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Abstract

The explainability of deep neural networks (DNNs) is critical for trust and relia-
bility in AI systems. Path-based attribution methods, such as integrated gradients
(IG), aim to explain predictions by accumulating gradients along a path from a
baseline to the target image. However, noise accumulated during this process can
significantly distort the explanation. While existing methods primarily concentrate
on finding alternative paths to circumvent noise, they overlook a critical issue:
intermediate-step images frequently diverge from the distribution of training data,
further intensifying the impact of noise. This work presents a novel Denoising Dif-
fusion Path (DDPath) to tackle this challenge by harnessing the power of diffusion
models for denoising. By exploiting the inherent ability of diffusion models to
progressively remove noise from an image, DDPath constructs a piece-wise linear
path. Each segment of this path ensures that samples drawn from a Gaussian distri-
bution are centered around the target image. This approach facilitates a gradual
reduction of noise along the path. We further demonstrate that DDPath adheres
to essential axiomatic properties for attribution methods and can be seamlessly
integrated with existing methods such as IG. Extensive experimental results demon-
strate that DDPath can significantly reduce noise in the attributions—resulting
in clearer explanations—and achieves better quantitative results than traditional
path-based methods.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in various tasks, but their opaque
decision-making processes remain a significant challenge and are critical to those high-staking
scenarios like medical diagnosis [1] and autonomous driving [2]. Explainable Artificial Intelligence
(XAI) aims to bridge this gap by providing insights into how DNNs make their predictions, where the
commonly used interpretation methods include class activation mapping (CAM)-based [3, 4, 5, 6, 7]
and path-based methods [8, 9, 10, 11, 12].

Theoretically, the path-based methods comply with the rigorous axiomatic properties, such as the im-
plementation invariance and symmetry-preserving [8], contributing significantly to the interpretation
field, and we also focus on this kind of technique. Path-based attribution methods, such as integrated
gradients (IG) [8] that is based on game-theoretic idea [13], offer a valuable tool for XAI by accumu-
lating gradients along a path from a baseline image to the target image being explained. However,
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(a) Traditional path (b) Denoising diffusion path (c) Softmax prediction along the path

Figure 1: Motivation illustration of DDPath. The symbol x′ denotes the baseline image and x the
target image. (a) The existing paths are irrelevant to data distributions. (b) The proposed denoising
diffusion path approaches the distribution of real data. (c) Traditional IG [8] and SmoothGrad [9]
struggle to maintain a continuously increasing Softmax probability along the integration path. This
behavior can be counterintuitive and contradict human cognition, where the confidence in a prediction
should generally rise as evidence accumulates. In contrast, the proposed DDPath achieves a more
natural behavior by ensuring a continuously increasing Softmax probability along the path, even if
the path itself exhibits fluctuations.

these methods suffer from a crucial limitation: noise accumulation along the path. This noise can
significantly distort the explanation, making it difficult to identify the features truly contributing to
the DNN’s decision.

Existing approaches primarily focus on finding alternative paths to bypass noise regions. SmoothGrad
progressively added noise to the image and achieved the effect of noise reduction, and the authors
have verified that adding noise can help reduce noise during inference [9]. Blur IG successively
blurred the input image with the Gaussian kernels that varied along the path [10]. Blur IG does
not require a pre-defined “baseline” image which is critical to the original IG [8]. Guided IG is
a general concept, i.e., a superset of path methods, which avoids the unrelated regions with high
gradients by minimizing the attributions at every feature (or pixel) across this superset [11]. While
the above alternatives can be beneficial, they neglect an essential issue: during the path construction,
the intermediate-step images were modified manually by operations like noising or blurring, i.e.,
independent of the input image, resulting in them deviating significantly from the data distribution
the DNN was trained on. This distribution shift further amplifies noise and hinders interpretability.

In this paper, we intend to reduce explanation noise for path methods from a new perspective: the
explanation noise stems from the distribution shift of intermediate-step images when calculating
their gradients along the path, because the shifted images offer biased predictions for a pre-trained
classification model (Fig. 1(c)), then influence the attributions. Hence, it is necessary to make the
distributions of intermediate-step images closer to that of the original input image, so that the gradients
back-propagated from accurate predictions are more relative to classes. As shown in Fig. 1(a), the
traditional paths P1, P2, and P3 are independent of the input distribution even though they have
the same starting point and the endpoint. Therefore, we aim to develop a path that simultaneously
approaches the real data and implies progressive noise reduction.

