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Abstract
Inferring Gene Regulatory Networks (GRNs)
from gene expression data is crucial for under-
standing biological processes. While supervised
models are reported to achieve high performance
for this task, they rely on costly ground truth
(GT) labels and risk learning gene-specific bi-
ases—such as class imbalances of GT interac-
tions—rather than true regulatory mechanisms.
To address these issues, we introduce InfoSEM,
an unsupervised generative model that leverages
textual gene embeddings as informative priors,
improving GRN inference without GT labels. In-
foSEM can also integrate GT labels as an addi-
tional prior when available, avoiding biases and
further enhancing performance. Additionally, we
propose a biologically motivated benchmarking
framework that better reflects real-world appli-
cations such as biomarker discovery and reveals
learned biases of existing supervised methods. In-
foSEM outperforms existing models by 38.5%
across four datasets using textual embeddings
prior and further boosts performance by 11.1%
when integrating labeled data as priors.

1. Introduction
Gene Regulatory Networks (GRNs) govern cellular pro-
cesses by capturing regulatory relationships essential for
gene expression, differentiation, and identity (Karlebach &
Shamir, 2008). Represented as directed graphs, they typ-
ically feature transcription factors (TFs) regulating target
genes (TGs), with non-coding RNAs also playing key roles.
GRNs have diverse applications, including mapping molec-
ular interactions (Basso et al., 2005), identifying biomark-
ers (Dehmer et al., 2013), and advancing drug design (Ghosh
& Basu, 2012).
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Single-cell RNA sequencing (scRNA-seq) has revolution-
ized GRN inference by enabling high-resolution profiling
of cell-specific regulatory interactions. However, scRNA-
seq data are noisy, sparse, and high-dimensional (Pratapa
et al., 2020; Wagner et al., 2016; Dai et al., 2024), requir-
ing advanced computational approaches. Methods have
evolved from co-expression frameworks (Chan et al., 2017;
Kim, 2015) to cutting-edge machine learning (ML) and deep
learning (DL) models (Yuan & Bar-Joseph, 2019; Wang
et al., 2024; Anonymous, 2024; Shu et al., 2021), with fur-
ther improvements leveraging complementary but hard to
obatin perturbation experiments, RNA velocity, and chro-
matin accessibility inputs (Chevalley et al., 2022; Atanack-
ovic et al., 2024; Yuan & Duren, 2024).

GRN inference methods can be broadly classified as su-
pervised or unsupervised. Supervised models use ex-
perimentally derived ground truth (GT) labels, such as
ChIP-seq data, where known TF-TG interactions guide
learning. While they achieve high performance (AUPRC
∼0.85) (Chen & Liu, 2022; Wang et al., 2023), their re-
liance on costly GT labels limits applicability. Unsupervised
methods which infer regulatory relationships directly from
gene expression data without using any known interactions,
present an attractive alternative but typically lag in perfor-
mance compared to supervised models (Chen & Liu, 2022;
Wang et al., 2023; Mao et al., 2023). Bridging this gap
requires advancing unsupervised GRN inference methods.

To address this, we introduce InfoSEM, an unsupervised
generative framework trained with variational Bayes that
leverages textual gene embeddings as informative priors.
By integrating prior biological knowledge, InfoSEM sub-
stantially improves GRN inference over existing models.
Moreover, InfoSEM can incorporate GT labels as an ad-
ditional prior when available, rather than using them for
direct supervision, avoiding dataset (gene-specific) biases
and improving performance further.

Beyond model development, reliably evaluating GRN in-
ference methods is equally important. Existing supervised
learning based GRN inference benchmarks typically as-
sume all genes are represented in both the training and test
sets, and only the regulatory links in the test set differ from
those seen during training (unseen interactions between
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seen genes, Section 4). While suitable for predicting inter-
actions among well-characterized genes, this setup does not
reflect many real-world applications such as biomarker dis-
covery and rare cell-type studies (Lotfi Shahreza et al., 2018;
Ahmed et al., 2020), which often involve genes whose inter-
actions are completely absent from the training data (inter-
actions between unseen genes in Section 4), thus requiring
models to generalize beyond the set of genes encountered
during training.

To bridge this gap, we propose a biologically motivated
benchmarking framework evaluating interactions between
unseen genes, better aligning with many real-world applica-
tions. This shift in evaluation perspective also inadvertently
highlights that, in prior benchmarks, supervised models may
have relied on gene-specific biases of the dataset, e.g., class
imbalance in known interactions for each gene. This under-
scores the need for careful evaluation to distinguish between
performance gains driven by genuine biological insights
from scRNA-seq and those influenced by dataset biases.

In summary, our work makes the following contributions:

• We present InfoSEM, an unsupervised generative frame-
work that leverages textual gene embeddings as priors and
can seamlessly integrate GT labels as an additional prior
(when available), avoiding dataset biases and improving
GRN inference.

• We reveal limitations in existing supervised learning based
GRN inference benchmarks, showing that supervised
models may exploit dataset biases, such as class imbal-
ance of each gene, rather than capturing true biological
mechanisms from scRNA-seq.

• We propose a new evaluation framework focused on regu-
latory interactions between unseen genes, better aligning
with real-world applications such as biomarker discovery.

• Finally, we demonstrate that our InfoSEM improves
GRN inference by 38.5% over models without priors and
achieves state-of-the-art performance, even surpassing su-
pervised models. Integrating GT labels as an additional
prior further boosts performance by 11.1% while mitigat-
ing dataset biases.

2. GRN inference problem
Let G = (V, Y ) represent a GRN, where V = {v1, . . . , vP }
denotes the set of P genes (nodes), including transcription
factors (TFs) and target genes (TGs). The adjacency ma-
trix Y ∈ {0, 1}P×P encodes regulatory interactions, where
yik = 1 indicates that TF vi regulates TG vk. We assume
access to scRNA-seq gene expression data and the goal is
to infer the adjacency matrix Y , a setup commonly used in
recent studies (Shu et al., 2021; Anonymous, 2024; Chen &

Liu, 2022; Chen & Zou, 2024; Haury et al., 2012; Moerman
et al., 2019). The scRNA-seq gene expression data, com-
prising P genes and N cells, is represented as X ∈ RP×N ,
where xij ∈ R denotes the expression of gene vi in cell j,
and xi is the i-th row of X , corresponding to the expression
profile of vi across all cells.

