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Abstract

We introduce a novel training protocol for energy-based models that accelerates
the equilibration of Markov chains used in maximum-likelihood training, enabling
stable and accurate learning on highly clustered, multimodal datasets. The method
extends Trajectory Parallel Tempering, inspired by parallel tempering and Hamilto-
nian exchange Monte Carlo, by dynamically exchanging model parameters with
earlier stages, faster-mixing stages to enhance exploration. A reservoir-based strat-
egy reuses equilibrium samples from previous models, reducing memory costs and
achieving speeds comparable to Persistent Contrastive Divergence when combined
with optimized gradient schedulers such as Nesterov Accelerated Gradient. Ex-
periments on clustered datasets show consistently higher test log-likelihoods and
markedly improved sample quality in Restricted Boltzmann Machines compared
to standard methods.

1 Introduction

Energy-based models (EBMs) offer a powerful framework for modeling complex systems by defining
probability distributions through an energy function, rather than an explicit likelihood or a dynamical
denoising process. This formulation provides the flexibility to capture intricate dependencies in
high-dimensional data without restrictive parametric assumptions, making EBMs particularly well
suited for scientific modeling. Their expressive power is especially evident in simple and interpretable
architectures such as Restricted Boltzmann Machines (RBMs). These models have been widely ap-
plied in computational biology|di Sarra et al.|[2025]], neuroscience|van der Plas et al.|[2023], statistical
physics Tubiana and Monasson| [2017]], |Decelle and Furtlehner] [2021b]] and quantum physics Melko
et al.| [2019], where they successfully capture long-range and multibody correlations |Yelmen et al.
[2023]], hierarchical organization Decelle et al.| [2023]], and collective interactions|Decelle et al.|[2024]
2025]|. By learning directly from data, EBMs uncover hidden organizational principles and yield
valuable insights into the mechanisms governing complex systems.

Training energy-based models (EBMs) is computationally demanding because accurate learning
requires equilibrated Markov Chain Monte Carlo (MCMC) sampling to ensure that the dataset
distribution is correctly encoded in the Boltzmann weight Decelle et al.| [2021]], |Agoritsas et al.
[2023]]. Insufficient equilibration leads to distorted representations, poor generalization, and unstable
dynamics, especially in high-dimensional, multimodal datasets where slow mixing induces mode
collapse and memory effects. To make training practical, Hinton’s contrastive divergence (CD)/Hinton
[2002]] approximates equilibrium sampling through short MCMC runs initialized from data samples.
Although widely used, CD produces models with poor equilibrium properties [Salakhutdinov and
Murray| [2008]], Desjardins et al.| [2010], [Decelle et al.| [2021]]. Persistent contrastive divergence
(PCD) [Tieleman| [2008]] improves stability by evolving persistent chains, yet fails on clustered
data where chains drift from equilibrium Béreux et al.|[2023]]. More advanced approaches—such
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as constrained MCMC Béreux et al.| [2023]], population annealing [Krause et al.| [2018]], or non-
equilibrium reweighting (Carbone et al.| [2024]—better capture multimodal structure but remain
computationally expensive or inefficient for highly structured datasets |Béreux et al.[[2025]].

Optimized MCMC schemes such as Parallel Tempering (PT) [Hukushima and Nemoto, |I996| have
improved EBM training [Salakhutdinov} 2009, |Desjardins et al., 2010] but remain too costly for
practical use and become inefficient on clustered data due to first-order phase transitions along
the temperature ladder [Decelle and Furtlehner, |2021al |Béreux et al.l [2025]]. Stacked Tempering,
which trains progressively smaller RBMs using the previous hidden layer as input, accelerates sam-
pling [Fernandez-de Cossio-Diaz et al.l[2024] but is impractical since it requires simultaneous training
of multiple networks. Recent theoretical analyses revealed cascades of second-order phase transitions
during learning [Bachtis et al.,2024], motivating tempering strategies that avoid first-order transitions.
Parallel Trajectory Tempering (PTT) implements this idea by exchanging model parameters along
the training trajectory via a Metropolis criterion, akin to Hamiltonian Exchange Monte Carlo [Rosta
et al.,|2011]], and achieves remarkable sampling speedups for clustered models [Béreux et al.| 2025].

