Under review as a conference paper at ICLR 2025

COUNTERFACTUAL TECHNIQUES FOR ENHANCING
CUSTOMER RETENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce a novel counterfactual reasoning method using eBERT
embeddings to convert customers from an e-commerce company who frequently
add items to their cart but don’t proceed to checkout. We demonstrate that our
method 1) outperforms existing techniques such as DiCE, GANs, and CFRL in
key metrics such as coverage, while also maintaining a low latency; ii) balances
high coverage and low latency by adjusting the number of nearest unlike neigh-
bors, highlighting a trade-off between these competing goals; and iii) allows cus-
tomization of mutable features, improving the practical applicability of our coun-
terfactual explanations.

1 INTRODUCTION

In various industries, counterfactual reasoning can be used to analyze ‘what-if” scenarios to better
understand customer behavior. For instance, customers often add items to their cart but do not
proceed to checkout. Similarly, it is also important for loan companies [Zhang et al.| (2023)); |Grath
et al.| (2023)), insurance providers Rye & Boyd| (2022); Kumar & Ravil (Year), and fraud detection
Whitrow et al.| (2009); Ngai et al| (2011) companies to explain to their customers why they were
denied loans or insurance. Understanding the reasons behind these behaviors and finding strategies
to convert these customers is important for improving conversion rates. In recent years, the demand
for explainable Al has grown, becoming essential across sectors to ensure transparency and trust
among customers |Gohel et al.|(2023)); Verma et al.|(2020); |Adadi & Berradal (2018).

Existing counterfactual reasoning methods like Nearest Instance Counterfactual Explanations
(NICE)|Brughmans et al.[(2022), Diverse Counterfactual Explanations (DiCE)Mothilal et al.|(2019)),
Generative Adversarial Networks (GANs) (Goodfellow et al.| (2014), Counterfactual GANs (Coun-
teRGAN) Nemirovsky et al.| (2021)), and Counterfactuals with Reinforcement Learning (CFRL)
Samoilescu et al.| (2021) often suffer from either high latency, lack of mutability (i.e., changing
only user-specified features), or suboptimal performance in terms of plausibility (i.e., how closely
the counterfactual resembles the real world data) and distance (i.e., distance between the original
instance and the counterfactual). Providing counterfactuals with actionable and customizable (i.e.,
mutable) features is essential for achieving business goals.

To address these challenges, we propose a novel counterfactual reasoning method that is built on
the foundations of NICE but adds support for mutability and uses contextual embedding techniques
to find the nearest neighbors from the opposite class. Our approach involves converting each data
row into text, considering both feature and value, and then generating embeddings using a BERT
Devlin et al.| (2018) model fine-tuned on the company’s product titles (¢éBERT). Through BERT-
based embeddings, feature values are represented better semantically, making it an effective method
of finding neighbors who are similar but have a different label, increasing plausibility.

Our new technique is particularly valuable in production systems because it supports mutability,
allowing business users to specify which features can be changed. As a result, the generated coun-
terfactuals are more actionable. Also, by using embeddings for similarity, the counterfactuals are
highly plausible, providing the best plausibility and coverage compared to all the baseline methods.

Under review as a conference paper at ICLR 2025

1.1 CONTRIBUTIONS

The primary objective of this study is to develop a novel counterfactual reasoning method to enhance
customer retention in e-commerce settings. Our method aims to provide explainable, actionable
insights that help identify key factors influencing customers’ decision-making processes, specifically
for scenarios where customers abandon their carts before completing a purchase. By leveraging
eBERT embeddings and supporting mutability, we have achieved the following contributions:

* Developed a new counterfactual reasoning algorithm that improves upon current state-of-
the-art methods, such as NICE, DiCE, and GAN-based approaches, by balancing coverage,
latency, and plausibility of counterfactuals.

* Introduced an embedding-based approach using eBERT to generate highly plausible coun-
terfactuals that more accurately reflect customer behavior in an e-commerce setting.

* Ensured that the proposed method supports customizable and mutable features, allowing
business stakeholders to specify which factors can be realistically adjusted to achieve de-
sired outcomes, thus enhancing the practical applicability of counterfactual explanations.

