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Abstract

Principal parts of an inflectional paradigm, de-
fined as the minimal set of paradigm cells re-
quired to deduce all others, constitute an impor-
tant concept in theoretical morphology. This
concept, which outlines the minimal memoriza-
tion needed for a perfect inflector, has been
largely overlooked in computational morphol-
ogy despite impressive advances in the field
over the last decade. In this work, we posit
PRINCIPAL PARTS DETECTION as a computa-
tional task and construct a multilingual dataset
of verbal principal parts covering ten languages,
based on Wiktionary entries. We evaluate an
array of PRINCIPAL PARTS DETECTION meth-
ods, all of which follow the same schema: char-
acterize the relationships between each pair
of inflectional categories, cluster the resulting
vector representations, and select a represen-
tative of each cluster as a predicted principal
part. Our best-performing model, based on
Edit Script between inflections and using Hi-
erarchical K-Means, achieves an F1 score of
55.05%, significantly outperforming a Random
Baseline of 21.20%. While our results demon-
strate that some success is achievable, further
work is needed to thoroughly solve PRINCIPAL
PARTS DETECTION, a task that may be used
to further optimize inputs for morphological
inflection, and to promote research into the the-
oretical and practical importance of a compact
representation of morphological paradigms.

1 Introduction

Morphological analysis is essential for understand-
ing natural language, particularly in languages with
complex inflectional systems. In both linguistic the-
ory and language pedagogy, the concept of princi-
pal parts plays a central role in structuring and sim-
plifying inflectional paradigms (Finkel and Stump,
2007; Stump and Finkel, 2013). Principal parts
form the minimal subset of paradigm cells from
which all other forms can be systematically derived.

By identifying these key forms, principal parts
provide a compact representation of inflection ta-
bles and facilitate the analysis of morphologically
rich languages. Despite their theoretical signif-
icance, the detection of principal parts remains
largely unexplored in computational morphology.
While they have inspired research in inflection and
reinflection (Cotterell et al., 2017; Liu and Hulden,
2020), they are rarely used explicitly. Most compu-
tational approaches instead rely on a single citation
form, the lemma (Cotterell et al., 2016; Goldman
et al., 2023), or select input forms randomly (Cot-
terell et al., 2016; Kann et al., 2017). This reliance
on suboptimal input representations overlooks the
potential of principal parts as a more efficient foun-
dation for inflectional modeling.

In this work, we introduce PRINCIPAL PARTS
DETECTION as a formal task within computational
morphology. Given a large collection of inflection
tables, the goal is to determine which paradigm
cells constitute the minimal principal-part set. Cru-
cially, inflection tables typically contain standard
morphological annotations but are not explicitly
labeled with principal parts, making this an unsu-
pervised learning problem. To promote research in
this area, we deliver a standardized dataset cover-
ing the verbal paradigms of ten diverse languages.
We sourced Principal parts for each language from
online dictionaries, where they are often listed to
aid language learners, and obtained full inflection
tables from UniMorph (Batsuren et al., 2022).

We develop several computational approaches
for PRINCIPAL PARTS DETECTION, leveraging
the defining property of principal parts: their pre-
dictable and systematic relationships with other
forms in the paradigm. Our models characterize
inter-cell similarity and cluster inflected forms into
sub-paradigms, selecting a representative cell from
each sub-paradigm as candidate principal parts.
We explore different methods for characterizing
inter-cell relations, including Edit Distance, Edit



Script, and Reinflection Accuracy, and we exper-
iment with clustering techniques such as Affinity
Propagation and a modified K-Means algorithm.
Our best-performing system, using Edit Script sim-
ilarity measure + Hierarchical K-Means clustering,
achieves an average F1 score of 55.05% across the
ten languages in our dataset, significantly outper-
forming a Random Baseline of 21.20%.

By formalizing PRINCIPAL PARTS DETECTION
as a computational task, we lay the groundwork
for future research on more efficient morphological
representations. To the best of our knowledge, this
is the first work to deliver a standardized bench-
mark of PRINCIPAL PARTS DETECTION alongside
a fully-operational detection framework. Success-
fully solving this task could enhance applications
in morphological inflection and analysis by provid-
ing more informative input forms. Our findings
suggest that principal parts can be computation-
ally identified with reasonable accuracy, but further
improvements are necessary to fully realize their
potential.

2 The PRINCIPAL PARTS DETECTION
Task and Dataset

The PRINCIPAL PARTS DETECTION Task.
The task of PRINCIPAL PARTS DETECTION is de-
fined as identifying the minimal set of cells within
a paradigm that, when known, allow the derivation
of all other paradigm forms. For instance, in En-
glish, the principal parts of the verbal paradigm
are the cells corresponding to the infinitive, sim-
ple past and past participle (for example, eat, ate,
and eaten), as these forms are not predictable from
one another, especially for strong verbs. On the
other hand, the forms corresponding to the present
participle and the 3rd person singular present are
deterministically predictable from the infinitive and
they therefore provide no additional information
for inflection if the infinitive is known.

Formally, the task of PRINCIPAL PARTS DETEC-
TION is defined given a language L, a paradigm
P € L, and a large set of inflection tables 7" =

{tL tho, ...
P tP2s s
The goal is to identify a minimal set of cells
Cpp C P from which all other cells in all in-
flection tables of P can be accurately deduced.

tILD’n} that belong to that paradigm.

