
Under review as a conference paper at ICLR 2024

KNOWLEDGE GRAPH COMPLETION BY INTERMEDI-
ATE VARIABLES REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge graph completion (KGC) can be framed as a 3-order binary tensor
completion task. Tensor decomposition-based (TDB) models have demonstrated
strong performance in KGC. In this paper, we provide a summary of existing TDB
models and derive a general form for them, serving as a foundation for further ex-
ploration of TDB models. Despite the expressiveness of TDB models, they are
prone to overfitting. Existing regularization methods merely minimize the norms
of embeddings to regularize the model, leading to suboptimal performance. There-
fore, we propose a novel regularization method for TDB models that addresses
this limitation. The regularization is applicable to most TDB models, incorporates
existing regularization methods, and ensures tractable computation. Our method
minimizes the norms of intermediate variables involved in the different ways of
computing the predicted tensor. To support our regularization method, we provide
a theoretical analysis that proves its effect in promoting low trace norm of the
predicted tensor to reduce overfitting. Finally, we conduct experiments to verify
the effectiveness of our regularization technique as well as the reliability of our
theoretical analysis.

1 INTRODUCTION

A knowledge graph (KG) can be represented as a 3rd-order binary tensor, in which each entry
corresponds to a triplet of the form (head entity, relation, tail entity). A value of 1 denotes a
known true triplet, while 0 denotes a false triplet. Despite containing a large number of known
triplets, KGs are often incomplete, with many triplets missing. Consequently, the 3rd-order tensors
representing the KGs are incomplete. The objective of knowledge graph completion (KGC) is to
infer the true or false values of the missing triplets based on the known ones, i.e., to predict which
of the missing entries in the tensor are 1 or 0.

A number of models have been proposed for KGC, which can be classified into translation-based
models, tensor decomposition-based (TDB) models and neural networks models (Zhang et al.,
2021). We only focus on TDB models in this paper due to their wide applicability and great per-
formance (Lacroix et al., 2018; Zhang et al., 2020). TDB models can be broadly categorized into
two groups: CANDECOMP/PARAFAC (CP) decomposition-based models, including CP (Lacroix
et al., 2018), DistMult (Yang et al., 2014) and ComplEx (Trouillon et al., 2017), and Tucker
decomposition-based models, including SimplE (Kazemi & Poole, 2018), ANALOGY (Liu et al.,
2017), QuatE (Zhang et al., 2019) and TuckER (Balažević et al., 2019). To provide a thorough un-
derstanding of TDB models, we present a summary of existing models and derive a general form
that unifies them, which provides a fundamental basis for further exploration of TDB models. Based
on the general form, we show the conditions for TDB model to learn the logical rules.

TDB models have been proven to be theoretically fully expressive (Trouillon et al., 2017; Kazemi
& Poole, 2018; Balažević et al., 2019), implying they can represent any real-valued tensor. How-
ever, in practice, TDB models frequently fall prey to severe overfitting. To counteract this issue,
various regularization techniques have been employed in KGC. One commonly used technique is
the squared Frobenius norm regularization (Nickel et al., 2011; Yang et al., 2014; Trouillon et al.,
2017). Lacroix et al. (2018) proposed another regularization, N3 norm regularization, based on the
tensor nuclear p-norm, which outperforms the squared Frobenius norm in terms of performance.
Additionally, Zhang et al. (2020) introduced DURA, a regularization technique based on the duality

1

Under review as a conference paper at ICLR 2024

of TDB models and distance-based models that results in significant improvements on benchmark
datasets. Nevertheless, N3 and DURA rely on CP decomposition, limiting their applicability to CP
(Lacroix et al., 2018) and ComplEx (Trouillon et al., 2017). As a result, there is a pressing need for
a regularization technique that is widely applicable and can effectively alleviate the overfitting issue.

In this paper, we introduce a novel regularization method for KGC to improve the performance of
TDB models. Our regularization focuses on preventing overfitting while maintaining the expressive-
ness of TDB models as much as possible. It is applicable to most TDB models and incorporates the
squared Frobenius norm method and N3 norm method, while also ensuring tractable computation.
Existing regularization methods for KGC rely on minimizing the norms of embeddings to regularize
the model (Yang et al., 2014; Lacroix et al., 2018), leading to suboptimal performance. To achieve
superior performance, we present an intermediate variables regularization (IVR) approach that min-
imizes the norms of intermediate variables involved in the processes of computing the predicted
tensor of TDB models. Additionally, our approach fully considers the computing ways because
different ways of computing the predicted tensor may generate different intermediate variables.

To support the efficacy of our regularization approach, we further provide a theoretical analysis. We
prove that our regularization is an upper bound of the overlapped trace norm (Tomioka et al., 2011).
The overlapped trace norm is the sum of the trace norms of the unfolding matrices along each mode
of a tensor (Kolda & Bader, 2009), which can be considered as a surrogate measure of the rank
of a tensor. Thus, the overlapped trace norm reflects the correlation among entities and relations,
which can pose a constraint to jointly entities and relations embeddings learning. In specific, entities
and relations in KGs are usually highly correlated. For example, some relations are mutual inverse
relations, or a relation may be a composition of another two relations (Zhang et al., 2021). Through
minimizing the upper bound of the overlapped trace norm, we encourage a high correlation among
entities and relations, which brings strong regularization and alleviates the overfitting problem.

The main contributions of this paper are listed below:

1. We present a detailed overview of a wide range of TDB models and establish a general form to
serve as a foundation for further TDB model analysis.

2. We introduce a new regularization approach for TDB models based on the general form to miti-
gate the overfitting issue, which is notable for its generality and effectiveness.

3. We provide a theoretical proof of the efficacy of our regularization and validate its practical utility
through experiments.

2 RELATED WORK

Tensor Decomposition Based Models Research in KGC has been vast, with TDB models garner-
ing attention due to their superior performance. The two primary TDB approaches that have been
extensively studied are CP decomposition (Hitchcock, 1927) and Tucker decomposition (Tucker,
1966). CP decomposition represents a tensor as a sum of n rank-one tensors, while Tucker decom-
position decomposes a tensor into a core tensor and a set of matrices.

Several techniques have been developed for applying CP decomposition and Tucker decomposition
in KGC. For instance, Lacroix et al. (2018) employed the original CP decomposition, whereas Dist-
Mult (Yang et al., 2014), a variant of CP decomposition, made the embedding matrices of head
entities and tail entities identical to simplify the model. SimplE (Kazemi & Poole, 2018) tackled the
problem of independence among the embeddings of head and tail entities within CP decomposition.
ComplEx (Trouillon et al., 2017) extended DistMult to the complex space to handle asymmetric
relations. QuatE (Zhang et al., 2019) explored hypercomplex space to further enhance KGC. Other
techniques include HolE (Nickel et al., 2016) proposed by Nickel et al. (2016), which operates
on circular correlation, and ANALOGY (Liu et al., 2017), which explicitly utilizes the analogical
structures of KGs. Notably, Liu et al. (2017) confirmed that HolE is equivalent to ComplEx. Ad-
ditionally, Balažević et al. (2019) introduced TuckER, which is based on the Tucker decomposition
and has achieved state-of-the-art performance across various benchmark datasets for KGC. Nickel
et al. (2011) proposed a three-way decomposition RESCAL over each relational slice of the tensor.
You can refer to (Zhang et al., 2021) or (Ji et al., 2021) for more detailed discussion about KGC
models or TDB models.

2

Under review as a conference paper at ICLR 2024

Regularization Although TDB models are highly expressive (Trouillon et al., 2017; Kazemi &
Poole, 2018; Balažević et al., 2019), they can suffer severely from overfitting in practice. Conse-
quently, several regularization approaches have been proposed. A common regularization approach
is to apply the squared Frobenius norm to the model parameters (Nickel et al., 2011; Yang et al.,
2014; Trouillon et al., 2017). However, this approach does not correspond to a proper tensor norm,
as shown by Lacroix et al. (2018). Therefore, they proposed a novel regularization method, N3,
based on the tensor nuclear 3-norm, which is an upper bound of the tensor nuclear norm. Likewise,
Zhang et al. (2020) introduced DURA, a regularization method that exploits the duality of TDB
models and distance-based models, and serves as an upper bound of the tensor nuclear 2-norm.
However, both N3 and DURA are derived from the CP decomposition, and thus are only applicable
to CP and ComplEx models.

3 METHODS

In Section 3.1, we begin by providing an overview of existing TDB models and derive a general
form for them. Thereafter, we present our intermediate variables regularization (IVR) approach in
Section 3.2. Finally, in Section 3.3, we provide theoretical analysis to support the efficacy of our
proposed regularization technique.

3.1 GENERAL FORM

To facilitate the subsequent theoretical analysis, we initially provide a summary of existing TDB
models and derive a general form for them. Given a set of entities E and a set of relations R, a KG
contains a set of triplets S = {(i, j, k)} ⊂ E × R × E . Let X ∈ {0, 1}|E|×|R|×|E| represent the
KG tensor, with Xijk = 1 iff (i, j, k) ∈ S , where |E| and |R| denote the number of entities and
relations, respectively. Let H ∈ R|E|×D,R ∈ R|R|×D and T ∈ R|E|×D be the embedding matrices
of head entities, relations and tail entities, respectively, where D is the embedding dimension.

Various TDB models can be attained by partitioning the embedding matrices into P parts. We re-
shape H ∈ R|E|×D,R ∈ R|R|×D and T ∈ R|E|×D into H ∈ R|E|×(D/P)×P ,R ∈ R|R|×(D/P)×P

and T ∈ R|E|×(D/P)×P , respectively, where P is the number of parts we partition. For different P ,
we can get different TDB models.

CP/DistMult Let P = 1, CP (Lacroix et al., 2018) can be represented as

Xijk = ⟨Hi:1,Rj:1,Tk:1⟩ :=
D/P∑
d=1

Hid1Rjd1Tkd1

where ⟨·, ·, ·⟩ is the dot product of three vectors. DistMult (Yang et al., 2014), a particular case of
CP, which shares the embedding matrices of head entities and tail entities, i.e., H = T .

