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Abstract. Research on textual style transfer has observed that the con-
cept of style can vary across domains. This research examines the encod-
ing of style across the sentiment and formality domains and observes
that formality appears to be more globally encoded, and sentiment more
locally encoded. The work also shows how the encoding of a style can in-
form the appropriate choice of method to compute content preservation
during textual style transfer.
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1 Introduction

Textual Style Transfer (TST) attempts to generate text in a given style from
a input text in a different style while preserving as much information from the
input as possible. Even though style is a key element in this field, there is yet
no consensus and clear definition for it. Previous work has identified that the
concept of style varies across different domains [10]. However, this prior research
does not explain how the encoding of style differs across these domains. This
is the question that this paper addresses. By the encoding of style we mean
the distribution of the components of a text that carry stylistic information.
If a style is locally encoded this implies that frequently only a relatively small
number of local changes are necessary to transfer the style (such as changing
a few keywords), whereas if a style is globally encoded then typically a general
reworking of a text is required in order to transfer the style.

We focus on sentiment and formality (two commonly used styles in TST re-
search) and examine the differences in the style encoding when it is equated with
sentiment polarity versus formal register of a text. Based on observations from
a number of experiments, we argue that style varies in terms of its local versus
global encoding. In particular, we find that transforming formality requires a
more global adaptation of a text as compared to sentiment-transfer.
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The paper begins by proposing a refinement to training regime of a state-of-
the-art transformer-based (T-based) TST model [4] which reduces the computa-
tional cost5. The paper then reports a set of probing experiments that examine
the entanglement of style across the layers of a transformer architecture in both
the sentiment and formality domains. Building on these results it presents a un-
igram based analysis of the overlap between original and human style adapted
paraphrases of a text in both domains. The probing experiments and unigram
overlap results indicate that the encoding of formality is more global (requiring
extra layers of processing to encode, and resulting in lower unigram overlap)
as compared to the encoding of sentiment. Finally, informed by the distinctions
between the encoding of these style domains we reflect on the standard metrics
used to assess content preservation (CPP ) within TST research, and show that
contextual embeddings [26] are more accurate for computing semantic similarity
between source and paraphrased texts in the formality domain, whereas, GloVe
embeddings [22] result in more accurate CPP scores in sentiment domain.

2 Literature review

Most TST approaches use end2end strategies to learn a latent representation of
the input [13] and condition the generation of style-shifted text on this repre-
sentation. In the case of using parallel data to train models, TST is similar to a
supervised NMT problem [19]. However, the majority of previous TST research
has addressed the task in an unsupervised framing and compensate for the lack of
parallel labelled data using adversarial techniques to guide the training towards
generating text in a desired style.

The majority of TST networks have employed standard seq2seq RNN-based
models [30, 1] with some integrating variational encoders, multi-encoder, or multi-
decoder [4, 27, 29, 28, 7, 8, 12, 9, 10]. Some previous TST work has analysed the
role of different subnetworks of end2end RNN-based models as well as investi-
gating the intermediate representations created by them [15, 6, 9, 10].

Recently, [4] proposed a transformer-based (T-based) TST model. In a pilot
experiment on our datasets we found that this model outperformed state-of-the-
art RNN-based models (table 1, see rows 1, 2, 3). Consequently, we the decided
to use this model for our experimental work. However, this T-based model took
a significant amount of time to converge, and so we adapted the training regime
in order to reduce the computational cost.

3 Transformer-based (T-based) TST model

In this section, we describe the architecture and the adapted training regime of
our T-based TST model consisting of: (i) a generator and (ii) a discriminator.

5 The code is released: https://github.com/somayeJ/Transformer-based-style-transfer



Title Suppressed Due to Excessive Length 3

Dataset Yelp GYAFC
Model/ Evaluation metrcis CPP PPLX SSP CPP PPLX SSP

RNN-based model [28] 0.9261 37.98 81.8% 0.9088 26.81 65.11%
Multi-E RNN-based model [10] 0.9289 41.37 79.8% 0.911 28.84 58.82%

T-based model [4] 0.9717 106.07 78.50% 0.9516 289.20 28.99%
Our T-based model 0.9718 126.12 83.00 % 0.9741 141.44 47.19%

Table 1. Higher CPP and SSP show better performance, but lower values of PPLX
reflect better fluency. α and β (equation3) of T-based models are 0.25 & 0.5.