2.1. Supervised GRN Inference

When partial information about the adjacency matrix Y is
available from sources like ChIP-seq or databases such as
the Gene Transcription Regulation Database (Yevshin et al.,
2019), GRN inference can be framed as a supervised learn-
ing (SL) task, where the model is trained on labeled data
with known interactions in Y serving as labels. The model
learns to predict the probability of an interaction yik being
true based on observed data by minimizing a cross-entropy
loss, i.e., assuming a Bernoulli likelihood. Specifically, SL
methods aggregate representations of genes i and k, denoted
as si and sk, which could be a function of their expression
profile xi and xk, and predict the probability of interaction
yik using a function fsl on the aggregated representation:

pik = fsl(agg(si, sk)), yik ∼ Bernoulli(pik). (1)

Deep learning methods such as CNNC (Yuan & Bar-
Joseph, 2019), DeepDRIM (Chen et al., 2021), and
GENELink (Chen & Liu, 2022) leverage CNNs, GNNs,
or transformers to aggregate pairwise gene expressions or
their deep representations for interaction prediction (Wang
et al., 2023; Mao et al., 2023; Xu et al., 2023). The SL frame-
work can also flexibly incorporate pre-trained embeddings,
such as BioBERT embeddings in scGREAT (Wang et al.,
2024) or scBERT embeddings combined with GENELink
representations in scTransNet (Kommu et al., 2024).

2.2. Unsupervised GRN Inference

Unsupervised learning (USL) methods infer gene relation-
ships without labeled data, relying solely on gene expression
data and more closely mirroring real-world scenarios (Prat-
apa et al., 2020) where labeled data is unavailable. Ap-
proaches include information theory-based methods (e.g.,
partial Pearson correlation (Kim, 2015), mutual informa-
tion (Margolin et al., 2006), and PIDC (Chan et al., 2017))
and self-regression models, which predict a gene’s expres-
sion based on the expressions of all other genes.

xi = fi(x1, . . . ,xi−1,xi+1, . . . ,xP ) + zi, (2)

where zi is Gaussian noise term. The feature importance
of xk in fi indicates the interaction effect from gene k to i.
TIGRESS (Haury et al., 2012) solves a linear regression for
each fi in Eq.2,

X = ATX + Z, (3)
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Figure 1. (a) Generative model of DeepSEM; (b) Inference model of DeepSEM; (c) Generative model of InfoSEM-B: InfoSEM with
BioBERT gene-embedding priors H on interaction effects; (d) Generative model of InfoSEM-BC: InfoSEM with both BioBERT
gene-embedding priors on interaction effects Ae and known interactions (e.g.-ChIP-seq) priors on logit of the probability of interactions
Al. Solid and dashed lines represent stochastic and deterministic relations respectively.

where all diagonal elements in the weighted adjacency
matrix A ∈ RP×P are 0 and an L1 regularization is ap-
plied on A. A post-hoc threshold, e.g., only keeping the
top 1% interactions, can be further applied on weighted
adjacency matrix A to obtain adjacency matrix Y . GE-
NIE3 (Huynh-Thu et al., 2010) and GRNBoost2 (Moerman
et al., 2019) use random forests and gradientboosting to
enhance model flexibility and feature importance represen-
tation. Equation 3 resembles the linear structural equation
model (SEM) in Bayesian networks (Zheng et al., 2018),
with an added acyclicity constraint on A. However, classi-
cal GRNBoost2 still outperforms even the latest Directed
Acyclic Graphs (DAG) learning algorithms due to feed-
back effects (Chevalley et al., 2022). DeepSEM (Shu et al.,
2021) extends Eq.3 by modeling gene expression in a latent
space without the acyclicity constraint, using β−variational
autoencoder (VAE) to denoise data, and outperforming tra-
ditional USL methods (Shu et al., 2021; Zhu & Slonim,
2024; Pratapa et al., 2020). However, it lacks support for
incorporating external priors, which have shown to provide
accuracy improvements for recent SL methods (Anonymous,
2024; Wang et al., 2024; Kommu et al., 2024).

3. InfoSEM: Informative priors for DeepSEM
Inspired by DeepSEM, we carefully design InfoSEM, a
novel and principled generative model that incorporates
multimodal informative priors: textual gene embeddings
from pre-trained foundation models and known regulatory
interactions (when available). InfoSEM is designed for sce-
narios both with and without labeled interactions, addressing
limitations in the original DeepSEM framework. We begin
by reviewing DeepSEM and then detail our approach to
integrating these priors.

3.1. Introduction to DeepSEM

The linear SEM model in Eq. 3 can be viewed as a genera-
tive model: it generates the dataset X with a GRN structure

specified by a weighted adjacency matrix A by first generat-
ing random noise Z, and then solving X = (I− AT )−1Z
(Yu et al., 2019). Similarly, DeepSEM defines a generative
model, shown in Figure 1 (a), as follows:

A ∼ p(A), Z ∼ p(Z),

Ẑ = (I−AT )−1Z, X ∼ pθ(X|Ẑ),
(4)

where the GRN structure, represented by A, is modeled on
the latent space Ẑ of X , rather than directly on X . Both
X and Ẑ share the same GRN structure. We use X ∼
pθ(X|Z,A) to simplify the second line of the generative
model in Eq.4. All distributions in Eq.4 are fully factorized:

p(A) =
∏
i,k

Laplace(aik; 0, σa),

p(Z) =
∏
i,j

N (zij ; 0, σ
2
z),

pθ(X|Ẑ) =
∏
i,j

N (xij ; fθ(ẑij), gθ(ẑij)),

(5)

where aik represents the interaction effect from gene i
to gene k and zij is the corresponding latent variable of
xij , i.e., the expression of gene i in cell j. A Laplace
prior is given to A to encourage sparsity where the hyper-
parameter σa controls the sparsity level. Similar to the
vanilla VAE (Kingma, 2013), a zero-mean Gaussian prior
with standard deviation σz is applied to the latent variable
Z and both the mean and variance of the Gaussian like-
lihood of X are given by the generation networks fθ(·)
and gθ(·) parametrized by θ. To learn DeepSEM, an
inference network that approximates the posterior of Z,
Z ∼ qϕ(Z|X,A), is introduced as follows:

Ẑ ∼ qϕ(Ẑ|X), Z = (I−AT )Ẑ, (6)

where qϕ(Ẑ|X) is also fully factorized:

qϕ(Ẑ|X) =
∏
i,j

N (ẑij ; fϕ(xij), gϕ(xij)). (7)
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A is learned using its maximum a posteriori (MAP) estimate
Ã, which is equivalent to using a Dirac measure as the
approximated posterior distribution, qÃ(A) = δ(A = Ã),
in the variational Bayes framework. The whole inference
model is shown in Figure 1 (b). Therefore, Ã, θ, ϕ are
optimized by maximizing a lower-bound of the likelihood,
i.e., evidence lower-bound (ELBO):

log p(X)

= log

∫
pθ(X|Z,A)P (A)P (Z)

qϕ(Z|X,A)
qϕ(Z|X,A)dZdA

≥Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã)

−KL
[
qϕ(Z|X, Ã)|p(Z)

]
=L(Ã, θ, ϕ),

(8)

where the first term is the expected reconstruction error
of the gene expression matrix X , log p(Ã) regularizes the
MAP estimate of A, and KL

[
qϕ(Z|X, Ã)|p(Z)

]
is the

Kullback–Leibler divergence that regularizes the approx-
imated posterior of Z and is weighted by β in practice.