ComplEx/HolE Let P = 2, ComplEx (Trouillon et al., 2017) can be represented as
Xijk = ⟨Hi:1,Rj:1,Tk:1⟩+ ⟨Hi:2,Rj:1,Tk:2⟩+ ⟨Hi:1,Rj:2,Tk:2⟩ − ⟨Hi:2,Rj:2,Tk:1⟩

Liu et al. (2017) proved that HolE (Nickel et al., 2011) is equivalent to ComplEx.

SimplE Let P = 2, SimplE (Kazemi & Poole, 2018) can be represented as
Xijk = ⟨Hi:1,Rj:1,Tk:2⟩+ ⟨Hi:2,Rj:2,Tk:1⟩

ANALOGY Let P = 4, ANALOGY (Liu et al., 2017) can be represented as
Xijk = ⟨Hi:1,Rj:1,Tk:1⟩+ ⟨Hi:2,Rj:2,Tk:2⟩+ ⟨Hi:3,Rj:3,Tk:3⟩+ ⟨Hi:3,Rj:4,Tk:4⟩

+ ⟨Hi:4,Rj:3,Tk:4⟩ − ⟨Hi:4,Rj:4,Tk:3⟩

QuatE Let P = 4, QuatE (Zhang et al., 2019) can be represented as
Xijk = ⟨Hi:1,Rj:1,Tk:1⟩ − ⟨Hi:2,Rj:2,Tk:1⟩ − ⟨Hi:3,Rj:3,Tk:1⟩ − ⟨Hi:4,Rj:4,Tk:1⟩

+ ⟨Hi:1,Rj:2,Tk:2⟩+ ⟨Hi:2,Rj:1,Tk:2⟩+ ⟨Hi:3,Rj:4,Tk:2⟩ − ⟨Hi:4,Rj:3,Tk:2⟩
+ ⟨Hi:1,Rj:3,Tk:3⟩ − ⟨Hi:2,Rj:4,Tk:3⟩+ ⟨Hi:3,Rj:1,Tk:3⟩+ ⟨Hi:4,Rj:2,Tk:3⟩
+ ⟨Hi:1,Rj:4,Tk:4⟩+ ⟨Hi:2,Rj:3,Tk:4⟩ − ⟨Hi:3,Rj:2,Tk:4⟩+ ⟨Hi:4,Rj:1,Tk:4⟩

3

Under review as a conference paper at ICLR 2024

TuckER Let P = D, TuckER (Balažević et al., 2019) can be represented as

Xijk =

P∑
l=1

P∑
m=1

P∑
n=1

WlmnHi1lRj1mTk1n

where W ∈ RP×P×P is the core tensor.

General Form Through our analysis, we observe that all TDB models can be expressed as a
linear combination of several dot product. The key distinguishing factors among these models are
the choice of the number of parts P and the core tensor W . The number of parts P determines the
dimensions of the dot products of the embeddings, while the core tensor W determines the strength
of the dot products. It is important to note that TuckER uses a parameter tensor as its core tensor,
whereas the core tensors of other models are predetermined constant tensors. Therefore, we can
derive a general form of these models as

Xijk =

P∑
l=1

P∑
m=1

P∑
n=1

Wlmn⟨Hi:l,Rj:m,Tk:n⟩ =
P∑
l=1

P∑
m=1

P∑
n=1

Wlmn(

D/P∑
d=1

HidlRjdmTkdn)

=

D/P∑
d=1

(

P∑
l=1

P∑
m=1

P∑
n=1

WlmnHidlRjdmTkdn) (1)

or

X =

D/P∑
d=1

W ×1 H:d: ×2 R:d: ×3 T:d: (2)

where ×n is the mode-n product (Kolda & Bader, 2009), and W ∈ RP×P×P is the core tensor,
which can be a parameter tensor or a predetermined constant tensor. The general form Eq.(2) can
also be considered as a sum of D/P TuckER decompositions, which is also called block-term
decomposition (De Lathauwer, 2008). Eq.(2) is a block-term decomposition with a shared core
tensor W . This general form is easy to understand, facilitates better understanding of TDB models
and paves the way for further exploration of TDB models.

The Number of Parameters and Computational Complexity The parameters of Eq.(2) come
from two parts, the core tensor W and the embedding matrices H,R and T . The number of
parameters of the core tensor W is equal to P 3 if W is a parameter tensor and otherwise equal
to 0. The number of parameters of the embedding matrices is equal to |E|D + |R|D if H =
T and otherwise equal to 2|E|D + |R|D. The computational complexity of Eq.(2) is equal to
O(DP 2|E|2|R|). The larger the number of parts P , the more expressive the model and the more the
computation. Therefore, the choice of P is a trade-off between expressiveness and computation.

TuckER and Eq.(2) TuckER (Balažević et al., 2019) also demonstrated that TDB models can be
represented as a Tucker decomposition by setting specific core tensors W . Nevertheless, we must
stress that TuckER does not explicitly consider the number of parts P and the core tensor W , which
are pertinent to the number of parameters and computational complexity of TDB models. Moreover,
in Appendix A, we demonstrate that the conditions for a TDB model to learn logical rules are also
dependent on P and W . By selecting appropriate P and W , TDB models can be able to learn
symmetry rules, antisymmetry rules, and inverse rules.

3.2 INTERMEDIATE VARIABLES REGULARIZATION

TDB models are theoretically fully expressive (Trouillon et al., 2017; Kazemi & Poole, 2018;
Balažević et al., 2019), which can represent any real-valued tensor. However, TDB models suf-
fer from the overfitting problem in practice (Lacroix et al., 2018). Therefore, several regulariza-
tion methods have been proposed, such as squared Frobenius norm method (Yang et al., 2014)
and nuclear 3-norm method (Lacroix et al., 2018), which minimize the norms of the embeddings
{H,R,T } to regularize the model. Nonetheless, merely minimizing the embeddings tends to have
suboptimal impacts on the model performance. To enhance the model performance, we introduce

4

Under review as a conference paper at ICLR 2024

n1

n2

n3 mode-2
fibers

mode-1

unfolding
...

...

...

X(1) Rn1 x (n2n3)

mode-2

mode-3

unfolding

unfolding

X(2) Rn2 x (n3n1)

X(3) Rn3 x (n1n2)

X Rn1 x n2 x n3

Figure 1: Left shows a 3rd order tensor. Middle describes the corresponding mode-i fibers of the
tensor. Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing
every index but one. Right describes the corresponding mode-i unfolding of the tensor. The mode-i
unfolding of a tensor arranges the mode-i fibers to be the columns of the resulting matrix.

a new regularization method that minimizes the norms of the intermediate variables involved in the
processes of computing X . To ensure the broad applicability of our method, our regularization is
rooted in the general form of TDB models Eq.(2).

To compute X in Eq.(2), we can first compute the intermediate variable W ×1 H:d: ×2 R:d:, and
then combine T:d: to compute X . Thus, in addition to minimizing the norm of T:d:, we also need
to minimize the norm of W ×1 H:d: ×2 R:d:. Since different ways of computing X can result in
different intermediate variables, we fully consider the computing ways of X . Eq.(2) can also be
written as:

X =

D/P∑
d=1

(W ×2 R:d: ×3 T:d:)×1 H:d: or X =

D/P∑
d=1

(W ×3 T:d: ×1 H:d:)×2 R:d:

Thus, we also need to minimize the norms of intermediate variables {W ×2 R:d: ×3 T:d:,W ×3

T:d: ×1 H:d:} and {H:d:,R:d:}. In summary, we should minimize the (power of Frobenius) norms
{∥H:d:∥αF , ∥R:d:∥αF , ∥T:d:∥αF } and {∥W ×1H:d:×2R:d:∥αF , ∥W ×2R:d:×3T:d:∥αF , ∥W ×3T:d:×1

H:d:∥αF }, where α is the power of the norms.

Since computing X is equivalent to computing X(1) or X(2) or X(3), we can also minimize the
norms of intermediate variables involved in the processes of computing X(1), X(2) and X(3), where
X(n) is the mode-n unfolding of a tensor X (Kolda & Bader, 2009). See Figure 1 for an example
of the notation X(n). We can represent X(1), X(2) and X(3) as (Kolda & Bader, 2009):

X(1) =

D/P∑
d=1

(W ×1 H:d:)(1)(T:d: ⊗R:d:)
T ,X(2) =

D/P∑
d=1

(W ×2 R:d:)(2)(T:d: ⊗H:d:)
T

X(3) =

D/P∑
d=1

(W ×3 T:d:)(3)(R:d: ⊗H:d:)
T

where ⊗ is the Kronecker product. Thus, the intermediate variables include {W ×1 H:d:,W ×2

R:d:,W ×3 T:d:} and {T:d: ⊗ R:d:,T:d: ⊗ H:d:,R:d: ⊗ H:d:}. Therefore, we should mini-
mize the (power of Frobenius) norms {∥W ×1 H:d:∥αF , ∥W ×2 R:d:∥αF , ∥W ×3 T:d:∥αF } and
{∥T:d: ⊗ R:d:∥αF = ∥T:d:∥αF ∥R:d:∥αF , ∥T:d: ⊗ H:d:∥αF = ∥T:d:∥αF ∥H:d:∥αF , ∥R:d: ⊗ H:d:∥αF =
∥R:d:∥αF ∥H:d:∥αF }.

Our Intermediate Variables Regularization (IVR) is defined as a combination of all these norms:

reg(X) =

D/P∑
d=1

λ1(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+ λ2(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)
+ λ3(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF)
+ λ4(∥W ×2 R:d: ×3 T:d:∥αF + ∥W ×3 T:d: ×1 H:d:∥αF + ∥W ×1 H:d: ×2 R:d:∥αF) (3)

5

Under review as a conference paper at ICLR 2024

where {λi > 0|i = 1, 2, 3, 4} are the regularization coefficients.

In conclusion, our proposed regularization term is the sum of the norms of variables involved in the
different ways of computing the tensor X .

