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ABSTRACT

In this work, we tackle two widespread challenges in real applications for time-
series forecasting that have been largely understudied: distribution shifts and miss-
ing data. We propose SpectraNet, a novel multivariate time-series forecast-
ing model that dynamically infers a latent space spectral decomposition to cap-
ture current temporal dynamics and correlations on the recent observed history.
A Convolution Neural Network maps the learned representation by sequentially
mixing its components and refining the output. Our proposed approach can simul-
taneously produce forecasts and interpolate past observations and can, therefore,
greatly simplify production systems by unifying imputation and forecasting tasks
into a single model. SpectraNetachieves SoTA performance simultaneously
on both tasks on five benchmark datasets, compared to forecasting and imputa-
tion models, with up to 92% fewer parameters and comparable training times.
On settings with up to 80% missing data, SpectraNethas average performance
improvements of almost 50% over the second-best alternative.

1 INTRODUCTION

Multivariate time-series forecasting is an essential task in a wide range of domains. Forecasts are
a key input to optimize the production and distribution of goods (Böse et al., 2017), predict health-
care patient outcomes (Chen et al., 2015), plan electricity production (Olivares et al., 2022), build
financial portfolios (Emerson et al., 2019), among other examples. Due to its high potential benefits,
researchers have dedicated many efforts to improving the capabilities of forecasting models, with
breakthroughs in model architectures and performance (Benidis et al., 2022).

The main focus of research in multivariate forecasting has been on accuracy and scalability, to
which the present paper contributes. In addition, we identify two widespread challenges for real
applications which have been largely understudied: distribution shifts and missing data.

We refer to distribution shifts as changes in the time-series behavior. In particular, we focus on
discrepancies in distribution between the train and test data, which can considerably degrade the
accuracy (Kuznetsov & Mohri, 2014; Du et al., 2021; Xu et al., 2022; Ivanovic et al., 2022). This
has become an increasing problem in recent years with the COVID-19 pandemic, which disrupted
all aspects of human activities. Missing values is a generalized problem. Some common causes
include faulty sensors, the impossibility of gathering data, and misplacement of information. As we
demonstrate in our experiments, these challenges hinder the performance of current state-of-the-art
(SoTA), limiting their use in applications where these problems are predominant.

In this work, we propose SpectraNet, a novel multivariate forecasting model that achieves SoTA
performance in benchmark datasets and is also intrinsically robust to distribution shifts and extreme
cases of missing data. SpectraNet achieves its high accuracy and robustness by dynamically
inferring a latent vector projected on a temporal basis, a process we name latent space spectral
decomposition (LSSD). A series of convolution layers then synthesize both the reference window,
which is used to infer the latent vectors and the forecast window.

To the best of our knowledge, SpectraNet is also the first solution that can simultaneously fore-
cast the future values of a multivariate time series and accurately impute the past missing data.
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Figure 1: SpectraNet architecture. The Latent Space Spectral Decomposition (LSSD) encodes
shared temporal dynamics of the target window into Fourier waves and polynomial functions. Latent
vector z is inferred with Gradient Descent minimizing reconstruction error on the reference window.
The Convolution Network (CNN) generates the time-series window by sequentially mixing the com-
ponents of the embedding and refining the output.

In practice, imputation models are first used to fill the missing information for all downstream tasks,
including forecasting. SpectraNet can greatly simplify production systems by unifying imputa-
tion and forecasting tasks into a single model.

The main contributions are:

• Latent Vector Inference: methodology to dynamically capture current dynamics of the
target time-series into a latent space, replacing parametric encoders.

• Latent Space Spectral Decomposition: representation of a multivariate time-series win-
dow on a shared latent space with temporal dynamics.

• SpectraNet: novel multivariate forecasting model that simultaneously imputes missing
data and forecasts future values, with SoTA performance on several benchmark datasets
and demonstrated robustness to distribution shifts and missing values. We will make our
code publicly available upon acceptance.

The remainder of this paper is structured as follows. Section 2 introduces notation and the problem
definition, Section 3 presents our method, Section 4 describes and presents our empirical findings.
Finally, Section 5 concludes the paper. The literature review is included in A.1.

2 NOTATION AND PROBLEM DEFINITION

We introduce a new notation that we believe is lighter than the standard notation while being intu-
itive and formally correct. Let Y ∈ RM×T be a multivariate time-series with M features and T
timestamps. Let Ya:b ∈ RM×(b−a) be the observed values for the interval [a, b), that is, Y0:t is
the set of t observations of Y from timestamp 0 to timestamp t − 1 while Yt:t+H is the set of H
observations of Y from timestamp t to timestamp t+H − 1. Let ym,t ∈ R be the value of feature
m at timestamp t.

In this work we consider the multivariate point forecasting task, which consists of predicting the
future values of a multivariate time-series sequence based on past observations. The main task of
a model FΘ with parameters Θ at a timestamp t, is to produce forecasts for the future H values,
denoted by Ŷt:t+H , based on the previous history Y0:t.

Ŷt:t+H = FΘ(Y0:t) (1)
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For the imputation task, to impute a missing value ym,t, models are not constrained to only use past
observations. Moreover, they are evaluated on how well they approximate only the missing values.
We evaluate the performance with two common metrics used in the literature, mean squared error
(MSE) and mean absolute error (MAE), given by equation 2 (Hyndman & Athanasopoulos, 2018).