* Optimized the system for real-time deployment, with a focus on maintaining low latency
and high scalability in real-world applications such as customer retention for e-commerce.

 Evaluated the effectiveness of the proposed method across various scenarios, comparing it
against existing techniques using key metrics such as coverage, reconstruction error, and
L1 distance, and demonstrating its applicability in real-world datasets.

This work aims to address the current limitations in counterfactual reasoning, offering a comprehen-
sive and actionable solution for improving customer retention through explainable Al techniques.

2 DATA PREPROCESSING

Our company’s dataset consists of 200,000 shopping sessions to understand customer behavior. The
dataset includes a total of 47 features extracted primarily from User, Cart, and Listing tables. Of
these features, 36 are categorical, such as product categories and purchase data, while the remaining
11 are numerical variables, like shipping costs, item prices, and feedback scores. The task is a binary
classification of shopping session outcomes, either 1 (i.e., success) if the customer successfully
checked out or O (i.e., failure) otherwise.

To preprocess the data for embedding generation, we scaled the price and shipping fee features
between 0 and 100 and categorized them into four buckets. The price features were divided into
four buckets: 0-20 (budget), 20-40 (affordable), 40-60 (premium), and 60-100 (luxury). Shipping
fees were also categorized into four buckets: 0-25 (low), 25-50 (medium), 50-75 (high), and 75-100
(very high).

For building the classification pipeline, we removed null values, scaled the data using a standard
scaler, and encoded categorical data using a binary encoder. We explored several encoding methods
for the categorical features, including label encoding, one-hot encoding, target encoding, and binary
encoding. While one-hot encoding achieved slightly higher accuracy, it led to overfitting due to high
cardinality, increasing the dataset to over 9,000 features and significantly increasing computation
time. Binary encoding, although slightly less accurate, reduced dimensionality to 165 features,
preventing overfitting and significantly reducing the computation time. Binary encoding was chosen
due to its ability to reduce dimensionality and computation time, while preventing overfitting.

The dataset was divided into a training set of 160,000 instances and a test set of 40,000 instances to
evaluate model performance. This preprocessing step ensured that both categorical and numerical
features were ready for embedding generation.

3 CLASSIFICATION

Counterfactual reasoning algorithms incorporate classifiers by using their predictions as feedback
during the generation process. Each counterfactual is tested to see if it successfully flips the classi-
fier’s original decision or not. We implemented four different types of classifiers—a Random Forest

Under review as a conference paper at ICLR 2025

Table 1: Performance Metrics of Various Classifiers

METRIC RANDOM FOREST MLP LOGREG XGBOOST

Accuracy 89.0 82.1 66.41 84.7
Precision 88.7 82.4 66.42 81.4
Recall 89.3 82.1 66.4 89.7
F1 Score 89.0 82.1 66.4 85.4

(RF), Logistic Regression, XGBoost (Chen & Guestrin| (2016), and Multilayer Perceptron (MLP).
The Random Forest classifier showed promising results and was used for generating counterfactual
explanations. With an F1 score of 89.1% (Table [I), it demonstrated its ability to properly classify
and understand customer behavior. The MLP, Logistic Regression, and XGBoost achieved lower
accuracy than the Random Forest.

4 BASELINE COUNTERFACTUAL METHODS

Here, we describe four strong baseline counterfactual reasoning methods we compared against.

Diverse Counterfactual Explanations (DiCE) DiCE Mothilal et al.|(2019) primarily focuses on gen-
erating feasible and diverse counterfactuals. It extends counterfactual explanations by incorporating
determinantal point processes (DPP) Kulesza et al.| (2012)), which is a probabilistic model used to
ensure diversity in the generated examples. This allows DiCE to provide a range of alternatives for
changing outcomes.

DPP selects a subset of diverse examples by maximizing the determinant of a kernel matrix built
from the examples. This diversity is balanced against proximity, which measures the closeness of
counterfactuals to the original input. The method optimizes a loss function that combines y-loss (the
difference in prediction), proximity, and diversity, adjusted using hyperparameters A; and As. The
counterfactuals are generated through gradient descent, which iteratively adjusts feature values to
meet the objective while respecting any real-world constraints on feature manipulation.

