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Abstract

We introduce a novel training protocol for energy-based models that accelerates1

the equilibration of Markov chains used in maximum-likelihood training, enabling2

stable and accurate learning on highly clustered, multimodal datasets. The method3

extends Trajectory Parallel Tempering, inspired by parallel tempering and Hamilto-4

nian exchange Monte Carlo, by dynamically exchanging model parameters with5

earlier stages, faster-mixing stages to enhance exploration. A reservoir-based strat-6

egy reuses equilibrium samples from previous models, reducing memory costs and7

achieving speeds comparable to Persistent Contrastive Divergence when combined8

with optimized gradient schedulers such as Nesterov Accelerated Gradient. Ex-9

periments on clustered datasets show consistently higher test log-likelihoods and10

markedly improved sample quality in Restricted Boltzmann Machines compared11

to standard methods.12

1 Introduction13

Energy-based models (EBMs) offer a powerful framework for modeling complex systems by defining14

probability distributions through an energy function, rather than an explicit likelihood or a dynamical15

denoising process. This formulation provides the flexibility to capture intricate dependencies in16

high-dimensional data without restrictive parametric assumptions, making EBMs particularly well17

suited for scientific modeling. Their expressive power is especially evident in simple and interpretable18

architectures such as Restricted Boltzmann Machines (RBMs). These models have been widely ap-19

plied in computational biology di Sarra et al. [2025], neuroscience van der Plas et al. [2023], statistical20

physics Tubiana and Monasson [2017], Decelle and Furtlehner [2021b] and quantum physics Melko21

et al. [2019], where they successfully capture long-range and multibody correlations Yelmen et al.22

[2023], hierarchical organization Decelle et al. [2023], and collective interactions Decelle et al. [2024,23

2025]. By learning directly from data, EBMs uncover hidden organizational principles and yield24

valuable insights into the mechanisms governing complex systems.25

Training energy-based models (EBMs) is computationally demanding because accurate learning26

requires equilibrated Markov Chain Monte Carlo (MCMC) sampling to ensure that the dataset27

distribution is correctly encoded in the Boltzmann weight Decelle et al. [2021], Agoritsas et al.28

[2023]. Insufficient equilibration leads to distorted representations, poor generalization, and unstable29

dynamics, especially in high-dimensional, multimodal datasets where slow mixing induces mode30

collapse and memory effects. To make training practical, Hinton’s contrastive divergence (CD) Hinton31

[2002] approximates equilibrium sampling through short MCMC runs initialized from data samples.32

Although widely used, CD produces models with poor equilibrium properties Salakhutdinov and33

Murray [2008], Desjardins et al. [2010], Decelle et al. [2021]. Persistent contrastive divergence34

(PCD) Tieleman [2008] improves stability by evolving persistent chains, yet fails on clustered35

data where chains drift from equilibrium Béreux et al. [2023]. More advanced approaches—such36
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as constrained MCMC Béreux et al. [2023], population annealing Krause et al. [2018], or non-37

equilibrium reweighting Carbone et al. [2024]—better capture multimodal structure but remain38

computationally expensive or inefficient for highly structured datasets Béreux et al. [2025].39

Optimized MCMC schemes such as Parallel Tempering (PT) [Hukushima and Nemoto, 1996] have40

improved EBM training [Salakhutdinov, 2009, Desjardins et al., 2010] but remain too costly for41

practical use and become inefficient on clustered data due to first-order phase transitions along42

the temperature ladder [Decelle and Furtlehner, 2021a, Béreux et al., 2025]. Stacked Tempering,43

which trains progressively smaller RBMs using the previous hidden layer as input, accelerates sam-44

pling [Fernandez-de Cossio-Diaz et al., 2024] but is impractical since it requires simultaneous training45

of multiple networks. Recent theoretical analyses revealed cascades of second-order phase transitions46

during learning [Bachtis et al., 2024], motivating tempering strategies that avoid first-order transitions.47