MSE =
1

MH

H−1∑
h=0

M∑
m=1

(ym,t+h − ŷm,t+h)
2

MAE =
1

MH

H−1∑
h=0

M∑
m=1

|ym,t+h− ŷm,t+h|. (2)

3 SPECTRANET

We start the description of our approach with a general outline of the model and explain each major
component in detail in the following subsections. The overall architecture is illustrated in Figure 1.
SpectraNet is a top-down model that generates a multivariate time-series window of fixed size
sw = L+H , where L is the length of the reference window and H is the forecast horizon, from a la-
tent vector z ∈ Rd. To produce the forecasts at timestamp t, the model first infers the optimal latent
vector on the reference window, consisting of the last L values, Yt−L:t, by minimizing the recon-
struction error. This inference step is the main difference between our approach to existing models,
which map the input into an embedding or latent space using an encoder network. The model gen-
erates the full time-series window sw, which includes the forecast window Yt:t+H , with a spectral
decomposition and a Convolutional Neural Network (CNN). The main steps of SpectraNet are
given by

z∗ = argmin
z

L(Yt−L:t, Ŷt−L:t(z)) (3)

where z∗ is the inferred latent vector, L is a reconstruction error metric, and Ŷt−L:t(z) is given by,

E = LSSD(z,B) (4)

Ŷt−L:t, Ŷt:t+H = CNNΘ(E) (5)

where LSSD (latent space spectral decomposition) is a basis expansion operation of z over the
predefined temporal basis B to produce a temporal embedding E ∈ Rd×dt , and CNN is a Top-Down
Convolutional Neural Network with learnable parameters Θ. The CNN simultaneously produces
both the reconstruction of the past reference window Ŷt−L:t, used to find the optimal latent vector
for the full window and the forecast Ŷt:t+H .

3.1 LATENT VECTOR INFERENCE

The proposed latent vector inference is based on the Alternating back-propagation algorithm (ABP)
(Han et al., 2017) for training generative models without encoders. A single generator (decoder)
architecture is trained by maximizing the observed likelihood directly. To achieve this, at every step,
ABP samples latent vectors from the posterior distribution P (Z|Y) using MCMC methods such
as Langevin dynamics. Generative models trained with ABP demonstrated superior performance
in recovering missing segments of images and videos over Variational Autoencoders (VAE) and
Generative Adversarial Networks (GAN). To our knowledge, SpectraNet is the first approach
that uses and extends the latent vector inference principle of ABP for time-series forecasting.

We reformulate the posterior distribution sampling of the latent vectors as a non-convex minimiza-
tion problem presented in 3, which aims to minimize the generator’s reconstruction error on the
reference window Yt−L:t. We use the mean square error (MSE) as the reconstruction loss since it is
differentiable, fast to compute and theoretically founded. Our method corresponds to the maximum
a posteriori estimation (MAP) in the ABP framework. Appendix A.2 formally presents the ABP
algorithm and the connections to our method.

To solve the reconstruction loss minimization problem, we use gradient-based methods. In particu-
lar, we rely on gradient descent (GD), randomly initializing the latent vector with independent and
identically distributed Gaussian distributions and fixing the learning rate and the number of itera-
tions as hyperparameters. Figure 2 demonstrates how SpectraNet’s output evolves during the
inference of z, adapting to current behaviors on the reference window. Section 3.4 presents how
SpectraNet is trained by alternating the inference and parameter learning steps.
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Figure 2: SpectraNet’s output evolution during latent vector inference with Gradient Descent.
The model maps the latent vector to the complete window, including both reference (of size 104)
and forecasting windows (of size 24), using only information from the former. The temporal basis B
imposes strict dependencies between both windows. This inference process allows SpectraNetto
dynamically adapt to new behaviours and forecast with missing data.

The main advantage of inferring the latent vector is the robustness to handle both distribution shifts
and missing values. During this step, the model will infer the latent vector that best fits the current
dynamics on the reference window, even if they follow an unseen behavior during training. The
ability to dynamically adjust the temporal embedding for each window gives SpectraNet more
robustness to changes in distribution, as shown in Figure 3. To deal with missing data, the recon-
struction loss is masked. Following the notation in (Tashiro et al., 2021) , let M ∈ {0, 1}M×T be the
observation mask which indicates the availability of data. The latent vectors are inferred following

z∗ = argmin
z

L(Mt−L:t ◦Yt−L:t,Mt−L:t ◦ Ŷt−L:t(z)) (6)

where ◦ is the element-wise matrix multiplication. As demonstrated in the experimental section
results on Tables 1, 2 and 4, and in congruity with previous studies such as (Han et al., 2017; Pang
et al., 2020), inferring latent vectors provides superior robustness to missing data.

3.2 LATENT SPACE SPECTRAL DECOMPOSITION

The second component of SpectraNet is the mapping from the latent vectors z into the temporal
embedding E. Each element of z corresponds to the coefficient of one element of the temporal basis
B ∈ Rd×dt , where d is the number of elements and dt is the temporal length. The i-th row of E is
given by,

Ei,: = z∗i Bi,: (7)

Each element of the basis consists of a predefined template function. Similarly to previous work
including (Oreshkin et al., 2019; Engel et al., 2020; Shan et al., 2022), the basis includes patterns
commonly found in time series: trends, represented by polynomial functions, and seasonal, repre-
sented by harmonic functions. The final basis matrix B is the row-wise concatenation of the three
following matrices.