While DiCE focuses on generating diverse counterfactuals, it suffers from lower coverage and higher
reconstruction error. In contrast, our method achieves higher coverage and lower L1 distance, pro-
viding more actionable and plausible counterfactuals, especially in e-commerce applications where
proximity is more critical than diversity.

Nearest Instance Counterfactual Explanations (NICE) NICE |Brughmans et al.| (2022) generates
counterfactual explanations using a nearest unlike neighbor-based approach. The algorithm identi-
fies the nearest neighbor with a different class label and changes one feature value at a time from the
original instance to match that of the neighbor. This process generates hybrid instances, guided by a
reward function that prioritizes sparsity, proximity, or plausibility, depending on the specific NICE
variant.

NICE allows for different objective functions depending on the type of optimization desired. This
approach has been tested across various datasets and domains, demonstrating its flexibility and abil-
ity to produce minimal yet effective feature changes.

Although NICE produces counterfactuals with minimal L1 distance, it lacks support for mutability,
limiting its practical applicability. Our method not only supports feature mutability, making it more
customizable for real-world business needs, but also provides faster counterfactual generation with
reduced latency.

Generative Adversarial Networks (Standard GAN & CounteRGAN) CounteRGAN |Nemirovsky et al.
(2021)) is an extension of Residual GAN (RGAN), designed to generate realistic and actionable
counterfactuals by applying small perturbations to existing data points rather than creating new
instances from scratch. The idea is to generate subtle modifications that can flip a model’s prediction,
while ensuring that the changes are realistic and feasible.

Under review as a conference paper at ICLR 2025

In RGAN, the generator produces perturbations that modify input data, while the discriminator
attempts to distinguish between real and modified data. CounteRGAN adds a target classifier to
this process, which ensures that the generated counterfactuals not only resemble real data but also
result in the desired class change. This approach integrates the adversarial learning process with a
counterfactual search for more purposeful outcomes.

Standard GAN and CounteRGAN generate counterfactuals with the lowest latency, but at the cost of
higher reconstruction error and L1 distance, which reduces plausibility. Our method, while slightly
slower, strikes a balance by providing highly plausible counterfactuals with lower L1 distance and
full coverage, making it more effective in producing realistic and actionable outcomes.

Counterfactuals using Reinforcement Learning (CFRL) CFRL |Samoilescu et al.|(2021)) uses a rein-
forcement learning framework for counterfactual generation, transforming the optimization process
into a learnable task. It enables the generation of multiple counterfactuals in a single forward pass,
relying solely on the feedback from the classifier’s predictions. This model-agnostic method allows
for feature-level constraints, ensuring real-world feasibility.

CFRL uses a critic to estimate rewards from the environment and an actor to output counterfactual
latent representations. This method enables high flexibility, as feature-level constraints like im-
mutability can be incorporated via conditioning vectors, ensuring that the generated counterfactuals
are plausible and actionable.

CFRL supports mutable feature customization. However, it has the lowest coverage amongst all
the other methods and a higher L1 distance compared to our method. By offering a better balance
between feature mutability, coverage, and proximity, our method produces more actionable and
realistic counterfactuals.

Other counterfactual generation methods such as CERT |[Sharma et al.| (2020) and MACE [Karimi
et al.[(2020) were not considered due to their high latency Schleich et al.|(2023)), and GeCo|Schleich
et al.|(2023), although it offers many customization options for the counterfactual, suffers from very
low coverage |[Brughmans et al.|(2022).

5 OUR METHOD

Our novel embedding-based counterfactual reasoning method is designed to address the limitations
of NICE by using embeddings to find the nearest unlike neighbors, and it supports mutability. Our
method performs better than all other methods supporting mutability, specifically DiCE and CFRL,
across all metrics. It also provides better plausibility and faster results compared to NICE. We use
eBERT to generate embeddings that capture deep semantic relationships within our data, in order to
identify more plausible and actionable counterfactuals.

5.1 EMBEDDING GENERATION USING EBERT

In our method, each data sample is transformed into a text representation to generate embeddings
for counterfactual reasoning. This transformation involves converting 63 feature names and their
respective values into a textual format. For example, a data row with the following attributes:

* PRICE = affordable

* SHPNG_COST = low

* PAYMNT_TYPE = CreditCard

* QTY_SOLD = 2
would be represented as: “PRICE affordable SHPNG_COST low PAYMNT_TYPE CreditCard
QTY_SOLD 2~

This text is then standardized to lowercase to maintain consistency before processing. The prepro-
cessed text for each of the 63 features used in our dataset is input into the eBERT model. The
eBERT model outputs a 768-dimensional embedding for each data sample, capturing the semantic
relationships of the data.