In this work, we show that PTT can be effectively used to train higher-quality models. To make it
practical, we introduce a strategy that eliminates the need to simulate all models in the trajectory
ladder simultaneously—avoiding prohibitive memory and computational costs—while enabling larger
learning rates. This approach integrates PTT into training with no additional overhead compared
to standard CD or PCD, making it suitable for real-world applications. The PTT algorithm and
training procedure are detailed in Section [2] results in Section [3] and implementation aspects in

Appendices[BHB.2}

2 Parallel Trajectory Tempering

The PTT algorithm was recently introduced in [Béreux et al.| [2025]] as a sampling method that
dramatically accelerates RBM sample generation by exploiting the smooth evolution of the model’s
distribution during training Bachtis et al.| [2024]]. Unlike traditional Parallel Tempering, which
employs a temperature ladder for replica exchange, PTT uses a set of model parameters saved along
the training trajectory, making it analogous to the Hamiltonian Exchange Monte Carlo method |[Rosta
et al.| [2011]] but using a training trajectory. Exchanges are thus proposed between replicas at two
neighboring training steps, ¢ and ¢ — 1, in the model ladder, and accepted with probability:

Pace (@t > xi—1)=min [1,exp (AH () — AHi(x:-1))] with AH () =Hi(x) — Heo1(2). (1)

We now describe how this algorithm can be used to efficiently compute the gradient online during
training. At the start of EBM training, only a single model H is available. To initialize PTT, we
keep a frozen copy of this initial model and propose configuration swaps between it and the evolving
model. As training proceeds, the distribution of the trained model gradually diverges from that of the
frozen one, leading to a decrease in the swap acceptance rate «. Whenever « falls below a threshold
o, a frozen copy H; of the current model is inserted between the last frozen model and the updated
one. The process continues by sampling from the set {#;} and proposing swaps with the model
being trained, while new frozen models are added according to the acceptance-rate criterion. The
procedure for adding models is detailed in Appendix

However, adding new models during training increases both computational and memory costs as
the process advances. To address this, we introduce a reservoir sampling strategy that prevents the
need to simulate a large number of models simultaneously. Whenever a new model is added to
the replica set, a large collection of independent equilibrium samples (the reservoir) is generated
for the antepenultimate model. Subsequently, during sampling, only the models following the one
associated with the reservoir are simulated, while independent moves are proposed by uniformly
drawing configurations from the reservoir. This reduces the computational cost of full PTT sampling
to the few instances when new models are added to the ladder, thereby substantially lowering the
overhead while preserving the accuracy of the sampling process.

An important advantage of the PTT algorithm is its ability to reliably compute the log-likelihood of the
replicas online during training. This is achieved through the formal exact relation between the partition
functions of successive models along the trajectory, Zy 1 = (¢**~*e+1), Z;, where (-)3, denotes
the Boltzmann average with respect to model H;. This implies that the evolution of the log-partition
function Z; fort = 1, ..., T can be readily estimated from the samples generated during training. The
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log-partition function at the final step 7" is then given by log Z = ZtT;Ol log (exp (Hi — Hi1))yy, +
log Zy, where the average is estimated using the equilibrium configurations obtained with PTT. This
can also be used a posteriori to compute the log-likelihood on models saved during training.

Finally, having access to more accurate gradient estimates enables the use of more advanced update
rules than standard gradient ascent. To illustrate this, we compare simple gradient ascent with the
Nesterov Accelerated Gradient (NAG) method, described in Appendix [B.1] It is worth noting that
this strategy typically performs poorly in standard training protocols such as PCD, where it often
slows down or even halts training before convergence to well-trained models.

3 Results

To evaluate the method, we consider three different datasets: (i) a binarized version of the black-
and-white MNIST dataset Deng| [2012]], consisting of 50,000 handwritten digit images (0-9); (ii)
the Human Genome Dataset (HGD) [Colonna et al.|[2014]], Consortium et al.|[2015]], which encodes
whether each of 805 selected genes is mutated (1) or not (0) with respect to a reference individual;
and (iii) the BKACE protein family (PFAM ID:PF05853), comprising 16,323 homologous amino
acid sequences aligned on 272 sites. The HGD and BKACE datasets exhibit strong clustering, as
revealed by their principal component projections. The first two datasets are binary, while the last
one is categorical with 21 possible states. Using these three datasets, we perform three types of
training: PTT with NAG, PCD with NAG, and PCD with a fixed learning rate -, and compare their
performance in terms of both model quality and wall-clock training time. Results are shown for
MNIST Fig. [1] for HGD in Fig. [2] (more analysis in the appendix Fig. 5, and for BKACE in Fig.[3]
Model quality is assessed through the evolution of the test log-likelihood as a function of training time
(measured either in parameter updates or wall-clock time), when this quantity can be computed via
PTT sampling estimates. This excludes the PCD runs for the BKACE proteins, where we are unable
to construct a viable model ladder with non-vanishing swap acceptance to sample the configurations,
because the training breaks quite early. We further evaluate the generated samples by comparing
their first and second moments to those of the training data, and by projecting both datasets onto their
first principal components to compare histograms along each direction, thereby assessing potential
mode-collapse effects.