Generator (Gen) is a seq2seq pipeline where the encoder (E) and decoder
(D) are transformers [31]. E consists of a sequence of 4 stacks, each including
a fully connected self-attention, fully connected point-wise feed-forward, and
normalization layers. E takes a text x (of length T and original style s1) and a
desired style s2 as the input.The processing within E projects the input tokens
through layers where the model learns the contextual and positional information
of the tokens.

The final layer of E creates a sequence of latent token representations: z =
(z0, z1, ..., zT ) where z0 is the dense vector of the desired style. D is similar to
E , but also contains an attention layer where z is fed from E . D also has a
projection layer which takes the output of D and generates tokens.

Reconstruction Loss The reconstruction loss is designed to encourage the model
to retain relevant content. We use two types of reconstruction loss during train-
ing, the self-reconstruction and cycle loss. During training (figure 1), Gen gen-
erates two text for each input x it receives, i.e. given x, Gen creates its re-
constructed version x̃rec as well as its style-shifted version x̃trf . x̃rec is used to
compute the self-reconstruction loss as follows. During training the negative log
probability of x and x̃rec is minimized.

Lselfrec = − log Pr(x̃rec = x|x, s) (1)

Using the self-reconstruction loss, Gen is trained to reconstruct text where
the style of the input and the desired target style of the output text are the
same. Here, the model functions as an auto-encoder (AE).

The style-shifted text, on the other hand, is used as an intermediate repre-
sentation for the cycle loss which is calculated in equation 2.

Lcyclerec = − log Pr(˜̃xrec
= x|x̃trf , s) (2)

Lcyclerec is designed to encourage the model to preserve the non-stylistic
information of the input. To do so, the model is trained to generate ˜̃xrec

(a
reconstructed version the input x) given x̃trf (style-shifted version of x) by
following these cycle of generation steps where s1 ̸= s2:

– Generating x̃trf by feeding Gen with x and the desired style s2.
– Generating ˜̃xrec

by feeding Gen with x̃trf and the desired style s1.
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Fig. 1. For input xs1 , Gen creates x̃rec
s1 & x̃trf

s2 , also re-creates ˜̃xrec

s1 . Disc gets x̃trf
s1 &

its desired style s2, and labels it as style-shifted (0) or reconstructed (1).

While training, equation 2 is used to minimize the negative log probability
of each input x and its reconstructed text ˜̃xrec

.
The reconstruction loss is then computed using the equation 3 as the weighted

summation of a self-reconstruction and a cycle-reconstruction loss.

Lrec = αLselfrec + βLcyclerec (3)

Discriminator (Disc) consists of a sequence of a transformer (with the same
architecture as the transformer E ), and a classifier (a feed-forward network with
a single hidden layer and a softmax output layer), similar to the discriminator
used in [24] and [5]. It takes as input a text and a style and attempts to learn
whether or not the style matches the original style of the given text. Specifically,
it is trained to label pairs where the style matches the original style of the text as
positive and pairs where the style is not the original style of the text as negative,
i.e. it learns to return true for (xs1 , s1) and (x̃rec

s1 , s1) and false for (x̃trf
s1 , s2) and

(xs1 , s2). This is done by minimizing the equation 4, the binary cross-entropy
over the two classes where s1 ̸= s2. Disc is trained in parallel with Gen .

LDisc = − log(Disc(x̃s
rec
1 , s1))− log(1−Disc(x̃strf ,s2)) (4)

Adversarial Loss A key component of the adversarial training is Disc which is in
competition with Gen : Gen attempts to generate style-shifted text that Disc
will categorize as original text, and Disc is attempting to detect style-shifted
sequences. To encourage Gen to generate style-shifted text that can convince
Disc that the style-shifted text is actually original text, an adversarial loss is
defined in equation 5 (s is the source and s is the desired style of text) and is
minimized during the training together with the total loss (Lrec + Ladv).