Parallel Trajectory Tempering (PTT) implements this idea by exchanging model parameters along48

the training trajectory via a Metropolis criterion, akin to Hamiltonian Exchange Monte Carlo [Rosta49

et al., 2011], and achieves remarkable sampling speedups for clustered models [Béreux et al., 2025].50

In this work, we show that PTT can be effectively used to train higher-quality models. To make it51

practical, we introduce a strategy that eliminates the need to simulate all models in the trajectory52

ladder simultaneously—avoiding prohibitive memory and computational costs—while enabling larger53

learning rates. This approach integrates PTT into training with no additional overhead compared54

to standard CD or PCD, making it suitable for real-world applications. The PTT algorithm and55

training procedure are detailed in Section 2, results in Section 3, and implementation aspects in56

Appendices B–B.2.57

2 Parallel Trajectory Tempering58

The PTT algorithm was recently introduced in Béreux et al. [2025] as a sampling method that59

dramatically accelerates RBM sample generation by exploiting the smooth evolution of the model’s60

distribution during training Bachtis et al. [2024]. Unlike traditional Parallel Tempering, which61

employs a temperature ladder for replica exchange, PTT uses a set of model parameters saved along62

the training trajectory, making it analogous to the Hamiltonian Exchange Monte Carlo method Rosta63

et al. [2011] but using a training trajectory. Exchanges are thus proposed between replicas at two64

neighboring training steps, t and t− 1, in the model ladder, and accepted with probability:65

pacc(xt↔xt−1)=min [1, exp (∆Ht(xt)−∆Ht(xt−1))] with ∆Ht(x)≡Ht(x)−Ht−1(x). (1)

We now describe how this algorithm can be used to efficiently compute the gradient online during66

training. At the start of EBM training, only a single model H0 is available. To initialize PTT, we67

keep a frozen copy of this initial model and propose configuration swaps between it and the evolving68

model. As training proceeds, the distribution of the trained model gradually diverges from that of the69

frozen one, leading to a decrease in the swap acceptance rate α. Whenever α falls below a threshold70

α⋆, a frozen copy H1 of the current model is inserted between the last frozen model and the updated71

one. The process continues by sampling from the set {Ht} and proposing swaps with the model72

being trained, while new frozen models are added according to the acceptance-rate criterion. The73

procedure for adding models is detailed in Appendix B.2.74

However, adding new models during training increases both computational and memory costs as75

the process advances. To address this, we introduce a reservoir sampling strategy that prevents the76

need to simulate a large number of models simultaneously. Whenever a new model is added to77

the replica set, a large collection of independent equilibrium samples (the reservoir) is generated78

for the antepenultimate model. Subsequently, during sampling, only the models following the one79

associated with the reservoir are simulated, while independent moves are proposed by uniformly80

drawing configurations from the reservoir. This reduces the computational cost of full PTT sampling81

to the few instances when new models are added to the ladder, thereby substantially lowering the82

overhead while preserving the accuracy of the sampling process.83

An important advantage of the PTT algorithm is its ability to reliably compute the log-likelihood of the84

replicas online during training. This is achieved through the formal exact relation between the partition85

functions of successive models along the trajectory, Zt+1 =
〈
eHt−Ht+1

〉
Ht

Zt, where ⟨·⟩Ht
denotes86

the Boltzmann average with respect to model Ht. This implies that the evolution of the log-partition87

function Zt for t = 1, . . . , T can be readily estimated from the samples generated during training. The88
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log-partition function at the final step T is then given by logZT =
∑T−1

t=0 log ⟨exp (Ht −Ht+1)⟩Ht
+89

logZ0, where the average is estimated using the equilibrium configurations obtained with PTT. This90

can also be used a posteriori to compute the log-likelihood on models saved during training.91

Finally, having access to more accurate gradient estimates enables the use of more advanced update92

rules than standard gradient ascent. To illustrate this, we compare simple gradient ascent with the93