In following subsections, we introduce our model InfoSEM
by proposing flexible and informative priors for p(A) to re-
place the weakly informative Laplace prior in Eq.5. Specif-
ically, InfoSEM models the interaction effects, guided by
textual gene embeddings, and the probability of interaction,
informed by known interactions, when available.

3.2. Incorporate gene embeddings from pretrained
language models

Given the frequent unavailability of costly experimental
readouts, such as chromatin accessibility, RNA velocity,
perturbation experiments, and accurate pseudo-time annota-
tions, we propose the use of readily available priors. One
such prior is gene embeddings derived from textual gene
descriptions, which have been successfully utilized in recent
supervised learning frameworks (Wang et al., 2024; Kommu
et al., 2024). Gene-level information can assist GRN infer-
ence: if gene i and gene k are functionally similar, they may
also have similar interaction effects with other genes. We
use the d dimensional embedding hi ∈ R1×d of the textual
description of the gene name from BioBERT (Lee et al.,
2020), a language model pretrained on extensive biomedical
literature, to represent the function of gene i. We design
a prior of interaction effect informed by language model
embeddings as shown in Figure 1 (c):

p(A|H,w) =
∏
i,k

p(aik|hi,hk,w)

=
∏
i,k

Laplace(aik; [hi,hk]w
T , σa),

(9)

where [hi,hk] concatenates the gene embedding of genes
i and k into a 2d-dim row vector and w ∈ R1×2d is the
parameter to learn using a MAP estimate with a prior
p(w) = N (0, σ2

w). The prior mean in Eq.9 can be in-
terpreted as a linear model built on the textual gene em-
beddings for predicting their interactions. Although more
flexible nonlinear models, e.g., MLP, can be applied, lin-
ear models on pre-trained embeddings have already been
successful in several gene-level tasks (Chen & Zou, 2024).

The prior distribution defined in Eq.9 makes similar genes
have similar interaction effects with other genes. Intuitively,
if gene 2 and gene 3 are functionally close, i.e., h2 ≈ h3, the
prior defines a similar high-density region for a12 and a13 as
they have a similar prior mean: [h1,h2]w

T ≈ [h1,h3]w
T .

Moreoever, the prior is asymmetric, p(aik|w) ̸= p(aki|w),
which reflects the asymmetric nature of GRN.

From here on, we refer to this model, which uses BioBERT
embeddings as priors, as InfoSEM-B.

3.3. Incorporate both gene embeddings from pretrained
language models and known gene-gene interactions

Although not always readily available, prior knowledge of
gene-gene interactions can be obtained in specific scenar-
ios, such as those studied in (Yuan & Bar-Joseph, 2019;
Anonymous, 2024; Chen & Liu, 2022), where ChIP-seq
experiments or similar methodologies provide ground truth
interaction data for subsets of Y . When available, these
partially observed interactions offer valuable biological in-
sights that can guide GRN inference. Here, we show how
to incorporate these known interactions in addition to the
textual gene embeddings previously described.

Incorporating known gene-gene interactions comes with a
natural challenge in that the partially observed Y is binary
which does not inform the continuous weighted adjacency
matrix A directly, but it can inform the probability of inter-
actions. Therefore, we propose to decompose the weighted
adjacency matrix A into Ae ∈ RP×P , representing the mag-
nitude of the interaction effect, and Al ∈ RP×P , with each
element alik representing the logit of the probability that
gene i interacts with gene k:

A = Ae ⊙ σ(Al), (10)

where σ(·) is the sigmoid function and ⊙ is element-wise
product (Hadamard product) between them, as shown in
Figure 1 (d). We work on the logit space of probability to
remove the necessary constraints during the model training.
The prior of Ae is informed by the gene embeddings from
pretrained language models in the same way as Eq.9:

pe(A
e|H,w) =

∏
i,k

Laplace(aeik; [hi,hk]w
T , σa). (11)

We define a prior on Al using the partially observed Y as
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following:

pl(A
l|Y ) =

∏
i,k

pl(a
l
ik|yik), (12)

where

pl(a
l
ik|yik) =


N (logit(0.95), σ2

l ), if yik = 1,
N (logit(0.05), σ2

l ), if yik = 0,
U [∞,∞], if unknown,

(13)

Intuitively, Eq.13 sets the mode of the prior probability that
gene i interacts with gene k to 0.95 if we know they interact
and 0.05 if they do not. The hyper-parameter σl controls the
precision of the labels. We truncate the binary label to 0.95
and 0.05 to ensure numerical stability (Skok Gibbs et al.,
2024). If yik is not observed, we use a non-informative
uniform distribution U [∞,∞] as the prior of the logit, rep-
resenting that the mode of the prior probability is 0.5.

We will henceforth refer to this model, which incorporates
BioBERT embeddings as well as known interactions (from
e.g., ChIP-seq) when available as priors, as InfoSEM-BC.

3.4. Learn InfoSEM with variational Bayes

We train InfoSEM-B (Section 3.2) and InfoSEM-BC (Sec-
tion 3.3) using variational inference.

We use MAP estimates to infer all variables related to the
weighted adjacency matrix, i.e., w in both models, A in
InfoSEM-B, and Ae and Al in InfoSEM-BC, given the data
X . We use a full-rank matrix Ã, Ãe ∈ RP×P for A and
Ae, i.e., qÃ(A) = δ(A = Ã) and qÃe(Ae) = δ(Ae = Ãe).
We use a low-rank MAP estimate with rank h ≪ P to infer
Al, motivated by the fact that the maximum rank of the
adjacency matrix of a GRN is the number of transcription
factors, as it represents the interactions from transcription
factors to target genes (Li et al., 2020; Weighill et al., 2021).
Therefore, we use qAl

a,A
l
b
(Al) = δ(Al = Al

aA
l
b), where

Al
a ∈ RP×h, Al

b ∈ Rh×P , and Al
aA

l
b has a rank h.

We derive the ELBO of InfoSEM-B with above model to be

LInfoSEM-B(Ã, θ, ϕ,w)

= Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã|H,w)

+ log pw(w)−KL
[
qϕ(Z|X, Ã)|p(Z)

]
,

(14)

and the ELBO of InfoSEM-BC to be

LInfoSEM-BC(Ã
e, Al

a, A
l
b, θ, ϕ,w)

= Eqϕ(Z|X,Ãe⊙σ(Al
aA

l
b))

[
log pθ(X|Z, Ãe ⊙ σ(Al

aA
l
b))

]
+ log pe(Ã

e|H,w) + log pl(A
l
aA

l
b|Y ) + log pw(w)

−KL
[
qϕ(Z|X, Ãe ⊙ σ(Al

aA
l
b))|p(Z)

]
.

(15)

We provide the detailed derivation in the Appendix A.