Ladv = − log(Disc(x̃trf
s , s)) (5)

Training regime Although the architecture and loss functions we use (sections 3,
3, and 3) are the same as [4], the training regime we propose is different. First,
we do not use a pre-training phase for Gen , instead Gen and Disc are trained
in parallel throughout. However, following [28], we do not use the adversarial loss
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in the training of Gen until the loss of Disc falls below a pre-set threshold (a
hyper-parameter set to 1.2 based on [28]). This is to ensure that the adversarial
loss is not used in training Gen until Disc is of sufficient quality that the
adversarial loss it returns is informative. Also, when updating Gen weights, we
only do a single backpropogation+weight update pass, using the summation of
the losses, as compared to [4] that uses two backpropogation+weight update
passes, first, the self reconstruction, the summation of the adversarial and cycle
loss. Our training regime is as follows where given a corpus, Xs1 and Xs2 are
portions of this corpus containing styles s1 and s2.
Step 1: Sample two different-styled mini-batches of size k (k indicates batch-size
and is set to 1 here for simplicity): {xs1} ∈ Xs1 , and {xs2} ∈ Xs2 .
Step 2: Generates a reconstructed and a style-shifted text for each sequence:
x̃rec
s1 = Gen(xs1 , s1), x̃trf

s2 = Gen(xs1 , s2)
x̃rec
s2 = Gen(xs2 , s2), x̃trf

s1 = Gen(xs2 , s1)
Step 3: Compute Lselfrec using the equation 1.
Step 4: Compute LDisc using the equation 4 and update θDisc.
Step 5: If LDisc < 1.2, compute Lcyclerec and Ladv and update θGen using the
total loss. Otherwise, perform update θGen using the equation 1.
Step 6: For batches of one epoch, repeat steps 1-5.
Step 7: Use the model with lowest total loss (best model) as the initial model
in the next epoch. Stop after 20 epochs.

4 Data, experimental set up and evaluation methodology

Data Yelp and GYAFC datasets are used throughout the experiments of this
paper. Yelp is a restaurant review dataset where the positive or negative label
of each review is considered as its style. For our experiments, we use the dataset
provided and preprocessed by [17].

GYAFC (Grammarly’s Yahoo Answers Formality Corpus) [25] is a parallel
dataset which is used in a non-parallel mode in our experiments. It contains text
from the domains of Entertainment & Music and Family & Relationships. We
compose and shuffle the data from these domains and do the following prepro-
cessing steps (around 2% of the data is removed in the resulting dataset).

First, we make the tokens more consistent by: 1. Lower casing the tokens.
2. Replacing the numbers, website addresses, email addresses and emojis with
special tokens. 3. Inserting space between token and punctuation as well as punc-
tuation and punctuation. 4. In informal data, for the tokens with high frequency
such as oh converting all non-standard forms, such as ohhhh or oooohhhhh
into one non-standard form ohh to reduce the size of vocabulary and also the
number of unknown tokens (<unk>). 5. Filtering the non-English sequences. To
do so, we manually filter the list of sequences marked as non-English by the
python language detector library. This is to reduce the possibility of removing
the English sequences which are detected as non-English specifically due to the
characteristics of informal data which contains many non-standard variations of
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the tokens. 6. Considering a box plot of the sentence length distribution and
filtering all sequences whose lengths were outside the whiskers of the plot.

Experimental set up While building the vocab, the tokens with frequency lower
than 5 were considered as <unk>. Each stack of E and D of out T-based model
has 4 attention heads. The size of token embeddings, positional embeddings,

Data Yelp GYAFC
Style Positive Negative Formal Informal
Train 267314 176787 102502 104044
Dev 2000 2000 5064 5111
Test 500 500 2076 2739
Avg-l 8.45 9.66 12.4 12

Vocab-size 9352 11409
Table 2. Data distribution of the datasets, (l:length).

style vectors and the hidden size of the model are 2566.

Evaluation methodology We use three evaluation metrics designed to cover the
multiple objectives of TST: style-shift, content maintenance and fluency [11].