Btrd
i,t = ti , for i ∈ {0, ..., p}, t ∈ {0, ..., dt}

Bcos
i,t = cos(2πit) , for i ∈ {1, ..., sw

2
}, t ∈ {0, ..., dt}

Bsin
i,t = sin(2πit) , for i ∈ {1, ..., sw

2
}, t ∈ {0, ..., dt}

(8)

where p is a hyperparameter that controls the max degree of the polynomial basis. The final size of
the basis d is equal to sw +p+1. The temporal embedding E corresponds to a latent space spectral
decomposition that encodes shared temporal dynamics of all features in the target window, as the
latent vector z∗ selects the relevant trend and frequency bands. Another crucial reason behind using
a predefined basis is to impose strict temporal dependencies between the reference and forecasting
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windows. While inferring the latent vector, the forecasting window does not provide information
(gradients). If all the entries of E are freely inferred the last values of the temporal embedding that
determines the forecasting window cannot be optimized.

3.3 TOP-DOWN CONVOLUTION NETWORK

SpectraNet uses a Top-Down Convolution Network (CNN) as decoder, which produces the final
forecast and reconstruction of the reference window Ŷt−L:t+H from the temporal embedding E.
The full CNN architecture is presented in Figure 1, and can be formalized as:

h1 = ReLU(BN(Transposed Convolution(E)))

h2 = ReLU(BN(Transposed Convolution(h1)))

Ŷt−L:t+H = Transposed Convolution(h2)

(9)

where Transposed Convolution is a transpose convolutional layer on the temporal dimension, BN
is a batch normalization layer, and ReLU activations introduce non-linearity. The number of filters
at each layer, kernel size, and stride are given in Appendix A.5. The convolutional filters are not
causal as in a Temporal Convolution Network (TCN) (Bai et al., 2018). Instead, SpectraNet’s
causality, that allows the model to forecast future data using past observations, comes from inferring
the latent vector z∗ with the reference window.

The first layers of the CNN learn a common representation for all features from the temporal embed-
ding E. Additionally, the second layer refines the temporal resolution to the final size of the window
sw. The last layer produces the final output for all M features from h2. While equation 9 presents
the default configuration for SpectraNet used in the experiments, additional layers can be added
to increase the expressivity. Appendix A.10 presents ablation studies on the number of layers.

3.4 TRAINING PROCEDURE

Each training iteration consists of two steps: the inference step and the learning step. During the
inference step, the optimal latent vector z∗ is inferred using Gradient Descent, solving the optimiza-
tion problem given in equation 3 with the current parameters Θ. During the learning step, the latent
vector is used as the input to the model, and the parameters Θ are updated using ADAM optimizer
(Kingma & Ba, 2014) and MSE loss. For each iteration, we sample a small batch (with replacement)
of multivariate time-series windows Yt:t+sw from the training data, each starting at a random times-
tamp t. Each sampled observation is first normalized with the mean and standard deviation on the
reference window, to decouple the scale and patterns (the output is scaled back before evaluation).
The full training procedure is presented in Appendix A.6.

One potential drawback of inferring the latent vectors is the computational cost. We tackle this in
several ways. First, by solving the optimization problem using GD, we can rely on automatic dif-
ferentiation libraries such as PyTorch to efficiently compute the gradients. Second, backpropagation
on CNN is parallelizable in GPU since it does not require sequential computation. The forecasts are
independent between windows so they can be computed in parallel, unlike RNN models, which must
produce the forecasts sequentially. Finally, during training, we persist the optimal latent vectors to
future iterations on the same window. For a given observation t, the final latent vector z∗t is stored
and used as a warm start when observation t is sampled again, considerably reducing the number of
iterations during the inference step. We discuss training times and memory complexity in section 4.

3.5 ROBUSTNESS TO MISSING VALUES AND DISTRIBUTIONAL SHIFTS

We first test SpectraNet’s robustness on synthetic data, which we name Simulated7. This dataset
consists of seven time series of length 20,000, each generated as the sum of two cosines with random
frequencies and small Gaussian noise. We inject missing values on both train and test sets, following
the procedure described in section 4. For the distribution shifts experiments, we modify the test set
with two common distribution shifts: changes in trend and in magnitude. Figure 3 presents the
forecasts for SpectraNet for the three settings considered. We include the first feature in this
figure, and we show the complete data in Appendix A.7. As seen in panel (a), our method can
accurately forecast the ground truth even with 80% of missing values, a challenging setting since
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Figure 3: Forecasts for the first feature of Simulated7 dataset using SpectraNet with (a) 80% of
missing data (missing regions in grey), (b) change in trend, and (c) change in magnitude. Forecasts
are produced every 24 timestamps in a rolling window strategy.

intervals where consecutive timestamps are available are short. This setting also demonstrates how
SpectraNet can accurately learn correlations between features, as in many reference windows
only few features contain information. Panels (b) and (c) demonstrate how SpectraNet can
dynamically adapt to new data behaviors, even if the model never observed them during training.
Table 1 presents a quantitative comparison.

Table 1: Forecasting accuracy on Simulated7 dataset with missing values and distribution shifts
between the train and test sets, forecasting horizon of 24 timestamps. Lower scores are better.
Metrics are averaged over five runs, best model highlighted in bold.

SpectraNet N-HiTS Informer Autoformer StemGNN RNN
po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Normal 0.0 0.004 0.041 0.001 0.015 0.008 0.079 0.017 0.096 0.036 0.122 0.001 0.022

Trend 0.0 0.025 0.130 0.427 0.443 2.821 1.410 0.060 0.19 1.354 0.952 1.214 0.859
Magnitude 0.0 0.005 0.038 0.009 0.059 0.020 0.094 0.043 0.168 0.060 0.192 0.089 0.248

M. Values

0.2 0.009 0.081 0.012 0.176 0.071 0.237 0.319 0.430 0.097 0.266 0.069 0.148
0.4 0.011 0.073 0.022 0.213 0.095 0.242 0.591 0.612 0.181 0.385 0.172 0.308
0.6 0.018 0.100 0.133 0.338 0.231 0.380 0.752 0.994 0.362 0.488 0.357 0.462
0.8 0.023 0.127 0.365 0.439 0.372 0.478 0.925 1.106 0.436 0.614 0.500 0.571

In Appendix A.9 we demonstrate how SpectraNet is also robust to changes over time of the
missing data regime (how much or for how long missing data occurs). While SpectraNet is
intrinsically robust to missing data, current SoTA models require either modifications to the ar-
chitecture or an interpolation model to first impute the missing values. Another advantage of our
method is that it cannot only forecast directly on the raw data, but by generating the entire window,
it is simultaneously interpolating the past missing data and forecasting the future values.