TF1 TF2

TG4TG2TG1 TG5

TF3

TG3

TF1 TF2

TG4TG1 TG6

(a) train set (known GRN for training) (b) seen gene test set (c) unseen gene test set

Figure 2. Strategies of train-test splits of the ground-truth network,
containing three transcription factors (TF1-TF3) and six target
genes (TG1-TG6), when it is used during training. Solid and
dashed lines represent positive and negative interactions. (a) Blue
links (→) represent known interactions used in the training set. (b)
Green links (→) represent the test set Dtest

seen, i.e., pairs of genes for
which the individual genes are seen in the train data, but not their
interaction. (c) Red links (→) represent the test set Dtest

unseen, i.e.,
pairs that both the genes and their interactions are unseen in the
train data.

4. A new benchmarking framework for
evaluating GRNs

Evaluation methodologies for GRN inference models play
a critical role in validating their biological relevance and
utility. Existing GRN evaluation benchmarks, while suit-
able for specific tasks, have limitations. We highlight these
shortcomings first and propose a biologically motivated
framework to address them.

4.1. Limitations of existing supervised learning
benchmarks

When using parts of the ground-truth network to train a
GRN inference model, careful train-test split strategies are
essential for reliable evaluation. In most supervised GRN
inference studies (Chen & Liu, 2022; Wang et al., 2023;
Mao et al., 2023; Xu et al., 2023; Wang et al., 2024; Kommu
et al., 2024), datasets are split by gene pairs, where edges
for each TF are randomly divided into training and test
sets. This results in a test set, Dtest

seen, containing unseen
interactions between seen genes. For instance, in Figure
2 (b), the link from TF2 to TG1 is in Dtest

seen, unseen during
training, though both TF2 and TG1 appear in the training set
(Figure 2 (a)). This means that TFs and TGs in test sets are
also in training sets, with only the regulatory interactions
(edges) being distinct between the training and test sets.
Furthermore, the class imbalance for interactions associated
with each TF remains consistent across Dtrain and Dtest

seen.
This approach has the following major limitations, which
are further explored in Section 5:

• Risk of memorization due to class imbalance: The par-
tially observed ground-truth GRN networks are often
heavily imbalanced (Anonymous, 2024; Pratapa et al.,
2020): most TFs have far more negative interactions (no
regulation) than positive ones (Figure 3 (b) right). When
all genes are represented in both training and test sets,

5



InfoSEM: A Deep Generative Model with Informative Priors for Gene Regulatory Network Inference

Methods scRNA-seq Known GRN External prior Framework
One-hot LR ✗ ✓ ✗ SL

Matrix Completion ✗ ✓ ✗ SL
scGREAT ✓ ✓ ✓ SL

GENELink ✓ ✓ ✗ SL
GRNBoost2 ✓ ✗ ✗ USL
DeepSEM ✓ ✗ ✗ USL

InfoSEM-B (Ours) ✓ ✗ ✓ USL
InfoSEM-BC (Ours) ✓ ✓ ✓ USL

Table 1. Properties of a list of benchmarking methods. Existing
methods that make use of known GRN interactions treat them as
prediction targets in supervised learning (SL) framework while our
approaches consider them as a prior for constructing the scRNA-
seq in an unsupervised learning (USL) framework.

models can memorize gene-specific patterns (e.g., gene
IDs) by exploiting their node degrees from the GT net-
work rather than learning true regulatory mechanisms
using the gene expression data. Such memorization un-
dermines the biological validity of the inferred networks.

• Inadequate representation of real-world scenarios: In real-
world cases such as biomarker expansion studies, the
interaction (degree) information of most genes is not rep-
resented in the partially observed GRN (Lotfi Shahreza
et al., 2018). For instance, TF3, TG3, and TG6 in Figure
2 (c) exhibit this scenario. Evaluating models on unseen
genes (genes not present in the training set) reflects their
ability to generalize to new biological contexts. This
scenario is not captured by existing benchmarks.

4.2. Proposed benchmarking framework

In this work, we construct another test set, Dtest
unseen, con-

taining interaction between unseen genes, i.e., all genes in
Dtest

unseen are not in the training set (see Figure 2 (c) for an ex-
ample). The model performance and generalization ability
on Dtest

unseen would reflect the level of biology that the model
has learned from the gene expression data. In practice, we
randomly divide all TFs and TGs with known interactions
into four sets: seen and unseen TFs, e.g., [TF1, TF2] and
[TF3] in Figure 2, and seen and unseen TGs, e.g., [TG1,
TG2, TG4, TG5] and [TG3, TG6], with a ratio 3:1. All
links between unseen TFs and unseen TGs are in Dtest

unseen
(e.g., TF3 → TG3). We then randomly divide all interac-
tions between seen TFs and seen TGs into training Dtrain

and Dtest
seen with a ratio 3:1 using split strategies in existing

works. Essentially, we leave some TFs and TGs out when
constructing the training set whose interactions are then
considered as the unseen gene test sets Dtest

unseen.

5. Experiments
We begin by experimentally validating the limitations of ex-
isting GRN inference benchmarks mentioned in the previous
subsection to motivate the need for our new benchmarking

setup followed by comparison of our proposed InfoSEM
model with state-of-the-art supervised and unsupervised
models. For reproducibility, all experimental details are
available in Appendix D.

For all experiments, we use scRNA-seq datasets of four cell
lines from the popular BEELINE suite (Pratapa et al., 2020),
including human embryonic stem cells (hESC) (Yuan & Bar-
Joseph, 2019), human mature hepatocytes (hHEP) (Camp
et al., 2017), mouse dendritic cells (mDC) (Shalek et al.,
2014), and mouse embryonic stem cells (mESC) (Hayashi
et al., 2018). We consider two available ground-truth net-
works, cell-type specific ChIP-seq, collected from databases
such as ENCODE and ChIP-Atlas, on the same or similar
cell type, and non-cell-type specific transcriptional regula-
tory network from BEELINE (Pratapa et al., 2020).

We compare nine methods, including: 1. a random baseline;
2. two trivial methods that do not use any information from
scRNA-seq: one-hot LR (a logistic regression that takes the
concatenation of the one-hot embedding of two genes to
predict the ground-truth interactions) and matrix completion
(MatComp) that imputes the partially observed adjacency
matrix Y using low-rank decomposition (Troyanskaya et al.,
2001); 3. two recent supervised methods with state-of-the-
art reported performances: scGREAT (Wang et al., 2024)
and GENELink (Chen & Liu, 2022); 4. two state-of-the-art
unsupervised methods: GRNBoost2 (Moerman et al., 2019)
and DeepSEM (Shu et al., 2021); 5. our proposed InfoSEM-
B and InfoSEM-BC models. Inputs and training objectives
for all models are summarized in Table 1.

We consider two types of evaluation metrics: accuracy-
based metric: AUPRC (Yang et al., 2022), and rank-based
metric (Pratapa et al., 2020): number of positive interactions
among the top 1% (Hit@1%) predicted interactions. We
repeat the train-test splits 10 times with different random
seeds to estimate the error bar for each method.