We can easily get the weighted version of Eq.(3), in which the regularization term corresponding
to the sampled training triplets only (Lacroix et al., 2018; Zhang et al., 2020). For a training triplet
(i, j, k), the weighted version of Eq.(3) is as follows:

reg(Xijk) =

D/P∑
d=1

λ1(∥Hid:∥αF + ∥Rjd:∥αF + ∥Tkd:∥αF)

+ λ2(∥Tkd:∥αF ∥Rjd:∥αF + ∥Tkd:∥αF ∥Hid:∥αF + ∥Rjd:∥αF ∥Hid:∥αF)
+ λ3(∥W ×1 Hid:∥αF + ∥W ×2 Rjd:∥αF + ∥W ×3 Tkd:∥αF)
+ λ4(∥W ×2 Rjd: ×3 Tkd:∥αF + ∥W ×3 Tkd: ×1 Hid:∥αF + ∥W ×1 Hid: ×2 Rjd:∥αF) (4)

The first term of Eq.(4) corresponds to the squared Frobenius norm when α = 2, and to the N3 norm
when α = 3 (Lacroix et al., 2018). Therefore, IVR generalizes both the squared Frobenius norm
method and the N3 norm method. The computational complexity of Eq.(4) is the same as that of
Eq.(1), i.e., O(DP 2), which ensures that our regularization is computationally tractable.

The hyper-parameters λi make IVR scalable. We can easily reduce the number of hyper-parameters
by setting some of them zero or equal. The hyper-parameters make us able to achieve a balance
between performance and efficiency as shown in Section 4.3. We set λ1 = λ3 and λ2 = λ4 for all
models to reduce the number of hyper-parameters. You can refer to Appendix C for more details
about the setting of hyper-parameters.

We use the same loss function, multiclass log-loss function, as in (Lacroix et al., 2018). For a
training triplet (i, j, k), our loss function is

ℓ(Xijk) = −Xijk + log(

|E|∑
k′=1

exp(Xijk′)) + reg(Xijk)

At test time, we use Xi,j,: to rank tail entities for a query (i, j, ?).

3.3 THEORETICAL ANALYSIS

To support the effectiveness of our regularization, we provide a deeper theoretical analysis of its
properties. Specifically, we prove that our regularization term Eq.(3) serves as an upper bound for
the overlapped trace norm (Tomioka et al., 2011), which promotes the low nuclear norm of the
predicted tensor to regularize the model.

The overlapped trace norm for a 3rd-order tensor is defined as:

L(X;α) := ∥X(1)∥
α/2
∗ + ∥X(2)∥

α/2
∗ + ∥X(3)∥

α/2
∗

where α is the power coefficient in Eq.(3). ∥X(1)∥∗, ∥X(2)∥∗ and ∥X(3)∥∗ are the matrix trace
norms of X(1),X(2) and X(3), respectively, which are the sums of singular values of the respec-
tive matrices. The matrix trace norm is widely used as a convex surrogate for matrix rank due to
the non-differentiability of matrix rank (Goldfarb & Qin, 2014; Lu et al., 2016; Mu et al., 2014).
Thus, L(X;α) serves as a surrogate for rank(X(1))

α/2 +rank(X(2))
α/2 +rank(X(3))

α/2, where
rank(X(1)), rank(X(2)) and rank(X(3)) are the matrix ranks of X(1),X(2) and X(3), respec-
tively. In KGs, each head entity, each relation and each tail entity uniquely corresponds to a row of
X(1),X(2) and X(3), respectively. Therefore, rank(X(1)), rank(X(2)) and rank(X(3)) measure
the correlation among the head entities, relations and tail entities, respectively. Entities or relations
in KGs are highly correlated. For instance, some relations are mutual inverse relations or one rela-
tion may be a composition of another two relations (Zhang et al., 2021). Thus, the overlapped trace
norm L(X;α) can pose a constraint to jointly entities and relations embeddings learning. Min-
imizing L(X;α) encourage a high correlation among entities and relations, which brings strong
regularization and reduces overfitting. We next establish the relationship between our regularization
term Eq.(3) and L(X;α) by Proposition 1 and Proposition 2. We will prove that Eq.(3) is an upper
bound of L(X;α).

6

Under review as a conference paper at ICLR 2024

Proposition 1. For any X , and for any decomposition of X , X =
∑D/P

d=1 W ×1 H:d: ×2 R:d: ×3

T:d:, we have

2
√
λ1λ4L(X;α) ≤

D/P∑
d=1

λ1(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+ λ4(∥W ×2 R:d: ×3 T:d:∥αF + ∥W ×3 T:d: ×1 H:d:∥αF + ∥W ×1 H:d: ×2 R:d:∥αF) (5)

If X(1) = U1Σ1V
T
1 ,X(2) = U2Σ2V

T
2 ,X(3) = U3Σ3V

T
3 are compact singular value decom-

positions of X(1),X(2),X(3) (Bai et al., 2000), respectively, then there exists a decomposition of

X , X =
∑D/P

d=1 W ×1 H:d: ×2 R:d: ×3 T:d:, such that the two sides of Eq.(5) equal.

Proposition 2. For any X , and for any decomposition of X , X =
∑D/P

d=1 W ×1 H:d: ×2 R:d: ×3

T:d:, we have

2
√
λ2λ3L(X) ≤

D/P∑
d=1

λ2(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)

+ λ3(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF) (6)

And there exists some X
′
, and for any decomposition of X

′
, such that the two sides of Eq.(6) can

not achieve equality.

Please refer to Appendix B for the proofs. Proposition 1 establishes that the r.h.s. of Eq.(5) provides
a tight upper bound for 2

√
λ1λ4L(X;α), while Proposition 2 demonstrates that the r.h.s. of Eq.(4) is

an upper bound of 2
√
λ2λ3L(X;α), but this bound is not always tight. Our proposed regularization

term, Eq.(3), combines these two upper limits by adding the r.h.s. of Eq.(5) and the r.h.s. of Eq.(6).
As a result, minimizing Eq.(3) can effectively minimize L(X;α) to regularize the model.

The two sides of Eq.(5) can achieve equality if P = D, meaning that the TDB model is TuckER
model (Balažević et al., 2019). Although L(X;α) may not always serve as a tight lower bound of
the r.h.s. of Eq.(5) for TDB models other than TuckER model, it remains a common lower bound for
all TDB models. To obtain a more tight lower bound, the exact values of P and W are required. For
example, in the case of CP model (Lacroix et al., 2018) (P = 1 and W = 1), the nuclear 2-norm
∥X∥∗ is a more tight lower bound. The nuclear 2-norm is defined as follows:

∥X∥∗ := min{
D∑

d=1

∥H:d1∥F ∥R:d1∥F ∥T:d1∥F |X =

D∑
d=1

W ×1 H:d1 ×2 R:d1 ×3 T:d1}

where W = 1. The following proposition establishes the relationship between ∥X∥∗ and L(X; 2):

Proposition 3. For any X , and for any decomposition of X , X =
∑D

d=1 W ×1 H:d1 ×2 R:d1 ×3

T:d1, and W = 1, we have

2
√
λ1λ4L(X; 2) ≤ 6

√
λ1λ4∥X∥∗ ≤

D∑
d=1

λ1(∥H:d1∥2F + ∥R:d1∥2F + ∥T:d1∥2aF)

+ λ4(∥W ×2 R:d1 ×3 T:d1∥2F + ∥W ×3 T:d1 ×1 H:d1∥2F + ∥W ×1 H:d1 ×2 R:d1∥2F)

Although the r.h.s. of Eq.(6) is not always a tight upper bound for 2
√
λ2λ3L(X;α) like the r.h.s. of

Eq.(5), we observe that minimizing the combination of these two bounds, Eq.(3), can lead to better
performance. The reason behind this is that the r.h.s. of Eq.(5) is neither an upper bound nor a lower
bound of the r.h.s. of Eq.(6) for all X . We present Proposition 4 in Appendix B to prove this claim.

4 EXPERIMENTS

We first introduce the experimental settings in Section 4.1 and show the results in Section 4.2. We
next conduct ablation studies in Section 4.3. Finally, we verify the reliability of our proposed upper
bounds in Section 4.4. Please refer to Appendix C for more experimental details.

7

Under review as a conference paper at ICLR 2024

Table 1: Knowledge graph completion results on WN18RR, FB15k-237 and YGAO3-10 datasets.
WN18RR FB15k-237 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP 0.438 0.416 0.485 0.332 0.244 0.507 0.567 0.495 0.696
CP-F2 0.449 0.420 0.506 0.331 0.243 0.507 0.570 0.499 0.699
CP-N3 0.469 0.432 0.541 0.355 0.261 0.542 0.575 0.504 0.703
CP-DURA 0.471 0.433 0.545 0.364 0.269 0.554 0.579 0.506 0.709
CP-IVR 0.478 0.437 0.554 0.365 0.270 0.555 0.578 0.507 0.706

ComplEx 0.464 0.431 0.526 0.347 0.256 0.531 0.574 0.501 0.704
ComplEx-F2 0.467 0.431 0.538 0.349 0.260 0.529 0.576 0.502 0.709
ComplEx-N3 0.491 0.445 0.578 0.367 0.272 0.559 0.577 0.504 0.707
ComplEx-DURA 0.484 0.439 0.572 0.372 0.277 0.563 0.585 0.512 0.714
ComplEx-IVR 0.494 0.449 0.581 0.371 0.276 0.563 0.586 0.515 0.714

SimplE 0.442 0.421 0.488 0.337 0.248 0.514 0.565 0.491 0.696
SimplE-F2 0.451 0.422 0.506 0.338 0.249 0.514 0.566 0.494 0.699
SimplE-IVR 0.470 0.436 0.537 0.357 0.264 0.544 0.578 0.504 0.707

ANALOGY 0.458 0.425 0.525 0.348 0.255 0.530 0.574 0.502 0.704
ANALOGY-F2 0.467 0.434 0.533 0.349 0.258 0.529 0.573 0.501 0.705
ANALOGY-IVR 0.482 0.439 0.568 0.367 0.272 0.558 0.582 0.509 0.713

QuatE 0.460 0.430 0.518 0.349 0.258 0.530 0.566 0.489 0.702
QuatE-F2 0.468 0.435 0.534 0.349 0.259 0.529 0.566 0.489 0.705
QuatE-IVR 0.493 0.447 0.580 0.369 0.274 0.561 0.582 0.509 0.712

TuckER 0.446 0.423 0.490 0.321 0.233 0.498 0.551 0.476 0.689
TuckER-F2 0.449 0.423 0.496 0.327 0.239 0.503 0.566 0.492 0.700
TuckER-IVR 0.501 0.460 0.579 0.368 0.274 0.555 0.581 0.508 0.712

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate the models on three KGC datasets, WN18RR (Dettmers et al., 2018),
FB15k-237 (Toutanova et al., 2015) and YAGO3-10 (Dettmers et al., 2018).