The PRINCIPAL PARTS DETECTION Dataset.
In order to empirically assess methods for the de-
tection of principal parts, we first need to have
a dataset to evaluate against. To this end, we

constructed the PRINCIPAL PARTS DETECTION
dataset, containing ten typologically diverse lan-
guages, where every paradigm in every language is
characterized by a set of target principal parts that
systems can be evaluated against.

The input side of the task contains complete
inflection tables, based on the UniMorph corpus
(Batsuren et al., 2022), which provides inflection
tables for 168 languages organized by lexeme and
morpho-syntactic features. We sourced gold princi-
pal parts — that are the desired output — from a
combination of Wiktionary and other trusted online
dictionaries or language teaching websites. Based
on the availability of data sources for both input and
output, we selected ten typologically diverse lan-
guages: Hebrew, English, French, German, Span-
ish, Danish, Swedish, Finnish, Turkish and Latin.

The dataset preparation process involved nor-
malizing the data for consistency across languages.
Redundant and derivational forms were excluded,
leaving only core inflectional forms. Inconsistent
feature sets were removed, and problematic en-
tries from the original sources were manually cor-
rected to ensure a reliable dataset (for more details,
see Appendix A). The PRINCIPAL PARTS DE-
TECTION dataset provides a strong foundation for
computational models, bridging linguistic theory
and practical applications. By curating this mul-
tilingual dataset, we ensure a robust resource for
future research in morphological inflection. The
next section shifts focus to computational meth-
ods for detecting principal parts, drawing on the
linguistic insights outlined in the literature.!

3 Translating Linguistic Insights into
Computational Methods

The core linguistic principle underlying PRINCIPAL
PARTS DETECTION is that principal parts encapsu-
late the implicative relationships that exist between
cells in inflectional paradigms, allowing a small
set of cells to reconstruct the full inflectional table.
To translate this principle into a computationally
tractable problem, we frame PRINCIPAL PARTS
DETECTION as the automatic identification of a
minimal, generative subset of paradigm cells that
can generate all other cells via these implicative
relationships.

We hypothesize that cells of different feature
sets in an inflection table exhibit measurable simi-

'The data is publicly available in https://www.will.be.
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larities in their realized surface forms, that in turn
reflect morphological and structural relationships
between these feature-set cells. By capturing pat-
terns of inter-dependence between cells, we ap-
proximate the implicative structure of a paradigm
without relying on explicit linguistic annotations
of principal parts. To systematically model these
inter-dependencies, we introduce the notion of a
sub-paradigm, which is essentially a sub-set of
paradigm cells with shared implicative properties,
and define distinct areas-of-interdependence within
a paradigm. Although sub-paradigms are not a for-
mal linguistic concept, they provide a structured
way to model implicative relationships computa-
tionally, facilitating the detection of principal parts.

This conceptualization leads to a three-phased
methodology for PRINCIPAL PARTS DETECTION.
First, we characterize the relationships between
pairs of cells by computing similarity measures
that capture their surface and structural dependen-
cies. Next, we cluster inter-related cells into sub-
paradigms, each of which will be represented by a
single principal part in the final set. Finally, we se-
lect one representative feature set per sub-paradigm
as its designated principal part, ensuring maximal
coverage of the paradigm cells with minimal re-
dundancy. The instantiation of these (i) characteri-
zation, (ii) clustering and (iii) candidate selection
phases gives rise to a host of PRINCIPAL PARTS
DETECTION concrete implementations that we can
define and empirically assess — as we discuss next.

4 Framework and Task Empirical Design

The PRINCIPAL PARTS DETECTION framework
we propose here is composed of three inter-
connected stages: characterization, clustering, and
principal parts selection, each implemented using
well-defined computational methods. These stages
operate independently, meaning that different con-
figurations of the framework can mix and match
methods in seeking the best combination. Let us
briefly review the computational models we con-
sider for the different phases.

4.1 Characterization: Quantifying
Relationships Between Feature Sets

The characterization stage quantifies the relation-
ships between paradigm cells by computing numer-
ical similarity scores between them. This work
explores three distinct characterization methods,
offering a different perspectives on the relation be-

tween cells.

Edit Distance A metric that measures surface-
level similarity between forms based on minimal
edit operations — insertions, deletions, or substi-
tutions — required to transform one form into an-
other (Levenshtein, 1966). This method is imple-
mented by computing the average Edit Distance
from each feature set to all others (calculated across
all their surface realizations), treating one as the
source and the rest as destinations. The result-
ing vector representations store these averaged dis-
tances, capturing the surface-level similarity be-
tween feature sets. Pairs of paradigm cells with
low Edit Distance scores exhibit orthographic over-
lap.

Edit Script A metric that captures transforma-
tional diversity by analyzing character-level trans-
formations between paradigm cells. Unlike tradi-
tional Edit Script approaches (Wagner and Fischer,
1974; Myers, 1986), which focus on the exact se-
quence of operations needed to transform one string
into another, this approach computes the number
of unique character-level transformations observed
across all surface realizations of each feature set
pair. Each transformation is counted only once per
feature set pair (calculated across all their surface
realizations), capturing distinct transformational
patterns rather than repeatedly occurring character
changes. The result is a vector representation for
each feature set pair, where each entry encodes the
number of unique transformations required to con-
vert one feature set to another, representing their
transformational distance. This method provides
insight into the variation in morphological transfor-
mations within a paradigm. Feature sets with lower
transformation diversity may exhibit more stable
morphological patterns, making them stronger prin-
cipal part candidates. In contrast, higher transfor-
mation diversity may signal greater variability in
inflectional behavior, which can affect predictabil-
ity within the paradigm.