4 EXPERIMENTAL RESULTS

We base our experimental setting, benchmark datasets, train/validation/test splits, hyperparameter
tuning, and data processing on previous works on multivariate forecasting (Zhou et al., 2021; Wu
et al., 2021; Challu et al., 2022a).
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4.1 DATASETS

We evaluate our model on synthetic data and five popular benchmark datasets commonly used in
the forecasting literature, comprising various applications and domains. All datasets are normalized
with the mean and standard deviation computed on the train set. We split each dataset into train,
validation, and test sets, following different proportions based on the number of timestamps. We
present summary statistics for each dataset in Appendix A.3.

The Influenza-like illness (ILI) dataset contains the weekly proportion of patients with influenza-
like symptoms in the US, reported by the Centers for Disease Control and Prevention, from 2002 to
2021. Exchange reports the daily exchange rates of eight currencies relative to the US dollar from
1990 to 2016. The Solar dataset contains the hourly photo-voltaic production of 32 solar stations
in Wisconsin during 2016. Finally, the Electricity Transformer Temperature (ETTm2) dataset
is a stream of eight sensor measurements of an electricity transformer in China from July 2016 to
July 2018. Weather contains 21 meteorological conditions recorded at the German Max Planck
Biogeochemistry Institute in 2021.

4.2 TRAINING AND EVALUATION SETUP

We train models on the training set comprising the earliest history of each dataset. We select the
optimal hyperparameters for all models (including the baselines to ensure fair comparisons) on each
dataset and occlusion percentage based on the performance (measured by MSE) on the validation set,
using a Bayesian optimization algorithm, HYPEROPT (Bergstra et al., 2011). For SpectraNet
we tune the number of convolutional filters, temporal size of the latent vectors, window normaliza-
tion, and optimization hyperparameters for both the inferencial and learning steps. The complete list
of hyperparameters is included in Appendix A.5. For the main results, we use a multi-step forecast
with a horizon of size 24, and forecasts are produced in a rolling window strategy. We repeat the
experiment five times with different random seeds and report average performances. We run the
experiments on an AWS g3.4xlarge EC2 instance with NVIDIA Tesla M60 GPUs.

We compare our proposed model against several univariate and multivariate state-of-the-art base-
lines based on different architectures: Transformers, feed-forward networks (MLP), Graph Neural
Network (GNN), and Recurrent Neural Network (RNN). For Transformer-based models we include
the Informer (Zhou et al., 2021) and Autoformer (Wu et al., 2021), two recent models for multi-step
long-horizon forecasting; for MLP we consider the univariate N-HiTS (Challu et al., 2022a) and
N-BEATS (Oreshkin et al., 2019) models; for GNN models we include the StemGNN (Cao et al.,
2020), and lastly we include a multi-step univariate RNN with dilations (Chang et al., 2017).

4.3 MISSING DATA SETUP

We present a new experimental setting for testing the forecasting models’ robustness to missing
data. We parameterize the experiments with two parameters: the size of missing segments s and
the probability that each segment is missing with po. First, the original time series is divided into
disjoint segments of length s. Second, each feature m in each segment is occluded with probability
po. We repeat the experiment with different probabilities po: 0% (no missing values), 20%, 40%,
60%, and 80%, to test models’ performance under different proportions of missing values. The size
of segments s is fixed at ten timestamps for ILI and at 100 for all other datasets. Figure 3 shows an
example of the setting for the Simulated7 dataset with 80% missing data (occluded data in grey).

4.4 KEY RESULTS

Forecasting accuracy. Table 2 presents the forecasting accuracy. First, SpectraNet achieved
SoTA performance even on full data, showing the advantages of our method are not limited to
the robustness to missing data and distribution shifts. SpectraNet outperformed N-HiTS/N-
BEATS in two of the five datasets and placed in the Top-3 models across all datasets, outperforming
Transformer-based models, StemGNN, and DilRNN. SpectraNet also achieves the best perfor-
mance among all multivariate models.

The superior robustness of SpectraNet to missing values is evident in all datasets and pro-
portions. In datasets with strong seasonalities, such as Simulated7 and Solar, the accuracy of
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Table 2: Main forecasting accuracy results on benchmark datasets with different proportion of miss-
ing values (po), forecasting horizon of 24 timestamps, lower scores are better. Metrics are averaged
over five runs, best model highlighted in bold.

