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Abstract. Although deep learning models have made significant progress
in medical segmentation, they have encountered challenges in tumor
detection and segmentation tasks, particularly in complex whole-body
scanning scenarios.To address this issue, this paper proposes an improved
nn UNet model. Specifically, an efficient dual branch encoder has been
developed, with one branch using a special "Inception style depthwise
separable convolution" inspired by the Google Inception network, and the
other branch using ordinary residual connections. This model effectively
improves segmentation efficiency.Experiments on the MICCAI FLARE
2025 dataset demonstrated significant improvements in both segmen-
tation accuracy and efficiency. Our method achieved an average organ
Dice Similarity Coefficient (DSC) of 13.4% and a Normalized Surface
Dice (NSD) of 5.98% on the public validation set.The average inference
time is 11 seconds.

Keywords: Dual branch · Tumour segmentation · Asymmetric Depth-
wise Convolutions.

1 Introduction

In recent years, deep learning models have greatly advanced the field of med-
ical image segmentation. Models represented by U-Net [21] have proposed a
groundbreaking encoder decoder architecture, which has become an important
benchmark for biomedical image segmentation. Subsequently, extended models
such as nn-UNet [11] have achieved substantial improvements in various segmen-
tation tasks through their adaptive configuration capabilities, and have become
SOTA models in many segmentation tasks. These advances have significantly en-
hanced the segmentation performance of organs and pathological regions in var-
ious medical imaging modes.However, despite these breakthroughs, accurately
and efficiently detecting and segmenting tumors in whole-body CT scans still
faces significant challenges. Tumors exhibit significant heterogeneity in shape,
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size, and appearance across different anatomical regions, making the segmen-
tation task itself extremely complex. In addition, full body scanning involves
high-resolution 3D images, which not only imposes strict requirements on com-
puting performance, but also requires a large amount of computing resources.
Maintaining high accuracy and speed while processing massive amounts of data
further exacerbates the complexity of this challenge.To address these challenges,
researchers have explored various advanced methods. For example,TransUNet [3]
utilizes the powerful global self attention mechanism of Transformer to cap-
ture long-range dependencies, which is of great significance for understanding
the diverse morphology of tumors and their contextual relationships in a wide
anatomical environment. Swin-UMamba [14] also adopts advanced Mamba ar-
chitecture, which can efficiently construct long-distance dependency models with
linear complexity. This makes it significantly more computationally efficient and
consumes less video memory compared to traditional Transformers when pro-
cessing large-scale, high-resolution whole-body CT scans.Despite these advances,
there are still significant challenges in extending these methods to whole-body
tumor tasks.

Recently, inspired by a paper [12], it was pointed out that since the emer-
gence of nnUNet, a large number of new models claiming to surpass in the
field of 3D medical image segmentation have emerged, especially those based on
Transformer and Mamba. However, the author found through a comprehensive,
fair, and rigorous benchmark test that the vast majority of these so-called lat-
est technology models cannot surpassnnU-Net in terms of performance under
fair comparison. At the same time, it was found that the current performance
formula for 3D medical segmentation actually uses CNN based U-Net models,
especially variants of ResNet and ConvNext.

Despite the excellent performance of nnU-Net, there is still room for opti-
mization in the highly challenging task of whole-body tumor segmentation. The
morphology, size, and texture of tumors throughout the body exhibit extremely
high heterogeneity at different anatomical locations. At the same time, high-
resolution 3D CT scanning also brings huge computational burden, which puts
strict requirements on the feature extraction ability and computational efficiency
of the model.To address the above challenges, our main contributions are:

– The inspiration for enhancing the multi-scale feature perception ability of
the model mainly comes from the Inception architecture [27] (variants of
ResNet and ConvNext). By using convolutional kernels of different sizes and
types in parallel within the same module, such methods enable the network
to simultaneously capture target features of different sizes, from small lesions
to large masses, and effectively deal with the problem of variable tumor size.

– Another important direction is to improve the computational efficiency of
models in processing high-resolution 3D data. The convolutions used in
the Inception architecture are all depthwise separable convolutions, which
greatly reduce the model’s parameter count and computational complexity
while ensuring the receptive field and feature expression ability. In addi-
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tion, asymmetric convolutions (such as 1x11x11) have also been proven to
effectively capture features in specific directions at lower costs.

– In order to combine the advantages of different feature extraction paradigms,
our encoder adopts a dual branch structure, with one branch using Incep-
tion branch to extract features and the other branch using residual branch
to extract features. Finally, feature fusion is used to enhance the overall
performance of the network.

2 Method

2.1 Preprocessing

We adopted the standard preprocessing process of nn-UNet. Firstly, only select
images with tumor annotations for training. Subsequently, all CT images were re-
sampled to an isotropic voxel spacing of 2x2x3 mm ³. Finally, we normalized the
Heinz unit (HU) values by truncating them at the 0.05% and 99.5% percentiles,
and then subtracting the mean and dividing it by the standard deviation based
on the statistical data of the entire dataset.