Models We use CP, ComplEx, SimplE, ANALOGY, QuatE and TuckER as baselines. We denote
CP with squared Frobenius norm method (Yang et al., 2014) as CP-F2, CP with N3 method (Lacroix
et al., 2018) as CP-N3, CP with DURA method (Zhang et al., 2020) as CP-DURA and CP with IVR
method as CP-IVR. The notations for other models are similar to the notations for CP.

Evaluation Metrics We use the filtered MRR and Hits@N (H@N) (Bordes et al., 2013) as evalu-
ation metrics and choose the hyper-parameters with the best filtered MRR on the validation set. We
run each model three times with different random seeds and report the mean results.

4.2 RESULTS

See Table 1 for the results. For CP and ComplEx, the models that N3 and DURA are suitable, the
results shows that N3 enhances the models more than F2, and DURA outperforms both F2 and N3,
leading to substantial improvements. IVR achieve better performance than DURA on WN18RR
dataset and achieve similar performance to DURA on FB15k-237 and YAGO3-10 dataset. For
SimplE, ANALOGY, QuatE, and TuckER, the improvement offered by F2 is minimal, while IVR
significantly boosts model performance on three datasets. Taken together, these results demonstrate
the effectiveness and generality of IVR.

4.3 ABLATION STUDIES

We conduct ablation studies to examine the effectiveness of the upper bounds. Our notations for the
models are as follows: the model with upper bound Eq.(5) is denoted as IVR-1, model with upper

8

Under review as a conference paper at ICLR 2024

Table 2: The results on WN18RR and FB15k-237 datasets with different upper bounds.
WN18RR FB15k-237 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TuckER 0.446 0.423 0.490 0.321 0.233 0.498 0.551 0.476 0.689
TuckER-IVR-1 0.497 0.455 0.578 0.366 0.272 0.553 0.576 0.501 0.709
TuckER-IVR-2 0.459 0.423 0.518 0.336 0.241 0.518 0.568 0.493 0.700
TuckER-IVR-3 0.496 0.456 0.577 0.363 0.268 0.551 0.572 0.499 0.702
TuckER-IVR 0.501 0.460 0.579 0.368 0.274 0.555 0.581 0.508 0.712

Table 3: The results on Kinship dataset with different upper bounds.
∥X(1)∥∗ ∥X(2)∥∗ ∥X(3)∥∗ L(X)

TuckER 10,719 8,713 11,354 30,786
TuckER-IVR-1 5,711 5,021 6,271 17,003
TuckER-IVR-2 6,145 5,441 6,744 18,330
TuckER-IVR 3,538 3,511 3,988 11,037

bound Eq.(6) as IVR-2, and model with upper bound Eq.(3) as IVR. Additionally, the model with
regularization coefficients λi(i = 1, 2, 3, 4) in Eq.(3) equal is denoted as IVR-3.

See Table 2 for the results. We use TuckER as the baseline. IVR with only 1 regularization coeffi-
cient, IVR-1, achieves comparable results with vanilla IVR, which shows that IVR can still perform
well with fewer hyper-parameters. IVR-1 and outperforms IVR-2 due to the tightness of Eq.(5).
IVR-3 requires fewer hyper-parameters than IVR but still deliver satisfactory results. Thus, choos-
ing which version of IVR to use is a matter of striking a balance between performance and efficiency.

4.4 UPPER BOUNDS

We verify that minimizing the upper bounds can effectively minimize L(X;α). L(X;α) can mea-
sure the correlation of X . Lower values of L(X;α) encourage higher correlations among entities
and relations, and thus bring a strong constraint for regularization. Upon training the models, we
compute L(X;α) for the models. As computing L(X;α) for large KGs is impractical, we conduct
experiments on a small KG dataset, Kinship (Kok & Domingos, 2007), which consists of 104 enti-
ties and 25 relations. We use TuckER as the baseline and compare it against IVR-1 (Eq.(5)), IVR-2
(Eq.(6)), and IVR (Eq.(3)).

See Table 3 for the results. Our results demonstrate that the upper bounds are effective in minimizing
L(X;α). All three upper bounds can lead to a decrease of L(X;α), achieving better performance
(Table 2) by more effective regularization. The L(X;α) of IVR-1 is smaller than that of IVR-2
because the upper bound in Eq.(5) is tight. IVR, which combines IVR-1 and IVR-2, produces the
most reduction of L(X;α). This finding suggests that combining the two upper bounds can be more
effective. Overall, our experimental results confirm the reliability of our theoretical analysis.

5 CONCLUSION

In this paper, we undertake an analysis of TDB models in KGC. We first offer a summary of TDB
models and derive a general form that facilitates further analysis. TDB models often suffer from
the overfitting problem, and thus, we propose a regularization based on our derived general form.
It is applicable to most TDB models and incorporates existing regularization methods. We further
propose a theoretical analysis to support our regularization. Finally, our empirical analysis demon-
strates the effectiveness of our regularization and validates our theoretical analysis. We anticipate
that more regularization methods could be proposed in future research, which could apply to other
types of models, such as translation-based models and neural networks models. We also intend to
explore how to apply our regularization to other fields, such as tensor completion (Song et al., 2019).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. Templates for the
solution of algebraic eigenvalue problems: a practical guide. SIAM, 2000.

Ivana Balažević, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 5185–5194, 2019.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Lieven De Lathauwer. Decompositions of a higher-order tensor in block terms—part i: Lemmas
for partitioned matrices. SIAM Journal on Matrix Analysis and Applications, 30(3):1022–1032,
2008.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Thirty-second AAAI conference on artificial intelligence, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM
Journal on Matrix Analysis and Applications, 35(1):225–253, 2014.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and
learning systems, 33(2):494–514, 2021.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 4289–4300, 2018.

Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings of the 24th inter-
national conference on Machine learning, pp. 433–440, 2007.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In International Conference on Machine Learning, pp. 2863–2872.
PMLR, 2018.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. Analogical inference for multi-relational embeddings.
In International conference on machine learning, pp. 2168–2178. PMLR, 2017.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimiza-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5249–5257, 2016.

Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds and improved
relaxations for tensor recovery. In International conference on machine learning, pp. 73–81.
PMLR, 2014.

10

Under review as a conference paper at ICLR 2024

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, pp. 809–816, 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion algorithms in
big data analytics. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(1):1–48,
2019.

Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, and Hisashi Kashima. Statistical performance of
convex tensor decomposition. Advances in neural information processing systems, 24, 2011.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings of
the 2015 conference on empirical methods in natural language processing, pp. 1499–1509, 2015.

Théo Trouillon, Christopher R Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guil-
laume Bouchard. Knowledge graph completion via complex tensor factorization. Journal of
Machine Learning Research, 18:1–38, 2017.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv e-prints, pp. arXiv–1412, 2014.

Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and Haipeng Ding. Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open, 2:14–35, 2021.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In Pro-
ceedings of the 33rd International Conference on Neural Information Processing Systems, pp.
2735–2745, 2019.

Zhanqiu Zhang, Jianyu Cai, and Jie Wang. Duality-induced regularizer for tensor factorization based
knowledge graph completion. Advances in Neural Information Processing Systems, 33, 2020.

A LOGICAL RULES

KGs often involve some logical rules to capture inductive capacity (Zhang et al., 2021). Thus,
we analyze how to design models such that the models can learn the symmetry, antisymmetry and
inverse rules. We have derived a general form for TDB models, Eq.(1). Next, we study how to
enable Eq.(1) to learn logical rules. We first define the symmetry rules, antisymmetry rules and
inverse rules. We denote Xijk = f(Hi::,Rj::,Tk::) as f(h, r, t) for simplicity.

A relation r is symmetric if ∀h, t, (h, r, t) ∈ S → (t, r, h) ∈ S . A model is able to learn the
symmetry rules if

∃r ∈ RD ∧ r ̸= 0,∀h, t ∈ RD, f(h, r, t) = f(t, r,h)

A relation r is antisymmetric if ∀h, t, (h, r, t) ∈ S → (t, r, h) /∈ S. A model is able to learn the
antisymmetry rules if

∃r ∈ RD ∧ r ̸= 0,∀h, t ∈ RD, f(h, r, t) = −f(t, r,h)

A relation r1 is inverse to a relation r2 if ∀h, t, (h, r1, t) ∈ S → (t, r2, h) ∈ S. A model is able to
learn the inverse rules if

∀r1 ∈ RD,∃r2 ∈ RD,∀h, t ∈ RD, f(h, r1, t) = f(t, r2,h)

We restrict r ̸= 0 because r = 0 will result in f equal to an identically zero function. By choosing
different P and W , we can define different TDB models as discussed in Section 3.1. Next, we give
a theoretical analysis to establish the relationship between logical rules and TDB models.

11

Under review as a conference paper at ICLR 2024

Theorem 1. Assume a model can be represented as the form of Eq.(1), then a model is able to
learn the symmetry rules iff rank(W T

(2) − SW T
(2)) < P . A model is able to learn the antisymmetry

rules iff rank(W T
(2) + SW T

(2)) < P . A model is able to learn the inverse rules iff rank(W T
(2)) =

rank([W T
(2),SW

T
(2)]), where S ∈ RP 2×P 2

is a permutation matrix with S(i−1)P+j,(j−1)P+i =

1(i, j = 1, 2, . . . , P) and otherwise 0, [W T
(2),SW

T
(2)] is the concatenation of matrix W T

(2) and
matrix SW T

(2).