SpectraNet N-HiTS/NBEATS Informer Autoformer StemGNN RNN
po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

0.0 0.724 0.557 1.379 0.762 4.265 1.329 2.249 0.967 4.013 1.437 3.852 1.340
0.2 1.153 0.662 2.028 0.933 3.624 1.127 3.250 1.292 4.372 1.503 3.647 1.321
0.4 1.646 0.793 3.248 1.134 3.908 1.351 4.308 1.419 4.752 1.694 4.360 1.455
0.6 2.453 1.012 3.871 1.257 3.991 1.277 4.571 1.515 5.170 1.863 5.561 1.614
0.8 3.136 1.139 5.102 1.451 4.180 1.363 4.745 1.536 5.337 1.836 5.063 1.622

E
xc

ha
ng

e 0.0 0.048 0.157 0.031 0.102 0.472 0.534 0.049 0.167 0.102 0.251 0.086 0.210
0.2 0.091 0.223 0.295 0.342 1.013 0.772 0.758 0.523 1.021 0.599 0.871 0.529
0.4 0.158 0.292 0.321 0.534 1.162 0.905 0.782 0.606 0.826 0.608 0.694 0.550
0.6 0.367 0.418 0.549 0.745 1.564 0.932 1.346 0.849 1.991 1.002 1.432 0.872
0.8 1.125 0.785 1.792 1.188 2.530 1.281 2.520 1.231 2.778 1.318 2.791 1.312

So
la

r

0.0 0.007 0.054 0.008 0.061 0.011 0.065 0.018 0.095 0.015 0.077 0.012 0.060
0.2 0.012 0.058 0.016 0.063 0.016 0.083 0.025 0.116 0.016 0.084 0.015 0.065
0.4 0.012 0.062 0.017 0.068 0.020 0.102 0.023 0.118 0.023 0.103 0.017 0.064
0.6 0.013 0.068 0.022 0.075 0.021 0.107 0.027 0.130 0.031 0.115 0.026 0.083
0.8 0.014 0.072 0.025 0.089 0.035 0.156 0.036 0.127 0.065 0.192 0.028 0.113

E
T

T
m

2 0.0 0.136 0.212 0.116 0.203 0.366 0.462 0.171 0.275 0.154 0.273 0.179 0.238
0.2 0.155 0.260 0.656 0.420 0.895 0.704 0.512 0.450 0.963 0.581 0.574 0.421
0.4 0.228 0.316 1.191 0.637 0.923 0.679 1.078 0.683 1.542 0.795 0.807 0.584
0.6 0.500 0.442 1.976 0.918 1.784 0.999 1.643 0.891 2.151 0.978 1.163 0.741
0.8 0.725 0.528 2.019 1.230 1.982 1.115 1.992 1.062 2.595 1.162 2.085 1.007

W
ea

th
er

0.0 0.112 0.193 0.109 0.127 0.218 0.283 0.186 0.263 0.103 0.152 0.124 0.201
0.2 0.154 0.218 0.181 0.205 0.287 0.350 0.324 0.389 0.179 0.223 0.189 0.240
0.4 0.205 0.269 0.264 0.279 0.320 0.385 3.105 1.456 0.296 0.311 0.291 0.325
0.6 0.329 0.387 0.420 0.414 0.761 0.628 3.772 1.660 0.495 0.569 0.435 0.433
0.8 0.439 0.463 0.517 0.503 0.915 0.889 4.204 1.859 0.760 0.702 0.480 0.48

SpectraNet marginally degrades with even 80% of missing values. The relative performance of
our method improves with the proportion of missing data. For example, for 80%, the average MSE
across datasets is 48% lower than the N-HiTS and 65% lower than the Autoformer. The improve-
ment on ILI with complete data of almost 50% against the second best model is explained by the
distribution shift between the train and test set, where the latter presents larger spikes and a clear
positive trend on some features. Appendix A.8 presents a plot of the ILI dataset.

Imputation accuracy. Table 3 presents the results for the imputation task. We include a SoTA
imputation diffusion model, CSDI (Tashiro et al., 2021), and three simple baselines: (i) imputation
with the mean of each feature, (ii) imputation with the last available value (Naive), and (iii) linear
interpolation between past and future available values. SpectraNet consistently achieves the best
performance across all datasets. CSDI outperformes all simpler baselines on Simulated7 and Solar,
but its performance degrades on datasets with distribution shifts such as Simulated7-Trend and ILI.

Table 3: Imputation accuracy on the test set for SpectraNet and baselines with different propor-
tion of missing data (po). Lower scores are better, best model highlighted in bold.

SpectraNet CSDI Mean Naive Linear
po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Simulated7 0.2 0.008 0.070 0.062 0.184 0.535 0.642 0.188 0.344 0.069 0.213
0.6 0.022 0.116 0.218 0.334 0.551 0.656 0.468 0.518 0.225 0.341

Simulated7-Trend 0.2 0.029 0.136 0.546 0.536 2.067 1.196 0.238 0.364 0.083 0.229
0.6 0.063 0.185 0.757 1.009 1.862 1.127 0.470 0.518 0.228 0.343

Simulated7-Magnitude 0.2 0.005 0.039 0.009 0.053 0.033 0.139 0.024 0.087 0.010 0.055
0.6 0.011 0.053 0.051 0.108 0.036 0.144 0.064 0.146 0.033 0.094

Solar 0.2 0.004 0.042 0.022 0.096 0.038 0.182 0.052 0.139 0.032 0.116
0.6 0.006 0.048 0.034 0.103 0.038 0.182 0.056 0.145 0.039 0.128

Exchange 0.2 0.018 0.058 0.045 0.093 1.560 1.002 0.071 0.105 0.023 0.055
0.6 0.035 0.084 0.101 0.196 1.573 1.010 0.099 0.138 0.042 0.089

ILI 0.2 0.592 0.603 2.153 0.903 4.085 1.412 1.878 0.871 0.630 0.642
0.6 2.568 1.349 5.131 1.508 7.351 1.880 7.840 1.895 7.245 1.605

Memory and time complexity. We compare the training time and memory usage (as the number
of learnable parameters) of SpectraNet and baseline models as a function of the input size on
the ETTm2 dataset in Figure 4, using the optimal hyperparameters. Panel (a) shows our method has
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(b) Time Efficiency

Figure 4: Memory efficiency and train time analysis on ETTm2. Memory efficiency measured as
the number of parameters, train time includes the complete training procedure. We use the best
hyperparameter configuration for each model, based on model accuracy.

the lowest memory footprint, with up to 85% fewer parameters than the N-HiTS (the second best
alternative in most datasets) and 92% than the Autoformer. Despite the fact that SpectraNet
performs the inference step in each iteration, thanks to the improvements discussed in section 3 and
the reduced number of parameters, training times are comparable to other baseline models.

