
MiniKV: Pushing the Limits of 2-Bit KV Cache via Compression and
System Co-Design for Efficient Long Context Inference

Anonymous ACL submission

Abstract

State-of-the-art 2-bit KV cache quantization001
techniques achieve excellent results in accel-002
erating LLM inference while retaining accu-003
racy on long context tasks. However, further004
pushing the compression ratio fails to deliver005
performance gains. In this work, we revisit006
these approaches by considering, additionally,007
adaptive KV methods that retain LLM accu-008
racy with only a subset of KV states. This009
leads us to propose a method based on 2-bit KV010
cache quantization with adaptive KV policies.011
In addition, we take an algorithm and system012
co-design approach by developing hardware-013
friendly kernels to accelerate LLM inference014
while making MiniKV compatible with exist-015
ing memory-efficient attention techniques such016
as FlashAttention, effectively translating algo-017
rithmic improvements into system performance018
gains. Experiments on a wide range of long019
context tasks show that MiniKV effectively020
achieves >80% KV cache compression while021
retaining accuracy, outperforming state-of-the-022
art methods while achieving excellent latency,023
throughput, and memory consumption improve-024
ments in long context inference.025

1 Introduction026

Large language models (LLMs) have exhibited027

unique capabilities, such as instruction following,028

reasoning, and inference time scaling (OpenAI,029

2024; DeepSeek-AI et al., 2025). However, ef-030

ficiently serving LLMs is still a pressing concern.031

One of the main LLM inference bottlenecks is the032

consumption of KV cache memory, which con-033

sumes memory in addition to widely studied bot-034

tlenecks such as model sizes (Frantar et al., 2022;035

Lin et al., 2024).036

To address this challenge, one of the prevail-037

ing practices is to quantize the KV cache (vLLM,038

2025; NVidia, 2025). Studies show that FP8/INT8039

or even 4-bit quantization can be achieved for040

KV cache compression while preserving accu- 041

racy (Sheng et al., 2023; Liu et al., 2023a; Yang 042

et al., 2024b). State-of-the-art approaches, such 043

as KIVI and KVQuant (Liu et al., 2024b; Hooper 044

et al., 2024), show that the KV cache can be ef- 045

fectively quantized to sub 4-bit, e.g., 2 bits, while 046

preserving most accuracy. However, further push- 047

ing down the compression ratio (e.g.,<2 bits) leads 048

to a significant accuracy loss. 049

In a separate line of research in the community, 050

numerous work have explored adaptive KV, where 051

the LLM selects a small subset of KV states based 052

on their importance (Zhang et al., 2023; Xiao et al., 053

2023b; Ge et al., 2023; Liu et al., 2023b). Re- 054

cent advances also introduce head-specific adaptive 055

KV (Ge et al., 2023; Xiao et al., 2024; Wu et al., 056

2024) and layer-specific adaptive KV (Cai et al., 057

2024; Nawrot et al., 2024; Wan et al., 2024) with 058

the goal of evicting or merging KV pairs without 059

compromising overall performance. However, fol- 060

lowing the work of (Zhang et al., 2023), few studies 061

have included studies on how adaptive KV policies 062

work on quantized KV cache, despite quantized 063

KV is widely used in practice (Turganbay, 2024). 064

Moreover, for long context inference, where KV 065

cache memory becomes the major bottleneck, few 066

adaptive KV work manage to achieve a compres- 067

sion ratio that exceeds 50% while maintaining ac- 068

curacy in long context tasks (Li et al., 2024; Tang 069

et al., 2024). 070

These two points of view (quantized KV and 071

adaptive KV) consider the extreme sides of the 072

spectrum of optimization points for KV cache mem- 073

ory. However, there has been very little work 074

exploring how to consolidate these two lines of 075

work to maximize the KV cache memory savings. 076

The conventional wisdom is that these techniques 077

can be combined. However, existing work aim- 078

ing to combine 4-bit quantization and adaptive KV 079

shows that combining these techniques leads to 080

non-trivial interactions (Zhang et al., 2024), which 081

1



XK

XQ

XV

XO

KHH

VHH

QK

QV

16-bit 2-bit

(a) Prefill Phase

Token

C
ha
nn
el

C
ha
nn
el

QK
QV

KernelRK
RV

 Matrix MulttK

tVtQ

Aquant

Aunquant Aquant Aunquant

XO

Selective Flash
Attention

Acumul

evict

(b) Decoding Phase

Per-Channel
Quant

Per-Token
Quant

prefill

prefill  Matrix Mult

Kernel

La
ye

r

Pyramid
Budget

1

2

n-1
n

Eviction

Figure 1: An overview of MiniKV. Tensors colored red/blue indicate 16-bit/2-bit representation, and shaded tokens
are evicted during inference. During the prefill phase, we employ pyramid KV with rectified token selection policy
across layers to identify a sparse set of important tokens. For all the important tokens, we employ sub-channel Key
quantization and per-token Value quantization to minimize the quantization errors while maintaining a compact
KV cache data layout without introducing any irregular operations. To address the incompatibility issue between
score-based KV pair selection policies and memory-efficient system optimizations such as FlashAttention, we
develop a two-pass Triton-based selective flash-attention kernel to output both the representation XO and the
cumulative attention map Acumul, while still keeping the memory consumption of the attention calculation linear with
respect to the sequence length. During decoding, we use a fused unpacking and multiplication kernel to compute
both the attention map between the new Query token tQ and the quantized Keys, as well as the product between the
attention map and the quantized Values.