Proof. According to the symmetry rules:

∃r ∈ RD ∧ r ̸= 0,∀h, t ∈ RD, f(h, r, t) = f(t, r,h)

we have that
P∑
l=1

P∑
m=1

P∑
n=1

Wlmn⟨h:l, r:m, t:n⟩ −
P∑
l=1

P∑
m=1

P∑
n=1

Wlmn⟨t:l, r:m,h:n⟩

=

P∑
l=1

P∑
m=1

P∑
n=1

Wlmn⟨h:l, r:m, t:n⟩ −
P∑
l=1

P∑
m=1

P∑
n=1

Wnml⟨h:l, r:m, t:n⟩

=

P∑
l=1

P∑
m=1

P∑
n=1

(Wlmn −Wnml)⟨h:l, r:m, t:n⟩

=

P∑
l=1

P∑
m=1

P∑
n=1

(Wlmn −Wnml)r
T
:m(h:l ∗ t:n)

=

P∑
l=1

P∑
n=1

(

P∑
m=1

(Wlmn −Wnml)r
T
:m)(h:l ∗ t:n) = 0

where ∗ is the Hadamard product. Since the above equation holds for any h, t ∈ RD, we can get

P∑
m=1

(Wlmn −Wnml)r
T
:m = 0(l, n = 1, 2, . . . , P)

Therefore, a model is able to learn the symmetry rules iff

∃r ∈ RD ∧ r ̸= 0,

P∑
m=1

(Wlmn −Wnml)r
T
:m = 0

Therefore, the symmetry rule is transformed into a system of linear equations. This system of linear
equations have non-zero solution iff rank(W T

(2) − SW T
(2)) < P . Thus, a model is able to learn the

symmetry rules iff rank(W T
(2) − SW T

(2)) < P .

Similarly, a model is able to learn the anti-symmetry rules iff rank(W T
(2) + SW T

(2)) < P .

For the inverse rule:

∀r1 ∈ RD,∃r2 ∈ RD,∀h, t ∈ RD, f(h, r1, t) = f(t, r2,h)

a model is able to learn the symmetry rules iff the following equation

W T
(2)r1 = SW T

(2)r2

for any r1 ∈ RD, there exists r2 ∈ RD such that the equation holds. Thus, the column vectors of
W T

(2) can be expressed linearly by the column vectors of SW T
(2). Since S is a permutation matrix

and S = ST , we have that S2 = I , thus

SW T
(2)r1 = S2W T

(2)r2 = W T
(2)r2

12

Under review as a conference paper at ICLR 2024

For any r1 ∈ RD, there exists r2 ∈ RD such that the above equation holds. Thus, the column
vectors of SW T

(2) can be expressed linearly by the column vectors of W T
(2). Therefore, the column

space of W T
(2) is equivalent to the column space of SW T

(2), thus we have

rank(W T
(2)) = rank(SW T

(2)) = rank([W T
(2),SW

T
(2)])

Meanwhile, if rank(W T
(2)) = rank([W T

(2),SW
T
(2)]), then the columns of W T

(2) can be expressed
linearly by the columns of SW T

(2), thus

∀r1 ∈ RD,∃r2 ∈ RD,W T
(2)r1 = SW T

(2)r2

Thus, a model is able to learn the inverse rules iff rank(W T
(2)) = rank([W T

(2),SW
T
(2)]).

By this theoerm, we only need to judge the relationship between P and the matrix rank about
W(2). ComplEx, SimplE, ANALOGYY and QuatE design specific core tensors to make the models
enable to learn the logical rules. We can easily verify that these models satisfy the conditions in this
theorem. For example, for ComplEx, we have that P = 2 and

W T
(2) =

1 0
0 1
0 −1
1 0

 ,SW T
(2) =

1 0
0 −1
0 1
1 0

 , [W(2),SW
T
(2)] =

1 0 1 0
0 1 0 −1
0 −1 0 1
1 0 1 0

rank(W T
(2) − SW T

(2)) = rank(

0 0
0 2
0 −2
0 0

) = 1 < P = 2

rank(W T
(2) + SW T

(2)) = rank(

2 0
0 0
0 0
2 0

) = 1 < P = 2

rank(W T
(2)) = rank([W(2),SW

T
(2)]) = 2

Thus, ComplEx is able to learn the symmetry rules, antisymmetry rules and inverse rules.

B PROOFS

To prove the Proposition 1 and Proposition 2, we first prove the following lemma.

Lemma 1.
∥Z∥α∗ = min

Z=UV T

1

2
(λ∥U∥2αF +

1

λ
∥V ∥2αF)

where α > 0, λ > 0 and {Z,U ,V } are real matrices. If Z = ÛΣV̂ T is a singular value
decomposition of Z, then equality holds for the choice U = λ

−1
2α Û

√
Σ and V = λ

1
2α V̂

√
Σ, where√

Σ is the element-wise square root of Σ.

Proof. Let the singular value decomposition of Z ∈ Rm×n be Z = ÛΣV̂ T , where Û ∈
Rm×r,Σ ∈ Rr×r, V̂ ∈ Rn×r, r = rank(Z), ÛT Û = Ir×r and V̂ T V̂ = Ir×r. We choose
any U ,V such that Z = UV T , then we have Σ = ÛTUV T V̂ . Moreover, since Û , V̂ have
orthogonal columns, ∥ÛTU∥F ≤ ∥U∥F , ∥V̂ TV ∥F ≤ ∥V ∥F . Then

∥Z∥α∗ = Tr(Σ)α = Tr(ÛTUV T V̂)α ≤ ∥ÛTU∥αF ∥V V̂ T ∥αF

≤ (
√
λ∥U∥αF)(

1√
λ
∥V ∥αF) ≤

1

2
(λ∥U∥2αF +

1

λ
∥V ∥2αF)

where the first upper bound is Cauchy-Schwarz inequality and the third upper bound is AM-GM
inequality.

13

Under review as a conference paper at ICLR 2024

Let U = λ
−1
2α Û

√
Σ and V = λ

1
2α V̂

√
Σ, we have that

1

2
(λ∥U∥2αF +

1

λ
∥V ∥2αF) =

1

2
(∥Û

√
Σ∥2αF + ∥V̂

√
Σ∥2αF) =

1

2
(∥
√
Σ∥2αF + ∥

√
Σ∥2αF) = ∥Z∥α∗

In summary,

∥Z∥α∗ = min
z=UV T

1

2
(λ∥U∥2αF +

1

λ
∥V ∥2αF)

Proposition 1. For any X , and for any decomposition of X , X =
∑D/P

d=1 W ×1 H:d: ×2 R:d: ×3

T:d:, we have

2
√
λ1λ4L(X;α) ≤

D/P∑
d=1

λ1(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+ λ4(∥W ×2 R:d: ×3 T:d:∥αF + ∥W ×3 T:d: ×1 H:d:∥αF + ∥W ×1 H:d: ×2 R:d:∥αF) (7)

If X(1) = U1Σ1V
T
1 ,X(2) = U2Σ2V

T
2 ,X(3) = U3Σ3V

T
3 are compact singular value de-

compositions of X(1),X(2),X(3), respectively, then there exists a decomposition of X , X =∑D/P
d=1 W ×1 H:d: ×2 R:d: ×3 T:d:, such that the two sides of Eq.(5) equal, where P = D,

H:1: =
√
λ1/λ4

−1
α U1

√
Σ1,R:1: =

√
λ1/λ4

−1
α U2

√
Σ2,T:1: =

√
λ1/λ4

−1
α U3

√
Σ3,W =√

λ1/λ4

3
αX ×1

√
Σ−1

1 UT
1 ×2

√
Σ−1

2 UT
2 ×3

√
Σ−1

3 UT
3 .

Proof. Let the n-rank (Kolda & Bader, 2009) of X ∈ Rn1×n2×n3 be (r1, r2, r3), then U1 ∈
Rn1×r1 ,U2 ∈ Rn2×r2 ,U3 ∈ Rn3×r3 ,Σ1 ∈ Rr1×r1 ,Σ2 ∈ Rr2×r2 ,Σ3 ∈ Rr3×r3 ,W ∈
Rr1×r2×r3 .

If X = 0, the above proposition is obviously true, we define 0−1 := 0 here.

For any X ̸= 0, since X(1) =
∑D/P

d=1 H:d:(W(1)(T:d:⊗R:d:)
T),X(2) =

∑D/P
d=1 R:d:(W(2)(T:d:⊗

H:d:)
T),X(3) =

∑D/P
d=1 T:d:(W(3)(R:d:⊗H:d:)

T), by applying Lemma 1 to X(1),X(2),X(3), we
have that

2L(X;α)

≤
D/P∑
d=1

∥H:d:(W(1)(T:d: ⊗R:d:)
T)∥α/2∗ + ∥R:d:(W(2)(T:d: ⊗H:d:)

T)∥α/2∗ + ∥T:d:(W(3)(R:d: ⊗H:d:)
T)∥α/2∗

≤
D/P∑
d=1

λ(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+
1

λ
(∥W(1)(T:d: ⊗R:d:)

T ∥αF + ∥W(2)(T:d: ⊗H:d:)
T ∥αF + ∥W(3)(R:d: ⊗H:d:)

T ∥αF)

=

D/P∑
d=1

λ(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+
1

λ
(∥W ×2 R:d: ×3 T:d:∥αF + ∥W ×3 T:d: ×1 H:d:∥αF + ∥W ×1 H:d: ×2 R:d:∥αF)

Let λ =
√
λ1/λ4, we have that

2
√
λ1λ4L(X;α) ≤

D/P∑
d=1

λ1(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+ λ4(∥W ×2 R:d: ×3 T:d:∥αF + ∥W ×3 T:d: ×1 H:d:∥αF + ∥W ×1 H:d: ×2 R:d:∥αF)

14

Under review as a conference paper at ICLR 2024

Since UT
1 U1 = Ir1×r1 ,U

T
2 U2 = Ir2×r2 ,U

T
3 U3 = Ir3×r3 , thus we have X(1) =

U1U
T
1 X(1),X(2) = U2U

T
2 X(2),X(3) = U3U

T
3 X(3), then

X =X ×1 (U1U
T
1)×2 (U2U

T
2)×3 (U3U

T
3)

=X ×1 (U1

√
Σ1

√
Σ−1

1 UT
1)×2 (U2

√
Σ2

√
Σ−1

2 UT
2)×3 (U3

√
Σ3

√
Σ−1

3 UT
3)

=X ×1

√
Σ−1

1 UT
1 ×2

√
Σ−1

2 UT
2 ×3

√
Σ−1

3 UT
3 ×1 U1

√
Σ1 ×2 U2

√
Σ2 ×3 U3

√
Σ3

Let P = D and H:1: =
√

λ1/λ4

−1
α U1

√
Σ1,R:1: =

√
λ1/λ4

−1
α U2

√
Σ2,T:1: =√

λ1/λ4

−1
α U3

√
Σ3,W =

√
λ1/λ4

3
αX ×1

√
Σ−1

1 UT
1 ×2

√
Σ−1

2 UT
2 ×3

√
Σ−1

3 UT
3 , then X =

W ×1 H:1: ×2 R:1: ×3 T:1: is a decomposition of X . Since

X(1) =
√
λ1/λ4

−1
α U1

√
Σ1W(1)(T:1: ⊗R:1:)