Style-shif power (SSP) determines the power of a TST model in shifting the
style, prior work has trained separate classifiers for each domain to measure
the presence of a desired style in the style-shifted text [7, 18, 16, 29, 23, 28, 12, 8].
Accordingly, we train two separate binary classifier using GYAFC and Yelp data
using the TextCNN model proposed by [14]. Style shift power SSP metric is the
score returned by this classifier for the target style of style-shifted text.

To compute Content Preservation Power (CPP), we use an embedding-based
approach to measure the similarity between an input x and style-shifted text
x̃trf . First, the tokens of x and x̃trf are mapped into an embedding space using
a pretrained model. Vector representations of x and x̃trf are then created by
taking the average of their token embeddings. Finally, these vector pairs are
compared with cosine similarity [7]. In our experiments, we use both a 100-
dimensional GloVe model [22] and a 768-dimensional SBERT model7[26] as pre-
trained embeddings models. To improve the interpretability of CPP scores, we
compute the semantic similarity between randomly selected sequences as the
CPP lower bound (LB) scores. The respective GloVe- and SBERT-based LB
scores for the sentiment domain are 0.86 and 0.09387 and for the formality
domain are 0.87 and 0.0672.

To evaluate the fluency of the generated texts we follow previous research
[32, 12] and train separate language models for each domain. These LMs are
single-layer RNN with GRU cells [2]. We then use the average perplexity scores

6 Other hyperparameters adapted from (http:/github.com/fastnlp/style-transformer).
7 http:/huggingface.co/cross-encoder/stsb-TinyBERT-L-4
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of these models on the style-shifted texts of a TST model as its PPLX. Lower
PPLX indicates the TST model generates more fluent text.

5 Experiments

To investigate the variations in sentiment and formality encoding, an interesting
experiment is re-weighting the TST model so that it performs more similar
to an AE (section 5). The idea being that the more a TST model is weighted
towards acting as an AE the less likely it is to perform global rewrites and so this
change is likely to be reflected in changes of the SSP of the system in domains
where style is globally encoded. Also, we study how sentiment and formality are
encoded by different layers of the T-based encoder of our TST model (section 5)
and compare it with the variations observed by studying the human-generated
data across these style domains (section 5).

Reconstruction versus adversarial Balance Table 1 lists the results generated
using the training regime from [4] (row 3) and our adapted training regime (row
4). The results reveal a slight improvement with the new training regime with
improvements in CPP and SSP on Yelp and a larger improvement in CPP for
GYAFC with a drop in SSP. However, these results are recorded from single
runs of the model and so we do not claim a statistical difference here. More
importantly, however, the adapted training regime required much less training
time to achieve these results8.

Neither the total loss nor the reconstruction loss (equation 3) normalize the
contribution of the losses. Therefore, α and β summing to less and more than
1 indirectly puts greater emphasis during training on the adversarial loss and
reconstruction loss, respectively. T-models listed in table 1, use a total weight of
0.75 (α=0.25 and β=0.5) to reconstruction and 1 to adversarial loss.

We investigate the effect of increasing the weight of reconstruction loss by
doubling the summation of α and β and training two new models: T1; α=1, β=
0.5, and T2; α=0.5, β=1. Comparing the results of T1 and T2 in table 3 with the
scores of our T-based model (table 1) shows that in Yelp, T1 performs better
than the T-based model in every evaluation aspect and T2 also has a better CPP
and fluency. In GYAFC, however, this weight modification does not appear to
be as beneficial overall, although, in T1, it results in an improvement in CPP
and fluency, the SSP drops by a large amount. The fact that increasing the
weighting of the reconstruction loss relative to the adversarial loss encourages
a model to act more like an AE, and that this is beneficial for both CPP and
SSP in the sentiment domain but results in much lower SSP in the formality
domain, suggests that shifting sentiment requires fewer text changes compared
to the formality (i.e., sentiment is more locally encoded compared to formality).