Under review as a conference paper at ICLR 2025

These embeddings serve as the basis for the next step in our method, which involves identifying the
nearest unlike neighbors. This process is crucial for generating plausible and contextually relevant
counterfactual explanations by calculating the distances between the generated embeddings.

5.2 NEAREST UNLIKE NEIGHBORS GENERATION

After generating embeddings using eBERT, the next step involves finding the nearest unlike neigh-
bors, which are used to find a counterfactual explanation. Instead of using the Heterogeneous
Euclidean-Overlap Metric as in NICE, our method employs FAISS (Facebook Al Similarity Search)
Facebook Engineering| (2017) IndexFlatL2 to identify the k nearest unlike neighbors based on the
L2 distance.

FAISS is a library optimized for fast similarity searches, particularly for high-dimensional vectors
such as embeddings. We use the IndexFlatL.2 index type, which is a brute-force index that searches
the nearest neighbors using L2 distance. For example, in our case, an embedding vector representing
an unsuccessful shopping session is queried against the index containing embeddings of successful
sessions to find the k nearest neighbors with the “successful” class label.

The nearest unlike neighbors retrieved represent instances that lie on the opposite side of the de-
cision boundary. Each of these neighbors has different values for features such as PRICE, SH-
PNG_COST, and PAYMNT _TYPE, which makes them candidates for generating counterfactuals.

The overall process involves building the FAISS index, adding all dataset embeddings, associating
each embedding with a class label, and then retrieving the & nearest unlike neighbors using FAISS.

Nearest Unlike Neighbor Decision Boundary

Original Instance

PRICE = affordable
SHPNG_COST = Jow
PAYMNT_TYPE = CreditCard

PRICE = expensive
SHPNG_COST = medium
PAYMNT_TYPE = CreditCard

CLASS =1

PRICE = affordable
. SHPNG_COST = medium
PAYMNT_TYPE = CreditCard

CLASS =0

CLASS =1

PRICE = cheap
SHPNG_COST = low
PAYMNT_TYPE = PayPal

CLASS =1

Figure 1: The original instance (red) has a PRICE of expensive, a SHPNG_COST of medium, and
uses PAYMNT_TYPE = CreditCard. The class is 0, indicating that this customer is not predicted
to make a purchase. The nearest unlike neighbors (green) are counterfactual instances with slightly
different features, located on the opposite side of the decision boundary (i.e., CLASS = 1, which
are predicted to make a purchase). The nearest unlike neighbors have variations in PRICE, SH-
PNG_COST, and PAYMNT _TYPE.

Under review as a conference paper at ICLR 2025

Figure [T]illustrates the concept of nearest unlike neighbors in relation to the decision boundary. The
original instance (red dot) is positioned near several nearest unlike neighbors (green dots) that lie on
the opposite side of the decision boundary. This proximity allows for generating counterfactuals by
modifying features in a way that crosses the decision boundary, achieving a different classification.

5.3 COUNTERFACTUAL SEARCH

Once we identify the nearest unlike neighbors, the next step is to generate counterfactuals using a
greedy heuristic search method. In counterfactual search, we find data points that can be used to alter
a classifier’s decision, while making sure that they have a low distance from the original instance.

Using the neighbors identified in the previous section, the greedy heuristic search modifies fea-
tures one at a time. Referring to Figure |1} the original instance has a PRICE of expensive, a SH-
PNG_COST of medium, and uses PAYMNT _TYPE = CreditCard. We modify each of these fea-
tures individually to match one of the nearest unlike neighbors. For example, lowering the PRICE
from expensive to affordable or lowering the SHPNG_COST from medium to low could flip the
prediction from class O to class 1.

As the features are adjusted, the heuristic search keeps track of how each modification affects the
classifier’s decision. The goal is to generate the closest counterfactual, i.e., the one that modifies the
fewest features while successfully flipping the class. In some cases, a combination of modifications,
like changing both PRICE and SHPNG_COST, may be required.