In Fig. [I] we show that for the non-clustered MNIST dataset, PTT with NAG v = 0.1 slightly
surpasses the performance of PCD-100 with a fixed v = 0.1 in both log-likelihood and sampling
quality, while requiring the same wall-clock training time. This demonstrates the reliability of the
method. The improvement becomes much more dramatic when we consider clustered datasets. For
HGD (see Fig. [2), PCD-100 is unable to properly reproduce all the clusters in the dataset even with
a = 0.01 while the PTT does is perfectly. The limitations are even more clear when one compares
the first and two moments of the distributions in Fig[5]at the appendix, showing that PCD runs are
unable to even reproduce properly the frequencies. Log-likelihoods are consistently higher for the
PTT training.

Finally, we evaluate our method on a protein dataset (BKACE). This dataset exhibits a highly
clustered distribution, posing significant challenges for PCD. In Fig. 3| we compare the projections of
generated samples obtained for both PCD-RBM and PTT-RBM onto the first principal components
of the dataset. PCD fails to adequately capture the full distribution, with certain regions of the dataset
being underrepresented and spurious modes emerging. On the other side, samples generated after
PTT training closely align with the empirical distribution of the dataset, demonstrating the method’s
superior ability to model complex, multimodal data structures.

4 Conclusion

In this work, we address the long-standing challenge of poor mixing across modes in a class of EBMs.
By leveraging Parallel Trajectory Tempering (PTT) during training, we achieve a drastic reduction
in mixing times, enabling the use of larger learning rates. Combined with efficient strategies—such
as a sample reservoir and an adaptive learning-rate scheduler—our approach outperforms previous
methods like PCD and makes it possible to train RBMs on highly clustered datasets with many
well-separated modes that were previously inaccessible.
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Figure 1: Comparison of training methods on MNIST. The left panel shows the train and test
log-likelihood as a function of gradient updates and wall-clock time. The right panel compares the
statistics of generated data against the training data: Top row shows the empirical pixel averages,
and the bottom row shows the covariances. The first column corresponds to the test dataset, the
second column to samples generated by PTT-RBM, and the third column to samples generated by
PCD-RBM. For both methods, statistics are computed using the last saved model after training.
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Figure 2: Comparison of training methods on the HGD dataset. The left panel shows the train and
test log-likelihood as a function of gradient updates and wall-clock time. The right panel compares
the distribution of generated samples after PCD training (top row) and PTT training (bottom row).
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Figure 3: Distribution of the generated samples on BKACE. We plot projection of both the samples
generated by the PTT trained RBM and the dataset. The generative samples match very well the data
distribution at the contrary of PCD trained RBMs, see Fig|[6]
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A Appendix

B The Restricted Boltzmann Machine and the PCD training
The RBM consists of N, visible and Ny, hidden nodes, both represented by binary variables {0, 1}.

The two layers interact through a weight matrix W without intra-layer couplings, and each unit is
influenced by local biases 8 (visible) and 77 (hidden). The joint Gibbs—Boltzmann distribution reads

1
p(v,h) = Z exp[—H(v, h)], H(v,h) = — ZUiWiaha — Zﬁivi — Znaha, 2
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where Z is the partition function. As in other models with hidden variables, training aims to minimize
the discrepancy between the empirical data distribution pp(v) = M1 Zn]\le §(v — v™)) and
the model’s marginal distribution p(v) = }_,, exp[—H (v, h)]/Z = exp|—H (v)]/Z. The model is
trained by maximizing the log-likelihood £ = (—H (v))p —log Z, using standard stochastic gradient
ascent. The corresponding gradients are

oL oL oL
W (viha)D — (Vihe)RBM, 20, ~ (vi)p — (vi)rBM, 75— = (ha)D — (ha)rBM, (3)

Ma
where (f(v,h))p = M~1> S, f(v™ h)p(h|v(™) denotes the average over the dataset, and
(f(v, h))reMm the model expectation with respect to the model’s p(v, h).