2.2 Proposed Method

Figure 1 shows the architecture of our proposed model and its various modules.
Although many novel U-shaped models have been proposed in recent years to
address medical image segmentation problems, especially those based on Trans-
former and Mamba, we have found that the most advanced performance formulas
still use CNN based U-Net models and nnU-Net frameworks, including Resnet
and Convnext variants. Based on this, we have developed a new model to solve
the problem of whole-body tumor segmentation.

For the encoder, we used a dual branch structure; At each stage of the IDC
branch, a special "Inception like depthwise separable convolution" inspired by
the Google Inception network is used. It is divided into five branches in the
channel dimension, with one part directly retained and the other four parts
extracting features through depthwise separable convolutions of different shapes.
There are three main points to using Inception depthwise separable convolution:

1.CT images are usually anisotropic, and the stripe convolution
kernels in IDC branches are particularly adept at capturing slender
or flat structures along specific axes, which is very effective for seg-
menting tumors with irregular shapes that may extend in a certain
direction.

2. The IDC branch can simultaneously capture local detail features
(captured by 3 × 3 × 3 cubic convolution kernels) and contextual
information of long-distance and large receptive fields (captured by 3
strip-shaped convolution kernels of 1 × 11 × 11, 11 × 1 × 11, and 11
× 11 × 1) at the same level. This is crucial for identifying tumors of
different sizes and shapes.
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Fig. 1. The model is a five layer U-shaped network consisting of a hybrid encoder with
Inception Depthwise Convolution and the original nnU-Net decoder.
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Fig. 2. Model architecture components: (a) PreConv Block: Used before the first
stage; (b) Residual Block:The main modules in a single branch; (c) IDC Block: The
main modules of another branch; (d) Fusion Block: Feature fusion module; (e) In-
ceptionDWConv: Core module of the entire network.
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3. This branch mainly uses depthwise separable convolution, which
can significantly reduce the number of model parameters and compu-
tational complexity compared to standard convolution, thereby accel-
erating model training and inference speed.

However, we found that using only IDC encoder would lack some key 3D
tumor voxel information. Although depthwise separable convolution has high
efficiency, its feature expression ability is usually considered weaker than stan-
dard convolution. Standard convolution integrates information from all input
channels when calculating each output channel, enabling learning of richer and
more complex feature combinations. The separate processing of IDC branches
may to some extent limit their ability to learn the most advanced and abstract
features. So we added a residual branch on top of the IDC branch to compen-
sate for its shortcomings. The residual branch uses standard convolution, and
during computation, each output feature map integrates information from all
input feature maps. This makes up for the shortcomings of IDC branch channel
separation processing, enabling the network to learn more comprehensive and
holistic feature representations, and better understand the complex spatial rela-
tionship between tumors and their surrounding tissues.

Finally, the model can efficiently capture the anisotropic shape, orientation,
and multi-scale information of tumors using IDC branches, and learn complex
textures and overall contextual features of the tumor’s internal and surrounding
environment using residual branches. The combination of these abilities is cru-
cial for the task of whole-body cancer segmentation, as tumors of different parts
and types exhibit vastly different morphological and textural features on CT.

Loss function: we use the summation between Dice loss and cross-entropy
loss because compound loss functions have proven robust in various medical im-
age segmentation tasks.

We did not adopt specific strategies to reduce false positives in CT scans
of healthy patients and only used the provided labeled data. In addition, we did
not use the pseudo labels generated by the FLARE23 winning algorithm.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, including
TCIA [4], LiTS [2], MSD [23], KiTS [8,10,9], autoPET [7,6], TotalSegmenta-
tor [24], and AbdomenCT-1K [19], FLARE 2023 [18], DeepLesion [26], COVID-
19-CT-Seg-Benchmark [16], COVID-19-20 [22], CHOS [13], LNDB [20], and
LIDC [1]. The training set includes more than 10000 abdomen CT scans where
2200 CT scans with partial labels and 1800 CT scans without labels. The vali-
dation and testing sets include 100 and 400 CT scans, respectively, which cover
various abdominal cancer types, such as liver cancer, kidney cancer, pancreas
cancer, colon cancer, gastric cancer, and so on. The lesion annotation process
used ITK-SNAP [28], nnU-Net [11], MedSAM [15,17], and Slicer Plugins [5,17].
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The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Rocky Linux 8.9
CPU Intel(R) Xeon(R) w5-3435X
RAM 8×32GB; 3200MT/s
GPU (number and type) 2×NVIDIA GeForce RTX 4090 48G
CUDA version 12.2
Programming language Python 3.10.17
Deep learning framework torch 2.4.1
Specific dependencies nnU-Net 2.6.2
Code https://github.com/Wenze-Fan/FLARE25-Task1

Training protocols Our training protocols followed the default settings of
nnU-Net.