The Counterfactual Generation Algorithm [I| seeks to identify the closest counterfactual instance to
an original data point by iteratively modifying its features to achieve a desired target classification.
Initiated with the original instance (Zorg), the algorithm progresses through the feature space by
comparing against a set of nearest unlike neighbors (N). For each neighbor, the algorithm creates
Xmod, Which is a set of new instances derived from x,;, where each instance in X,oq is generated
by altering one specific mutable feature of &, to match the corresponding feature in the neighbor.

Each modified instance, denoted as x’, is evaluated for its potential as a counterfactual: the mod-
ifications are checked to ensure they not only bring x’ closer to achieving the target classification
but also maintain minimal distance from @q,. This iterative process continues until a satisfactory
counterfactual that meets the target classification is found, or all possibilities are exhausted. This
method ensures that each proposed counterfactual is a minimal and interpretable adjustment to the
instance that alters the model’s decision.

6 EXPERIMENTS

We conducted experiments on a randomly held-out test set of 1,000 data points using all the coun-
terfactual techniques in Sectiond]and compared them using the following metrics:

* Reconstruction Error: Measures how closely a counterfactual instance resembles real-
world data. It is calculated as the L2 norm between the autoencoder output and the coun-
terfactual instance. A lower reconstruction error indicates a more plausible and realistic
counterfactual [Looveren & Klaise| (2019); Dhurandhar et al.[(2018)); [Nemirovsky et al.
(2021).

E = |AE(zes) — zetll))

where AF is the autoencoder model and x.s is the counterfactual instance.

* LI Distance: Measures the distance between the original and counterfactual instances. A
lower L1 distance makes the counterfactual more actionable.

Ll(x,zcf) = Z |z — Tef 2

where x is the original instance and x; is the counterfactual.

» Latency: Represents the expected time to generate a single counterfactual. It is crucial for
evaluating the practical usability of a counterfactual generation method.

Under review as a conference paper at ICLR 2025

Algorithm 1 Counterfactual Generation

Require:
M Prediction model
E: Encoders for categorical features
S Scaler for numerical features
Torg: Original instance
N: Set of nearest unlike neighbors
Tmax: Maximum iterations

Initialize:

Tef < Torig > Initialize counterfactual candidate

Amin ¢ 00 > Initialize minimum distance
Ensure:

x*: Optimal counterfactual instance
dmin: Minimum distance
: forn € Ndo
for t <+ 1to T do
Xmod < {&’ : @’ varies from x by one feature towards n} > Generate new instances
with one modified feature

Wy

4: (z',d) + EvaluateModifications(X o4, Zcf, E, S, M) > Evaluate potential
counterfactuals
5: if d < dpin then
6: Amin < d
7: Tt +— x > Update optimal counterfactual
8: Tep — &' > Update current counterfactual
9: end if
10: if M () = target class then
11: return (Zf, dimin) > Return if target class is achieved
12: end if
13: end for
14: end for

15: return (z*, duin)

Under review as a conference paper at ICLR 2025

Table 2: A comparison of the five different counterfactual methods on four evaluation metrics. Note

that the + values represent the 95% confidence interval, calculated as (1.96 x ﬁ), where o is the

standard deviation and n is the sample size.

METHOD % COVERAGE RECONSTRUCT ERROR L1DIST LATENCY (S)

NICE 100.0 0.116 £ 0.004 1.79 1.641 £ 0.055
DiCE 95 0.364 £ 0.054 34 1.359 £ 0.029
Standard GAN 100.0 0.584 £ 0.001 53.46 0.012 £ 0.002
CounteRGAN 100.0 0.499 + 0.002 52.83 0.010 £ 0.001
CFRL 71.8 0.156 £ 0.001 3247 0.145 £ 0.002
Our method 100.0 0.112 £ 0.003 2.23 0.49 +0.003

Table 3: Coverage (%) for smaller, mutable feature sets.

NO. OF FEATURES (m) CFRL DICE OURMETHOD

1 4 6.38 8

3 16 15.5 18.2
5 41.2 51.3 523
7 58.7 61.7 60.5

* Coverage: Represents the proportion of instances for which counterfactuals can be suc-
cessfully generated.