need to be reasoned through carefully for good per-082

formance. In this paper, we address the following083

question: How should 2-bit KV cache quantization084

techniques be combined with adaptive KV policies085

to maximize the inference speed of LLMs given a086

memory budget while retaining high model accu-087

racy in long context inference?088

To answer the question, we revisit existing ap-089

proaches on ultra low-bit quantized KV (e.g., 2-bit)090

and adaptive KV, together with a compression sys-091

tem co-design perspective, which is unexplored so092

far. Our findings led us to develop MiniKV, which093

effectively compresses the KV cache through a094

synergistic combination of 2-bit quantization and095

adaptive KV to achieve minimal accuracy loss in096

long-context tasks while maximizing the compres-097

sion ratio. Specifically, on the algorithm side, we098

employ subchannel-wise key and token-wise value099

quantization, as well as pyramid KV with recti-100

fied token selection policy across layers to signifi-101

cantly push the KV compression ratio while keep-102

ing the algorithm still hardware-friendly without103

introducing any irregular computation. On the sys-104

tem side, we develop a two-pass Triton (Tillet et al.,105

2019) kernel together with native fused kernels to106

accelerate the inference latency while resolving107

the incompatibility limitation from the attention108

score-based eviction policy and memory-efficient109

attention system optimizations such as FlashAtten-110

tion (Dao et al., 2022). Consequently, the resulting111

system maximizes the compression ratio on the KV112

cache while obtaining high accuracy and hardware113

efficiency in long context inference. 114

To validate the approach, we compare MiniKV 115

with existing KV cache compression techniques 116

such as H2O, SnapKV, and Q-Hitter, across three 117

major models in LongBench datasets. The results 118

show that MiniKV effectively achieves 86% KV 119

cache compression while retaining comparable ac- 120

curacy on LongBench, outperforming state-of-the- 121

art methods. Furthermore, MiniKV enables prompt 122

lengths up to 44K tokens and a maximum through- 123

put that is 48% higher than its strongest baseline on 124

a single NVIDIA A100 GPU. To our knowledge, 125

our work is the first to show that it is possible to 126

achieve significantly >50% KV cache reduction 127

through compression and system co-design while 128

achieving high batch size ≥ 1 throughput on long 129

context tasks. 130

2 Related Work 131

Numerous efforts have been made to improve the 132

KV cache efficiency of LLMs. Among them, quan- 133

tization has been a prevailing technique employed 134

in deployment to overcome KV memory overhead 135

without retraining (vLLM, 2025; NVidia, 2025). 136

Many research has shown that FP8/INT8/INT4 137

quantization can be achieved for KV cache while 138

preserving accuracy (Hooper et al., 2024; Sheng 139

et al., 2023; Liu et al., 2023a; Yang et al., 2024b; 140

Zhang et al., 2024). However, further pushing the 141

quantization limit to under 4-bit, e.g., 2-bit, leads to 142

major performance loss. More recently, researchers 143

have proposed advanced quantization techniques, 144

2



such as KIVI (Liu et al., 2024b), to quantize KV145

cache into 2-bit without major loss in accuracy.146

While being effective, it still has one major limi-147

tation: its effectiveness against adaptive KV poli-148

cies and its implication on system performance has149

not yet been studied. Our results indicate that it150

is nontrivial to use 2-bit quantized KV together151

with adaptive KV policies in conjunction while152

achieving high compression ratio, accuracy, and153

system efficiency in long context inference, simul-154

taneously.155

Adaptive KV policies have also gained inter-156

est within the community, leading to various algo-157

rithms (Zhang et al., 2023; Xiao et al., 2023b; Liu158

et al., 2023b; Ge et al., 2023; Wan et al., 2024;159

Wu et al., 2024; Cai et al., 2024; Yang et al.,160

2024a; Li et al., 2024; Liu et al., 2024a; Bran-161

don et al., 2024; Tang et al., 2024). However,162

many of those works either do not focus on long163

context inference (Zhang et al., 2023; Xiao et al.,164

2023b; Liu et al., 2023b; Ge et al., 2023), where165

the KV cache pressure is the most prominent, or166

introduce irregular operations or auxiliary scores167

that are not hardware-friendly (e.g., batch size >1168

with FlashAttention enabled) (Ge et al., 2023; Wu169

et al., 2024; Wan et al., 2024; Tang et al., 2024).170

Finally, most adaptive KV methods struggle to ex-171

ceed a 50% compression rate in long context in-172

ference (Zhang et al., 2023; Li et al., 2024; Tang173

et al., 2024), suggesting that solely identifying im-174

portant tokens may have limited improvements for175

adaptive KV. Complementary to this line of work,176

our goal is to improve the compression ratio of KV177

cache via revising ultra-low quantized KV (e.g., 2-178

bit) with adaptive KV policies, with an eye toward179

system co-design to maximize the performance of180

LLM inference. We empirically show that this path181

can be more memory-efficient, especially on long182

context tasks. We provide a detailed summary of183

the comparison between MiniKV and previous ap-184

proaches in Appendix B.185

3 Method186

In this section, we first focus on the compressibility187

of ultra low-bit quantized KV cache by consid-188

ering adaptive KV policies, with an eye toward189

being able to still keep the final solution hardware190

friendly, which leads to the proposed algorithm in191

MiniKV. In addition, we introduce kernel optimiza-192

tion that addresses the composibility issue between193

score-based adaptive KV and memory-efficient at-194

tention implementation such as FlashAtttention. 195

3.1 Revisiting 2-Bit Quantized KV with 196

Adaptive KV Policies 197

3.1.1 Sub-channel Key Quantization with 198

Persistent Context Selection 199

Existing KV cache quantization methods often 200

perform per-token quantization (i.e., the scaling 201

factor and zero point are shared by elements in 202

the same token) (Sheng et al., 2023; Xiao et al., 203

2023a). However, it has been observed that out- 204

liers emerge within the channel dimension of key 205

cache (Liu et al., 2024b; Hooper et al., 2024), re- 206

quiring channel-wise quantization. 207

Recent works (Hooper et al., 2024; Liu et al., 208

2024b) observe that the data distribution within 209

each channel shifts over generation steps, leading 210

to inaccurate quantization. We measure and con- 211

firm the accuracy impact of inaccurate quantization 212

on LongBench in Appendix E. To mitigate quanti- 213

zation error, prior work suggests fine-grained per- 214

channel key quantization, which quantizes keys at 215

the granularity of a small sub-channel group (e.g. 216

16/32 numbers). Combining these techniques with 217

a full KV cache is straightforward because the el- 218

ements within each sub-channel group remain the 219

same during the entire LLM generation process. 220

However, with adaptive KV, the elements within 221

a sub-channel group may change after each decod- 222

ing step if some tokens in the group are evicted to 223

make space for newly generated tokens. MiniKV 224

solves this problem by enabling sub-channel key 225

quantization via persistent context selection. Our 226

design for this optimization is based on the fol- 227

lowing key observation: Given a sufficiently large 228

cache budget, the important tokens can be identi- 229

fied before generation and maintained persistently 230

throughout the process. 231

We found some recent inference optimization 232

works that argue against persistent context selec- 233

tion (Tang et al., 2024). However, all of these texts 234

show that heavy hitters do not persist when using 235

a tiny cache budget (<5%). We empirically ver- 236

ify persistent context selection by measuring the 237

fraction of heavy hitters that persist during the en- 238

tire generation phase of H2O when using a large 239

cache budget. We observe that nearly 60-80% of 240

the heavy hitters selected during the prefill stage 241

persist throughout generation. Please see Appendix 242

D for details. 243

Based on this observation, we choose a set of 244

3



persistent heavy hitters at the end of the prefill to245

quantize and not update throughout the generation246

phase. This allows MiniKV to avoid re-encoding a247

group while keeping a low quantization error with248

2-bit sub-channel quantization.249

3.1.2 Selectivity in Long Contexts: Heavy250

Hitters vs. Recent Window251

Prior studies observe that the accumulated attention252

scores of all tokens within an attention block follow253

a power-law distribution and claim that maintaining254

a tiny subset of important tokens (e.g., as low as255

5%) with the highest accumulated attention score is256

sufficient to maintain precision (Zhang et al., 2023).257

However, this observation has not been carefully258

examined in long contexts.259

We observe that using a highly limited mem-260

ory budget (e.g., 20%), existing solutions such261

as H2O (Zhang et al., 2023) and SnapKV (Li262

et al., 2024) have a significant performance drop263

in long context tasks, which motivates us to re-264

visit the selectivity of adaptive KV methods. First,265

we assess if the model retains performance us-266

ing only the recent window (RW) or heavy hit-267

ters (HH), we examine the KV cache’s selectivity268

towards RW/HH. The cache budget is described269

as the percent of the prompt tokens retained, i.e.270

an RW/HH budget of (αRW , αHH) and an input271

prompt of length lprompt tokens indicate that (αRW ·272

lprompt, αHH · lprompt) tokens are maintained as the273

RW and HH respectively. We fix the total cache274

budget to 50% and distribute it among the RW275

and HH, i.e., RW/HH budget of (αRW , αHH) =276

(0%, 50%), (10%, 40%), (20%, 30%), and so on.277

Fig. 2 (left) reveals an interesting aspect of the278

KV cache selectivity: The model performs bet-279

ter on some datasets with more HH (on Passage280

Count) and on some with a longer RW (on Trivi-281

aQA). More importantly, using solely RW or HH282

leads to a catastrophic accuracy drop in certain283

tasks (in Lcc and TriviaQA). This indicates that284

to have a robustly optimized KV cache selection285

policy, the model needs to maintain at least a criti-286

cal percentage of HH/RW (e.g., 5-10%) to avoid a287

significant accuracy drop.288

Next, we investigate the selectivity between RW289

and HH by varying the KV cache budget. In partic-290

ular, we fix the RW size (e.g., 10% of the prompt291

length) while varying the HH set size, and vice292

versa. Interestingly, as seen in Fig. 2 (right), we293

observe that there appears to be no common trend294

across datasets as to whether increasing the size of295

0.0 0.1 0.2 0.3 0.4 0.5
Heavy hitter/Recent window

0

20

40

60

80

Lo
ng

Be
nc

h 
Ac

cu
ra

cy

KV Cache Selectivity
Baseline
PassageCnt
Lcc

Trec
Samsum
TriviaQA

0.15 0.25 0.35 0.45 0.55
Cache Budget

20

21

22

23

24

25

26

Heavy Hitter vs.
Recent Window Selectivity

Baseline
RW
HH

HotpotQA
Gov Report
2wikimqa

Figure 2: (Left) H2O with different recent win-
dow/heavy hitter budget: We fix the total cache budget
to 50% and vary the heavy hitter and recent window bud-
get. (Right) H2O with different recent window/heavy
hitter budget: The heavy hitter/recent window cache
budget is fixed at 10% and the recent window/heavy
hitter budget is increased from 5% to 45%. The dotted/-
solid lines indicate variable recent window/heavy hitter
budget.

