector with value of 1 at the index (s, a) and 0 elsewhere.

Proof. The first three inequalities result from Lemma 4.3, aiming to ensure the optimality of expert
policy. For the fourth inequality, since we do not know (a′)E , we need to distinguish four situations,
namely (a′)E is aE , aC1 , aC2 or aO.

Distinguish four cases:

1. If (a′)E = aE , Qc′(s, (a′)E) = Qc′(s, aE) > Qc′(s, aC1);

2. If (a′)E = aC1 , this can not happen, because Ar,(π′)E

M′∪sc (s, a
C1) > 0 and (π′)E is determinis-

tic;

3. If (a′)E = aC2 , Qc′(s, (a′)E) = Qc′(s, aC2) > Qc′(s, aC1), there will always be such
Qc(s, aC2) and Qc(s, aC1) that satisfy this because there’s no requirements on the relative
value between Qc(s, aC2) and Qc(s, aC1) ;

4. If (a′)E = aO, Qc′(s, (a′)E) = Qc′(s, aO) > Qc′(s, aC1).

Hence, we only need to discuss case 1 and case 4.

Case 1. Qc′(s, aE) > Qc′(s, aC1)

equivalent to

[(Y ′)−1(Y − Y ′)Qc](s, aE) +Qc(s, aE) > [(Y ′)−1(Y − Y ′)Qc](s, aC1) +Qc(s, aC1) (42)

equivalent to

Qc(s, aE)−Qc(s, aC1) > [(Y ′)−1(Y − Y ′)Qc](s, aC1)− [(Y ′)−1(Y − Y ′)Qc](s, aE)

= [(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,aE)) (43)

equivalent to (considering Qc(s, aE)−Qc(s, aC1) < 0)

[(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,aE)) < 0 (44)

Case 4. Qc′(s, aO) > Qc′(s, aC1)

equivalent to

[(Y ′)−1(Y − Y ′)Qc](s, aO) +Qc(s, aO) > [(Y ′)−1(Y − Y ′)Qc](s, aC1) +Qc(s, aC1) (45)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

equivalent to

Qc(s, aO)−Qc(s, aC1) > [(Y ′)−1(Y − Y ′)Qc](s, aC1)− [(Y ′)−1(Y − Y ′)Qc](s, aO)

= [(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,aO)) (46)

equivalent to (considering Qc(s, aO)−Qc(s, aC1) < 0)

[(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,aO)) < 0 (47)

Bring together case 1 and case 4, we obtain

[(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,(a′)E)) < 0 (48)

Lemma B.24. If two additional assumptions are satisfied: 1) the transition model does not change,
i.e., P ′

T = PT ; 2) the optimal policy of source CMDP is the optimal policy of target CMDP, i.e.,
Π∗

Mc
⊆ Π∗

M′
c
, then the feasible cost function ĉ inferred by the ICRL solver (3.1) can prevent any

visitation to (s′, a′) ∈ G ≠ ∅ in the target CMDP.

Proof. Suppose (s′, a′) ∈ G ̸= ∅, at state s′, since a′ can bring more rewards both in the source
CMDP and in the target CMDP, a′ should be abandoned in both CMDPs. This means, in a soft
constraint scenario, the expert policy at state s′ must reach the threshold (Yue et al., 2024, Lemma
4.2). Since the constraint condition in case two is the same between the source and target CMDP, for

∀θ ∈ (0, 1], policy π′(a|s′) =

{
θ , a = a′

1− θ, a ∼ πE = (π′)E
violates the soft constraint in target CMDP.

As a result, action a′ is abandoned in the target CMDP after transferring.

Remark B.25. We demonstrate the performance of the ICRL solver in soft constraint scenarios in
two aspects. In aspect one, only reward functions are different between source and target. In aspect
two, only transition dynamics are different between source and target.