Y1 (MG = d) .

n

3)

where n is the total number of instances, M is the model, d is the desired class (1 in our
case), and 1(-) is the indicator function that equals 1 if its argument is true and O otherwise.
It calculates the percentage of instances where the model’s prediction for the counterfactual
is the desired class.

As shown in Table[2] our method achieved the lowest reconstruction error and maintained 100% cov-
erage. Although Generative Adversarial Networks (GANs) achieved the lowest latency and 100%
coverage, they have large distance between the original and counterfactual instances. In addition,
NICE has the lowest L1 distance, but does not allow mutability, which limits its usability, and is
almost three times slower.

While Counterfactuals with Reinforcement Learning (CFRL) and DiCE allow customization of mu-
table features, they suffer from lower coverage, and significantly higher L1 distances and plausibility
compared to our method. With this comparison, we can see that, in addition to better coverage and
lower reconstruction errors, our method maintains a balance across all key metrics, including la-
tency and distance, and also allows mutable features to be specified as desired. These experiments
demonstrate that our method is not only strong in theory, but also works well in practice, making it
very effective for real-world counterfactual reasoning.

To further examine this approach, we tested it on other mutable feature groupings. Even when we
restrict mutability to smaller feature sets, such as [PRICE, SHPNG_COST, PAYMNT_TYPE] or
only [PRICE], our method still outperforms CFRL and DiCE in almost every given configuration,
as shown in Table

k, representing the number of nearest unlike neighbors, acts as a hyperparameter affecting coverage
and latency. A higher value of % increases coverage but also increases the latency. To maintain
reasonable latency, we set k£ = 12 to optimize for coverage.

The graphs in Figure[2]show how k affects the coverage (Figure[2a) and latency (Figure 2b)) of coun-
terfactual generation. Coverage and latency both increase as k increases, highlighting the trade-off

Under review as a conference paper at ICLR 2025

T T T 18 T T T T T T T
—&—Coverage (m1) =B Time (m1) Ju]
ok —&—Coverage (m3) 7 =3 Time (m3) ’
Coverage (m5) Ler Time (m5) A
—&— Coverage (m7) - Time (m7) 1”
606 14t o “
P e
- d
50 %\ 12 - PR . +
g 5 —ew Bl
© o - -
© 40 $ 1 7 _-B
> = 8~
<) 2
o g -7
30 08 -8
bL=" ’ -8
[/ e
20 o 056 7 _a-" i
C i/ - [-
LRI =
10(7 P oup =~ =z =87
p—— --
[2
o 02
12 14 16 18 20 22 24 26 28 30 32 12 14 16 18 20 22 24 26 28 30 32
(a) Coverage variation with k (b) Latency variation with k

Figure 2: Comparison of Coverage and Latency variations with &

between the two metrics. Coverage with only one (m1) or three (m3) mutable feature is almost 2x
lower than the scenarios with five (mb) or seven (m7) mutable features. Therefore, reducing the
number of mutable features also reduces the model’s ability to cover a wider range of counterfactu-
als.

The latency graph (Figure shows that as k increases, the time required to generate counterfac-
tuals also increases for all scenarios, which shows a trade-off between latency and the scope of
features that can be modified. Therefore, as k increases, the search for plausible counterfactuals
becomes more thorough; however, it is also important to limit the search space in order to maintain
a reasonably low computation time for deployment.

7 CONCLUSION

In this study, we introduced a novel counterfactual reasoning approach that uses embeddings gener-
ated by an eBERT model to create more accurate and actionable counterfactuals. We extend NICE’s
basic concepts by adding mutability and advanced natural language embedding techniques. This
approach is especially effective in e-commerce settings where companies’ fine-tuned embedding
models capture domain-specific data relationships, thus increasing the plausibility of the counter-
factuals.

Our experiments conducted on 200K shopping sessions show that our method outperforms existing
counterfactual generation methods such as DiCE, GANs, and CFRL in terms of coverage, recon-
struction error, and L1 distance, while maintaining a lower latency. The final latency of just 0.49
seconds per counterfactual indicates that our method is suitable for real-time applications.