the RW vs. the HH set significantly improves the 296

selectivity of KV states on long context tasks. In 297

fact, either HH or RW allow adaptive KV to achieve 298

accuracy comparable to the full KV cache baseline. 299

Furthermore, unlike previous findings, which sug- 300

gest that high levels of eviction (80-95%) do not 301

decrease model accuracy (Zhang et al., 2023), we 302

find that as the sequence length increases, maintain- 303

ing accuracy under the same KV cache size budget 304

becomes challenging (please see Appendix K for 305

more details). However, low and medium levels of 306

eviction (e.g., 50%) are still possible. 307

Insight. Our experiments suggest that high 308

levels of KV cache eviction significantly degrade 309

LLM’s performance on long context tasks. How- 310

ever, medium levels of eviction can still retain com- 311

parable model accuracy. Even at medium levels, 312

the model needs to maintain a critical percentage 313

of both heavy hitters and recent window tokens. 314

3.1.3 Layer-Specific Selectivity: Uniform, 315

Variance, or Pyramid? 316

Inspired by recent works on layer-wise KV cache 317

compression (Cai et al., 2024; Liu et al., 2024a; 318

Wan et al., 2024), we investigate several layer- 319

specific KV cache selection strategies that allocate 320

variable KV cache budgets across model layers. 321

• Uniform allocation: This policy has been 322

used in multiple previous studies (Zhang et al., 323

2023; Xiao et al., 2023b; Liu et al., 2023b), 324

where all layers have the same KV cache bud- 325

get. 326

• Variance-based allocation: Similar to (Wan 327

et al., 2024), we use the variance of the cu- 328

4



mulative attention map to determine the layer-329

wise KV cache budget. Lower layers exhibit330

smaller variances, making token eviction dif-331

ficult. We examine two policy variations: Var-332

prop, allocating KV cache per layer propor-333

tionally to variance, and Var-inv, allocating it334

inversely proportional to variance.335

• Pyramid-like allocation: Introduced in (Cai336

et al., 2024), this strategy adjusts the heavy337

hitter cache budget across layers by allocating338

more cache in lower layers and less in higher339

ones. The cache budget for the intermediate340

layers is determined through linear interpola-341

tion.342

In our experiments, we observe that the Pyramid343

policy achieves much better accuracy than the other344

policies, especially with medium levels of eviction,345

shown in Fig. 3.346

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Heavy Hitter Ratio

34.5

35.0

35.5

36.0

36.5

37.0

Lo
ng

be
nc

h 
Ac

cu
ra

cy

Different layerwise strategies on LongBench

Uniform
Var-prop
Var-inv
Pyramid

Figure 3: Performance of layer-wise KV cache alloca-
tion policies. The Pyramid policy works best, particu-
larly at medium levels of eviction.

3.2 Memory-Efficient Fused Selective347

Attention Kernels348

Despite ongoing advancements, many adaptive KV349

studies predominantly use attention scores as a cri-350

terion to determine which tokens should be evicted351

(Zhang et al., 2023; Liu et al., 2023b; Leskovec and352

Sosic, 2016; Cai et al., 2024).353

While showing promising results in reducing354

the KV cache size, these attention-score-driven355

methods are not aligned with memory-efficient356

transformer system optimizations. In particular,357

these methods rely on accessing the attention ma-358

trix A in Equation 1, which has a quadratic mem-359

ory complexity with respect to the sequence length.360

FlashAttention (Dao et al., 2022) performs the at-361

tention process without materializing the attention362

matrix. Therefore, to the best of our knowledge,363

no prior adaptive KV works with FlashAttention364

enabled, hindering their memory savings on long365

sequences.366

To address the challenge, this part introduces367

our memory-efficient Triton kernel implementa- 368

tion for MiniKV, which simultaneously returns the 369

following two outputs with linear memory com- 370

plexity: (1) a weighted sum of the value tensors 371

XO, same as FlashAttention, and (2) cumulative 372

attention score Acumul along each column 1. De- 373

spite being a simple task when memory is not a 374

constraint, implementing such a kernel with linear 375

memory complexity is challenging. The difficulty 376

arises because Acumul requires summing the atten- 377

tion values for each token position, i.e., along the 378

columns of the attention matrix. FlashAttention re- 379

duces memory usage by employing row-wise tiling, 380

which avoids storing large intermediate attention 381

matrices. However, this row-wise tiling means that 382

different rows are processed in parallel, leading 383

to a race condition when summing the attention 384

scores column-wise. To prevent this race condition, 385

atomic add instructions are needed, which signifi- 386

cantly slow down the kernel execution speed. 387

We solve this by introducing a two-pass kernel 388

implementation. In the first-pass of the kernel, we 389

follow FlashAttention to compute the weighted 390

sum of the value tensors and save the interme- 391

diate LSE (Log Sum Exponential) value. To ef- 392

ficiently operate on data in shared memory, we 393

tile the input query tensor into row blocks of size 394

KBlockM. Within each row block, the key tensor is 395

subdivided into tile blocks of size KBlockN. Each 396

row and column block calculates the tiled atten- 397

tion map PKBlockM×KBlockN . With this product 398

of the query and key tensors and the correspond- 399

ing tile from the value tensor, we follow FlashAt- 400

tention’s online softmax reduction to compute the 401

weighted V block write it back. We aggregate the 402

LSE value per row into an additional buffer of size 403

[batchSize, headDim, seqLen]. 404

For the second-pass, we run different columns 405

in parallel to compute a sequential sum of atten- 406

tion weights per token. As shown in Fig. 4, we 407

iteratively recompute the QKT value and use the 408

LSE values to normalize it. From top to bottom, 409

we accumulate the sum column-wise and save it to 410

the corresponding position in Acumul. 411

In summary, any memory buffers that we allo- 412

cate over FlashAttention scale linearly with se- 413

quence length, i.e., LSE requires O(lquery) and 414

Acumul requires O(lkey) memory. 415

1Variables marked in Red/Blue indicate tensors in
FP16/INT2 precision.

5



Figure 4: Two-pass kernel parallelism: In the first pass,
we choose different row blocks running in parallel to
compute the weighted sum of value tensors. At the same
time, each row updates its max and sum and saves it
to LSE. Then it switches to processing column blocks
in parallel during the second pass. For each column,
it recomputes QKT and normalizes it with the corre-
sponding LSE value. From top to bottom, each column
accumulates the sum and writes the result to Acumul.