8 Training of our T-based model on Yelp took around 36 hours using single Quadro
RTX 8000s GPU, compared to 75 hours while applying the training regime from [4].
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Datasets Yelp GYAFC
Models T1 T2 T1 T2
SSP 83.8% 70.9% 32.71% 41.52%

Automatic PPLX 107.07 99.88 101.57 154.35
Evaluation CPP GloVe 0.9732 0.9767 0.9743 0.9714

SBERT 0.5869 0.6177 0.8595 0.8108
GloVe-baseline 85.80% 71.01%

Layer-wise Embedding layer 89.9% 87.4% 75.74% 78.69%
probing Stack1 100% 90.5% 74.18% 80.48%

of Stack2 100% 100% 99.63% 88.2%
Transformer Stack3 100% 100% 100% 100%

encoder Stack4 100% 100% 100% 100%
Table 3. α and β (equation3) of T1: α=1, β= 0.5, and T2: α=0.5, β=1.

Layer-wise probing of transformer E An interesting aspect of transformer mod-
els is that they include multiple self-attention layers. Indeed, researchers in-
terested in understanding how transformers encode linguistic information have
probed how the encoding of this information varies across the layers of trans-
formers trained for different text NLP-related problems [20, 21]. However, to the
best of our knowledge the encoding of style across the layers of a TST trans-
former has not yet been examined. Inspired by previous work on probing [3,
9, 10] we designed a classification experiment to examine the extent to which
style is encoded at each layer of the transformer E for formality and sentiment
domains.

We train 5 separate probes, one for each of the layers of E : the embedding
layer, and each of the 4 stacks of E . Each probe, a feed-forward network with
a single hidden layer and a sigmoid output layer, is trained to detect the source
style of an input text from the embedding of the text generated by that probe’s
corresponding layer in the transformer.The higher the accuracy of a probe is, the
more source-stylistic features are present in the text embedding. The text em-
bedding for a layer is the average of the embeddings of the text tokens generated
by that layer.

As a baseline for this task, for each dataset we train a probe on GloVe-based
embeddings to identify the style of a text sequence. The GloVe-based embed-
ding for a given sequence is computed by mapping its tokens to their pre-trained
GloVe embeddings and then taking the average of these token embeddings. The
accuracy of the source style identification probes trained on GloVe-based em-
beddings of Yelp and GYAFC test sequences (i.e., original text sequences that
have not been style-shifted) are 85.80% and 71.01%, respectively. GloVe token
embeddings are trained on the nonzero elements in a word-word co-occurrence
matrix [22, ], and we generated the GloVe-based sequence embeddings by aver-
aging GloVe token embeddings. Consequently, it is likely that our GloVe-based
sequence embeddings primarily encode word co-occurrence information and ne-
glect word order, essentially functioning as a bag-of-words. Given this, the higher
score on identifying source style in the sentiment domain using GloVe embed-
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dings compared to the formality domain suggests that a bag-of-word representa-
tion is better at identifying sentiment compared to formality. This also suggests
that sentiment is more locally encoded as compared to formality (sentiment be-
ing more readily identifiable based on the presence/absence of particular words,
whereas the identification of formality may require more structural information).

Table 3 lists the results from the layer-wise probing of transformer embed-
dings. The attention mechanism within each layer of E allows the embeddings
for a word to be fine-tuned to its context of use by integrating information from
across the input sequence. Consequently, as we move up through the layers of
the network it is to be expected that the embeddings at each subsequent layer
encode a more global perspective on the meaning of a sequence, as more and
more information from across the sequence is integrated into each of the token
embeddings. As a result, comparing the performance of a probe within a style
domain across the layers of a transformer architecture can provide insight into
sensitivity of that style to global structure of the sequence. Given this, it is inter-
esting that in the sentiment domain the probe achieves 100% performance at an
earlier layer as compared with the formality domain, suggesting that in general
the encoding of formality requires more information from across a sequence to
be integrated into the embeddings of each of the tokens in the sequence.

Taken together, these probing results suggest that sentiment is encoded in
a more local (e.g., keywords are very informative) manner as compared with
formality. Based on this observation, we hypothesise that in general formality
transfer requires more global changes to a text as compared with sentiment shift,
that may be achieved in some instances by just swapping a single word.