5.1. Exploring the biases with existing benchmarks

Under the existing benchmarks involving unseen interac-
tions between seen genes, we observe that the performance
of existing supervised and unsupervised methods aligns with
prior studies (Wang et al., 2024; Chen & Liu, 2022; Pratapa
et al., 2020). However, no previous work has compared
these methods to simple supervised baselines, one-hot LR,
which uses only one-hot embeddings of gene IDs as features,
and a matrix completion baseline, which simply imputes
the partially observed Y without any additional information.
None of these use any information from scRNA-seq data.
Surprisingly, both one-hot LR and matrix completion per-
form similarly to state-of-the-art supervised models such as
scGREAT and GENELink across all cell lines (Figure 3 (a)
first column for hESC and hHEP cell lines, full results in
Appendix F.1 for all cell lines show similar trend).
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(a) Performance of existing methods (b) One-hot LR coefficients (c) One-hot LR and scGREAT predictions

Figure 3. (a) AUPRC with corresponding standard error of the mean of existing GRN inference models with cell-type specific target on
both unseen interactions between seen genes (first column) and interactions between unseen genes (second column) test sets. One-hot
LR and matrix completion without gene expression data achieve similar performance as several latest supervised methods (scGREAT,
GENELink) using gene expression. (b) Relations between class imbalance level and one-hot LR coefficient of each TF. The x-axis shows
the coefficient of one-hot embedding in LR. The y-axis represents the imbalance level (proportion of positive interactions) of each TF with
histogram shown on the right. (c) Histograms and kernel density estimations of predicted probabilities from one-hot LR and scGREAT on
interactions in Dtest

seen with two TFs: TFAP2A (left) and SNAI2 (right), with training class imbalance level 0.89 and 0.06 respectively.

This performance is driven by one-hot LR’s ability to exploit
the node degree from the partially known GRN. Specifically,
the one-hot embeddings enable the model to memorize gene-
specific biases, such as the probability of a transcription
factor (TF) regulating a target gene (TG). To validate this,
we analyzed the correlation between the class imbalance
level (the ratio of positive to negative interactions) of each
TF and the corresponding one-hot coefficient in the one-hot
LR. Figure 3 (b) shows a strong rank correlation, supporting
that one-hot LR predicts interactions based on dataset bi-
ases to match the class imbalance level of the corresponding
TF, rather than biological relationships. Similarly, Mat-
Comp works well by learning degree biases in the partially
observed network of genes with low-rank latent features,
which generalizes effectively to unseen interactions between
those seen genes in the partially observed network.

In imbalanced datasets, where certain genes are predomi-
nantly associated with positive or negative interactions, su-
pervised models can achieve high performance by learning
these biases, rather than meaningful biological relationships
from gene expression data. The cross-entropy loss allows
supervised models (Eq.1) to exploit this class imbalance
by learning, for example, how likely a TF is to regulate
TGs, or how likely a TG is to be regulated, without rely-
ing on gene expression data. This shortcut allows models
to predict unseen interactions between seen genes based
solely on these biases. For illustration, both one-hot LR
and scGREAT predict unseen interactions of a seen TF (e.g.,
TFAP2A in Figure 3 (c)) positive if the TF has more positive
interactions in the training set and vice versa (e.g., SNAI2).

To systematically confirm further whether sophisticated su-
pervised models, such as scGREAT and GENELink, also
rely on dataset biases, we evaluated them on our new bench-
mark designed to predict interactions between unseen genes

using scRNA-seq data. In this scenario, we observe a signif-
icant performance drop for supervised GRN inference meth-
ods, averaging 42% for cell-specific ChIP-seq and 79% for
non-cell-specific ChIP-seq (see Figure 3 (a) second column,
Table 2, and Appendix Table 6), even underperforming the
random baseline (dashed green line in Figure 3 (a)). In con-
trast, unsupervised methods, especially DeepSEM, outper-
formed supervised methods on three datasets (hESC, hHEP,
mDC) for cell-specific ChIP-seq without using known in-
teractions. This further confirms the dependence of super-
vised methods on dataset-specific biases. Using simple
techniques such as downsampling to address class imbal-
ance in supervised methods reduces their accuracy inflation
on existing benchmarks but does not improve their accu-
racy on unseen genes scenario (see Appendix E for details).
This trend holds across both cell-type-specific and non-cell-
type-specific benchmarks, and for metrics such as Hit@1%
(additional results in the Appendix F).

5.2. Utility of informative priors for InfoSEM

Next, we study the performance of our proposed InfoSEM
models on our introduced unseen genes benchmark. Ta-
ble 2 and Appendix Table 6 demonstrate that InfoSEM-BC
and InfoSEM-B emerge as the best-performing models on
all datasets that we tested for both cell-specific and non-
cell-specific ChIP-seq. InfoSEM-B, which does not use
known interactions, always improves upon DeepSEM on all
datasets that we tested for both cell-specific and non-cell-
specific cases by 25% and 52% on average, respectively.
InfoSEM-B, without using any known interaction labels,
achieves top-2 performance for both AUPRC and Hit@1%
metrics on 3 out of 4 datasets, even when compared to SL
baselines that incorporate known interactions (see Table 2
and Appendix Tables 6 and 7).
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hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.210 (0.018) 0.205 (0.041) 0.395 (0.016) 0.345 (0.056) 0.247 (0.019) 0.225 (0.104) 0.329 (0.026) 0.397 (0.036)
MatComp 0.219 (0.018) 0.191 (0.048) 0.395 (0.016) 0.356 (0.034) 0.240 (0.008) 0.225 (0.043) 0.342 (0.023) 0.345 (0.038)
scGREAT 0.224 (0.029) 0.222 (0.046) 0.416 (0.020) 0.433 (0.047) 0.245 (0.017) 0.183 (0.035) 0.393 (0.027) 0.390 (0.066)

GENELink 0.201 (0.020) 0.144 (0.050) 0.415 (0.016) 0.428 (0.060) 0.249 (0.013) 0.207 (0.054) 0.381 (0.030) 0.454 (0.094)
SCENIC 0.210 (0.020) 0.200 (0.037) 0.465 (0.020) 0.568 (0.047) 0.227 (0.014) 0.219 (0.062) 0.346 (0.024) 0.393 (0.045)

GRNBoost2 0.218 (0.018) 0.162 (0.037) 0.440 (0.014) 0.553 (0.058) 0.226 (0.009) 0.167 (0.053) 0.356 (0.023) 0.348 (0.049)
DeepSEM 0.265 (0.032) 0.419 (0.059) 0.435 (0.019) 0.517 (0.043) 0.277 (0.014) 0.292 (0.095) 0.343 (0.024) 0.369 (0.048)

InfoSEM-B (Ours) 0.331 (0.055) 0.547 (0.091) 0.498 (0.020) 0.533 (0.048) 0.298 (0.028) 0.472 (0.076) 0.388 (0.023) 0.522 (0.047)
InfoSEM-BC (Ours) 0.331 (0.056) 0.585 (0.094) 0.499 (0.020) 0.550 (0.053) 0.322 (0.032) 0.498 (0.069) 0.408 (0.020) 0.575 (0.045)

Random 0.222 0.215 0.390 0.397 0.232 0.231 0.349 0.351

Table 2. The GRN inference performance, measured by AUPRC and Hit@1%, with corresponding standard error of the mean (in
parentheses) for each method evaluated on interactions between unseen genes with cell-type specific ChIP-seq targets. The top-2 best
models are bold.
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Figure 4. Results of using different prior gene embeddings in
InfoSEM-B with cell-type specific ChIP-seq targets. InfoSEM-B
with informative gene embedding, e.g., from BioBERT, GenePT,
and gene ontology (GO), are better than models with noninforma-
tive embeddings, e.g., one-hot and random. However, InfoSEM-B
with gene embeddings from scBERT does not show significant
improvement.