Reinflection Accuracy A metric that evaluates
the functional predictability of feature sets. It lever-
ages a neural reinflection model trained to generate
a target form given a source form and the morpho-
syntactic features of the target. Unlike edit-based
methods that focus on surface similarity and trans-
formational diversity, Reinflection Accuracy cap-
tures the functional dependencies between feature
sets, reflecting their predictive capacity within a



paradigm.

Reinflection accuracy is particularly effective
in languages with complex inflectional systems,
where orthographic similarity alone is not a re-
liable predictor of implicative relationships. By
capturing functional dependencies rather than sur-
face transformations, it provides a direct measure
of a feature set’s ability to generate other forms.
However, its performance depends on training data
quality and resource availability. In low-resource
settings, data sparsity may lead to biased results,
and the approach is computationally intensive, as it
requires training multiple models—one model per
feature set. Despite these challenges, its ability to
model functional predictability makes it a valuable
tool for identifying feature sets that serve as princi-
pal parts, particularly in morphologically complex
languages.

Each characterization method produces a simi-
larity table, where rows represent source feature
sets and columns represent target feature sets, en-
coding pairwise relationships (see Appendix B).
Before clustering, all similarity matrices are stan-
dardized by removing the mean and scaling to unit
variance to ensure comparability across methods.
These standardized characterization tables form the
foundation for the clustering stage.

4.2 Clustering: Structuring Feature Sets into
Sub-Paradigms

The clustering stage groups feature sets based on
their quantified relationships, approximating sub-
paradigms that reflect the internal organization of
inflectional paradigms. The framework implements
two clustering algorithms, each offering different
advantages. As with characterization, only one
clustering algorithm is used at a time.

Affinity Propagation A message-passing clus-
tering algorithm that dynamically determines the
number of clusters based on pairwise similarity
scores (Frey and Dueck, 2007). Unlike traditional
clustering methods, it does not require a predefined
number of clusters. Instead, it iteratively updates
responsibility and availability values, which deter-
mine how well a feature set serves as an exemplar
(cluster center), until the algorithm converges on
a final set of exemplars. This property makes it
particularly well-suited for paradigms with high
morphological variability. The algorithm is im-
plemented using scikit-learn’s AffinityPropagation
module, with similarity scores computed as nega-

tive squared Euclidean distances. The preference
parameter is set to the median similarity value, al-
lowing clusters to emerge naturally. Additional
parameters include a convergence iteration limit of
30 and a random state value of 10.

Hierarchical K-Means A hierarchical variant
of K-Means that recursively partitions feature sets
into two clusters per iteration until a well-defined
clustering structure is reached. The stopping cri-
terion is determined using the Calinski-Harabasz
Index (CHI) (Calinski and Harabasz, 1974), which
evaluates clustering quality by comparing between-
cluster dispersion to within-cluster cohesion. At
each step, the CHI is computed across the entire
clustering structure to evaluate how well-separated
the clusters are relative to their internal cohesion.
To prevent over-segmentation, clustering stops if
the number of clusters in the new best CHI solu-
tion exceeds that of the previous best CHI solution
by more than one cluster. The algorithm is imple-
mented using scikit-learn’s KMeans module with a
random state value of 10.

By grouping feature sets into paradigm subsets,
the clustering stage provides a data-driven approx-
imation of sub-paradigms. The resulting clusters
serve as inputs for the principal parts selection
stage.

4.3 Principal Parts Selection: Identifying
Representative Feature Sets

The principal parts selection stage finalizes the
PRINCIPAL PARTS DETECTION framework by
transforming clusters into a compact and generative
summary of the paradigm. This stage selects one
representative feature set per cluster, encapsulating
its defining structural and transformational relation-
ships. These feature sets collectively constitute the
principal parts, providing comprehensive coverage
while maintaining a balance between compactness
and predictive capacity.

Concretely, we use the Minimum Average In-
flectional Length criterion. That is, the feature set
with the minimal average inflectional length in its
cluster, calculated across all its surface realizations,
is chosen as the principal part. This ensures that
the selected feature set is both efficient and central
within its cluster. This selection criterion aligns
with a linguistic insight that shorter inflectional
paths often correspond to forms that are central
within the paradigm, making them structurally sig-
nificant within inflectional systems.



5 Experimental Setup and Results

We conduct a series of experiments to evaluate
the effectiveness of the PRINCIPAL PARTS DE-
TECTION framework across ten typologically di-
verse languages. The evaluation compares six
model configurations, each formed by pairing one
of three characterization methods—Edit Distance,
Edit Script, and Reinflection Accuracy—with one
of two clustering algorithms—Affinity Propagation
and Hierarchical K-Means. To establish a perfor-
mance threshold, we include a Random Baseline,
which selects principal parts at random.