SpectraNet1 SpectraNet2 SpectraNet
po MSE MAE MSE MAE MSE MAE

0.0 0.691 0.461 0.237 0.283 0.213 0.251
0.2 0.839 0.623 0.382 0.328 0.310 0.284
0.4 1.412 0.666 0.492 0.427 0.449 0.341
0.6 1.952 0.974 0.916 0.620 0.752 0.467
0.8 2.541 1.082 1.547 0.859 1.126 0.579

Table 4: Average forecasting accu-
racy across five benchmark datasets for
SpectraNet and two versions with-
out main components. Lower scores are
better, best highlighted in bold.

Ablation studies. Finally, we test the contribution of
the two major components proposed in this work, the
dynamic inference of latent vectors and the LSSD. We
compare SpectraNet against two versions without
these components. In SpectraNet1 we add a CNN
encoder to map inputs to a standard embedding, and
in SpectraNet2 we keep the inference step but re-
move the LSSD. Table 4 presents the average perfor-
mance across the five benchmark datasets. As expected,
SpectraNet1 with the parametric encoder is not ro-
bust to missing data, with similar performance to other
SoTA models. On top of improving the performance over
SpectraNet2, the LSSD reduces the number of param-
eters by 70% since fewer layers are needed to generate the complete window.

5 DISCUSSIONS AND CONCLUSION

This work proposes a novel multivariate time-series forecasting model that uses a Top-Down CNN
to generate time-series windows from a novel latent space spectral decomposition. It dynami-
cally infers the latent vectors that best explain the current dynamics, considerably improving the
robustness to distribution shifts and missing data. We compare the accuracy of our method with
SoTA models based on several architectures for forecasting and interpolation tasks. We demonstrate
SpectraNet does not only achieve SoTA on benchmark datasets but can also produce accurate
forecasts under some forms of distribution shifts and extreme cases of missing data.

Our experiments provide evidence that, as expected, the performance of current SoTA forecasting
models significantly degrades under the presence of missing data and distribution shifts. These
challenges are commonly present in high stake settings such as healthcare (for instance, cases with
up to 80% missing data are common) and are becoming more predominant in many domains with the
recent global events such as the COVID-19 pandemic. Designing robust algorithms and solutions
that tackle these challenges can significantly improve their adoption and increase their benefits.

We believe that dynamically inferring latent vectors can have multiple other applications in time-
series forecasting. For instance, it can have applications in transfer learning and few-shot learning.
A pre-trained decoder could forecast completely unseen time series, while the inference step will
allow the model to adapt to different temporal patterns. Moreover, the inference step can be adapted
to produce multiple samples and calibrated to learn the target time series distribution.
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A APPENDIX

A.1 RELATED WORK

Time-series forecasting. Time-series forecasting has long been an active area of research in
academia and industry due to its broad range of high-impact applications. The latest developments
in machine learning have been combined with classical methods or used to develop new models
(Januschowski et al., 2020) which have been successful in recent large-scale forecasting competi-
tions (Makridakis et al., 2020; 2022). The earlier breakthroughs in modeling time-series with Deep-
learning (Januschowski et al., 2018) include the widely used Recurrent Neural Networks (RNN)
(Chang et al., 2017; Salinas et al., 2020; 2019) and Temporal Convolution Networks (TCN) (Bai
et al., 2018). The success of Transformers (Vaswani et al., 2017) in sequential data, such as nat-
ural language processing (NLP) and audio processing, inspired many recent models with attention
mechanisms. The Informer (Zhou et al., 2021) introduces a Prob-sparse self-attention to reduce the
quadratic complexity of vanilla Transformers; the Autoformer (Wu et al., 2021) proposed a decom-
position architecture in trend and seasonal components, and the Auto-correlation mechanism.

Simpler approaches based on feed-forward networks have also shown remarkable performance. The
N-BEATS model (Oreshkin et al., 2019) uses a deep stack of fully-connected layers to decompose
the forecast into both learnable and predefined basis functions; the NBEATSx extension incorporates
interpretable exogenous variable decomposition (Olivares et al., 2022); the N-HiTS model (Challu
et al., 2022a) generalizes the N-BEATS by introducing mixed-data sampling and hierarchial inter-
polation to decompose the forecast in different frequencies. Finally, Graph Neural Networks (GNN)
has been used to incorporate complex relations between a large number of time series, including the
GraphWaveNet (Wu et al., 2019), and StemGNN (Cao et al., 2020) models.

Time-series imputation. The standard practice to handle missing data is filling the missing infor-
mation, a process called interpolation. Simple interpolation alternatives include replacing missing
values with zeros, the mean, most-recent value (naive), and linear interpolation. Most recent Deep-
learning approaches consist of Generative Adversarial Networks (GANs) and RNN-based architec-
tures. Some notable examples are E2gan (Luo et al., 2019), Brits (Cao et al., 2018), and NAOMI (Liu
et al., 2019). More recent approaches include the CDSI (Tashiro et al., 2021) model, a score-based
diffusion auto-regressive architecture that produces a distribution for the imputed values.