3.3 MiniKV Algorithm416

Based on the aforementioned observations and op-417

timizations, we employ compression and system418

co-design for MiniKV, as shown in Algorithm 1.419

In the prefill stage, MiniKV uses the fused selective420

flash-attention kernel (§ 3.2) to obtain aggregated421

attention scores Acumul. Based on the attention422

score, MiniKV selects the subset of KV states that423

has the highest attention score at the end of the pre-424

fill stage (denoted as Kprefill
HH , V

prefill
HH ). The tokens425

retained are compressed to INT2 representations.426

We use a separate high-performance compression427

kernel provided by (Liu et al., 2024b) to apply bit428

shift to pack 16 INT2 scalar values from selected429

KV states into an INT32 tensor. The key/value to-430

kens are quantized along the channel/token dimen-431

sion. The results at the end of the prefill phase are432

the quantized key/value representation (QK , QV ,433

stored in packed INT32 tensors) and the quantiza-434

tion zero-point and scale (stored in FP16 tensors).435

During each decoding step, MiniKV dequantizes436

the quantized KV cache (q−1(QK , QV )) and uses437

the dequantized key states along with the new key438

and query token (tK , tQ) for attention calculation.439

Once the attention map (A) is obtained, the dequan-440

tized values states (q−1(QV )) and the new value to-441

ken (tV ) are multiplied by (A) to compute the out-442

put of the attention layer (tO). MiniKV fuses the443

dequantization operations with subsequent matrix444

multiplications to reduce kernel launch overhead445

and global memory accesses, leading to latency446

Algorithm 1 The MiniKV Algorithm, FP16/INT2

Require: Input XP ∈ Rlprompt×d

1: XQ, XK , XV ← XPWQ, XPWK , XPWV

2: XO, Acumul = Selective_flash_attn(XQ, XK , XV )

3: Kprefill
HH , V prefill

HH ,#HH ← Heavy_hitters(Acumul)

4: QK , QV ← Quant(Kprefill
HH ),Quant(V prefill

HH )
5: KV Cache← QK , QV

6: procedure DECODING(KV cache, token t ∈ R1×d)
7: tQ, tK , tV ← tWQ, tWK , tWV

8: QK , QV , RK , RV ← KV cache
9: RK , RV ← Concat([RK , tK ]),Concat([RV , tV ])

10: if len(RK) = nr then
11: Q′

K , Q′
V ← Quant(RK),Quant(RV )

12: QK ← Concat([QK , Q′
K ], dim = channel)

13: QV ← Concat([QV , Q′
V ], dim = token)

14: RK , RV ← None
15: end if
16: A← Softmax(Concat([q−1(QK)tTQ, RKtTQ]))
17: Aquant, Aunquant ← A[: −len(RK)], A[−len(RK) :]
18: tO ← Aquantq

−1(QV ) +AunquantRV

19: KV Cache← QK , QV , RK , RV

20: return tO
21: end procedure

reduction. 447

Inspired by KIVI (Liu et al., 2024b), we use a 448

streaming buffer for both key and value states dur- 449

ing the decoding stage, so that newly generated 450

key/value caches are first stored in FP16 (indicated 451

by (RK , RV )). These tokens are compressed every 452

nr step. This saves repeated kernel launch over- 453

head for quantization while maintaining at most nr 454

KV tokens in FP16 during generation. 455

4 Experiments 456

We conduct experiments to evaluate the effective- 457

ness of MiniKV in improving accuracy preserving 458

and inference performance. 459

4.1 Evaluation Methodology 460

Models. We compare MiniKV against state-of- 461

the-art public LLMs, including LLaMA2-7B-chat, 462

LLaMA2-13B-chat (Touvron et al., 2023) and 463

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). 464

Datasets. We choose LongBench for evalua- 465

tion (Bai et al., 2023), which has been widely 466

adopted in state-of-the-art works (Liu et al., 2024b; 467

Hooper et al., 2024; Li et al., 2024). Additional 468

details on the data sets used can be found in the 469

Appendix F. 470

Baselines. We compare MiniKV with the follow- 471

ing baselines: adaptive KV (H2O, SnapKV (Zhang 472

et al., 2023; Li et al., 2024)), INT2 quantized KV 473

(KIVI (Liu et al., 2024b)), adaptive + quantized 474

KV (Q-hitter (Zhang et al., 2024)), and FullKV. 475

Q-Hitter combines H2O with INT4 quantization, 476

providing a strong baseline for MiniKV. 477

6



Table 1: Performance evaluation of MiniKV on various models in a range of benchmarks in LongBench. Rows
marked in brown have a similar KV cache size, while KIVI and the full model use a larger KV cache.

Models Methods

Single-Doc QA Synthetic Code Multi-Doc QA Summarization Few-Shot Learning

Qasper

Multifi
eldQA

Passa
ge Ret.

Passa
ge Ct.

LCC

RepoBench-P

2WikiMQA

HotpotQA

Gov Report

Multi News

TREC
SamSum

TriviaQA
Average

LLaMA2-7B-chat

Full Model 22.78 33.59 8.44 4.75 59.56 48.07 22.35 24.88 24.99 23.60 59.67 39.38 85.38 35.19
KIVI 22.45 33.32 11.33 4.25 59.05 47.96 21.88 23.88 24.46 22.86 59.67 38.74 84.80 34.97
H2O (15%) 16.98 29.72 11.00 4.55 56.87 48.25 19.92 24.58 22.19 22.16 57.33 37.80 84.02 33.49
SnapKV (15%) 17.41 34.53 8.67 3.59 58.48 47.52 21.00 24.91 19.04 19.74 59.33 37.92 84.72 33.60
Q-Hitter (59%) 17.43 30.08 9.00 4.13 56.84 45.18 17.66 22.57 22.83 22.48 59.67 38.46 82.76 33.01
MiniKV 21.01 29.23 10.00 3.82 58.38 47.99 20.91 22.97 23.45 22.54 59.00 37.94 80.95 33.71
MiniKV Pyramid 19.92 33.96 10.00 4.12 59.72 49.29 20.69 24.62 24.16 22.90 59.00 39.15 82.89 34.65

LLaMA2-13B-chat

Full Model 13.72 28.11 20.67 5.58 49.97 47.18 12.13 15.14 26.29 23.52 64.00 40.39 86.52 33.32
KIVI 13.56 28.16 17.33 5.05 49.21 47.18 12.80 15.27 25.24 23.07 64.33 40.24 87.07 32.96
H2O (15%) 11.94 25.13 15.67 4.61 48.18 44.29 13.04 14.52 23.15 22.12 59.67 39.66 83.70 31.2
SnapKV (15%) 12.11 27.09 22.00 5.18 49.52 45.44 14.10 14.40 20.06 20.75 62.33 39.25 85.86 32.16
MiniKV 11.24 25.13 15.00 3.62 48.43 46.10 12.74 16.16 24.26 22.84 63.33 40.79 84.33 31.84
MiniKV Pyramid 12.79 27.32 17.00 2.79 48.94 46.25 12.66 15.47 25.06 23.14 63.67 40.35 85.33 32.37

Mistral7B-instruct

Full Model 25.79 47.97 50.83 2.98 50.69 47.22 27.44 36.44 31.84 25.82 62.67 40.49 86.29 41.2
KIVI 25.13 46.30 50.75 3.02 51.16 46.81 26.39 35.11 31.23 25.36 62.33 40.12 86.31 40.77
H2O (15%) 20.20 42.55 42.84 3.00 49.66 45.95 24.27 33.04 27.43 24.33 60.33 40.45 86.20 38.4
SnapKV (15%) 24.14 48.32 50.23 3.04 50.39 45.76 25.76 34.55 25.10 22.77 61.67 40.12 86.90 39.90
MiniKV 22.94 45.80 49.47 3.36 49.78 45.56 24.27 33.84 29.73 25.22 61.67 39.96 86.36 39.84
MiniKV Pyramid 23.10 45.91 48.88 3.24 50.34 45.41 25.18 34.04 29.69 25.32 61.67 40.17 86.63 39.97