5.1 Dataset

The experiments are conducted on the PRINCI-
PAL PARTS DETECTION dataset, which comprises
ten typologically diverse languages, divided into
a development set (Hebrew, English, French, Ger-
man, and Spanish) and a test set (Danish, Swedish,
Finnish, Turkish, and Latin).

The development set represents varied morpho-
logical structures. Hebrew exhibits synthetic mor-
phology, encoding multiple grammatical elements
within single word forms. English, in contrast, is
analytic, primarily relying on word order and aux-
iliary constructions for grammatical relationships.
French and Spanish, as fusional languages, encode
tense, mood, and person within single inflections,
albeit with varying degrees of regularity. German, a
hybrid case, incorporates both fusional and analytic
morphological characteristics, presenting distinct
patterns for analysis. This linguistic diversity en-
sures that models are trained on paradigms with
different degrees of morphological richness, regu-
larity, and complexity.

The test set is designed to assess generalization
across languages with distinct inflectional systems.
Finnish and Turkish exemplify agglutinative mor-
phology, where grammatical meaning is expressed
through concatenative morphemes. Latin, a highly
inflected classical language, provides a rigorous
test case for evaluating the models’ ability to han-
dle case, number, and gender distinctions. Danish
and Swedish, characterized by relatively regular
inflectional systems, contribute typological variety
while testing the models’ robustness in less com-
plex paradigms.

By structuring the dataset to reflect a wide range
of linguistic variation, this division ensures a com-
prehensive evaluation of the framework’s adapt-
ability to diverse morphological systems and its

ability to generalize across typologically distinct
languages.

5.2 Evaluation Metric

To evaluate model effectiveness, we use the F1
score, which balances precision and recall to as-
sess both accuracy and completeness in PRINCIPAL
PARTS DETECTION.

In addition to reporting F1 scores, we compare
model performance against a Random Baseline,
which selects principal parts randomly within each
paradigm. Given a paradigm with x feature sets
and y gold principal parts, the probability of ran-
domly selecting a correct principal part is % Since
the baseline selects y principal parts, the expected
number of correct predictions is y x £ = L= From
this, the expected precision, recall, and F1 score
are all: F'1 = % Since principal parts are inher-
ently sparse within most paradigms, the Random
Baseline represents a challenging threshold. Mod-
els that significantly exceed this score demonstrate
an ability to detect principal parts systematically
rather than relying on chance.

5.3 Reinflection Settings

For models utilizing Reinflection Accuracy, we
train a separate reinflection model for each feature
set, treating it as the source while all other feature
sets serve as targets. The model is based on the
Base LSTM architecture (Goldman et al., 2021), a
character-based sequence-to-sequence model com-
prising a one-layer bidirectional LSTM encoder
and a one-layer unidirectional LSTM decoder with
a global soft attention layer (Bahdanau et al., 2014).
Each model is trained for 50 epochs, optimizing
categorical cross-entropy.

The dataset is split 70%-30%, ensuring that test
lexemes are unseen during training. Each feature
set is trained using a dedicated dataset, where it
serves as the source inflection across different lex-
emes. Since each feature set is evaluated on its
ability to generate all other feature sets within the
paradigm, corresponding test sets are created—one
per target feature set.

Each trained model is evaluated on how accu-
rately it inflects from its assigned source feature set
to each target feature set. The resulting accuracy
scores form representation vector, capturing a fea-
ture set’s proficiency in generating others. Feature
sets with high Reinflection Accuracy scores demon-
strate strong predictive capacity, making them ef-
fective candidates for principal parts.



Model Algorithmic Evaluation

Random Baseline 21.20

Edit Distance + Affinity Propagation 31.29

Edit Distance + Hierarchical K-Means 32.51
Reinflection Accuracy + Hierarchical K-Means 4243
Edit Script + Affinity Propagation 44.62
Reinflection Accuracy + Affinity Propagation 45.56
Edit Script + Hierarchical K-Means 55.05

Table 1: Averaged F1 scores of PRINCIPAL PARTS DE-
TECTION models across ten languages. The table com-
pares different model configurations, highlighting the
best-performing model.

5.4 Results

Table 1 presents the average F1 scores across ten
languages, providing a comparative evaluation of
model performance. All models outperform the
Random Baseline, which achieves the lowest F1
score of 21.20%. The best-performing model, Edit
Script + Hierarchical K-Means, achieves an F1
score of 55.05%, demonstrating its ability to effec-
tively capture and cluster morphological patterns
across diverse languages.

Reinflection Accuracy models perform compet-
itively, with F1 scores of 45.56% (Affinity Prop-
agation) and 42.43% (Hierarchical K-Means). In
contrast, Edit Distance-based models yield lower
scores of 31.29% and 32.51%, indicating that
surface-level similarity alone is insufficient for
PRINCIPAL PARTS DETECTION.

Overall, all tested methods surpass the Random
Baseline by at least 10.09 points, with the best-
performing model exceeding it by 33.85 points.
These results confirm the effectiveness of the pro-
posed methodology, demonstrating a substantial
improvement over random selection.

Table 2 provides a language-specific breakdown
of F1 scores, offering further insight into model
performance across different morphological ty-
pologies. Edit Script + Hierarchical K-Means
achieves top performance in Hebrew, French, Span-
ish, Turkish, and Latin, confirming its adaptability
across different morphological systems. Reinflec-
tion Accuracy-based models perform particularly
well in English, Spanish, Finnish, and Swedish,
suggesting that functional predictability is well-
suited for these languages.