T = U1

√
Σ1

√
Σ1V

T
1

X(2) =
√
λ1/λ4

−1
α U2

√
Σ2W(2)(T:1: ⊗H:1:)

T = U2

√
Σ2

√
Σ2V

T
2

X(3) =
√
λ1/λ4

−1
α U3

√
Σ3W(3)(R:1: ⊗H:1:)

T = U3

√
Σ3

√
Σ3V

T
3

thus

W(1)(T:1: ⊗R:1:)
T =

√
λ1/λ4

1
α
√
Σ1V

T
1

W(2)(T:1: ⊗H:1:)
T =

√
λ1/λ4

1
α
√
Σ2V

T
2

W(3)(R:1: ⊗H:1:)
T =

√
λ1/λ4

1
α
√
Σ3V

T
3

If P = D, we have that

D/P∑
d=1

λ1(∥H:d:∥αF + ∥R:d:∥αF + ∥T:d:∥αF)

+λ4(∥W(1)(T:d: ⊗R:d:)
T ∥αF + ∥W(2)(T:d: ⊗H:d:)

T ∥αF + ∥W(3)(R:d: ⊗H:d:)
T ∥αF)

=λ1(∥H:1:∥αF + ∥R:1:∥αF + ∥T:1:∥αF)
+λ4(∥W ×2 R:1: ×3 T:1:∥αF + ∥W ×3 T:1: ×1 H:1:∥αF + ∥W ×1 H:1: ×2 R:1:∥αF))
=λ1(∥H:1:∥αF + ∥R:1:∥αF + ∥T:1:∥αF)
+λ4(∥W(1)(T:1: ⊗R:1:)

T ∥αF + ∥W(2)(T:1: ⊗H:1:)
T ∥αF + ∥W(3)(R:1: ⊗H:1:)

T ∥αF)

=
√
λ1λ4(∥U1

√
Σ1∥αF + ∥U2

√
Σ2∥αF + ∥U3

√
Σ3∥αF)

+
√

λ1λ4(∥
√
Σ1V

T
1 ∥αF + ∥

√
Σ2V

T
2 ∥αF + ∥

√
Σ3V

T
3 ∥αF)

=
√

λ1λ4(∥
√
Σ1∥αF + ∥

√
Σ2∥αF + ∥

√
Σ3∥αF) +

√
λ1λ4(∥

√
Σ1∥αF + ∥

√
Σ2∥αF + ∥

√
Σ3∥αF)

=
√

λ1λ4(∥X(1)∥α∗ + ∥X(2)∥α∗ + ∥X(3)∥α∗ + ∥X(1)∥α∗ + ∥X(2)∥α∗ + ∥X(3)∥α∗)
=2L(X;α)

Proposition 2. For any X , and for any decomposition of X , X , X =
∑D/P

d=1 W ×1 H:d: ×2

R:d: ×3 T:d:, we have

2
√
λ2λ3L(X) ≤

D/P∑
d=1

λ2(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)

+ λ3(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF) (8)

And there exists some X
′
, and for any decomposition of X

′
, such that the two sides of Eq.(6) can

not achieve equality.

15

Under review as a conference paper at ICLR 2024

Proof. Since X(1) =
∑D/P

d=1 (H:d:W(1))(T:d: ⊗ R:d:)
T ,X(2) =

∑D/P
d=1 (R:d:W(2))(T:d: ⊗

H:d:)
T ,X(3) =

∑D/P
d=1 (T:d:W(3))(R:d: ⊗ H:d:)

T and for any matrix A,B, ∥A ⊗ B∥αF =
∥A∥αF ∥B∥αF , by applying Lemma 1 to X(1),X(2),X(3), we have that

2L(X;α)

≤
D/P∑
d=1

∥(H:d:W(1))(T:d: ⊗R:d:)
T ∥α/2∗ + ∥(R:d:W(2))(T:d: ⊗H:d:)

T ∥α/2∗ + ∥(T:d:W(3))(R:d: ⊗H:d:)
T ∥α/2∗

≤
D/P∑
d=1

λ(∥T:d: ⊗R:d:∥αF + ∥T:d: ⊗H:d:∥αF + ∥R:d: ⊗H:d:∥αF)

+
1

λ
(∥H:d:W(1)∥αF + ∥R:d:W(2)∥αF + ∥T:d:W(3)∥αF)

=

D/P∑
d=1

λ(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)

+ λ(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF)

Let λ =
√
λ2/λ3, we have that

2
√

λ2λ3L(X) ≤
D/P∑
d=1

λ2(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)

+ λ3(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF) (9)

Let X
′ ∈ R2×2×2, X

′

1,1,1 = X
′

2,2,2 = 1 and X
′

ijk = 0 otherwise. Then

X
′

(1) = X
′

(2) = X
′

(3) =

(
1 0 0 0
0 0 0 1

)
Thus rank(X

′

(1)) = rank(X
′

(2)) = rank(X
′

(3)) = 2. In Lemma 1, a necessary condition of the
equality holds is that rank(U) = rank(V) = rank(Z). Thus, the equality holds only if P = D
and

rank(X
′

(1)) = rank(T:1: ⊗R:1:) = 2, rank(X
′

(2)) = rank(T:1: ⊗H:1:) = 2

rank(X
′

(3)) = rank(R:1: ⊗H:1:) = 2

Since for any matrix A,B, rank(A⊗B) = rank(A) rank(B), we have that

rank(T:1:) rank(R:1:) = 2, rank(T:1:) rank(H:1:) = 2, rank(R:1:) rank(H:1:) = 2

The above equations have no non-negative integer solution, thus there is no decomposition of X
′

such that

2
√
λ2λ3L(X) =

D/P∑
d=1

λ2(∥T:d:∥αF ∥R:d:∥αF + ∥T:d:∥αF ∥H:d:∥αF + ∥R:d:∥αF ∥H:d:∥αF)

+ λ3(∥W ×1 H:d:∥αF + ∥W ×2 R:d:∥αF + ∥W ×3 T:d:∥αF)

Proposition 3. For any X , and for any decomposition of X , X =
∑D

d=1 W ×1 H:d1 ×2 R:d1 ×3

T:d1, we have

2
√
λ1λ4L(X; 2) ≤ 6

√
λ1λ4∥X∥∗ ≤

D∑
d=1

λ1(∥H:d1∥2F + ∥R:d1∥2F + ∥T:d1∥2F)

+ λ4(∥W ×2 R:d1 ×3 T:d1∥2F + ∥W ×3 T:d1 ×1 H:d1∥2F + ∥W ×1 H:d1 ×2 R:d1∥2F)

where W = 1.

16

Under review as a conference paper at ICLR 2024

Proof. ∀X , let S1 = {(W ,H,R,T)|X =
∑D

d=1 W ×1 H:d: ×2 R:d: ×3 T:d:}, S2 =

{(W ,H,R,T)|X =
∑D

d=1 W ×1 H:d1 ×2 R:d1 ×3 T:d1,W = 1}. We have that

2
√
λ1λ4(

D∑
d=1

∥H:d1∥F ∥R:d1∥F ∥T:d1∥F)

≤2(

D∑
d=1

λ4∥R:d1∥2F ∥T:d1∥2F)1/2(
D∑

d=1

λ1∥H:d1∥2F)1/2

=

D∑
d=1

λ1∥H:d1∥2F + λ4∥W ×2 R:d: ×3 T:d:∥2F

where W = 1. The equality holds if and only if λ4∥R:d1∥2F ∥T:d1∥2F = λ1∥H:d1∥2F , i.e.,√
λ4/λ1∥R:d1∥2∥T:d1∥2 = ∥H:d1∥2. For a CP decomposition of X , X =

∑D
d=1 W ×1 H:d1 ×2

R:d1 ×3 T:d1, we let H
′

:d1 =
√

∥R:d1∥2∥T:d1∥2

∥H:d1∥2
H:i,R

′

:i =
√

∥H:d1∥2

∥R:d1∥2∥T:d1∥2
R:i,T

′

:i = T:i if

∥H:d1∥2 ̸= 0, ∥R:d1∥2 ̸= 0, ∥T:d1∥2 ̸= 0 and otherwise H
′

:d = 0,R
′

:d = 0,T
′

:d = 0. Then
X =

∑D
d=1 W ×1H

′

:d1×2R
′

:d1×3T
′

:d1 is another CP decomposition of X and ∥R′

:d1∥2∥T
′

:d1∥2 =

∥H ′

:d1∥2. Thus

2
√

λ1λ4∥X∥∗ = min
S2

D∑
d=1

λ1∥H:d1∥2F + λ4∥W ×2 R:d: ×3 T:d:∥2F

Similarly, we can get

2
√
λ1λ4∥X∥∗ = min

S2

D∑
d=1

λ1∥R:d1∥2F + λ4∥W ×2 T:d: ×3 H:d:∥2F

2
√
λ1λ4∥X∥∗ = min

S2

D∑
d=1

λ1∥T:d1∥2F + λ4∥W ×2 H:d: ×3 R:d:∥2F

By Propostion 1, we have that

2
√
λ1λ4∥X(1)∥∗ =

D∑
d=1

λ1∥H:d1∥2F + λ4∥W ×2 R:d: ×3 T:d:∥2F

Since S2 is a subset of S1, we have that

∥X(1)∥∗ ≤ ∥X∥∗
Similarly, we can prove that ∥X(2)∥∗ ≤ ∥X∥∗ and ∥X(3)∥∗ ≤ ∥X∥∗, thus

2
√
λ1λ4L(X; 2) ≤ 6

√
λ1λ4∥X∥∗ ≤

D∑
d=1

λ1(∥H:d1∥2F + ∥R:d1∥2F + ∥T:d1∥2F)