Aspect One: In soft constraint scenarios, the ICRL solver still outperforms the IRC
solver in the sense that it resists the variation between source and target reward functions. Table
2 illustrates whether the inferred reward correction terms by the IRC solver violate the constraint in
the target environment (safe ✓ or not ✗). We can see that with the increase in reward functions, the
inferred reward correction terms tend to become unsafe while the inferred cost functions by ICRL
solvers are safe still. Threshold ϵ = 0.015 and ground-truth costs are 1.

Table 2: Safety (safe ✓ or not ✗) of inferred reward correction terms by the IRC solver under
different rewards in the target environments of Gridworld-1. T represents the terminal location (6,6)
in Gridworld-1.

different r′(T ) ↑ r′(T ) = 1 r′(T ) = 1.2 r′(T ) = 1.4 r′(T ) = 1.6 r′(T ) = 1.8 r′(T ) = 2
IRC solver ✓ ✓ ✓ ✗ ✗ ✗

ICRL solver ✓ ✓ ✓ ✓ ✓ ✓

Aspect Two: In soft constraint scenarios, ICRL solver can violate constraints due to compen-
sated penalization by new transition dynamics. We provide a case study to help the readers better
understand this aspect. Reconsider the example in Figure 1 in a soft constraint scenario. We only set
c((0, 2)) = 1 and ϵ = 0.8× (0.7)−2 > 0. Suppose in the source environment, there is no randomness
for any chosen actions. The true cost function the expert follows is cE((0, 2)) = 1. In this case,
the shortest path, i.e., going straight upward from (0,0) to (0,5), is forbidden by the expert because
the path induces a cumulative cost of 1× (0.7)−2 > ϵ. One choice of the feasible cost function is
c((0, 2)) = 0.85, since 0.85 × (0.7)−2 > ϵ is sufficient to ban the shortest path. Now we transfer
c((0, 2)) = 0.85 from the source to the target environment. Suppose the target environment only
differs from the source environment in the transition model. In the target environment, if the location
(0,1) alters its transition model to be PT ((0, 2)|(0, 1), UP ) = 0.9 and PT ((1, 1)|(0, 1), UP ) = 0.1.
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The inferred optimal policy based on c((0, 2)) = 0.85 visits (0,2) because the shortest path has a
cumulative cost of 0.85 × 0.9 × (0.7)−2 = 0.765 × (0.7)−2 < ϵ but should be forbidden by the
expert policy because the shortest path has a cumulative ground-truth cost of 0.9× (0.7)−2 > ϵ.

B.9 THEORETICAL RESULTS OF TRANSFERABILITY IN OPTIMALITY

Proposition B.26. Let Hγ := 1/(1 − γ), R := maxr∈R ∥r̆∥∞,and D = maxr̆,r′∈R ∥r − r′∥2.
Suppose that α < 2D,then for the Shannon entropy regularization, η and σR can be obtained from
(Schlaginhaufen & Kamgarpour, 2024, Proposition D.8):

η = αµmin/H
2
γ and σR =

µmin

(
1− α

2D

)
exp

(
−2RHγ

α

)
D|S||A|2+Hγ

. (49)

Lemma B.27. Suppose Assumptions 5.4 hold, and let r, r′ ∈ R. Then, we have

σR

2
∥[r]U − [r′]U∥

2
2 ≤ ℓ(r′,RL(r)) = Dh (RL(r),RL(r

′)) ≤ 1

2η
∥[r]U − [r′]U∥

2
2 ,

for some problem-dependent constant σR > 0.

Proof. This lemma directly comes from (Schlaginhaufen & Kamgarpour, 2024, Lemma 3.5).

Lemma B.28. Consider x, y ∈ Rn and two subspaces V,W ⊂ Rn of dimension m < n.Then,

∥[x]W − [y]W∥2 ≤ ∥ΠW −ΠW∥ · ∥x− y∥2 + ∥[x]V − [y]V∥2 ,

where ∥ΠW −ΠV∥ = sin (θmax(V,W)) .

Proof. This lemma directly comes from (Schlaginhaufen & Kamgarpour, 2024, Proposition D.10).