1. we used only the provided labeled data without distinguishing between
partially labeled or unlabeled data.

2. For data augmentation, we use the built-in data augmentation feature of
nnUNet.

3. The patch sampling strategy was also based on the default configuration
of nnU-Net.

4. Our model has two types, one is single branch and the other is double
branch. In the end, we used the best dual branch model.

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative results are shown in Table 3.On the public validation set, our
method achieved an average Dice of 13.4% and an NSD of 5.98%.

In order to visually demonstrate the advantages of our method in terms of

https://github.com/Wenze-Fan/FLARE25-Task1
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Table 2. Training protocols.

Network initialization He
Batch size 2
Patch size 128×128×96
Total epochs 2000
Optimizer Adamw
Initial learning rate (lr) 0.0008
Lr decay schedule poly
Training time 100 hours
Loss function DiceLoss and CELoss
Number of model parameters 8.23M1

Number of flops 186.75G2

CO2eq 48 Kg3

Table 3. Result in Public Validation, Online Validation and Final Testing.

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Algorithm1 13.4 5.98 - - - -

Table 4. Experimental study on ablation of different components of encoder with
different effects.

Network Method Param Flop DSC NSD

Baseline 15.37M 416.78G 7.71 2.79
IDC branch(Single branch) 8.76M 193.22G 10.29 4.61nn-UNet

Ours(Dual branch) 8.23M 186.75G 13.4 5.98
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parameter count, computational complexity, and accuracy, we conducted abla-
tion experiments as shown in Table 4.Compared with traditional methods and
encoders using a single branch structure, our method has improved accuracy by
5.69% and 3.19%, and 3.11% and 1.37%, respectively Especially, our method has
lower parameter and computational complexity than single branch structures.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA GeForce RTX 4090 (24G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 19.16 4058 11331
0051 (512, 512, 100) 29.37 3443 42576
0017 (512, 512, 150) 25.22 4147 26724
0019 (512, 512, 215) 28.51 4081 44263
0099 (512, 512, 334) 37.40 3439 54464
0063 (512, 512, 448) 43.76 3435 66108
0048 (512, 512, 499) 48.08 4145 48173
0029 (512, 512, 554) 52.23 3571 41607

4.2 Qualitative results on validation set

Figure 3 shows two successful and two failed tumor segmentation cases.In the
good cases (top two rows),the model is mainly designed through parallel multi-
scale deep convolution (InceptionDWConv) and is very good at identifying and
segmenting tumors with significant features and large volumes.On the contrary,for
tumors with atypical morphology and texture (Case0067), the feature patterns
learned by the model may not be sufficient to cover them, resulting in incomplete
segmentation.For lesions that are too small in size (Case0003), the model will
completely lose their feature information during repeated downsampling in the
encoder, resulting in complete inability to detect them.

4.3 Segmentation efficiency results on validation set

Table 5 shows inference efficiency on representative cases. Average runtime is
around 35 seconds per scan, with peak GPU usage below 4.2 GB, showing good
scalability.

4.4 Results on final testing set

4.5 Limitation and future work

Despite achieving good accuracy, our model still has several limitations:
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Fig. 3. There are two examples in the validation set with good segmentation perfor-
mance and two examples with poor segmentation performance.



Title Suppressed Due to Excessive Length 11

(1) Accuracy: In order to further improve the accuracy of the model, it is pos-
sible to consider introducing appropriate attention mechanisms to enhance
attention to small or irregular targets, or designing a branch specifically for
handling small targets, or through more targeted data augmentation strate-
gies.

(2) Partial Labels:We use fully supervised methods, which only use labeled
data to train the model. This may result in the model learning most of
the patterns in the training data rather than truly learning useful features
for tumors with irregular shapes or textures. Future work will include semi
supervised learning to develop a student teacher model or pseudo label model
to further improve accuracy.

(3) Lightweight:Due to the dual branch structure of our encoder, the complex-
ity of the model has been increased, making it difficult to deploy the model
in real-world clinical applications. Future work will include lightweighting
models while maintaining high accuracy.

5 Conclusion

We propose a dual branch encoder for efficient whole-body tumor segmentation.
The model achieved 13.4% DSC and 5.9% NSD. The average inference time
reached 11 seconds. Both quantitative and qualitative results indicate that this
method can effectively and flexibly learn tumor information from the dataset.
Future work will focus on how to use semi supervised learning or a combination
of semi supervised learning and nn Unet improvements to more efficiently solve
the problem of whole-body tumor segmentation.
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Table 6. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 4
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided 2
Pre-processing 3
Strategies to use the partial label 3
Strategies to use the unlabeled images.
Strategies to improve model inference 3
Post-processing Page number
The dataset and evaluation metric section are presented 8
Environment setting table is provided 7
Training protocol table is provided 7
Ablation study 8
Efficiency evaluation results are provided 3 4 5
Visualized segmentation example is provided 3
Limitation and future work are presented Yes
Reference format is consistent. Yes