Alternating back-propagation. The method we propose to infer latent vectors is inspired by the
Alternating back-propagation algorithm (ABP) for Generative models (Han et al., 2017). The key
idea of this algorithm is to sample latent vectors from the posterior distribution with MCMC methods
and train a Generative model by maximizing the observed likelihood directly. Generative models
trained with ABP do not need an encoder, such as Variational Autoencoders (VAE), or Discriminator
networks, such as GANs. More recent work extend the original architecture with energy-based
models for CV (Pang et al., 2020), LSTM networks for text generation (Pang et al., 2021), and a
hierarchical latent space for anomaly detection (Challu et al., 2022b).
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A.2 ALTERNATING BACK-PROPAGATION

This section presents the principles of Alternating back-propagation (ABP) to train a generative
model, as proposed in (Han et al., 2017) and presented in (Challu et al., 2022b), and the connection
with our proposed latent vector inference.

Let y ∈ RD be a D-dimension data vector (such as an image or time-series window) and f be a
generative model with parameters θ,

y = f(z,θ) + ϵ

z ∼ N(0, Id), ϵ ∼ N(0, σ2ID)
(10)

where z ∈ Rd are latent factors and d < D. Let {y(i), i = 1, ..., n} be n training observations. In
Alternating Back-Propagation, parameters θ are trained by maximizing the observed log-likelihood

L(θ) =

n∑
i=1

log pθ(y
(i)) =

n∑
i=1

log

∫
pθ(y

(i), z(i))dz(i) (11)

The gradients L′(θ) for observation i are given by,

∂

∂θ
log pθ(y

(i)) = Epθ(z(i)|y(i))

[
∂

∂θ
log pθ(y

(i), z(i))

]
(12)

where pθ(z(i)|y(i)) is the posterior distribution. ABP approximates this intractable expectation with
Monte Carlo average by taking a single sample z∗ from the posterior distribution with approximate
Langevin Dynamics, by iterating

z
(i)
t+1 = z

(i)
t +

s

σz

∂

∂z(i)
log pθ(z

(i)
t |y(i)) +

√
2sϵt (13)

where ϵt ∼ N(0, ID), s is the step size, and σz controls the annealing or tempering. Finally, the
Monte Carlo approximation of the gradient is given by

L′(θ) ≈ ∂

∂θ
log pθ(z

∗(i),y(i)) (14)

For our proposed latent vector inference, we reformulate the posterior sampling as a non-convex
minimization problem presented in 3, which aims to minimize the mean square error (MSE) between
the reconstruction and ground truth y(i). Minimizing the MSE is equivalent to the maximum a
posteriori estimation (MAP) of pθ(z

(i)|y(i)) assuming Gaussian distributions as in equation 10.
This methodology also allows for using more sophisticated gradient-based methods than equation
13, such as Adam, can be used to improve the convergence.
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A.3 BENCHMARK DATASETS

Table 5 presents summary information for the benchmark datasets, including the granularity (fre-
quency), number of features and timestamps, and train/validation/test proportions.

Table 5: Summary of benchmark datasets

DATASET GRANULARITY # OF FEATURES # OF TIMESTAMPS TRAIN/VAL/TEST SPLIT

SIMULATED7 NA 7 20,000 80/10/10
ILI WEEKLY 7 966 70/10/20
ETTM2 15 MINUTE 7 57,600 60/20/20
EXCHANGE DAILY 8 7,588 70/20/10
SOLAR HOURLY 32 8,760 60/20/20
WEATHER 10 MINUTE 21 52,695 70/10/20

All datasets are public, and are available in the following links:

• ILI: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

• Exchange: https://github.com/laiguokun/multivariate-time-series-data

• Solar: https://www.nrel.gov/grid/solar-power-data.html

• ETTm2: https://github.com/zhouhaoyi/ETDataset

• Weather: https://www.bgc-jena.mpg.de/wetter/

A.4 SIMULATED7 DATASET

Simulated7 is a synthetic dataset that we design to evaluate forecasting models robustness to miss-
ing data and distribution shifts in a controlled environment. It consists of 7 time-series, each gen-
erated independently as the sum of two cosine functions with different frequencies and a small
Gaussian noise. In particular, it is composed as the sum of the three following elements:

ylow
t = cos(it) , i ∼ U(5, 50) t ∈ [0, 5]

yhigh
t = cos(it) , i ∼ U(100, 300) t ∈ [0, 5]

ynoise
t ∼ N(0, 0.001) , t ∈ [0, 5]

(15)

Each time-series consists of 20,000 timestamps, with regular intervals between [0, 5]. For the miss-
ing data we obfuscate random timestamps following the procedure described in section 4, using
s = 10 and po ∈ {0, 0.2, 0.4, 0.6, 0.8}. For simulating distribution shifts we perturb only the test
set with two transformations: adding a linear trend with slope 6, and scaling the magnitude by 0.5.
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A.5 HYPERPARAMETER OPTIMIZATION

SpectraNet hyperparameters are tuned on the validation set of each dataset using HYPEROPT
algorithm with 30 iterations, Table 6 presents the hyperparameter grid. To ensure a fair comparison
with baseline models, we also tuned their respective hyperparameters with the same procedure, as
the default configuration in their implementations might not perform well in the different settings
we explore. We detail the hyperparameter grid for each baseline model next.

Table 6: Hyperparameters grid for SpectraNet.