Unigram based analysis To further test our hypothesis, sentiment is encoded
more locally compared to formality, we run a word overlap (WO) analysis. The
intuition being that if sentiment is more local in its encoding relative to formality,
a higher WO between style-shifted texts and inputs are expected in this domain
compared to the formality. To do this analysis, we use the gold style-shifted text
for the test sets of Yelp and GYAFC. In GYAFC, there are 4 human gold sets for
each domain and style. We use all these files for analysis and the results reported
are the average of the scores computed for each files.

To compute WO, following [12] given x and x̃trf , we first filter stop words,then
compute the score as count(x∩x̃trf )

count(x∪x̃trf )
. We augment our analysis of the WO of man-

ually style-shifted texts with an analysis of how successfully the human ‘style
translators’ were at the task. To do this, we use accuracy of the SSP classifiers
(introduced in section 4) in detecting the desired style of human-generated files
across the two domains. The intuition being that if a human style translator has
successfully shifted the style of the text into the desired style the SSP classifier
should recognise this desired style with high confidence.

The results of our WO analysis show slightly higher WO between source and
gold style-shifted text in sentiment 0.4253 as compared to the formality 0.4057
(LB of WO is 0.0035). This together with higher accuracy of classifiers in labeling
sentiment 77.2% compared to 70.45% in formality illustrates that even though
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more unigrams are swapped in formality transfer, we still observe lower SSP in
the style-shifted files which supports our hypothesis.

6 The interaction of style characteristics and CPP

The experiment presented here investigates the performance of GloVe- and SBERT-
based CPP metrics for the sentiment- and formality-transfer tasks. For each
style domain, we randomly selected 200 samples from the test set of that domain
as the source texts. For each of these source sequences we composed a target set
containing its corresponding gold style-shifted text and 499 other randomly se-
lected texts. Then, we computed the CPP scores between each source sequence
and each of the sequences in its target set using both GloVe- and SBERT-based
embeddings. We expect that given a source text a good CPP metric assigns a
higher value to the pair <source text, gold style-shifted text> rather than to the
pairs of <source text, random text 1>, ..., <source text, random text 499>.

The SBERT-based CPP metric assigns the highest value to the <source
text, gold style-shifted text> pair in 95.5% of cases in the formality domain and
75.5% in sentiment domain. The GloVe-based CPP metric assigns the highest
value to <source text, gold style-shifted text> pair in 71% cases in the formality
domain and in 84% in sentiment domain. These results indicate that for for-
mality the SBERT-based CPP metric works better than the GloVe-based met-
ric (95.5% > 71%), whereas the GloVe-based CPP outperforms SBERT-based
CPP for sentiment (84% > 75.5%). The variation in the relative performance
of SBERT and GloVe across the two domains is inline with the hypothesis that
formality is relatively globally encoded (SBERT is better) whereas sentiment is
locally encoded. Indeed, texts having different sentiments seem to be very close
in the GloVe embedding space as compared to the SBERT embedding space.
Computing the similarity of the text while ignoring their sentiment variations
makes GloVe-based CPP metrics more suitable for the sentiment domain.

7 Conclusion

Throughout our experiments we observed that sentiment is more locally en-
coded whereas formality is more globally encoded. In brief, this observation
indicates that sentiment TST can often be achieved by changing a small number
of keywords in a text, whereas formality TST frequently required more global
reworking of a text. This clarification can improve TST research in a number
of ways. First, we observed that SBERT-based CPP metric works better for
formality, whereas, GloVe-based metric computes more accurate scores in senti-
ment domain. This is inline with the insight that formality is encoded as a global
property of a text (beyond the representational capacity of a bag-or-words) com-
pared to the encoding of the sentiment which is more token-based. Clarifying the
encoding of style in different domains can also inform the appropriate use of TST
modelling approaches. Some approaches that attempt to directly filter markers
of style in the input, assume that stylistic features are detectable and separable



Title Suppressed Due to Excessive Length 11

from the content [18, 16]. However, other approaches consider each style to be a
separate language and adapt methods inspired by Neural Machine Translation to
the TST problem [19, 4, 27, 29, 28, 7, 8, 12]. This distinction between approaches
may be inline with the observed global versus local style encoding distinction.
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