+ λ4(∥W ×2 R:d1 ×3 T:d1∥2F + ∥W ×3 T:d1 ×1 H:d1∥2F + ∥W ×1 H:d1 ×2 R:d1∥2F)

Proposition 4. For any X , there exists a decomposition of X =
∑D/P

d=1 Ŵ ×1Ĥ:d:×2 R̂:d:×3 T̂:d:,
such that

D/P∑
d=1

λ1(∥Ĥ:d:∥αF + ∥R̂:d:∥αF + ∥T̂:d:∥αF)

+λ4(∥Ŵ ×2 R̂:d: ×3 T̂:d:∥αF + ∥Ŵ ×3 T̂:d: ×1 Ĥ:d:∥αF + ∥Ŵ ×1 Ĥ:d: ×2 R̂:d:∥αF)

<
√
λ1λ4/

√
λ2λ3

D/P∑
d=1

λ2(∥T̂:d:∥αF ∥R̂:d:∥αF + ∥T̂:d:∥αF ∥Ĥ:d:∥αF + ∥R̂:d:∥αF ∥Ĥ:d:∥αF)

+λ3(∥Ŵ ×1 Ĥ:d:∥αF + ∥Ŵ ×2 R̂:d:∥αF + ∥Ŵ ×3 T̂:d:∥αF)

17

Under review as a conference paper at ICLR 2024

Furthermore, for some X , there exists a decomposition of X , X =
∑D/P

d=1 Ŵ ×1 Ĥ:d: ×2 R̂:d: ×3

T̂:d:, such that

D/P∑
d=1

λ1(∥H̃:d:∥αF + ∥R̃:d:∥αF + ∥T̃:d:∥αF)

+λ4(∥W̃ ×2 R̃:d: ×3 T̃:d:∥αF + ∥W̃ ×3 T̃:d: ×1 H̃:d:∥αF + ∥W̃ ×1 H̃:d: ×2 R̃:d:∥αF)

>
√
λ1λ4/

√
λ2λ3

D/P∑
d=1

λ2(∥T̃:d:∥αF ∥R̃:d:∥αF + ∥T̃:d:∥αF ∥H̃:d:∥αF + ∥R̃:d:∥αF ∥H̃:d:∥αF)

+λ3(∥W̃ ×1 H̃:d:∥αF + ∥W̃ ×2 R̃:d:∥αF + ∥W̃ ×3 T̃:d:∥αF)

Proof. To simplify the notations, we denote Ĥ:d: as Ĥ , R̂:d: as R̂ and T̂:d: as T̂ . To prove the
inequality, we only need to prove√

λ1/λ4(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF)

+
√

λ4/λ1(∥Ŵ ×2 R̂×3 T̂ ∥αF + ∥Ŵ ×3 T̂ ×1 Ĥ∥αF + ∥Ŵ ×1 Ĥ ×2 R̂∥αF)

>
√
λ2/λ3(∥T̂ ∥αF ∥R̂∥αF + ∥T̂ ∥αF ∥Ĥ∥αF + ∥R̂∥αF ∥Ĥ∥αF)

+
√

λ3/λ2(∥Ŵ ×1 Ĥ∥αF + ∥Ŵ ×2 R̂∥αF + ∥Ŵ ×3 T̂ ∥αF)

Let c1 =
√
λ1λ3/

√
λ1λ3, for any X , X =

∑D/P
d=1 (c−3

1 Ŵ)×1 (c1Ĥ:d:)×2 (c1R̂:d:)×3 (c1T̂:d:) is
a decomposition of X , thus we only need to prove

c2(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF) +
1

c2
(∥Ŵ ×2 R̂×3 T̂ ∥αF + ∥Ŵ ×3 T̂ ×1 Ĥ∥αF + ∥Ŵ ×1 Ĥ ×2 R̂∥αF)

>c2(∥T̂ ∥αF ∥R̂∥αF + ∥T̂ ∥αF ∥Ĥ∥αF + ∥R̂∥αF ∥Ĥ∥αF) +
1

c2
(∥Ŵ ×1 Ĥ∥αF + ∥Ŵ ×2 R̂∥αF + ∥Ŵ ×3 T̂ ∥αF)

where c2 =
√
λ2
1λ3/

√
λ2λ2

4.

If X ∈ R1×1×1, let c = X2 + 100, Ĥ = R̂ = T̂ = c, Ŵ = X
c3 , we have

c2(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF) +
1

c2
(∥Ŵ ×2 R̂×3 T̂ ∥αF + ∥Ŵ ×3 T̂ ×1 Ĥ∥αF + ∥Ŵ ×1 Ĥ ×2 R̂∥αF)

=c2(X
2 + 100)2 +

1

c2

X2

(X2 + 100)2

<c2(∥T̂ ∥αF ∥R̂∥αF + ∥T̂ ∥αF ∥Ĥ∥αF + ∥R̂∥αF ∥Ĥ∥αF) +
1

c2
(∥Ŵ ×1 Ĥ∥αF + ∥Ŵ ×2 R̂∥αF + ∥Ŵ ×3 T̂ ∥αF)

=c2(X
2 + 100)4 +

1

c2

X2

(X2 + 100)4

For any X ∈ Rn1×n2×n3 ,max{n1, n2, n3} > 1, let Ŵ be a diagonal tensor, i.e., Ŵi,j,k = 1 if i =
j = k and otherwise 0 and let Ŵ ∈ Rn1n2n3×n1n2n3 , Ĥ ∈ Rn1×n1n2n3 , R̂ ∈ Rn2×n1n2n3 , T̂ ∈
Rn3×n1n2n3 , Ĥi,m = Xijk, R̂j,m = 1, T̂k,m = 1, m = (i−1)n2n3+(j−1)n3+k and otherwise
0. An example of X ∈ R2×2×2 is as follows:

Ĥ =

(
X1,1,1 X1,1,2 X1,2,1 X1,2,2 0 0 0 0

0 0 0 0 X2,1,1 X2,1,2 X2,2,1 X2,2,2

)
R̂ =

(
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

)
T̂ =

(
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

)

18

Under review as a conference paper at ICLR 2024

Thus X = Ŵ ×1Ĥ×2 R̂×3 T̂ is a decomposition of X , for X = (c−3
1 Ŵ)×1 (c1Ĥ)×2 (c1R̂)×3

(c1T̂) we have

c2(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF) +
1

c2
(∥Ŵ ×2 R̂×3 T̂ ∥αF + ∥Ŵ ×3 T̂ ×1 Ĥ∥αF + ∥Ŵ ×1 Ĥ ×2 R̂∥αF)

=c2(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF) +
1

c2
(∥Ŵ(1)(T̂ ⊗ R̂)T ∥αF + ∥Ŵ(2)(T̂ ⊗ Ĥ)T ∥αF + ∥Ŵ(3)(R̂⊗ Ĥ)T ∥αF)

<
1

c2
(∥(T̂ ⊗ R̂)T ∥αF + ∥(T̂ ⊗ Ĥ)T ∥αF + ∥(R̂⊗ Ĥ)T ∥αF) + c2(∥Ĥ∥αF + ∥R̂∥αF + ∥T̂ ∥αF)

=c2(∥T̂ ∥αF ∥R̂∥αF + ∥T̂ ∥αF ∥Ĥ∥αF + ∥R̂∥αF ∥Ĥ∥αF) +
1

c2
(∥ĤŴ(1)∥αF + ∥R̂Ŵ(2)∥αF + ∥T̂ Ŵ(3)∥αF)

=c2(∥T̂ ∥αF ∥R̂∥αF + ∥T̂ ∥αF ∥Ĥ∥αF + ∥R̂∥αF ∥Ĥ∥αF) +
1

c2
(∥Ŵ ×1 Ĥ∥αF + ∥Ŵ ×2 R̂∥αF + ∥Ŵ ×3 T̂ ∥αF)

For any X ∈ Rn1×n2×n3 , let W̃ = X/2
√
2, H̃ =

√
2In1×n1

, R̃ =
√
2In2×n2

, T̃ =
√
2In3×n3

,
thus

c2(∥H̃∥αF + ∥R̃∥αF + ∥T̃ ∥αF) +
1

c2
(∥W̃ ×2 R̃×3 T̃ ∥αF + ∥W̃ ×3 T̃ ×1 H̃∥αF + ∥W̃ ×1 H̃ ×2 R̃∥αF)

=c2(2n1 + 2n2 + 2n3) +
1

c2
(∥X(1)∥2F /2 + ∥X(2)∥2F /2 + ∥X(3)∥2F /2)

c2(∥T̃ ∥αF ∥R̃∥αF + ∥T̃ ∥αF ∥H̃∥αF + ∥R̃∥αF ∥H̃∥αF) +
1

c2
(∥W̃ ×1 H̃∥αF + ∥W̃ ×2 R̃∥αF + ∥W̃ ×3 T̃ ∥αF)

=c2(4n3n2 + 4n3n1 + 4n2n1) +
1

c2
(∥X(1)∥2F /4 + ∥X(2)∥2F /4 + ∥X(3)∥2F /4)

Thus if ∥X(1)∥2F > 16c22(n3n2 + n3n1 + n2n1), we have

c2(∥H̃∥αF + ∥R̃∥αF + ∥T̃ ∥αF) +
1

c2
(∥W̃ ×2 R̃×3 T̃ ∥αF + ∥W̃ ×3 T̃ ×1 H̃∥αF + ∥W̃ ×1 H̃ ×2 R̃∥αF)

>c2(∥T̃ ∥αF ∥R̃∥αF + ∥T̃ ∥αF ∥H̃∥αF + ∥R̃∥αF ∥H̃∥αF) +
1

c2
(∥W̃ ×1 H̃∥αF + ∥W̃ ×2 R̃∥αF + ∥W̃ ×3 T̃ ∥αF)

end the proof.

C EXPERIMENTAL DETAILS

Datasets The statistics of the datasets, WN18, WN18RR, FB15k, FB15k-237, YAGO3-10 and
Kinship, are shown in Table 4.

Table 4: The statistics of the datasets.

Dataset #entity #relation #train #valid #test

WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 484,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YGAO3-10 123,188 37 1,079,040 5,000 5,000
Kinship 104 25 8,548 1,069 1,069

Evaluation Metrics MR= 1
N

∑N
i=1 ranki, where ranki is the rank of ith triplet in the test set and

N is the number of the triplets. Lower MR indicates better performance.