Hyperparameters. We use a 50% cache budget478

with MiniKV, with 25% heavy hitter budget and479

25% the recent window budget. The group size480

during token/channel-wise quantization is set to 16,481

i.e. 16 values along the token/channel axis share482

quantization zero point and scale. A residual length483

of nr = 128 is used for both MiniKV and KIVI.484

The maximum prompt length is 4096 for all models485

with the first and last 2048 tokens taken for a longer486

prompt. The maximum generation length is dataset-487

specific. No task has a generation length of more488

than 512 tokens. Please see Appendix G for other489

evaluation details.490

Hardware. We conducted experiments on491

NVIDIA 4×A100-40GB and 4×A40-46GB GPUs.492

4.2 Enhancing KV Cache Compression493

Accuracy in Long Context Inference494

To make a fair comparison, we compare all meth-495

ods with adaptive KV policies (H2O, SnapKV, Q-496

Hitter, and MiniKV) under a similar KV cache size497

(Appendix H). Given a prompt length of 4096 and498

generation length of 512, the KV cache size for499

MiniKV is 0.33 GB. A cache budget of α = 15%500

results in a similar KV cache size for H2O. A cache501

budget of α = 59% results in a similar KV cache502

size for Q-Hitter. We test two strategies of MiniKV,503

namely MiniKV and MiniKV-Pyramid, to demon-504

strate the effectiveness of MiniKV. MiniKV fol-505

lows a uniform cache allocation with (25%, 25%)506

HH, RW budget per layer. MiniKV-Pyramid uses507

25% RW budget per layer but the HH budget is508

distributed across layers as described in § 3.1.3.509

The results are shown in Table 1. MiniKV510

outperforms other state-of-the-art adaptive KV511

methods (H2O, SnapKV, Q-Hitter) for the same512

KV cache size. For LLaMA2-7B-chat, MiniKV- 513

Pyramid achieves an average accuracy of 34.65, 514

obtaining 98.5% of the full model accuracy 35.19. 515

MiniKV is also able to maintain accuracy on 516

LLaMA2-13B-chat and Mistral-7B, indicating that 517

our approach generalizes well across datasets and 518

model classes. While the full model and KIVI per- 519

form marginally better than MiniKV, they have 520

much larger KV cache memory consumption. The 521

synergistic composition of 2-bit quantized KV and 522

layer-wise adaptive KV delivers these improve- 523

ments, and it also shows the promising aspect of 524

using both quantization and adaptive KV in con- 525

junction to reduce the high memory footprint of the 526

KV cache. 527

4.3 Setting A New Pareto Frontier 528

With H2O, SnapKV, Q-Hitter, and MiniKV the 529

user can tune the cache budget, potentially improv- 530

ing performance at the cost of a larger KV cache. 531

An ideal technique would maintain performance 532

when lowering the cache budget. We plot the per- 533

formance of MiniKV against the KV cache size. 534

The size of the KV cache is computed using the 535

KV memory consumption analysis in Appendix H. 536

To highlight interesting configurations, we mark 537

the Pareto optimal front, which is the configura- 538

tion that offers the smallest KV cache size for the 539

highest performance. 540

Fig. 5 shows the performance vs KV cache 541

size curve for two datasets (Qasper and Lcc), the 542

remaining plots can be found in the Appendix 543

I. MiniKV achieves the pareto optimal compres- 544

sion strategy across all 6 major task categories on 545

LongBench (single/multi-doc QA, LC understand- 546

ing, code completion, summarization and few-shot 547

7



learning). These results validate the effectiveness548

of MiniKV with varying KV cache sizes.549

Figure 5: Algorithm Performance vs KV Cache Size:
The Pareto frontier (the black curve) indicates the opti-
mal compression strategy across a range of KV cache
sizes. MiniKV lies on the Pareto frontier across all 6
task categories.

4.4 System Performance Results550

We evaluate the system performance of the551

LLaMA2-7B-chat model on a single NVIDIA552

A100 GPU with 40GB of memory. We utilize553

FlashAttention kernels for KIVI and the Full Model554

while employing our customized kernel introduced555

in § 3.2 for MiniKV. H2O and Q-Hitter do not556

support FlashAttention.557

Speeding up end-to-end latency. LLM inference558

is predominantly constrained by the memory band-559

width required to retrieve the model states. MiniKV560

reduces latency through a compression and system561

co-design approach, which reduces the number of562

KV pairs loaded for each next-token prediction563

by revising 2-bit KV quantization combined with564

adaptive KV policies, while at the same time main-565

taining hardware friendly execution using high-566

performance memory-efficient kernels compatible567

with system optimizations such as FlashAttention.568

As a result, as shown in Fig. 6 (left), MiniKV has569

a lower latency than its baselines, especially in570

long sequences (e.g., >10k). We include a detailed571

latency breakdown analysis in Appendix J.572

Achieving high throughput. As shown in Fig. 6573

(right), MiniKV outperforms all its baselines in574

throughput, measured as the number of tokens pro-575

cessed per second, due to its lower latency and576

ability to support larger batch sizes and longer se-577

quence lengths.578

Effectively reducing peak memory usage. We579

benchmark peak memory usage, i.e., the maximum580

memory occupied by all model tensors during the581

generation. The memory savings achieved by KV582

cache compression can be rendered ineffective if583

peak memory usage exceeds the total GPU mem-584

Figure 6: Left: Latency (s) for batch size = 1 and gener-
ation length = 1024. Right: Throughput (tokens/s) for
prompt length = 2048 and generation length = 1024.

ory. We evaluate the impact of batch size and 585

prompt length on peak memory usage in Fig. 7 586

(left). MiniKV demonstrates the lowest peak mem- 587

ory consumption compared to its baselines. H2O 588

goes out-of-memory at batch size 16 as it material- 589

izes the intermediate attention score matrix while 590

KIVI maintains the full KV cache and therefore 591

has a higher memory consumption. 592

4 8 12 16
Batch Size

15

18

21

24
Pe

ak
 M

em
or

y 
U

sa
ge

 (G
B

)
Full Model
H2O
KIVI
MiniKV

Full Model H2O KIVI MiniKV
Compression Strategies

10k

20k

30k

40k

50k

Pr
om

pt
 L

en
gt

h

Figure 7: Left: Peak memory usage (GB) vs batch size
for prompt = 2048 and generation length = 1024. Right:
Maximum prompt length supported by MiniKV and its
baselines for batch size = 1.

Enhancing maximum processable prompt. 593

MiniKV’s lower memory consumption becomes 594

more apparent with longer prompt lengths. Fig. 7 595

(right) shows that MiniKV can process prompts 596

10% longer than its strongest baseline KIVI. Addi- 597

tionally, MiniKV’s selective flash-attention kernel 598

allows significantly longer sequence lengths when 599

compared to H2O. 600

5 Conclusion 601

In this work, we revisit KV cache optimization via 602

compression and system co-design to accelerate 603

the inference of LLM. Our empirical analysis in- 604

dicates that it is challenging to directly compose 605

state-of-the-art 2-bit quantized KV with existing 606

adaptive KV policies while preserving both accu- 607

racy and system efficiency on long context tasks 608

under a high compression ratio. To address this 609

issue, we develop MiniKV to bridge the gap be- 610

tween ultra low-bit KV quantization and adaptive 611

policies, as well as the gap between the compres- 612

sion algorithm and hardware. Evaluation on a wide 613

range of datasets and models shows that MiniKV 614

preserves long context accuracy while significantly 615

improving the efficiency of LLM inference. 616

8



6 Limitations617

MiniKV is promising in optimizing the KV cache.618

However, we identify several limitations and oppor-619

tunities that can become future avenues of research620

to achieve an even higher compression ratio and621

generalizable compression.622

1. Combination with model optimizations.623

While we mainly focus on KV cache opti-624

mization (which provides significant benefits625

on its own), MiniKV can also be combined626

with other optimization techniques, such as627

model compression (Frantar et al., 2022; Xiao628

et al., 2023a). This would further improve629

the computational and memory efficiency of630

LLMs.631

2. Extensible design. While we use H2O and632

KIVI as an example, our approach is compat-633

ible with other KV optimization techniques,634

such as StreamingLLM (Xiao et al., 2023b)635

and KVQuant (Hooper et al., 2024).636

Given that MiniKV combines H2O and KIVI,637

we also explored the possibility of combining638

SnapKV and KIVI. This combination should639

be viable in theory, as it involves only chang-640

ing the eviction strategy during the prefill641

phase. However, we find that doing so leads642

to a severe drop in performance, with Long-643

Bench scores dropping from 35 to 32 points.644

Further experiments show that the tokens re-645

tained by SnapKV tend to be more sensitive to646

2-bit quantization than those selected by H2O.647

This highlights the need for a more robust and648

generalizable approach to combining eviction649

and quantization, and a framework to deter-650

mine when such combinations are effective.651

References652

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,653
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao654
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,655
and Juanzi Li. 2023. Longbench: A bilingual, mul-656
titask benchmark for long context understanding.657
CoRR, abs/2308.14508.658