Inspired by the recently advanced diffusion models, which progressively add noise in the forward
process and denoising during the reverse sampling process [14, 15, 16], it is natural to correlate
the reverse denoising process with the attribution path. On the other hand, the reverse process can
recover the images that comply with the original data distribution despite the noisy intermediates. To
this end, we propose a Denoising Diffusion Path (DDPath) for the attribution of deep neural networks.
First, we define a novel denoising diffusion path that aligns the attribution path with the reverse
sampling process by scaling the sampling steps. This enables the attribution path to incorporate the
ability of generative modeling of diffusion models and the resultant intermediate-step images possess
the approximated distributions with that of a classification model. Similar to existing path methods,
the DDPath is also approximated by Riemann approximation [8, 12]. Furthermore, we demonstrate
that the DDPath satisfies the corresponding axioms. Second, the DDPath can be easily combined
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with previous path methods and we developed the DDPath-IG, DDPath-BlurIG, and DDPath-GIG.
In practice, we apply the pre-trained classifier-guided diffusion model to construct the DDPath [16].
Note that we do not attempt to investigate many advanced diffusion models in this paper, we pay
more attention to exploring the reverse diffusion process to work with DNN attribution, which has
not been discussed in previous attribution studies.

Contributions. We summarize the main contributions of this paper as follows. (i) We propose
a novel Denoising Diffusion Path (DDPath) for DNNs attribution. (ii) DDPath is theoretically
compatible with current path-based methods, and we develop DDPath-IG, DDPath-BlurIG, and
DDPath-GIG counterparts enhancing the baseline methods. (iii) DDPath can be easily implemented
by applying a pre-trained classifier-guided diffusion model. (iv) Experimental results demonstrate the
effectiveness of DDPath on both qualitative saliency maps and quantitative evaluations of insertion
and deletion scores and accuracy information curves (AIC) [17, 12].

2 Related Work

Gradient-based attribution. Integrated gradients (IG) [8] is designed to address the shortcomings
of traditional saliency maps. By integrating gradients along a straight-line path from a baseline
image to the target image, IG adheres to the sensitivity axiom and implementation invariance axiom.
This property guarantees that the generated explanations are interpretable and consistent. While IG
has been a significant advancement in XAI, subsequent research has focused on further improving
its performance and addressing its limitations. Boundary-based integrated gradient [18] enhances
precision with a boundary search mechanism and better baseline selection, while adversarial gradient
integration (AGI) seeks higher accuracy through non-linear ascending trajectories [19]. However,
AGI relies heavily on the quality of adversarial samples. Efforts like guided integrated gradients
(GIG) address noise in the IG path, but GIG suffers from computational cost and limitations to image
data [11]. Similarly, Fast-IG [20] and expected gradient (EG) [21] face limitations in efficiency or
dependence on input features. These shortcomings in existing gradient-based methods motivate
our work on DDPath. DDPath aims to provide cleaner and more interpretable attributions by
tackling noise accumulation along the integration path. DDPath is designed to realize the progressive
emergence of the image signal and gradual noise reduction along the path.

Classifier-guided diffusion models. Recent advanced diffusion models like score-based diffusion
models [22] and denoising diffusion probabilistic models (DDPMs) [14] have greatly facilitated
the progress of generative modeling tasks. Of particular relevance to our work is the concept of
classifier-guided diffusion models introduced by Ho et al. [23]. This framework guides the diffusion
process using a pre-trained classifier, essentially learning to “reverse” the noise addition and correctly
reach an input the classifier recognizes. This establishes a crucial link between diffusion models and
classification tasks, paving the way for their application in interpretability, which is precisely the focus
of DDPath. By leveraging this concept, DDPath benefits from the model’s ability to progressively
remove noise. This denoising capability directly tackles the challenge of noise accumulation in
the attribution path, leading to cleaner and more interpretable explanations. Notably, explicitly
constructing an attribution path with diffusion models has not been discussed in current attribution
studies.

3 Preliminary

Before introducing our DDPath, we recall the path-based attribution framework and the corresponding
axioms to be satisfied.

Integrated gradients (IG) [8] is a pioneer work for deep visual model attribution with complete
axiomatic properties, resulting in enormous axiomatic-based attribution methods. Assume that
the F is a deep neural network to be explained, IG accumulates gradients along a linear path
γIG(α) = x′ + α(x− x′) via path integration:

Ai =

∫ 1

0

∂F (γIG(α))

∂γIG
i (α)

∂γIG
i (α)

∂α
dα. (1)
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Denoising Diffusion Path

Parameter frozen Pre-trained diffusion model Classifier guidance

Figure 2: Illustration of DDPath. At each step in the DDPath, the images are sampled from a
pre-trained diffusion model θ guided by a classifier ϕ.

Current approaches focus more on finding a better path, i.e., ∂γ(α)
∂α , ignoring the intermediate points

∂f(γ(α))
∂γi(α)

that is referred to as the inherent distribution shifts. On the other hand, an appropriate
baseline is essential to traditional path-based attribution methods. The black baseline (or black image)
suits IG better than a noise baseline, and this also causes difficulty in attributing black or dark regions
of interest. Andrei et al. addressed this obstacle by applying both black and white baselines [17].
Hence, these manually designed baselines have their own biases. In this paper, the proposed DDPath
can simply work with a noise baseline with which existing methods cannot work well.