Nesterov Accelerated Gradient (NAG) method, described in Appendix B.1. It is worth noting that94

this strategy typically performs poorly in standard training protocols such as PCD, where it often95

slows down or even halts training before convergence to well-trained models.96

3 Results97

To evaluate the method, we consider three different datasets: (i) a binarized version of the black-98

and-white MNIST dataset Deng [2012], consisting of 50,000 handwritten digit images (0–9); (ii)99

the Human Genome Dataset (HGD) Colonna et al. [2014], Consortium et al. [2015], which encodes100

whether each of 805 selected genes is mutated (1) or not (0) with respect to a reference individual;101

and (iii) the BKACE protein family (PFAM ID:PF05853), comprising 16,323 homologous amino102

acid sequences aligned on 272 sites. The HGD and BKACE datasets exhibit strong clustering, as103

revealed by their principal component projections. The first two datasets are binary, while the last104

one is categorical with 21 possible states. Using these three datasets, we perform three types of105

training: PTT with NAG, PCD with NAG, and PCD with a fixed learning rate γ, and compare their106

performance in terms of both model quality and wall-clock training time. Results are shown for107

MNIST Fig. 1, for HGD in Fig. 2 (more analysis in the appendix Fig. 5), and for BKACE in Fig. 3.108

Model quality is assessed through the evolution of the test log-likelihood as a function of training time109

(measured either in parameter updates or wall-clock time), when this quantity can be computed via110

PTT sampling estimates. This excludes the PCD runs for the BKACE proteins, where we are unable111

to construct a viable model ladder with non-vanishing swap acceptance to sample the configurations,112

because the training breaks quite early. We further evaluate the generated samples by comparing113

their first and second moments to those of the training data, and by projecting both datasets onto their114

first principal components to compare histograms along each direction, thereby assessing potential115

mode-collapse effects.116

In Fig. 1, we show that for the non-clustered MNIST dataset, PTT with NAG γ = 0.1 slightly117

surpasses the performance of PCD-100 with a fixed γ = 0.1 in both log-likelihood and sampling118

quality, while requiring the same wall-clock training time. This demonstrates the reliability of the119

method. The improvement becomes much more dramatic when we consider clustered datasets. For120

HGD (see Fig. 2), PCD-100 is unable to properly reproduce all the clusters in the dataset even with121

α = 0.01 while the PTT does is perfectly. The limitations are even more clear when one compares122

the first and two moments of the distributions in Fig 5 at the appendix, showing that PCD runs are123

unable to even reproduce properly the frequencies. Log-likelihoods are consistently higher for the124

PTT training.125

Finally, we evaluate our method on a protein dataset (BKACE). This dataset exhibits a highly126

clustered distribution, posing significant challenges for PCD. In Fig. 3, we compare the projections of127

generated samples obtained for both PCD-RBM and PTT-RBM onto the first principal components128

of the dataset. PCD fails to adequately capture the full distribution, with certain regions of the dataset129

being underrepresented and spurious modes emerging. On the other side, samples generated after130

PTT training closely align with the empirical distribution of the dataset, demonstrating the method’s131

superior ability to model complex, multimodal data structures.132

4 Conclusion133

In this work, we address the long-standing challenge of poor mixing across modes in a class of EBMs.134

By leveraging Parallel Trajectory Tempering (PTT) during training, we achieve a drastic reduction135

in mixing times, enabling the use of larger learning rates. Combined with efficient strategies—such136

as a sample reservoir and an adaptive learning-rate scheduler—our approach outperforms previous137

methods like PCD and makes it possible to train RBMs on highly clustered datasets with many138

well-separated modes that were previously inaccessible.139
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Figure 1: Comparison of training methods on MNIST. The left panel shows the train and test
log-likelihood as a function of gradient updates and wall-clock time. The right panel compares the
statistics of generated data against the training data: Top row shows the empirical pixel averages,
and the bottom row shows the covariances. The first column corresponds to the test dataset, the
second column to samples generated by PTT-RBM, and the third column to samples generated by
PCD-RBM. For both methods, statistics are computed using the last saved model after training.