William Brandon, Mayank Mishra, Aniruddha659
Nrusimha, Rameswar Panda, and Jonathan Ragan-660
Kelly. 2024. Reducing transformer key-value661
cache size with cross-layer attention. CoRR,662
abs/2405.12981.663

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu664
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao665
Chang, Junjie Hu, and Wen Xiao. 2024. Pyramidkv:666

Dynamic KV cache compression based on pyramidal 667
information funneling. CoRR, abs/2406.02069. 668

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 669
and Christopher Ré. 2022. Flashattention: Fast and 670
memory-efficient exact attention with io-awareness. 671
In Advances in Neural Information Processing Sys- 672
tems 35: Annual Conference on Neural Information 673
Processing Systems 2022, NeurIPS 2022, New Or- 674
leans, LA, USA, November 28 - December 9, 2022. 675

Daya Guo DeepSeek-AI, Dejian Yang, Haowei Zhang, 676
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao 677
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. 678
Deepseek-r1: Incentivizing reasoning capability in 679
llms via reinforcement learning. arXiv preprint 680
arXiv:2501.12948. 681

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 682
Dan Alistarh. 2022. GPTQ: accurate post-training 683
quantization for generative pre-trained transformers. 684
CoRR, abs/2210.17323. 685

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 686
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 687
what to discard: Adaptive KV cache compression for 688
llms. CoRR, abs/2310.01801. 689

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 690
Michael W. Mahoney, Yakun Sophia Shao, Kurt 691
Keutzer, and Amir Gholami. 2024. Kvquant: To- 692
wards 10 million context length LLM inference with 693
KV cache quantization. CoRR, abs/2401.18079. 694

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 695
sch, Chris Bamford, Devendra Singh Chaplot, Diego 696
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 697
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 698
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 699
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 700
and William El Sayed. 2023. Mistral 7B. arXiv 701
preprint arXiv:2310.06825. 702

Jure Leskovec and Rok Sosic. 2016. SNAP: A General- 703
Purpose Network Analysis and Graph-Mining Li- 704
brary. ACM TIST, 8(1):1:1–1:20. 705

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 706
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 707
Patrick Lewis, and Deming Chen. 2024. Snapkv: 708
Llm knows what you are looking for before genera- 709
tion. arXiv preprint arXiv:2404.14469. 710

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 711
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 712
Xingyu Dang, Chuang Gan, and Song Han. 2024. 713
Awq: Activation-aware weight quantization for on- 714
device llm compression and acceleration. Proceed- 715
ings of Machine Learning and Systems, 6:87–100. 716

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam- 717
reza Haffari, and Bohan Zhuang. 2024a. Minicache: 718
Kv cache compression in depth dimension for large 719
language models. CoRR, abs/2405.14366. 720

9



Liyuan Liu, Jialu Liu, and Jiawei Han. 2021. Multi-721
head or single-head? an empirical comparison for722
transformer training. CoRR, abs/2106.09650.723

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie724
Chang, Pierre Stock, Yashar Mehdad, Yangyang725
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-726
dra. 2023a. LLM-QAT: data-free quantization727
aware training for large language models. CoRR,728
abs/2305.17888.729

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao730
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-731
lidis, and Anshumali Shrivastava. 2023b. Scis-732
sorhands: Exploiting the persistence of importance733
hypothesis for LLM KV cache compression at test734
time. In Advances in Neural Information Processing735
Systems 36: Annual Conference on Neural Informa-736
tion Processing Systems 2023, NeurIPS 2023, New737
Orleans, LA, USA, December 10 - 16, 2023.738

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,739
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and740
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit741
quantization for KV cache. CoRR, abs/2402.02750.742

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,743
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic744
memory compression: Retrofitting llms for acceler-745
ated inference. CoRR, 2403.09636.746

NVidia. 2025. Introducing New KV Cache Reuse Op-747
timizations in NVIDIA TensorRT-LLM. https:748
//tinyurl.com/4zbvwpcz. Accessed: 14-749
Feburary-2025.750

OpenAI. 2024. Introducing OpenAI o1 . https://751
openai.com/o1/.752

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan753
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-754
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:755
High-throughput generative inference of large lan-756
guage models with a single GPU. In International757
Conference on Machine Learning, ICML 2023, 23-29758
July 2023, Honolulu, Hawaii, USA, volume 202 of759
Proceedings of Machine Learning Research, pages760
31094–31116. PMLR.761

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,762
Baris Kasikci, and Song Han. 2024. Quest: Query-763
aware sparsity for efficient long-context llm inference.764
arXiv preprint arXiv:2406.10774.765

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.766
2019. Triton: an intermediate language and com-767
piler for tiled neural network computations. In Pro-768
ceedings of the 3rd ACM SIGPLAN International769
Workshop on Machine Learning and Programming770
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,771
June 22, 2019, pages 10–19. ACM.772

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-773
bert, Amjad Almahairi, Yasmine Babaei, Nikolay774
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti775

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 776
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 777
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 778
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 779
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 780
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 781
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 782
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 783
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 784
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 785
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 786
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 787
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 788
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 789
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 790
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 791
Melanie Kambadur, Sharan Narang, Aurélien Ro- 792
driguez, Robert Stojnic, Sergey Edunov, and Thomas 793
Scialom. 2023. Llama 2: Open foundation and fine- 794
tuned chat models. CoRR, abs/2307.09288. 795

Raushan Turganbay. 2024. Unlocking Longer 796
Generation with Key-Value Cache Quantiza- 797
tion. https://huggingface.co/blog/ 798
kv-cache-quantization. Accessed: 14- 799
Feburary-2025. 800

vLLM. 2025. Quantized KV Cache. https: 801
//docs.vllm.ai/en/stable/features/ 802
quantization/quantized_kvcache. 803
html. Accessed: 14-Feburary-2025. 804

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen- 805
nrich, and Ivan Titov. 2019. Analyzing multi-head 806
self-attention: Specialized heads do the heavy lifting, 807
the rest can be pruned. In Proceedings of the 57th 808
Conference of the Association for Computational Lin- 809
guistics, ACL 2019, Florence, Italy, July 28- August 810
2, 2019, Volume 1: Long Papers, pages 5797–5808. 811
Association for Computational Linguistics. 812

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan 813
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong, 814
and Mi Zhang. 2024. D2o: Dynamic discriminative 815
operations for efficient generative inference of large 816
language models. CoRR, abs/2406.13035. 817

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao 818
Peng, and Yao Fu. 2024. Retrieval head mecha- 819
nistically explains long-context factuality. CoRR, 820
abs/2404.15574. 821