MRR= 1
N

∑N
i=1

1
ranki

. Higher MRR indicates better performance.

Hits@N = 1
N

∑N
i=1 I(ranki ≤ N), where I(·) is the indicator function. Hits@N is the ratio of the

ranks that no more than N , Higher Hits@N indicates better performance.

19

Under review as a conference paper at ICLR 2024

Hyper-parameters We use a heuristic approach to choose the hyper-parameters and reduce the
computation cost with the help of Hyperopt, a hyper-parameter optimization framework based on
TPE (Bergstra et al., 2011).

For the hyper-parameter α, we experimentally find that the best value of α depends on the
datasets, but not on the models or the values of λi. Thus, we first search for the best α in
{2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5} with fixed hyper-parameters λi. Tables 6 and Tables 7 show
the results of models with different α. The best α for WN18RR dataset is 3.0 and the best α for
FB15k-237 dataset and YAGO3-10 dataset is 2.25. Thus, we only need 7 runs for each dataset to
find the best value of α.

For the hyper-parameter λi, we set λ1 = λ3 and λ2 = λ4 for all models to reduce the number of
hyper-parameters because we notice that the first row of Eq.(4) ∥Hid:∥αF + ∥Rjd:∥αF + ∥Tkd:∥αF
is equal to the third row of Eq.(4) ∥W ×1 Hid:∥αF + ∥W ×2 Rjd:∥αF + ∥W ×3 Tkd:∥αF and the
second row of Eq.(4) ∥Tkd:∥αF ∥Rjd:∥αF + ∥Tkd:∥αF ∥Hid:∥αF + ∥Rjd:∥αF ∥Hid:∥αF is equal to the
fourth row of Eq.(4) ∥W ×2 Rjd: ×3 Tkd:∥αF + ∥W ×3 Tkd: ×1 Hid:∥αF + ∥W ×1 Hid: ×2

Rjd:∥αF for CP and ComplEx. We then search the regularization coefficients λ1 and λ2 in
{0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07} for WN18RR dataset and FB15k-237 dataset,
and search λ1 and λ2 in {0.0001, 0.0003, 0.0005, 0.0007, 0.001, 0.003, 0.05, 0.007} for YAGO3-
10 dataset. These ranges of hyper-parameters mainly follow the previous work DURA (Zhang et al.,
2020). Thus, we need 64 runs for each model to find the best λi. To further reduce the number of
runs, we use Hyperopt, a hyper-parameter optimization framework based on TPE (Bergstra et al.,
2011), to tune hyper-parameters. In our experiments, we only need 20 runs to find the best values of
λi. In summary, we only need a few runs to achieve good performance.

We use Adagrad (Duchi et al., 2011) with learning rate 0.1 as the optimizer. We set the batch size
to 100 for WN18RR dataset and FB15k-237 dataset and 1000 for YAGO3-10 dataset. We train the
models for 200 epochs. The settings for the total embedding dimension D and the number of parts
P are shown in Table 5.

Table 5: The settings for the total embedding dimension D and the number of parts P .
WN18RR FB15k-237 YAGO3-10

D P D P D P

CP 2000 1 2000 1 1000 1
ComplEx 4000 2 4000 2 2000 2
SimplE 4000 2 4000 2 2000 2
ANALOGY 4000 4 4000 4 2000 4
QuatE 4000 4 4000 4 2000 4
TuckER 256 1 256 1 256 1

Random Initialization We run each model three times with different random seeds and report the
mean results. We do not report the error bars because our model has very small errors with respect
to random initialization. The standard deviations of the results are very small. For example, the
standard deviations of MRR, H@1 and H@10 of CP model with our regularization are 0.00037784,
0.00084755 and 0.00058739 on WN18RR dataset, respectively. This indicates that our model is not
sensitive to the random initialization.

The hyper-parameter α We analyze the impact of the hyper-parameter, the power of the Frobe-
nius norm α. We run experiments on WN18RR dataset with ComplEx model. We set α to
{2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5}. See Table 6 and Table 7 for the results.

The results show that the performance generally increases as α increases and then decreases as α
increases. The best α for WN18RR dataset is 3.0 and the best α for FB15k-237 dataset is 2.25.
Thus, we should set different values of α for different datasets.

20

Under review as a conference paper at ICLR 2024

Table 6: The results on WN18RR dataset with different α.

α 2.0 2.25 2.5 2.75 3.0 3.25 3.5

MRR 0.483 0.486 0.485 0.486 0.494 0.486 0.487
H@1 0.443 0.445 0.441 0.442 0.449 0.443 0.444
H@10 0.556 0.564 0.573 0.572 0.581 0.572 0.570

Table 7: The results on FB15k-237 dataset with different α.

α 2.0 2.25 2.5 2.75 3.0 3.25 3.5

MRR 0.368 0.371 0.370 0.369 0.368 0.367 0.366
H@1 0.273 0.277 0.276 0.273 0.272 0.272 0.271
H@10 0.559 0.563 0.561 0.559 0.558 0.558 0.557

The hyper-parameter λi We analyze the impact of the hyper-parameter, the regularization co-
efficient λi. We run experiments on WN18RR dataset with ComplEx model. We set λi to
{0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1}. See Table 8 and Table 9 for the results.

The experimental results show that the model performance first increases and then decreases with
the increase of λi, without any oscillation. Thus, we can choose suitable regularization coefficients
to prevent overfitting while maintaining the expressiveness of TDB models as much as possible.

Table 8: The performance of ComplEx on WN18RR dataset with different λ1.

λ1 0.001 0.003 0.005 0.007 0.01 0.03 0.05 0.07 0.1

MRR 0.473 0.475 0.476 0.476 0.480 0.487 0.491 0.486 0.467
H@1 0.435 0.436 0.436 0.436 0.439 0.442 0.445 0.436 0.411
H@10 0.545 0.555 0.555 0.557 0.562 0.576 0.583 0.585 0.570

The Number of Parts P In Section 3.1, we show that the number of parts P (number of sub-
spaces) can affect the expressiveness and computation, we study the impact of P on the model
performance. We evaluate the model on WN18RR datasets. We set the total embedding dimension
D to 256, and set the part P to {1, 2, 4, 8, 16, 32, 64, 128, 256}. See Table 10 for the results. The
time is the AMD Ryzen 7 4800U CPU running time on the test set.

The results show that the model performance generally improves and the running time generally
increases as P increases. Thus, the larger the part P , the more expressive the model and the more
the computation.

Ablation Study We only conduct experiments with at least two λi positive in Section 4.3 because
these are the cases that have theoretical guarantees from Proposition 1 and Proposition 2. These
propositions show that our regularization with at least two λi positive can be upper bounds of the
overlapped trace norm. For completeness, we report the results with only one λi positive and the
others zero in Table 11. The results indicate that the first, the second and the third terms of our
regularization have similar contributions to the model performance. The fourth term has the most
contribution because it regularizes the predicted tensor X more directly.

A Pseudocode for IVR We present a pseudocode of our method in Alg.(1).

21

Under review as a conference paper at ICLR 2024

Table 9: The performance of ComplEx on WN18RR dataset with different λ2.

λ2 0.001 0.003 0.005 0.007 0.01 0.03 0.05 0.07 0.1

MRR 0.464 0.464 0.464 0.465 0.465 0.467 0.471 0.473 0.472
H@1 0.429 0.430 0.430 0.430 0.432 0.432 0.435 0.437 0.435
H@10 0.528 0.528 0.529 0.529 0.530 0.536 0.540 0.540 0.540

Table 10: The results on WN18RR dataset with different P .

P 1 2 4 8 16 32 64 128 256

MRR 0.437 0.449 0.455 0.455 0.463 0.466 0.485 0.497 0.501
H@1 0.405 0.413 0.413 0.415 0.425 0.428 0.446 0.456 0.460
H@10 0.499 0.520 0.536 0.533 0.536 0.539 0.565 0.574 0.579

Time 1.971s 2.096s 2.111s 2.145s 2.301s 2.704s 3.520s 6.470s 16.336s

Table 11: The performance of TuckER with different λi on WN18RR dataset.

Models MRR H@1 H@10

λ1 > 0, λi = 0(i ̸= 1) 0.454 0.426 0.506
λ2 > 0, λi = 0(i ̸= 2) 0.451 0.424 0.501
λ3 > 0, λi = 0(i ̸= 3) 0.454 0.429 0.504
λ4 > 0, λi = 0(i ̸= 4) 0.477 0.444 0.541

Algorithm 1 A pseudocode for IVR
Require:

Core tensor: W , embeddings: (H,R,T), triplet: (i, j, k).
Regularization coefficients: λl(l = 1, 2, 3, 4), the number of parts P . power coefficients: α

Ensure:
Output of model Eq.(1): Xijk, IVR regularization Eq.(6): reg(Xijk)

1: Initialization: reg := 0,x1d := Hid:,x2d := Rjd:,x3d := Tkd:

2: reg := reg +
∑D/P

d=1 λ1(∥x1d∥αF + ∥x2d∥αF + ∥x3d∥αF)
3: reg := reg +

∑D/P
d=1 λ2(∥x1d∥αF ∥x2d∥αF + ∥x1d∥αF ∥x3d∥αF + ∥x2d∥αF ∥x3d∥αF)

4: x1d := W ×1 Hid:,x2d := W ×2 Rjd:,x3d := W ×3 Tkd:

5: reg := reg +
∑D/P

d=1 λ3(∥x1d∥αF + ∥x2d∥αF + ∥x3d∥αF)
6: x1d := x1d ×2 Rjd:,x2d := x2 ×3 Tkd:,x3d := x3d ×1 Hid:

7: reg := reg +
∑D/P

d=1 λ4(∥x1d∥αF + ∥x2d∥αF + ∥x3d∥αF)
8: x :=

∑D/P
d=1 x1d ×3 Tkd:

9: return: x, reg

22

	Introduction
	Related Work
	Methods
	General Form
	Intermediate Variables Regularization
	Theoretical Analysis

	Experiments
	Experimental Settings
	Results
	Ablation Studies
	Upper Bounds

	Conclusion
	Logical Rules
	Proofs
	Experimental details