InfoSEM-BC which incorporates information from known
interactions achieves the best performance on all datasets
with respect to AUPRC and on 3 out of 4 datasets with re-
spect to Hit@1% for both cell-specific and non-cell-specific
ChIP-seq target on unseen genes test set with average im-
provements over DeepSEM by 31% and 66% (see Table 2
and Appendix Tables 6 and 7). By integrating prior knowl-
edge from known interactions, InfoSEM-BC reconstructs
scRNA-seq data effectively, enabling strong performance
on unseen genes without the pitfalls of class imbalance
exploited by supervised methods relying on their discrimi-

native loss (Eq.1).

Run-time analysis: We include comparison of run times
between InfoSEM and other baselines on different datasets
with various numbers of cells and genes in Appendix B.
Our results demonstrate that InfoSEM is faster than popular
supervised learning baselines and only slightly slower than
DeepSEM, while consistently outperforming them in terms
of performance in unseen genes benchmark.

Sensitivity analysis: Since InfoSEM-B uses embeddings
from BioBERT, it is natural to ask: how useful are these
embeddings in improving GRN inference? To explore this,
we investigate the impact of alternative gene embeddings,
including textual gene embeddings from another language
model GenePT (Chen & Zou, 2024), gene embeddings de-
rived from gene ontology (GO) (Ashburner et al., 2000),
and gene embeddings from a single cell foundation model
scBERT (Yang et al., 2022). Figure 4 shows that InfoSEM-
B models replace BioBERT embeddings with other gene
embeddings, such as InfoSEM-B (GenePT) and InfoSEM-B
(GO), still resulting in improved GRN inference compared
to DeepSEM. As expected, using non-informative embed-
dings, such as one-hot or random embeddings, in InfoSEM-
B does not enhance performance. Interestingly, we observe
using embeddings from scBERT does not improve perfor-
mance. We hypothesize that this may result from the binning
of scRNA-seq data in scBERT, which could lead to a loss
of important information. Additionally, embeddings from
scBERT, derived from binned scRNA-seq data, are similar
to those used in InfoSEM already and may not provide com-
plementary insights for the adjacency matrix compared to
embeddings like gene ontology or BioBERT, which are de-
rived independent of scRNA-seq data. We believe, though,
that exploring other scRNA-seq foundation model derived
gene embeddings presents an interesting avenue for future
exploration.

Additionally, we evaluate the sensitivity of GRN inference
accuracy with respect to the number of cells in the train-
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ing data, as detailed in Appendix F.3. We find that both
InfoSEM-B and InfoSEM-BC, trained on just 20% of cells,
achieve performance comparable to DeepSEM trained on
all cells for the hESC cell line.

6. Conclusion and discussion
In this work, we study the problem of Gene Regulatory
Network (GRN) inference using scRNA-seq data. Existing
benchmarks focus on interactions between seen genes, i.e.,
all genes appear in both training and test sets. While suitable
for predicting novel interactions within well-characterized
gene sets, they fail to address real-world applications such
as biomarker expansion (Lotfi Shahreza et al., 2018), where
models must generalize to interactions between unseen
genes with no prior knowledge about their interactions. Ad-
ditionally, we show that the high performance of supervised
methods even on existing benchmarks may be influenced
by dataset (gene-specific biases, such as class imbalance,
rather than their ability to learn true biological mechanisms.

To address this gap, we propose a new, biologically mo-
tivated benchmarking framework that evaluates a model’s
ability to infer interactions between unseen genes. We also
introduce InfoSEM, an unsupervised generative model that
integrates biologically meaningful priors by leveraging tex-
tual gene embeddings from BioBERT. InfoSEM achieves
38.5% on average improvement over existing state-of-the-
art models without informative priors for GRN inference.
Furthermore, we show that InfoSEM can incorporate known
interaction labels when available, further enhancing perfor-
mance by 11.1% on average across datasets while avoiding
the pitfalls of training with class imbalance.

We believe InfoSEM’s ability to generalize to unseen gene
interactions, even with no or minimal labeled data, makes it
a powerful tool for real-world applications, such as target
discovery/prioritization. It can also serve as a key compo-
nent in active learning frameworks, guiding the acquisition
of new interactions from wet-lab experiments and expanding
our understanding of GRNs in practical scenarios.

Impact Statement
Understanding gene regulatory networks (GRNs) is funda-
mental to deciphering cellular processes, with broad appli-
cations in disease research, drug discovery, and biomarker
identification. Our work contributes to this field by intro-
ducing a more rigorous evaluation framework for GRN
inference, emphasizing generalization to previously unseen
genes—a critical challenge in real-world biological studies.

From an ethical standpoint, advances in GRN inference
carry both opportunities and risks. Improved inference meth-
ods can accelerate biomedical research, leading to more

precise diagnostics and targeted therapies. However, re-
liance on biases in existing datasets and benchmarks datasets
may introduce artifacts that misrepresent true regulatory in-
teractions, potentially leading to incorrect conclusions in
downstream analyses. Transparency in model evaluation
and careful benchmarking, as emphasized in our work, are
essential to mitigate such risks.

Additionally, as GRN models improve in predictive accu-
racy, their impact on biomedical research and healthcare
decisions will grow. It is crucial to ensure that these models
are evaluated rigorously and deployed responsibly, avoid-
ing over-interpretation of predictions and ensuring their
applicability across diverse biological contexts. Ethical con-
siderations should guide their use, promoting transparency,
reproducibility, and equitable advancements in genomics
and medicine.
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A. Derivation of ELBO for InfoSEM-B and InfoSEM-BC.
In this section, we derive the evidence lower bound (ELBO) of InfoSEM with two proposed priors.

A.1. InfoSEM-B

p(X|H)

=

∫
pθ(X|Z,A)p(A|H,w)pw(w)p(Z)dZdA

= log

∫
pθ(X|Z,A)p(A|H,w)pw(w)p(Z)

qϕ(Z|X,A)
qϕ(Z|X,A)dZdA

= log

∫
pθ(X|Z, Ã)p(Ã|H,w)pw(w)p(Z)

qϕ(Z|X, Ã)
qϕ(Z|X, Ã)dZ

≥Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã|H,w) + log pw(w)−KL

[
qϕ(Z|X, Ã)|p(Z)

]
=LInfoSEM-B(Ã, θ, ϕ,w).