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao 822
Wu, Julien Demouth, and Song Han. 2023a. 823
Smoothquant: Accurate and efficient post-training 824
quantization for large language models. In Interna- 825
tional Conference on Machine Learning, ICML 2023, 826
23-29 July 2023, Honolulu, Hawaii, USA, volume 827
202 of Proceedings of Machine Learning Research, 828
pages 38087–38099. PMLR. 829

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian 830
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song 831
Han. 2024. Duoattention: Efficient long-context 832
LLM inference with retrieval and streaming heads. 833
CoRR, abs/2410.10819. 834

10

https://tinyurl.com/4zbvwpcz
https://tinyurl.com/4zbvwpcz
https://tinyurl.com/4zbvwpcz
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/o1/
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html
https://docs.vllm.ai/en/stable/features/quantization/quantized_kvcache.html


Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song835
Han, and Mike Lewis. 2023b. Efficient stream-836
ing language models with attention sinks. CoRR,837
abs/2309.17453.838

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin839
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-840
mid kv cache compression for high-throughput llm841
inference. CoRR, abs/2405.12532.842

June Yong Yang, Byeongwook Kim, Jeongin Bae,843
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung844
Kwon, and Dongsoo Lee. 2024b. No token845
left behind: Reliable KV cache compression via846
importance-aware mixed precision quantization.847
CoRR, abs/2402.18096.848

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya849
Kailkhura, Beidi Chen, and Atlas Wang. 2024. Q-850
hitter: A better token oracle for efficient llm inference851
via sparse-quantized kv cache. Proceedings of Ma-852
chine Learning and Systems, 6:381–394.853

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong854
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,855
Yuandong Tian, Christopher Ré, Clark W. Barrett,856
Zhangyang Wang, and Beidi Chen. 2023. H2O:857
heavy-hitter oracle for efficient generative inference858
of large language models. In Advances in Neural859
Information Processing Systems 36: Annual Confer-860
ence on Neural Information Processing Systems 2023,861
NeurIPS 2023, New Orleans, LA, USA, December 10862
- 16, 2023.863

11



A Formal Problem Formulation864

We introduce a general formulation of the co-865

compression of the KV cache via quantization and866

selection. For a given LLM Φ with H layers, we867

denote its key states and value states at a layer h868

as Kh ∈ Rn×d and Vh ∈ Rn×d, respectively. Let869

Qh ∈ R1×d denote the query state. Then, the out-870

put Oh for each attention head of Φ is:871

Oh = AhVh, Ah = softmax

(
QhKT

h√
d

)
(1)872

Then the co-compression problem can be formu-873

lated as:874

Definition 2.1 (KV Cache Co-Compression Prob-875

lem, informal).876

∀ Kh and Vh, where h ∈ {0, 1, ..,H − 1}, find877

the quantizer Qb[·] with b quantization bits, the878

selection policy Sh[·] with C selective KV cache879

size, such that |Oh−O∗
h| ≤ ϵ, where O∗

h represents880

the output for each attention head of Φ with Sh[·]881

and Qb[·], and ϵ is an acceptable small positive882

value.883

B Comparison of MiniKV with884

Alternative Methods885

We provide a detailed summary of the compari-886

son between MiniKV and previous approaches in887

Table 2.888

C Additional Results on Attention889

Distribution on Long-Context890

Understanding Tasks891

Researchers have always been interested in exploit-892

ing the underlying structure of the attention mech-893

anism to improve inference efficiency (Liu et al.,894

2021; Voita et al., 2019; Wu et al., 2024).895

While prior studies show that attention scores896

are largely sparse (Zhang et al., 2023; Xiao et al.,897

2023b; Liu et al., 2023b), we observe that the at-898

tention distribution has more diverse patterns on899

long sequences. Fig. 8 shows that attention distri-900

bution of LLaMA2-7B-chat on a sample from the901

HotpotQA dataset.902

We observe distinctive patterns: (i) the attention903

distribution at the lower layers has a wide coverage904

over sequence lengths and is more dispersed, and905

(ii) attention becomes more narrowly focused on a906

small subset of tokens and starts to exhibit block-907

wise sparse attention as the tokens move to the908

higher layers. We consistently observe this pattern909

across datasets in LongBench.910

D Persistent Context Selection Analysis 911

We analyzed a sample prompt from the Lcc dataset 912

to show that the heavy hitters selected in the pre- 913

fill phase persist across generations Fig. 9. The 914

green positions indicate that the 150 heavy hitters 915

currently retained by the H2O algorithm, while the 916

white ones represent evicted tokens. It is evident 917

that while different heads have different importance 918

distributions, the important tokens largely do not 919

vary across different generation steps. 920

E Token-Wise Quantization Of The KV 921

Cache 922

A prevalent approach to compress the KV cache is 923

by quantization. However, directly applying quan- 924

tization to selective KV imposes challenges. Prior 925

studies find that KV states contain outliers (Liu 926

et al., 2023a; Xiao et al., 2023a), and per-token 927

quantization is needed to avoid accuracy degrada- 928

tion. Fig. 10 shows that while applying INT8 and 929

INT4 per-token quantization to both key and value 930

caches helps maintain the accuracy of selective KV 931

on LongBench, further reducing it to INT2 results 932

in a significant accuracy drop, because 2-bits can 933

not fully capture the dynamic range of KV token 934

distributions. This motivates using channel-wise 935

quantization as in KIVI (Liu et al., 2024b) and 936

KVQuant (Hooper et al., 2024). 937

F Dataset Details 938

We seek a dataset that covers a broad range of 939

long-context understanding tasks. For this reason, 940

we choose LongBench, which covers six major 941

task categories and in total 13 datasets (Bai et al., 942

2023): Qasper(F1) and MultiFieldQA(F1) are sin- 943

gle doc QA tasks; Passage Retrieval(accuracy) and 944

passage count(accuracy) are synthetic datasets to 945

test the model’s tendency to forgot information 946

over a long context understanding; LCC(similarity) 947

and RepoBench-P(similarity) are code completion 948

tasks; 2WikiMultihopQA(F1) and HotpotQA(F1) 949

are multi doc QA tasks; GovReport(Rouge) 950

and MultiNews(Rouge) are summarization tasks; 951

TREC(accuracy), SAMSum(Rouge) and Trivi- 952

aQA(F1) are few-shot learning tasks. 953

G Evaluation Details 954

Decoding Strategy All models generate re- 955

sponses using deterministic greedy decoding across 956

all tasks to ensure a fair comparison and repro- 957

ducibility. 958

12



Table 2: Comparison with previous KV cache optimization methods for LLM inference.
Approach Eviction-based KV Quantization Training-free Long Bench
AttentionSink (Xiao et al., 2023b) ! !

FastGen (Ge et al., 2023) ! !

ScissorHands (Liu et al., 2023b) ! 4-bit !

H2O (Zhang et al., 2023) ! 4-bit !

FlexGen (Sheng et al., 2023) 4-bit !
LLM-QAT (Liu et al., 2023a) 4-bit
Q-Hitter (Zhang et al., 2024) ! 4-bit !

KVQuant (Hooper et al., 2024) 4-bit ! !

KIVI (Liu et al., 2024b) 2-bit ! !

MiniKV ! 2-bit ! !

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 0 Head 0

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 0 Head 15

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 0 Head 31

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 15 Head 0

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 15 Head 15

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 15 Head 31

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 31 Head 0

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 31 Head 15

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Layer 31 Head 31

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

10 6

10 5

10 4

10 3

10 2

10 1

100

Figure 8: The attention distribution of LLaMA2-7B over the HotpotQA dataset in LongBench.