Definition B.29. (Cost equivalence). We extend the results of reward equivalence (feasible reward set)
in IRL settings (Schlaginhaufen & Kamgarpour, 2024) to cost equivalence (feasible cost set) in ICRL
settings. Given a linear subspace V ⊆ RS×A, the quotient space RS×A/V is the set of all equivalence
classes [r − λ∗c]V := {r−λ∗c′ ∈ RS×A : λ∗(c′−c) ∈ V}. On quotient space RS×A/V ,the quotient
norm ∥[x]V∥2 := minv∈V ∥x+ v∥2 = ∥ΠV⊥x∥2 and we say that c and ĉ are close in RS×A/V
given λ∗, if ∥[r − λ∗c]V − [r − λ∗c′]V∥2 = ∥[(r − λ∗c) − (r − λ∗c′)]V∥2 = ∥[λ∗(c′ − c)]V∥2 is
small. Moreover, the expert’s cost is said to be recovered by ĉ up to some equivalence class [·]V
if r − λ∗ĉ ⊆ [r − λ∗cE ]V . In this paper, we consider the equivalence relations induced by the
subspace of potential shaping transformations (Ng et al., 1999), i.e., V = UPT := im(E − γPT ).
This subspace represents the feasible cost set defined in (28).

Theorem 5.7. Let P ′
T be a transition law in the target environment and d1 = ∥[cE − ĉ]UP ′

T
∥2.

Suppose that Assumption 5.4 holds. If ℓ r
′,(λ′)∗

PT
(ĉ,CRL(cE)) ≤ ε1, ĉ is ε-transferable to P ′

T with

ε = 2max
{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
/η, (50)

where σR and η are regularity constants, given in Appendix B.26.

Proof. For better readability, we denote (r̂)′ = r′ − (λ′)∗ĉ and (r̆′)E = r′ − (λ′)∗cE . It follows
from Lemma B.27 that

∥∥∥[(r̆′)E ]UPT
− [(r̂)′]UPT

∥∥∥
2
≤

√
2ε1/σR. By choosing the closest (r̆′)E and

(r̂)′ in subspace UP ′
T

in Lemma B.28, we then have that∥∥∥[(r̆′)E ]UP ′
T
− [(r̂)′]UP ′

T

∥∥∥
2
≤ sin (θmax(P

′
T , PT ))

∥∥∥[(r̆′)E − (r̂)′]UP ′
T

∥∥∥
2
+

∥∥∥[(r̆′)E ]UPT
− [(r̂)′]UPT

∥∥∥
2

≤ d1 sin (θmax(P
′
T , PT )) +

√
2ε1/σR (51)
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Hence, applying Lemma B.27 again yields

ℓ
r′,(λ′)∗

P ′
T

(
ĉ,CRLP ′

T
(cE)

)
≤ 1

2η

∥∥∥[(r̆′)E ]UP ′
T
− [(r̂)′]UP ′

T

∥∥∥2
2

≤
(d1 sin

(
θmax(PT

′, PT )
)
+
√
2ε1/σR)2

2η

≤
2max

{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
η

. (52)