HYPERPARAMETER VALUES

Learning rate {0.0001, 0.0005, 0.001, 0.005}
Training steps {500, 1000}
Batch size {8, 16, 32}
Random seed [1,10]

GD iterations during training {25, 50}
GD iterations during inference {300, 1000}
GD step size {0.2, 1, 2}
Max degree trend polynomial {3}

Window size (sw) {128, 256, 512}
Kernel size {4, 8}
Stride {4}
Dilation {1}
Convolution filters of two hidden layers (n1,n2) {(256,128), (128, 64)}

For N-HiTS, we use the hyperparameter grid described in their paper (Challu et al., 2022a). The
N-HiTS is a generalization of the N-BEATS, which is already included in the hyperparameter grid
as a posible configuration. For the Informer and Autoformer we explore different values for the
dropout probability, number of heads, learning rate (same as SpectraNet), batch size (same as
SpectraNet), size of embedding, and sequence length. For StemGNN we explore different op-
timization parameters, including the learning rate, batch size, and epochs. Finally, for RNN we
explore different dilations, number of layers, hidden size, and optimization parameters. For the N-
HiTS, transformers, and RNN models we used the Neuralforecast library (available in PyPI
and Conda).
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A.6 SPECTRANET TRAINING ALGORITHM

Algorithm 1 presents the training procedure of SpectraNet. The model is trained for a fixed
number of iterations niters, randomly sampling b windows in each iteration. Parameters θ are
optimized with Adam optimizer.

Algorithm 1: Training procedure

input : multivariate time-series Y ∈ Rm×T , model Fθ, learning iterations niters

output: Fθ∗ , inferred latent vectors {z∗t , t = 0, ..., T}
Let i← 0, initialize θ
Initialize zt, for t = 0, ..., T
while i < niters do

Take a random mini-batch of windows {Yjk−L:jk+H , jk ∼ U(L, T −H), k{1, ..., b}.
z∗jk ← argminz L(Yjk−L:jk , Ŷjk−L:jk(z)), k ∈ {1, ..., b}
Update θ with Adam using z∗ as input.
Store z∗jk , k ∈ {1, ..., b}
i← i+ 1

end
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A.7 FORECASTS ON SIMULATED7

Figure 1 presents the complete forecasts on the test set for SpectraNet, N-HiTS, Informer, and
RNN models. SpectraNet is the only model that can accurately forecast with up to 80% missing
data and changes in distribution.
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(b) Trend - SpectraNet
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(c) Magnitude - SpectraNet
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(d) Missing values - N-HiTS
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(e) Trend - N-HiTS
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(f) Magnitude - N-HiTS
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(g) Missing values - Informer
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(h) Trend - Informer
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(i) Magnitude - Informer
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(j) Missing values - RNN
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(k) Trend - RNN
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(l) Magnitude - RNN

Figure 1: Forecasts on the test set for all features of Simulated7 dataset with 80% of missing data
(missing regions in grey), change in trend, and change in magnitude. Forecasts are produced every
24 timestamps in a rolling window strategy.
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A.8 ILI DATASET

Figure 2 shows the time series of the ILI dataset and the start of the test set (vertical red line). The
first five features present considerably larger and longer spikes on the test set. This is a particularly
challenging task, as most models tend to underestimate the larger spikes.
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Figure 2: ILI dataset, start of the test set marked with vertical red line.

A.9 ADDITIONAL OCCLUSION EXPERIMENTS

In this section we present additional occlusion experiments to analyze the case where the missing
data regime (how much or for how long missing data occurs) differs between the training and test
sets. In this setting we train models on complete data and inject missing values only during infer-
ence on the test set. The following table presents SpectraNetand N-HiTS (best baseline) results
on the Simulated7 dataset. SpectraNet performance is almost identical to the original results,
demonstrating the method’s robustness to changes in the behavior of the presence of missing data.

Table 7: Forecasting accuracy on Simulated7 dataset with missing values only on the test set,
forecasting horizon of 24 timestamps. Lower scores are better. Metrics are averaged over five runs,
best model highlighted in bold.

SpectraNet N-HiTS
po MSE MAE MSE MAE

0.2 0.008 0.079 0.013 0.146
0.4 0.017 0.085 0.031 0.224
0.6 0.021 0.097 0.257 0.384
0.8 0.029 0.124 0.463 0.562
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A.10 CNN ABLATION STUDIES

Figure 1 of the paper presents the default recommended configuration for SpectraNet. In this
section we explore different configurations for the CNN, in particular for the number of hidden
layers. For the model SpectraNeti,j , i refers to the number of layers with temporal resolution sw/2,
and j to the number of layers with sw resolution. The following table presents the results on ILI
and Solar datasets. The results suggest SpectraNet’s performance is not significantly affected by the
number of layers in these datasets for several occlusion probabilities. On average, SpectraNet2,2
achieves the best performance.

Table 8: Forecasting accuracy results of SpectraNet with different CNN architectures on bench-
mark datasets with different proportion of missing values (po), forecasting horizon of 24 timestamps,
lower scores are better. Metrics are averaged over five runs, best model highlighted in bold.

SpectraNet SpectraNet2,2 SpectraNet3,2 SpectraNet3,3
po MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

0.0 0.724 0.557 0.719 0.549 0.773 0.560 0.726 0.550
0.2 1.153 0.662 1.148 0.670 1.164 0.682 1.156 0.658
0.6 2.453 1.012 2.391 1.002 2.382 0.985 2.369 0.991

So
la

r 0.0 0.007 0.054 0.007 0.052 0.008 0.058 0.007 0.053
0.2 0.012 0.058 0.010 0.059 0.012 0.059 0.011 0.054
0.6 0.013 0.068 0.012 0.064 0.014 0.066 0.015 0.064
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