LongBench Truncation Strategy: we ensure959

that the model consistently selects the first 2000960

and last 2000 tokens, regardless of changes to trun-961

cation settings or special tokens. This ensures sta-962

ble score calculations across tests. 963

Pyramid-like Allocation Details Inspired by 964

PyramidKV(Cai et al., 2024), we adjust the heavy 965

hitter cache budget across layers by allocating more 966

13



0 200 400 600 800 1000 1200 1400

1

16

32

Top-k tokens at head 0

0 200 400 600 800 1000 1200 1400
Token Position Index

1

16

32

Top-k tokens at head 1

De
co

di
ng

 S
te

p

Figure 9: Top-k tokens with the highest cumulative
attention score on the Lcc dataset from LongBench.
Green tokens mark the heavy hitters retained by the
H2O algorithm. Here, we choose k = 150.

20% 40% 60% 80%
Cache Budget

29
30
31
32
33
34
35

Lo
ng

Be
nc

h 
Ac

cu
ra

cy

Different Quantization Strategies on LongBench

FP16
INT8
INT4
INT2

Figure 10: Performance of per-token quantized H2O
on the LongBench dataset. INT8/4 quantization can
maintain performance across cache budgets. However,
INT2 quantization suffers from a catastrophic drop in
performance.

cache in lower layers and less in higher ones. The967

token allocation across layers follows a linear func-968

tion. Specifically, considering the average heavy969

budget size is x, we choose a hyper-parameter pyra-970

mid depth d to adjust the ratio. The bottom-most971

layer has a heavy budget size of x/d, and the top-972

most layer has a heavy budget size of 2x−x/d with973

intermediate layers linearly interpolated between974

these values. We choose pyramid depth d = 7 for975

our experiments.976

H KV Cache Compression Ratio Analysis977

Given a model with (H) layers, hidden dimen-978

sion (d), number of attention heads (nheads),979

and a prompt and generated sequence of length980

(lprompt, lgen) the KV cache size for different tech-981

niques is shown below:982

1. Full model: All tokens are stored in FP16983

format. Therefore the KV cache has size =984

2× (H × d)× (lprompt + lgen)× 2 bytes.985

2. H2O: Given a cache budget of (αHH , αRW )986

for the heavy hitters and recent window the987

KV cache has size = 2×(H×d)×(lprompt)×988

(αHH + αRW )× 2 bytes989

3. KIVI: With a group size of 16, i.e., 16 scalars990

quantized from FP16 to INT2 format, the 991

memory required by a group is 16 scalars 992

×2 bits = 4 bytes. The quantization zero- 993

point and scale are saved in FP16 format and 994

require 2 × 2 bytes. In total, the group re- 995

quires 8 bytes. Hence, the KV cache has 996

(H × d)× (lprompt + lgen) bytes. 997

4. Q-Hitter: The Q-hitter paper performs INT4 998

token quantization per attention head. There- 999

fore, the (d/nheads) scalars which would be 1000

stored in FP16 are now stored in 4-bit pre- 1001

cision. The quantization metadata is the 1002

zero-point and scale, both in FP16 precision. 1003

Therefore, the compression factor for Q-Hitter 1004

is (d/nheads ∗ 16)/(d/nheads ∗ 4 + 2 ∗ 16). 1005

For the Llama-7B-chat model this number is 1006

(4096/32∗16)/(4096/32∗4+32) = 3.76×. 1007

Hence, the KV cache size is 2 × (H × d) × 1008

(lprompt)× (αHH + αRW )× 2/3.76 bytes 1009

5. MiniKV: The prompt tokens are evicted with 1010

a cache budget of αHH , αRW and all gener- 1011

ated tokens are retained. All tokens are stored 1012

in 2-bit precision. Similar to KIVI, each group 1013

of 16 scalars and their quantization metadata 1014

requires 8 bytes in total. Hence, the size of the 1015

KV cache is = (H × d)× (αHH + αRW )× 1016

(lprompt) + (H × d)× (lgen) bytes. 1017

Given a certain prompt and output length, the 1018

uncompressed baseline and KIVI have a fixed KV 1019

cache size. However, H2O, Q-Hitter, and MiniKV 1020

can tune the cache budget (αHH , αRW ) to modify 1021

the KV cache size. 1022

For prompt length 4096 and generation length 1023

512 the full model’s and MiniKV’s KV cache con- 1024

sume 2.4GB and 0.33GB respectively. Therefore, 1025

MiniKV leads to an (1− 0.33/2.4) = 86% reduc- 1026

tion in KV cache size. 1027

I Performance against KV cache size 1028

As discussed in § H, the KV cache size depends on 1029

the prompt and generation length. Each dataset in 1030

LongBench has a different maximum generation 1031

length, therefore we make separate plots for each 1032

dataset with prompt length 4096 and the generation 1033

length as the dataset-specific maximum generation 1034

length. Figure 11 and 12 show the performance vs 1035

KV cache size curve. MiniKV achieves the optimal 1036

compression strategy across all six major task cat- 1037

egories on LongBench (single/multi-doc QA, LC 1038

understanding, code completion, summarization, 1039

and few-shot learning). These results validate the 1040

14



effectiveness of MiniKV with varying KV cache1041

sizes.1042

J End-To-End Latency Breakdown1043

0

20

40

60

80

La
te

nc
y 

(m
s)

MiniKV KIVI MiniKV KIVI
Prompt Length = 1024 Prompt Length = 40960

Decode QKV Projection
Decode Attention
Decode Output Projection
MLP

Figure 13: Per token latency breakdown for the decod-
ing phase. Generation length = 1024 and batch size = 1.

We analyze the breakdown of latency associated1044

with each computation in the standard decoder1045

layer of the transformer architecture for MiniKV1046

and KIVI during the decoding phase. We particu-1047

larly look at latencies for projections of the input1048

vector into query, key, and value vectors, attention1049

computation, and output projection. We also mea-1050

sure the time spent in the MLP layer. We present1051

the latency breakdown as the total latency for each1052

computation component divided by the generation1053

length.1054

As shown in Fig. 13, MiniKV achieves a lower1055

end-to-end latency than KIVI. This improvement1056

primarily arises during attention computation as1057

well as projection of Query, Key and Value. Specif-1058

ically, the inference time is dominated by KV cache1059

loading time when processing long contexts. There-1060

fore, MiniKV’s smaller KV cache results in re-1061

duced KV load times from the GPU’s HBM.1062

K KV Cache Eviction on Long-Context1063

Tasks1064

Fig. 14 shows that with 50% KV cache size, the1065

LLM can still obtain comparable accuracy (e.g.,1066

<1 point) as the full KV cache. However, high1067

levels of KV eviction (e.g., 80-95%) hurts LLM’s1068

performance on long context tasks significantly.1069

15



Figure 11: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size
across all 6 task categories.

16



Figure 12: Performance Versus KV Cache Size: MiniKV offers the best performance for the smallest KV cache size
across all 6 task categories.

17



Figure 14: Eviction-based KV on LongBench: High
levels of KV eviction (e.g., 80-95%) hurts LLM’s per-
formance on long context tasks significantly.

18


	Introduction
	Related Work
	Method
	Revisiting 2-Bit Quantized KV with Adaptive KV Policies
	Sub-channel Key Quantization with Persistent Context Selection
	Selectivity in Long Contexts: Heavy Hitters vs. Recent Window
	Layer-Specific Selectivity: Uniform, Variance, or Pyramid?

	Memory-Efficient Fused Selective Attention Kernels
	MiniKV Algorithm

	Experiments
	Evaluation Methodology
	Enhancing KV Cache Compression Accuracy in Long Context Inference
	Setting A New Pareto Frontier
	System Performance Results

	Conclusion
	Limitations
	Formal Problem Formulation
	Comparison of MiniKV with Alternative Methods
	Additional Results on Attention Distribution on Long-Context Understanding Tasks
	Persistent Context Selection Analysis
	Token-Wise Quantization Of The KV Cache
	Dataset Details
	Evaluation Details
	KV Cache Compression Ratio Analysis
	Performance against KV cache size
	End-To-End Latency Breakdown
	KV Cache Eviction on Long-Context Tasks