Additionally, when testing the method with a limited set of mutable features, it consistently outper-
formed DiCE and CFRL. The parameter k, representing the number of nearest unlike neighbors,
proved to be an imortant hyperparameter influencing both coverage and latency. Adjusting k allows
us to balance coverage against computational speed when searching for plausible counterfactuals,
highlighting the flexibility of our approach. In future work, we will add functionality to specify a
range of values for each feature, which will improve the customization of our method.

The results demonstrate that our approach not only enhances plausibility but also provides the best
coverage and outperforms other methods offering mutability, specifically DiCE and CFRL, across
all evaluation metrics.

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (xai). IEEE Access, 6:52138-52160, 2018.

Under review as a conference paper at ICLR 2025

Dieter Brughmans, Pieter Leyman, and David Martens. Nice: An algorithm for nearest instance
counterfactual explanations, 5 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Google Al Language, 2018.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi,
and R Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 592—-603. Cur-
ran Associates, Inc., 2018.

Facebook Engineering. Faiss: A library for efficient similarity search, 2017. URL
https://engineering.fb.com/2017/03/29/data-infrastructure/
faiss—a-library-for—-efficient-similarity—-search/.

Prashant Gohel, Priyanka Singh, and Manoranjan Mohanty. Explainable ai: Current status and future
directions. DA-IICT, Gandhinagar, Gujarat, India and Centre for Forensic Science, University of
Technology Sydney, Australia, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 2672-2680. Curran Associates, Inc., 2014.

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, and
Freddy Lécué. Interpretable credit application predictions with counterfactual explanations. 2023.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual
explanations for consequential decisions. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 895-905, 2020.

Alex Kulesza, Ben Taskar, and et al. Determinantal point processes for machine learning. Founda-
tions and Trends® in Machine Learning, 5(2-3):123-286, 2012.

Satyam Kumar and Vadlamani Ravi. Application of causal inference to analytical customer relation-
ship management in banking and insurance. Year. Center for Al and ML, School of Computer
and Information Sciences (SCIS).

Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
types. July 2019.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. Microsoft Research India; University of Colorado
Boulder, 12 2019.

Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. Countergan: Generating real-
istic counterfactuals with residual generative adversarial nets, 5 2021.

Eric WT Ngai, Yong Hu, Yiu Hing Wong, Yijun Chen, and Xin Sun. The application of data mining
techniques in financial fraud detection: A classification framework and an academic review of
literature. Decision Support Systems, 50(3):559-569, 2011.

Cameron J. Rye and Jessica A. Boyd. Downward counterfactual analysis in insurance tropical cy-
clone models: A miami case study. In J. M. Collins and J. M. Done (eds.), Hurricane Risk
in a Changing Climate, volume 2 of Hurricane Risk. Springer, Cham, 2022. doi: 10.1007/
978-3-031-08568-0_9. URL https://doi.org/10.1007/978-3-031-08568-0_09.

Robert-Florian Samoilescu, Arnaud Van Looveren, and Janis Klaise. Model-agnostic and scalable
counterfactual explanations via reinforcement learning, 6 2021.

10

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://doi.org/10.1007/978-3-031-08568-0_9

Under review as a conference paper at ICLR 2025

Maximilian Schleich, Zixuan Geng, Yihong Zhang, and Dan Suciu. Geco: Quality counterfactual
explanations in real time, 2023. University of Washington.

Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: A common framework to provide
explanations and analyse the fairness and robustness of black-box models. In Proceedings of the
Conference on Al, Ethics, and Society (AIES), pp. 166172, 2020.

Sahil Verma, Varich Boonsanong, Minh Hoang, and Keegan E. Hines. Counterfactual explanations
for machine learning: A review. arXiv, 2010.10596, 2020.

Christopher Whitrow, David J. Hand, Piotr Juszczak, David Weston, and Niall M. Adams. Trans-
action aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge
Discovery, 18(1):30-55, 2009.

Wei Zhang, Brian Barr, and John Paisley. An interpretable deep classifier for counterfactual gener-
ation. 2023.

11

	Introduction
	Contributions

	Data Preprocessing
	Classification
	Baseline Counterfactual Methods
	Our Method
	Embedding Generation Using eBERT
	Nearest Unlike Neighbors Generation
	Counterfactual Search

	Experiments
	Conclusion