Interestingly, while Reinflection Accuracy
+ Affinity Propagation ranks second overall
(45.56%), it does not consistently outperform
other models across all languages. In Danish and

Model Hebrew | English | French | German | Spanish | Danish | Swedish | Finnish | Turkish | Latin

2068 | 6000 | 1428 | 1666 | 253 | 6250 | 2630 | 248 | 2800 | 625

3330 | 6670 | 37.50 | 4620 | 1540 | 5710 | 4000 | 000 | 000 |1670

2500 | 5710 | 4440 | 4440 | 000 | 5700 | 5710 | 000 | 000  40.00

2500 8570 | 4440 | 2860 5000 | 5710 | 4350 5000 | 000 4000

t + Affinity Propagation 5000 | 8000 5450 | 6670 | 3640 | 5000 | 6000 | 2350 | 690 | 1820

3640 | 8000 | 2670 | 6000 | 1670 | 7500 | 7500 | 4620 | 1740 |2220

y + Affinity Propagation

Edit Script + Hierarchical K-Means 5000 | 8000 5450 | 6000 5000 | 7270 | 6000 | 3330 5000 4000

Table 2: Language-specific F1 scores of PRINCIPAL
PARTS DETECTION models across ten languages. The
table highlights variations in model effectiveness across
different morphological typologies.

Swedish, its relatively strong results suggest an
advantage in regular inflectional systems where
paradigmatic structures are highly predictable.
Conversely, in fusional languages like Spanish,
where single inflections encode multiple grammat-
ical features, it faces challenges in PRINCIPAL
PARTS DETECTION.

In contrast, Edit Distance-based models fail to
rank highest in any language, reinforcing the con-
clusion that surface-level similarity alone is insuffi-
cient for PRINCIPAL PARTS DETECTION. These
findings emphasize the importance of selecting ap-
propriate characterization methods based on lin-
guistic properties and show that transformational
diversity (Edit Script) and functional predictability
(Reinflection Accuracy) are particularly effective
strategies.

6 Analysis

We analyze how methodological factors shape
model performance, focusing on transformations
in characterization data and the effectiveness of
clustering strategies. This evaluation highlights
structural patterns influencing clustering quality
and examines the extent to which clustering results
align with ideal principal parts selection.

6.1 Transpose Ablation: Evaluating the
Impact of Data Orientation

The Transpose Ablation study investigates whether
swapping the rows and columns of the charac-
terization tables influences clustering quality and
principal parts selection. This transformation is
particularly relevant for Reinflection Accuracy,
where the original tables encode directional rela-
tionships—rows indicate how easily a feature set
can inflect from itself to others, while columns
represent the reverse relationship. By transposing
these tables, we test whether an alternative struc-
tural alignment improves performance.



Model Transpose | Algorithmic Evaluation

45.56
Reinflection Accuracy + Affinity Propagation
44.05

42.43

N %X | N X

Reinflection Accuracy + Hierarchical K-Means
43.14

Table 3: Algorithmic evaluation of Reinflection Accu-
racy models with and without transposition across ten
languages. The table presents the averaged F1 scores for
models before and after transposition, highlighting its
varying impact depending on the clustering algorithm.

Transposition is applied only to Reinflection Ac-
curacy models, as Edit Distance and Edit Script
methods generate symmetric similarity matrices,
making transposition redundant. We evaluate two
models: Reinflection Accuracy + Affinity Propa-
gation and Reinflection Accuracy + Hierarchical
K-Means, comparing their performance before and
after transposition.

The results in Table 3 show that transposition
affects models differently. Reinflection Accuracy +
Affinity Propagation experiences a slight decrease
in performance (45.56% — 44.05%), while Re-
inflection Accuracy + Hierarchical K-Means im-
proves marginally (42.43% — 43.14%). This sug-
gests that transposition does not universally en-
hance clustering effectiveness and that its impact
depends on the underlying clustering strategy.

Despite the minor improvement in Hierarchical
K-Means, transposed results are excluded from the
main evaluation due to their limited effect and mis-
alignment with the principal parts definition. Since
original (non-transposed) feature sets encode gen-
erative properties crucial for inflection, preserving
this structure remains preferable. These findings
suggest that alternative data transformations, better
aligned with the linguistic task, may offer greater
benefits.

6.2 Oracle Evaluation

To assess the theoretical upper limit of model per-
formance, we conduct an Oracle evaluation, where
principal parts are selected with perfect knowledge
rather than through clustering. This evaluation dis-
tinguishes clustering effectiveness from principal
parts selection quality, highlighting areas for im-
provement.

Table 4 reveals substantial gaps between Ora-
cle and Algorithmic scores, underscoring cluster-
ing limitations and principal parts selection inef-
ficiencies. Edit Script + Hierarchical K-Means
achieves the highest Oracle score (76.21%), con-

Model W‘:EV’%
Edit Distance + Affinity Propagation 40.08 31.29
Edit Distance + Hierarchical K-Means 50.57 32.51
Reinflection Accuracy + Affinity Propagation | 58.78 45.56
Reinflection Accuracy + Hierarchical K-Means | 65.64 42.43
Edit Script + Affinity Propagation 54.16 44.62
Edit Script + Hierarchical K-Means 76.21 55.05

Table 4: Oracle and Algorithmic evaluations of PRIN-
CIPAL PARTS DETECTION models across languages.
Oracle evaluation assumes perfect knowledge of princi-
pal parts, establishing an upper bound on performance,
while Algorithmic evaluation reflects actual model per-
formance.