(16)

A.2. InfoSEM-BC

p(X|H,Y )

=

∫
pθ(X|Z,Ae ⊙ σ(Al))pe(A

e|H,w)pl(A
l|Y )pw(w)p(Z)dZdAedAl
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pθ(X|Z,Ae ⊙ σ(Al))pe(A

e|H,w)pl(A
l|Y )pw(w)p(Z)
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(17)

B. Run-time analysis

(#cell, #gene) scGREAT GENELink SCENIC GRNBoost2 DeepSEM InfoSEM-B InfoSEM-BC
(454, 844) 236.30 177.25 80.81 9.27 91.88 118.00 125.91
(758, 844) 239.96 172.72 97.74 10.81 112.55 134.11 164.16

(758, 1291) 357.52 258.91 142.51 13.74 116.01 206.86 211.37

Table 3. Run-time analysis

We include comparison of run times (in seconds) for different configurations of the datasets in terms of number of cells
and genes, (#cell, #gene), for InfoSEM and other baselines in Table 3. Our results demonstrate that InfoSEM is faster than
popular supervised learning baselines and only slightly slower than DeepSEM, while consistently outperforming them in
terms of performance in unseen genes benchmark.
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C. Details of each dataset
C.1. Cell-type specific datasets

hESC hHEP mDC mESC
number of genes 844 908 1216 1353
number of cells 758 425 383 421

number of positive links 4404 9684 1129 40083
number of negative links 23448 17556 24407 78981

averaged node degree of TFs 133.5 322.8 53.8 455.5

C.2. Non-cell-type specific datasets

hESC hHEP mDC mESC
number of genes 844 908 1216 1353
number of cells 758 425 383 421

number of positive links 3318 4033 3694 7705
number of negative links 229626 279263 300306 678266

averaged node degree of TFs 12.0 12.9 14.8 15.2

D. Reproducibility: details and hyperparameters of each model
In general, we cross-validate hyper-parameters using the partially known GRN on the training set to ensure a fair comparison
with existing methods that use the same strategy. Code and datasets will be made available on acceptance.

One-hot LR: A logistic regression implemented by scikit-learn (Pedregosa et al., 2011) with the L2 regularization
coefficient cross-validated on the training set.

MatComp: A matrix completion algorithm implemented by fancyimpute (Rubinsteyn & Feldman) with rank 128.

scGREAT: Use hyperparameters and implementation provided by Wang et al. (2024).

GENELink: Use hyperparameters and implementation provided by Chen & Liu (2022).

DeepSEM: Use hyperparameters and implementation provided by Yuan & Bar-Joseph (2019).

InfoSEM-B and InfoSEM-BC: We set hyper-parameters, e.g., neural network architectures, learning rates schedule,
prior scale of latent variable Z, to be the same as DeepSEM (Yuan & Bar-Joseph, 2019). For unique hyper-parameters of
InfoSEM-B and InfoSEM-BC, we cross-validate them on the training set using known GRN (shown as below).

Ground-truth Methods hESC hHEP mDC mESC

cell-type specific
ChIP-seq

σw (InfoSEM-B, InfoSEM-BC) 0.1 10 10 1
σl (InfoSEM-BC) 0.1

√
0.1

√
0.1 0.1

h (InfoSEM-BC) 128 128 128 128

non-cell-type specific
ChIP-seq

σw (InfoSEM-B, InfoSEM-BC) 100 100 100 100
σl (InfoSEM-BC)

√
0.1 0.1

√
0.1

√
0.1

h (InfoSEM-BC) 128 128 128 128
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E. Performance of supervised methods with downsampling
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Figure 5. AUPRC with corresponding standard error of the mean of GRN inference models with cell-type specific target on unseen
interactions between seen genes test sets. Although we apply downsampling to remove the class imbalance level associated with each TF,
supervised methods still show an inflated accuracy on most of cell lines by using the class imbalance level associated with each TG.

If the class imbalance level associated with each gene causes the inflated accuracy of supervised method, one straightforward
solution is to remove the class imbalance with downsampling. Specifically, we randomly select the same number of negative
edges as the number of positive edges for each TF when training a supervised model, and the performance is shown in Fig 5.

We observe that supervised methods still have an inflated accuracy by comparing their performance on unseen interactions
between seen genes and interactions between unseen genes. One reason is that edges associated with TGs can still be
imbalanced even the edges associated with TFs are balanced, and supervised learning methods can still make use of such
information easily.

Moreover, removing the class imbalance of TFs does not improve the performance on interactions between unseen genes
and unsupervised methods, especially DeepSEM, are still outperform supervised methods on unseen genes.
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F. Additional experimental results
F.1. Performance of all methods on unseen interaction between seen genes test set.

hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.600 (0.028) 0.932 (0.039) 0.835 (0.005) 1.000 (0.003) 0.176 (0.006) 0.250 (0.024) 0.844 (0.009) 0.991 (0.004)
MatComp 0.638 (0.026) 0.913 (0.037) 0.840 (0.006) 1.000 (0.006) 0.351 (0.013) 0.419 (0.034) 0.860 (0.007) 0.974 (0.008)
scGREAT 0.642 (0.029) 0.966 (0.039) 0.847 (0.006) 1.000 (0.000) 0.249 (0.011) 0.325 (0.047) 0.858 (0.009) 1.000 (0.001)

GENELink 0.565 (0.029) 0.964 (0.043) 0.782 (0.007) 0.942 (0.015) 0.178 (0.006) 0.162 (0.026) 0.690 (0.016) 0.716 (0.101)
SCENIC 0.177 (0.008) 0.176 (0.031) 0.396 (0.010) 0.449 (0.031) 0.119 (0.008) 0.171 (0.044) 0.328 (0.012) 0.380 (0.026)

GRNBoost2 0.173 (0.006) 0.230 (0.017) 0.384 (0.007) 0.423 (0.015) 0.115 (0.007) 0.141 (0.036) 0.352 (0.011) 0.342 (0.024)
DeepSEM 0.216 (0.010) 0.318 (0.016) 0.424 (0.011) 0.509 (0.028) 0.118 (0.006) 0.165 (0.033) 0.340 (0.013) 0.431 (0.023)

InfoSEM-B 0.374 (0.027) 0.752 (0.067) 0.467 (0.011) 0.538 (0.020) 0.130 (0.010) 0.174 (0.048) 0.401 (0.012) 0.562 (0.016)
InfoSEM-BC 0.553 (0.028) 0.913 (0.053) 0.702 (0.007) 0.865 (0.023) 0.285 (0.016) 0.555 (0.063) 0.672 (0.010) 0.918 (0.026)

Random 0.168 0.171 0.383 0.384 0.110 0.111 0.346 0.344

Table 4. The GRN inference performance for each method evaluated on unseen interactions between seen genes with cell-type specific
ChIP-seq targets. The top-2 best models are bold. We observe that all supervised learning methods, including one-hot LR, achieve much
better performance than unsupervised methods.

hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.159 (0.001) 0.257 (0.013) 0.186 (0.004) 0.306 (0.008) 0.126 (0.004) 0.228 (0.007) 0.127 (0.004) 0.205 (0.006)
MatComp 0.207 (0.017) 0.334 (0.020) 0.247 (0.012) 0.375 (0.016) 0.396 (0.009) 0.563 (0.015) 0.260 (0.009) 0.375 (0.013)
scGREAT 0.173 (0.002) 0.288 (0.014) 0.244 (0.006) 0.366 (0.004) 0.183 (0.012) 0.314 (0.004) 0.139 (0.004) 0.235 (0.004)

GENELink 0.059 (0.011) 0.101 (0.022) 0.088 (0.011) 0.157 (0.022) 0.103 (0.007) 0.141 (0.019) 0.025 (0.005) 0.025 (0.013)
SCENIC 0.019 (0.001) 0.033 (0.004) 0.019 (0.001) 0.036 (0.003) 0.020 (0.001) 0.036 (0.004) 0.021 (0.001) 0.044 (0.003)

GRNBoost2 0.019 (0.001) 0.031 (0.004) 0.018 (0.001) 0.031 (0.003) 0.020 (0.001) 0.031 (0.005) 0.018 (0.001) 0.042 (0.003)
DeepSEM 0.023 (0.001) 0.034 (0.004) 0.021 (0.001) 0.035 (0.004) 0.021 (0.001) 0.033 (0.005) 0.021 (0.001) 0.044 (0.002)

InfoSEM-B 0.025 (0.001) 0.038 (0.005) 0.021 (0.001) 0.037 (0.002) 0.022 (0.001) 0.038 (0.003) 0.023 (0.000) 0.042 (0.002)
InfoSEM-BC 0.119 (0.008) 0.296 (0.018) 0.171 (0.008) 0.331 (0.011) 0.325 (0.010) 0.516 (0.016) 0.159 (0.006) 0.309 (0.007)

Random 0.019 0.017 0.018 0.017 0.018 0.018 0.014 0.014

Table 5. The GRN inference performance for each method evaluated on unseen interactions between seen genes with non-cell-type
specific ChIP-seq targets. The top-2 best models are bold. We observe that InfoSEM-BC achieves top-2 performance on three dataset.

We show the performance of all methods evaluated under current evaluation setup, i.e., unseen interactions between seen
genes, in Table 4 and Table 5 for cell-type specific and non-cell-type specific GRNs. We observe that trivial baselines
(one-hot LR and matrix completion) without using any gene expression data always achieve top-2 performance.

F.2. Performance of methods on interaction between unseen genes test set for non-cell-type specific ChIP-seq target.

We show the performance of all methods evaluated on interactions between unseen genes for the non-cell-type specific
GRNs in Table 6, where the proposed InfoSEM is among top-2 best models in all cell lines. We observe that both AUPRC
and Hit@1% are very small when benchmarked against non-cell-type specific GRNs unlike cell specific GRNs in Table 2.
One reason is that negative links in non-cell-type specific GRNs contain both unknown positive links and negative links
due to the data collection process (Pratapa et al., 2020), therefore, negative links in non-cell-type specific GRNs are much
noisier than cell-type specific GRNs. However, positive links in non-cell-type specific GRNs do not contain such noise. We
compute the recall to evaluate the performance of our methods on positive links only (Table 7) where we observe a much
higher accuracy compared with Table 6 when both positive links and negative links are evaluated.

F.3. Sensitivity analysis w.r.t. the number of cells

In Figure 6, we illustrate how InfoSEM with different priors and DeepSEM perform on the unseen gene test sets when only
a fraction of cells in the hESC dataset are used to train the model. We observe that InfoSEM-BC is only a slightly better
than InfoSEM-B. Moreover, InfoSEM-B and InfoSEM-BC trained only on 20% cells can achieve a similar performance as
DeepSEM trained on all cells.
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hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.025 (0.002) 0.029 (0.008) 0.022 (0.002) 0.006 (0.006) 0.022 (0.002) 0.012 (0.004) 0.014 (0.001) 0.008 (0.004)
MatComp 0.024 (0.001) 0.017 (0.004) 0.021 (0.001) 0.017 (0.003) 0.023 (0.001) 0.031 (0.005) 0.014 (0.000) 0.014 (0.003)
scGREAT 0.025 (0.003) 0.031 (0.011) 0.029 (0.003) 0.027 (0.010) 0.028 (0.002) 0.024 (0.006) 0.024 (0.001) 0.037 (0.006)

GENELink 0.023 (0.001) 0.006 (0.006) 0.020 (0.002) 0.014 (0.007) 0.026 (0.002) 0.028 (0.013) 0.015 (0.001) 0.012 (0.003)
SCENIC 0.020 (0.001) 0.030 (0.007) 0.025 (0.002) 0.044 (0.008) 0.021 (0.001) 0.016 (0.003) 0.022 (0.003) 0.042 (0.009)

GRNBoost2 0.022 (0.001) 0.018 (0.006) 0.022 (0.001) 0.027 (0.009) 0.024 (0.001) 0.020 (0.004) 0.022 (0.003) 0.041 (0.009)
DeepSEM 0.028 (0.002) 0.032 (0.005) 0.026 (0.003) 0.028 (0.010) 0.026 (0.001) 0.028 (0.004) 0.022 (0.002) 0.028 (0.007)

InfoSEM-B (Ours) 0.036 (0.004) 0.038 (0.007) 0.029 (0.003) 0.049 (0.009) 0.050 (0.004) 0.077 (0.014) 0.023 (0.003) 0.032 (0.008)
InfoSEM-BC (Ours) 0.038 (0.004) 0.042 (0.006) 0.030 (0.003) 0.054 (0.007) 0.051 (0.004) 0.082 (0.014) 0.023 (0.002) 0.045 (0.007)

Random 0.024 0.024 0.021 0.021 0.024 0.022 0.014 0.014

Table 6. The GRN inference performance for each method evaluated on interactions between unseen genes with non-cell-type specific
ChIP-seq targets. The top-2 best models are bold. We observe that InfoSEM-BC achieves top-2 performance on all dataset and
InfoSEM-B achieves top-2 on three datasets.

hESC hHEP mDC mESC
DeepSEM 0.10 (0.04) 0.11 (0.04) 0.60 (0.03) 0.03 (0.02)

InfoSEM-B (Ours) 0.19 (0.09) 0.34 (0.14) 0.64 (0.10) 0.19 (0.12)
InfoSEM-BC (Ours) 0.22 (0.09) 0.38 (0.14) 0.64 (0.10) 0.21 (0.11)

Table 7. Averaged recall of each method with non-cell-type specific target GRNs using a threshold 0.5.
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Figure 6. AUPRC of models on the unseen genes test set with different numbers of cells in the training data.
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