Figure 2: Comparison of training methods on the HGD dataset. The left panel shows the train and
test log-likelihood as a function of gradient updates and wall-clock time. The right panel compares
the distribution of generated samples after PCD training (top row) and PTT training (bottom row).
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Figure 3: Distribution of the generated samples on BKACE. We plot projection of both the samples
generated by the PTT trained RBM and the dataset. The generative samples match very well the data
distribution at the contrary of PCD trained RBMs, see Fig 6.
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A Appendix222

B The Restricted Boltzmann Machine and the PCD training223

The RBM consists of Nv visible and Nh hidden nodes, both represented by binary variables {0, 1}.224

The two layers interact through a weight matrix W without intra-layer couplings, and each unit is225

influenced by local biases θ (visible) and η (hidden). The joint Gibbs–Boltzmann distribution reads226

p(v,h) =
1

Z
exp[−H(v,h)], H(v,h) = −

∑
ia

viWiaha −
∑
i

θivi −
∑
a

ηaha, (2)
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where Z is the partition function. As in other models with hidden variables, training aims to minimize227

the discrepancy between the empirical data distribution pD(v) = M−1
∑M

m=1 δ(v − v(m)) and228

the model’s marginal distribution p(v) =
∑

h exp[−H(v,h)]/Z = exp[−H(v)]/Z. The model is229

trained by maximizing the log-likelihood L = ⟨−H(v)⟩D− logZ, using standard stochastic gradient230

ascent. The corresponding gradients are231

∂L
∂Wia

= ⟨viha⟩D − ⟨viha⟩RBM,
∂L
∂θi

= ⟨vi⟩D − ⟨vi⟩RBM,
∂L
∂ηa

= ⟨ha⟩D − ⟨ha⟩RBM, (3)

where ⟨f(v,h)⟩D = M−1
∑

m

∑
h f(v(m),h) p(h|v(m)) denotes the average over the dataset, and232

⟨f(v,h)⟩RBM the model expectation with respect to the model’s p(v,h).233

Since Z is intractable, the model averages in the gradient are typically estimated using Ns independent234

MCMC processes, commonly referred to as parallel chains. Observable averages ⟨o(v,h)⟩RBM are235

then approximated by the empirical mean236

1

R

R∑
r=1

o(v(r),h(r)),

@articlecolonna2014human, title=Human genomic regions with exceptionally high levels of popula-237

tion differentiation identified from 911 whole-genome sequences, author=Colonna, Vincenza and238

Ayub, Qasim and Chen, Yuan and Pagani, Luca and Luisi, Pierre and Pybus, Marc and Garrison,239

Erik and Xue, Yali and Tyler-Smith, Chris and 1000 Genomes Project Consortium, journal=Genome240

biology, volume=15, number=6, pages=R88, year=2014, publisher=Springer241

where (v(r),h(r)) denotes the final configuration reached by each of the R chains. Reliable gradient242

estimates require the Markov chains to equilibrate before each parameter update, but achieving243

convergence at every step is computationally unfeasible. Recent studies have shown that using244

non-convergent MCMC to estimate the gradient introduces strong memory effects in the trained245

models Nijkamp et al. [2020], Agoritsas et al. [2023]: the model no longer encodes the dataset246

distribution in its Boltzmann distribution, but instead reproduces it through a dynamical process that247

can only be controlled under carefully designed training protocols Decelle et al. [2021], Nijkamp248

et al. [2019].249

To mitigate out-of-equilibrium effects, it is common to keep R permanent (or persistent) chains,250

meaning that the final configurations obtained from the MCMC process used to estimate the gradient251

at update t, Pt ≡ {(v(r)
t ,h

(r)
t )}Rr=1, are used to initialize the chains at the subsequent update t+ 1.252