[ Evaluation
Model Transp | Oracle | Algorithmic

X 58.78 45.56
Reinflection Accuracy + Affinity Propagation

v/ ‘ 58.51 44.05

X Jese | a6
Reinflection Accuracy + Hierarchical K-Means

4 67.70 43.14

Table 5: Oracle and Algorithmic evaluations of Reinflec-
tion Accuracy before and after transposition. The table
examines how transposition affects clustering quality
under both ideal (Oracle) and algorithmic conditions.

firming strong clustering performance. However,
the 21.16-point gap suggests that principal parts
selection remains a limiting factor.

Conversely, Edit Distance + Affinity Propagation
exhibits the lowest Oracle score (40.08%), indicat-
ing fundamental challenges in clustering feature
sets meaningfully. Reinflection Accuracy + Hierar-
chical K-Means shows a particularly large Oracle-
Algorithmic gap (65.64% — 42.43%), highlighting
that while clustering is effective, principal parts
selection still requires refinement.

These findings emphasize the importance of op-
timizing both clustering effectiveness and principal
parts selection to bridge the gap between Oracle
and Algorithmic performance.

6.3 Interplay Between Transposition and
Oracle Performance

Table 5 presents the impact of transposition on
Reinflection Accuracy models under both Oracle
and Algorithmic evaluations.

The results indicate that while transposition im-
proves Oracle performance for Hierarchical K-
Means (65.64% — 67.70%), it has a negligible
effect on Algorithmic scores, indicating that while
transposition enhances clustering under ideal con-
ditions, it does not meaningfully improve principal



parts selection. Additionally, Affinity Propagation
exhibits sensitivity to data orientation, showing
a slight decline in Oracle performance (58.78%
— 58.51%), suggesting that its clustering mech-
anism relies on specific directional patterns that
transposition may disrupt. Conversely, Hierarchi-
cal K-Means benefits from transposed data, likely
due to its iterative refinement of clusters. However,
since Algorithmic scores remain largely unchanged
across models, these findings reinforce that refin-
ing selection heuristics, rather than adjusting data
orientation, is the key to improving model perfor-
mance.

7 Related Work

Early computational approaches to paradigm com-
pletion predominantly relied on the lemma as the
central reference form, treating it as the sole input
for generating full inflectional paradigms (Durrett
and DeNero, 2013; Hulden, 2014; Nicolai et al.,
2015; Ahlberg et al., 2015; Faruqui et al., 2016).
However, Cotterell et al. (2017) highlighted the
limitations of this approach, noting that forcing
transformations to pass exclusively through the
lemma can introduce unnecessary complexity. In-
stead, more flexible models leveraging multiple
inflected forms have been proposed, allowing trans-
formations to occur directly or via intermediary
forms, rather than constraining them to a single
privileged form. This shift aligns with the concept
of principal parts, which constitute the minimal
set of paradigm cells required to deduce all others
(Finkel and Stump, 2007; Stump and Finkel, 2013).

Cotterell et al. (2017) introduced a directed
graphical model that probabilistically generates
missing inflected forms by modeling dependen-
cies within paradigms. This approach enables the
prediction of a form from multiple inflected forms
rather than exclusively from the lemma. Around
the same time, Kann et al. (2017) introduced multi-
source reinflection, demonstrating that using mul-
tiple inflected forms as input improves accuracy.
Their work explicitly references principal parts as a
linguistic motivation, reinforcing the idea that cer-
tain forms within a paradigm hold stronger predic-
tive capacity. Additionally, Cotterell et al. (2019)
examined the structural complexity of inflectional
paradigms, proposing a neural method for ordering
paradigm slots based on their predictability—an
indirect computational realization of the principal
parts concept.

Liu and Hulden (2020) extended these ideas
by reformulating morphological inflection as a
Paradigm Cell Filling Problem (PCFP), where miss-
ing forms are inferred from a partially observed set
of paradigm cells. While their work does not ex-
plicitly model principal parts, it aligns with their
predictive role in improving inflectional accuracy,
particularly in low-resource settings.

Despite these advancements, no prior work has
proposed a systematic, data-driven approach to
principal parts detection. Existing studies have
either assumed pre-defined principal parts or incor-
porated them indirectly within broader inflectional
tasks. In contrast, we introduce PRINCIPAL PARTS
DETECTION as a formal computational task, devel-
oping a multilingual benchmark and a principled
methodology for automatic PRINCIPAL PARTS DE-
TECTION. By integrating linguistic insights with
computational modeling, we establish a structured
framework for principal parts detection.

8 Conclusions

This work introduces PRINCIPAL PARTS DETEC-
TION as a computational task, formalizing the
detection of principal parts within inflectional
paradigms. We construct a multilingual dataset
with ten typologically diverse languages, and de-
velop a structured framework to automatically de-
tect principal parts in their verbal diagrams.

our empirical evaluation shows that character-
izing inter-cell relationships, clustering feature
sets, and selecting representatives, offers a viable
strategy for identifying principal parts. Our best-
performing approach — Edit Script similarity with
Hierarchical K-Means — achieves an F1 score of
55.05%, significantly surpassing the Random Base-
line of 21.20%. However, results across models
indicate that while clustering is effective in group-
ing related feature sets, principal parts selection
remains a key bottleneck.