Since Z is intractable, the model averages in the gradient are typically estimated using Ny independent
MCMC processes, commonly referred to as parallel chains. Observable averages (o(v, h))rpm are
then approximated by the empirical mean

1 .
=" 0w, h),

r=1

@articlecolonna2014human, title=Human genomic regions with exceptionally high levels of popula-
tion differentiation identified from 911 whole-genome sequences, author=Colonna, Vincenza and
Ayub, Qasim and Chen, Yuan and Pagani, Luca and Luisi, Pierre and Pybus, Marc and Garrison,
Erik and Xue, Yali and Tyler-Smith, Chris and 1000 Genomes Project Consortium, journal=Genome
biology, volume=15, number=6, pages=R88, year=2014, publisher=Springer

where (v("), h(")) denotes the final configuration reached by each of the R chains. Reliable gradient
estimates require the Markov chains to equilibrate before each parameter update, but achieving
convergence at every step is computationally unfeasible. Recent studies have shown that using
non-convergent MCMC to estimate the gradient introduces strong memory effects in the trained
models Nijkamp et al.| [2020], |Agoritsas et al.| [2023]]: the model no longer encodes the dataset
distribution in its Boltzmann distribution, but instead reproduces it through a dynamical process that
can only be controlled under carefully designed training protocols Decelle et al.|[2021], Nijkamp
et al. [2019]).

To mitigate out-of-equilibrium effects, it is common to keep R permanent (or persistent) chains,
meaning that the final configurations obtained from the MCMC process used to estimate the gradient

at update ¢, P, = {('UET), h,E”)}f?:l, are used to initialize the chains at the subsequent update ¢ + 1.
This algorithm is known as PCD [Tieleman| [2008]]. In this framework, training can be viewed as a
slow cooling process in which, instead of varying a single parameter (e.g., temperature), the entire set
of model parameters ®; = (W,, 0;,n;) is updated at each step according to @, ; = O; + 7V L,,
where VL, is the gradient in Eq. equation [3]estimated using the configurations in P;, and 7 is the
learning rate.

B.1 Nesterov Accelerated Gradient

The Nesterov Accelerated Gradient ascent is a gradient ascent with an additional momentum term.
The update is decomposed in two stages. First a regular SGD step:

Gr+1 = 0p + VoL (0:) “
and then a momentum step:

Ort1 = P11 + p(Pra1 — dr) )
In practice we rely on the PyTorch implementation of this optimizer.

B.2 Adding a new model to the set of replicas

Adding a new frozen model in the PTT scheme results in an acceptance rate close to one with the
current model, since the updated model will need some time to diverge from the distribution of the
last frozen model. In Parallel Tempering algorithms, high acceptance rate hinder the performance as
it leads to a drop in expected squared jumping distance (ESJD)|Atchadé et al.|[2011]]. The drop in
ESJD means that the chains used to compute the gradient of the EBM are prevented to travel to higher
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Figure 4: This panel illustrates the procedure to add a new model to the PTT scheme during training,

as explained in Appendix[B.2]

temperatures and mix between clusters, leading to a degradation in the estimation of the gradient. To
circumvent this issue, we rely on temporary models that act as intermediate points until the updated
model sufficiently diverges from the frozen weights as illustrated in Fig. f]

Let #; denote the most recent frozen model and H.,, the updated model. Let «(k, [) represent the
acceptance rate between models k and [, and o* the target acceptance rate. The adaptive freezing

process is defined as follows:

» Temporary Model Creation: When o(#¢, Heur) < 20, a temporary frozen copy Hiemp
is created from Hyr and stored outside the sampling scheme.

» Permanent Model Freezing: When a(H;, Heur) < *, a new frozen copy Hy41 is created
from Hcur and stored outside the sampling scheme. Simultaneously, Hcmp is introduced

into the sampling scheme between H; and H .

* Temporary Model Replacement: When o(Hemp, Heurr) < &, Hiemp is replaced by H¢ g
in the sampling process. The procedure then repeats between H;41 and Hyy-

B.3 Hyperparameters

The hyperparameters used for the trainings are given in Table[I]

Table 1: Hyperparameters used for the training of RBMs.

Name Batch size #Chains #Update Ir #MCMC steps Increment #Hidden nodes L2
HGD

PCD 1000 1000 100000 0.01 10 N/A 100 0
PTT-NAG 1000 1000 100000 0.01 2 5 100 0
MNIST

PCD - FixIr 1000 1000 100000 0.1 100 N/A 500 0
PCD - NAG 1000 1000 100000 0.01 100 N/A 500 0
PTT - NAG 1000 1000 100000 0.01 2 5 500 0
BKACE

PCD - FixIr 1000 1000 100000 0.01 10 N/A 1000 0.001
PTT - NAG 1000 1000 100000 0.01 2 5 1000 0.001

B.4 Additional plots
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shows pixel means, and the bottom row shows 2-body correlations.
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Figure 6: Distribution of the generated samples on BKACE. We show both the generated samples
from the RBMs trained with PTT and with PCD. The samples generated by the PCD trained RBM is
clearly not matching well the empirical data distribuion.
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