This algorithm is known as PCD Tieleman [2008]. In this framework, training can be viewed as a253

slow cooling process in which, instead of varying a single parameter (e.g., temperature), the entire set254

of model parameters Θt = (Wt,θt,ηt) is updated at each step according to Θt+1 = Θt + γ∇Lt,255

where ∇Lt is the gradient in Eq. equation 3 estimated using the configurations in Pt, and γ is the256

learning rate.257

B.1 Nesterov Accelerated Gradient258

The Nesterov Accelerated Gradient ascent is a gradient ascent with an additional momentum term.259

The update is decomposed in two stages. First a regular SGD step:260

ϕt+1 = θt + η∇θL(θt) (4)

and then a momentum step:261

θt+1 = ϕt+1 + µ(ϕt+1 − ϕt) (5)
In practice we rely on the PyTorch implementation of this optimizer.262

B.2 Adding a new model to the set of replicas263

Adding a new frozen model in the PTT scheme results in an acceptance rate close to one with the264

current model, since the updated model will need some time to diverge from the distribution of the265

last frozen model. In Parallel Tempering algorithms, high acceptance rate hinder the performance as266

it leads to a drop in expected squared jumping distance (ESJD) Atchadé et al. [2011]. The drop in267

ESJD means that the chains used to compute the gradient of the EBM are prevented to travel to higher268

7



Figure 4: This panel illustrates the procedure to add a new model to the PTT scheme during training,
as explained in Appendix B.2.

temperatures and mix between clusters, leading to a degradation in the estimation of the gradient. To269

circumvent this issue, we rely on temporary models that act as intermediate points until the updated270

model sufficiently diverges from the frozen weights as illustrated in Fig. 4.271

Let Ht denote the most recent frozen model and Hcurr the updated model. Let α(k, l) represent the272

acceptance rate between models k and l, and α⋆ the target acceptance rate. The adaptive freezing273

process is defined as follows:274

• Temporary Model Creation: When α(Ht,Hcurr) ≤ 2α⋆, a temporary frozen copy Htemp275

is created from Hcurr and stored outside the sampling scheme.276

• Permanent Model Freezing: When α(Ht,Hcurr) ≤ α⋆, a new frozen copy Ht+1 is created277

from Hcurr and stored outside the sampling scheme. Simultaneously, Htemp is introduced278

into the sampling scheme between Ht and Hcurr.279

• Temporary Model Replacement: When α(Htemp,Hcurr) ≤ α⋆, Htemp is replaced by Ht+1280

in the sampling process. The procedure then repeats between Ht+1 and Hcurr.281

B.3 Hyperparameters282

The hyperparameters used for the trainings are given in Table 1.

Table 1: Hyperparameters used for the training of RBMs.

Name Batch size #Chains #Update lr #MCMC steps Increment #Hidden nodes L2

HGD

PCD 1000 1000 100 000 0.01 10 N/A 100 0
PTT - NAG 1000 1000 100 000 0.01 2 5 100 0

MNIST

PCD - Fix lr 1000 1000 100 000 0.1 100 N/A 500 0
PCD - NAG 1000 1000 100 000 0.01 100 N/A 500 0
PTT - NAG 1000 1000 100 000 0.01 2 5 500 0

BKACE

PCD - Fix lr 1000 1000 100 000 0.01 10 N/A 1000 0.001
PTT - NAG 1000 1000 100 000 0.01 2 5 1000 0.001

283

B.4 Additional plots284
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Figure 5: Comparison of the generative accuracy of the PTT-RBM and PCD-RBM on the
HGD dataset. The left column compares the test dataset with the train dataset, the middle one the
PTT-RBM with the train dataset and the right one the PCD-RBM with the train dataset. The top row
shows pixel means, and the bottom row shows 2-body correlations.

Figure 6: Distribution of the generated samples on BKACE. We show both the generated samples
from the RBMs trained with PTT and with PCD. The samples generated by the PCD trained RBM is
clearly not matching well the empirical data distribuion.
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