Beyond theoretical interest, solving PRINCIPAL
PARTS DETECTION has practical implications for
computational morphology. By identifying com-
pact, generative subsets of paradigm forms, prin-
cipal parts can be leveraged to optimize morpho-
logical inflection models, reduce annotation costs,
and improve low-resource language modeling. The
structured approach presented here lays the foun-
dation for future advancements, underscoring the
relevance of linguistic principles in shaping more
efficient NLP methodologies.



Limitations

Despite the progress demonstrated in this study,
several open challenges remain. Irregular
paradigms, as seen in Latin, continue to pose dif-
ficulties, highlighting the need for methods that
can better capture morphological unpredictability.
Additionally, our reliance on UniMorph, while of-
fering broad linguistic coverage, exposes inconsis-
tencies that impact model generalization. More
curated linguistic resources could improve dataset
reliability and refine the evaluation of principal
parts across languages.

Also, one could explore alternative clustering
strategies that are better suited to morphological
structures, such as graph-based methods or neural
clustering approaches. Transformer-based models
hold potential for capturing deeper morphological
dependencies, offering an avenue for enhancing
both clustering accuracy and principal parts selec-
tion. These challenges are beyond the scope of this
paper and we reserve it to future work.

Our dataset currently includes only 10 languages.
Expanding the dataset to include more morpholog-
ically rich and underrepresented languages, such
as polysynthetic languages, would better capture
typological diversity and will potentially further
validate the robustness of PRINCIPAL PARTS DE-
TECTION methods.
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Appendix

A Technical Overview of the PRINCIPAL
PARTS DETECTION Dataset

This section provides the technical details of the
PRINCIPAL PARTS DETECTION dataset, including
the number of samples per feature set in each lan-
guage’s verb paradigm and the total number of gold
principal parts for each language. In some cases,
specific feature sets were removed for various rea-
sons, which are explained in subsection A.2.
Additionally, we list the gold principal parts for
each language, formatted as feature_set (e.g.,
form). When two feature sets share the same form,
the gold principal parts are listed in square brackets
[ 1. The first feature set corresponds to the princi-
pal part identified in linguistic literature, while the
second represents a feature set that consistently
shares the same form across all samples in the
dataset. In such cases, the second feature set is
included as a possible principal part, as the algo-
rithm’s choice between them does not affect the
analysis. To avoid redundancy, no principal part is
counted more than once in these scenarios.

A.1 Dataset Summary and Illustrative
Lexeme Examples

For each language, we provide an example lex-
eme to illustrate the principal parts, formatted as
feature_set (e.g., form). These examples are
illustrative and may not share the same meanings
across languages.

A.2 [Explanatory Notes

The following explanatory notes clarify decisions
made during dataset preparation and supplement
the information presented in Table 6:

* Spanish: PRO feature sets, representing verbs
with object clitic pronouns, were removed.

* Swedish: The V-IMP-PASS feature set was
excluded due to insufficient samples (only
three).

e Latin:

— Passive feature sets were excluded.

— Feature sets starting with V.PTCP (in-
stead of V-V.PTCP) were removed.
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Language

Features

Samples per
Feature Set

# of Gold
Principal
Parts

Gold Principal Parts

English 5

23,896-31,848

V-NFIN-IMP+SBJV (e.g., eat),
3 V-PST (e.g., ate),
V-V.PTCP-PST (e.g., eaten)

French 49

7,483-17,535

V-NFIN (e.g., mangier),
V-IND-PRS-1-PL (e.g., manjons),
V.PTCP-PST (e.g., mangié),
7 V-IND-FUT-1-SG (e.g., mangerai),
V-IND-PRS-1-SG (e.g., manju),
V-IND-PRS-3-PL (e.g., manjiient),
V-IND-PST-1-SG-PFV (e.g., manjai)

German 30

2,307-6,661

V-NFIN (e.g., essen),
V.PTCP-PST (e.g., gegessen),
[V-IND-SG-3-PST, V-IND-SG-1-PST
5 (e.g., aB)],
V-IND-SG-3-PRS (e.g., isst),
[V-SBJV-SG-3-PST, V-SBJV-SG-1-PST
(e.g., 4Be)]

Spanish 79

6,676-6,695

V-NFIN (e.g., comer),
V-IND-PRS-1-SG (e.g., como)

Danish 8 162

V-ACT-NFIN
V-ACT-IND-PRS
5 V-ACT-IND-PST (e.g., dansede),

V-ACT-IMP (e.g., dans),
V.PTCP-PASS-PST (e.g., danset)

(e.g., danse),
(e.g., danser),

Swedish 19

2,114-2,536

[V-NFIN-ACT, V-IND-PL-ACT-PRS
(e.g., dta)],
V-IND-SG-ACT-PRS
V-IND-SG-ACT-PST (e.g., at),
V-V.CVB-ACT (e.g., dtit),
V-IMP-ACT (e.g., dt)

(e.g., dter),

Finnish 161

7,221-7,226

V-NFIN-ACT+PASS (e.g., syodd),
V-ACT-PRS-POS-IND-1-SG  (e.g., syon),
V-ACT-PST-POS-IND-3-SG (e.g., s61),

V.PTCP-ACT-PST (e.g., syonyt)

Turkish 703 588

V-NFIN (e.g., icmek),

V-IND-PRS-HAB-3-SG-POS-DECL (e.g., icer)

Latin 48 450-947

V-IND-ACT-PRS-1-SG (e.g., -pleo),
3 V-NFIN-ACT-PRS (e.g., -plére),
V-V.MSDR-ACC-LGSPECI (e.g., -plétum)

Table 6: Summary of the PRINCIPAL PARTS DETECTION dataset by language, including gold principal parts and

illustrative lexeme examples.