C COMPARISON ON CONTINUOUS ENVIRONMENTS

For continuous environments, we apply an offline setting to compare the transferability of constraint
knowledge inferred by IRC or ICRL solvers. The offline setting is different from the online setting in
discrete environments. The expert policy for online estimation is replaced by expert demonstrations
in a given dataset. For ICRL, The goal is to recover the minimum constraint set that best explains
the expert data. Existing ICRL works commonly follow the Maximum Entropy framework (Malik
et al., 2021). IRC solvers in this setting follow the same framework but solve a bi-level optimization
problem (Hugessen et al., 2024).
We build on the codebases from Hugessen et al. (2024) and Liu et al. (2023) to compare the
transferability performance of the IRC and ICRL solvers. We adapt the code to enable both solvers to
infer constraint knowledge—such as reward correction terms or cost functions—within the source
environment while evaluating the feasibility of this knowledge in the target environment. Using
the blocked half-cheetah environment as a testbed, we report the results with mean ± standard
deviation in Figure 7 with three random seeds. The definition of metrics and detailed source and
target environment specifications are explained in Section D.
We find that IRC solver has better training efficiency in the source environment, i.e., achieving zeo
violation rate with considerate feasible rewards more quickly than the ICRL solver. However, after
transferring constraint knowledge into the target environment, inferred correction terms by the IRC
solver fail to ensure safety (avoid constraint violation) while the cost function inferred by the ICRL
solver has better generalizability.
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Figure 7: Training curves of rewards (left), violation rate (middle), and feasible rewards (right) for
the ICRL (red) and IRC (blue) solvers. The top row shows the results for the source environment,
and the bottom row shows the results for the target environment.
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D EXPERIMENTAL DETAILS

We ran experiments on a desktop computer with Intel(R) Core(TM) i5-14400F and NVIDIA GeForce
RTX 4060 Ti.

Details about Gridworld. In this paper, we construct a map with dimensions of 7 × 7 units and
define four distinct settings, as shown in Figure 2. Locations are represented by two coordinates,
with the first corresponding to the vertical axis and the second to the horizontal axis. The agent’s
objective is to navigate from a starting point to a target location while avoiding specified constraints.
The agent begins in the bottom-left corner at position (0, 0) and has eight possible actions: four
cardinal directions (up, down, left, right) and four diagonal directions (upper-left, lower-left, upper-
right, lower-right). The target location and reward are positioned in the upper-right cell (6, 6) in
the first, second, and fourth Gridworld environments, while in the third environment, the target
is located in the upper-left cell (6, 0). If the environment has a stochasticity of p, the agent has a
probability of p to move randomly in any feasible direction, with each direction having a probability
of p/num_of_actions. The reward is only provided at the target cell, with all other cells yielding zero
reward. A cost of 1 is incurred if the agent enters a constrained location. Each policy rollout continues
for a maximum of 50 time steps. In Figure 4, we present the mean and the 68% confidence interval
(1-sigma error bar), calculated using three random seeds. Table 3 presents utilized hyperparameters
in Gridworld experiments.

Table 3: List of the utilized hyperparameters in Gridworld environment.

Parameters Gridworld

Max Episode Length 50
Discount Factor 0.7
Stopping Threshold 0.001
Stochasticity 0.05
Nu Max Clamp 1
Penalty Initial Value 0.1
Penalty Learning Rate 0.1
Source Terminal Rewards 1,1,1,1
Target Terminal Rewards 2,7,7,15
Ground-truth Costs 1

Details about Half-Cheetah The Blocked Half-Cheetah task is built on Mujoco, where the agent
controls a two-legged robot. The reward is determined by the distance the robot travels between
consecutive time steps, penalized by the magnitude of the input action. Each episode ends after a
maximum of 5000 time steps. To impose a constraint, we block the region where the X-coordinate
should satisfy x_pos ≤ −3, restricting the robot’s movement to the region where the X-coordinate
is between −3 and +∞. The source environment follows the setup described above. In the target
environment, rewards are scaled by a factor of 1.1, and Gaussian noise with a mean of 0 and a
standard deviation of 0.1 is added to each observation. We utilize three metrics for evaluations: 1)
rewards are defined as the total returns for an episode, regardless of constraints; 2) feasible rewards
are the aggregated returns for an episode up to the first constraint violation; 3) the violation rate is
calculated as the percentage of episodes in which one or more constraint violations occur. Table 4
presents utilized hyperparameters in Gridworld experiments. Other hyperparameters follow previous
codebases (Hugessen et al., 2024; Liu et al., 2023).

Table 4: List of the utilized hyperparameters in Half-Cheetah environment.

Parameters Half-Cheetah

Training Epoch 320
Testing Epoch 320
Max Episode Length 5000
IRC Solver IRL-base
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