— Feature sets with 30 or fewer samples

were excluded.

— The first-person-singular-perfect-active-
indicative feature set was excluded from
the gold principal parts list due to insuf-

ficient data (only two samples).

B Characterization Tables for Selected
Languages

To illustrate the structure of the characterization
methods, we present detailed characterization ta-
bles for three representative languages from our
dataset. These tables demonstrate how different
feature sets relate within their verb paradigms,
showcasing the variation across Edit Distance, Edit
Script, and Reinflection Accuracy characterization
methods.
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Each language is represented by three tables, cor-
responding to the distinct characterization methods,
with principal parts highlighted in yellow for clarity.
Additionally, cases where two feature sets consis-
tently share the same form and are interchangeable
as principal parts are marked with a distinct color.
Since these feature sets carry identical information,
the model’s selection between them does not im-
pact the results.

Interpretation of Tables. The provided tables
exemplify the structure of the characterization
methods rather than an exhaustive display of all
ten languages in our study. While specific lexeme
examples are shown in the rows and columns, the
quantified relationships they capture apply to the
entire verb paradigm of each language. These ex-
amples serve to illustrate the broader implicative
patterns identified during the characterization pro-
cess.

B.1 Characterization Tables for English
B.2 Characterization Tables for German

B.3 Characterization Tables for Swedish
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Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST-ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat 1.157683294  1.532683294 1.534943087

1.410905591

V-PRS-3-SG - eats

1.157683294

1.421493137

V-PST - ate 1.532683294 1.421493137

V-V.PTCP-PRS - eating

v (B W|N |-

V-V.PTCP-PST - eaten 1.534943087 1.410905591

Figure 1: Average edit distances for the English verb paradigm. Values range from O to 4.5. Darker red shades
indicate closer relationships between feature sets, while darker turquoise shades represent greater differences.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat

V-PRS-3-SG - eats

V-PST - ate

V-V.PTCP-PRS - eating

v (| W[N | =

V-V.PTCP-PST - eaten

Figure 2: Edit Script scores for the English verb paradigm. Values range from 1 to 128. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater
variation.

Features V-NFIN-IMP+SBJV - eat V-PRS-3-SG - eats V-PST - ate V-V.PTCP-PRS - eating V-V.PTCP-PST - eaten

V-NFIN-IMP+SBJV - eat

V-PRS-3-SG - eats

V-PST - ate
V-V.PTCP-PRS - eating
V-V.PTCP-PST - eaten

v ([ H W |N|=

Figure 3: Reinflection Accuracy scores for the English verb paradigm. Values range from 0.9 to 0.96. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.

L [~

Figure 4: Average edit distances for the German verb paradigm. Values range from O to 11.19. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater distances.
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Figure 5: Edit Script scores for the German Verb Paradigm. Values range from 1 to 1,107. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater
variation.

Figure 6: Reinflection Accuracy scores for the German verb paradigm. Values range from 0.66 to 0.9. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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Figure 7: Average edit distances for the Swedish verb paradigm. Values range from 0 to 4.153. Darker red shades
indicate closer relationships between feature sets, while darker ball-blue shades represent greater differences.
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Figure 8: Edit Script scores for the Swedish verb paradigm. Values range from 1 to 142. Darker purple shades
indicate fewer unique character sets (closer relationships), while darker air-force-blue shades reflect greater
variation.
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Features VapACT- 3t VAFIACT. S VNFINPASS-3as V-SOIVACTPRS- e ViSBN-ACT.FST. ite VAGYBACT- S VV.CVE-PASS- it VAPTCP.PST. e

VSONPASSPRS. | VSEN-PASSPST
e s

vapce.pRs.
atande.

2 NOPLACTRS s

3 VANDPLACTPST-dt0

4 VAND-PLPASS PRS- stax

5 VIND-PLPASSPST-itos

6 VIND-SGACT PRS- dter

7 VNDsCACTPST-it

8 VIND-5G.PASS.PRS - dssaes

9 VIND-5CpASSPST-dts

10 \NENACT-sta

1 NEPASS s

1 VSNACTRS - it

1 VSBNACTST-dte

18 VSN PASS PRS- s

15 VSBN-PASSPST-des

16 VvovBACT-aut

1 Vvovapass -atts on on on on 075 on 07 o on on o [ o on o5 o on on o5

18 VPICP-PRS - stande

19 VVPICPPST-ston on o7

Figure 9: Reinflection Accuracy scores for the Swedish verb paradigm. Values range from 0.62 to 0.88. Darker teal
shades indicate higher accuracy, while darker pink shades reflect lower performance.
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