Sensitivity. The sensitivity axiom dictates that if a single feature changes between a baseline and
a target image while causing different predictions, the attribution method must assign a non-zero
attribution score to the differing feature. Otherwise, the attribution method might be insensitive to
crucial changes.

Implementation invariance. An attribution method follows the implementation invariance prin-
ciple when, for the same pair of input data and predicted output, regardless of the specific neural
network architecture or implementation details, the attribution scores remain consistent.

4 Denoising Diffusion Path

For the target image x and a baseline x′, traditional attribution mainly considers xi − x′
i, i.e., the

differences between the i-th feature of the image and baseline, measuring how the classification model
can behave with the gradual appearance of the i-th feature. In our diffusion path, such differences
turned to the gradual appearance of images while the disappearance of noises, there are no direct
relationships between intermediate steps and the original noisy baseline in that the sampling of the
reverse diffusion process generates these intermediate images. It is practically implemented with
Riemann approximation that will be discussed in Sec. 4.3.
Definition 1. (Denoising Diffusion Path or DDPath) This path is a piece-wise linear function [24, 25]
built upon the reversely sampled sequence with a maximum step number T : xT , . . . ,xt,xt−1, . . . ,x0,
which is defined as

γ(α) = αxα, xα ∼ Nα(µα(x),Σα(x)), (2)

where xT is the noisy signal baseline and x0 is the finally sampled image, each piece
Nα(µα(x),Σα(x)) is a set of samples complied with a Gaussian distribution with mean and variance
concerning the target image x. The diffusion sample step t is aligned with the path coefficient α by
setting α = t

T ∈ [0, 1].

Theoretically, DDPath is also a type of definition in terms of a set of all possible paths, which is
similar to the adaptive path in GuidedIG [11] and Shapley values [26]. That is to say, for each loop
from the baseline to the target image, the path is composed of sampled images from every piece
Nα(µα(x),Σα(x)). For the rest of this paper, the γ(α) denotes the proposed DDPath if without a
specific statement.
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4.1 Attribution with DDPath

Based on Definition 1, we discuss how to attribute along the DDPath. Specifically, we showcase that
DDPath-IG, DDPath-BlurIG, and DDPath-GuidedIG enhance the corresponding baseline methods.
First, for the DDPath-IG, we can directly replace the linear path in Eq. (1) with the DDPath:

Definition 2. (DDPath-IG) Given a diffusion model Eθ pre-trained using classifier guidance, fϕ is
the corresponding pre-trained classifier, for the i-th feature in the input x of class y, its attribution is
the integrated gradients along the DDPath:

DDPath-IG ≜ Ai =

∫ 1

α=0

∂F (γ(α))

∂γi(α)

∂γi(α)

∂α
dα, γ(α) = αxα, xα ∼ Nα(µ̂θ(x),Σθ(x)), (3)

the Nα(µ̂θ(x),Σθ(x)) denotes the distribution parameterized by the diffusion model Eθ, and
µ̂θ(x) = ρ · µθ(x) + κ · Σ∇xα

log pϕ(y|xα). The ρ and κ are scaling factors controlling the
mean and the gradient term variation.

A critical problem of sampling with the diffusion model is that the generated images are diverse
when sampling from the noise signals. In DDPath-IG, we solve this obstacle by simply enforcing
the sampling centered at the target image, i.e., the mean and variance are calculated by the original
image x. We use the same sampling strategy for the following DDPath-BlurIG and DDPath-GIG.

Definition 3. (DDPath-BlurIG) Given the Gaussian kernels along the path parameter α, L(x, y, α) =∑∞
m=−∞

∑∞
n=−∞

1
παe

− x2+y2

α ·γ(α)(x−m, y−n), then the attribution of the i-th feature is obtained
by:

DDPath-BlurIG ≜ Ai =

T∑
t=1

∂F (L(x, y, α))

∂L(x, y, αt)

∂L(x, y, αt)

∂αt

αt

T
, (4)

where the t is the number of steps in the Riemann approximation, and αt = t · αt

T [10].

DDPath-BlurIG applies the DDPath and blurs the sampled images along the denoising path. That is
to say, it scales the spaces of all sampled pieces in Definition 3 while preserving the data distributions
within pieces to approach the real data distribution in Fig. 1.

Definition 4. (DDPath-GIG) Given an IG path γIG(α) [8] and a DDPath γ(α), the objective of
DDPath-GIG is defined as:

DDPath-GIG ≜ argmin
γ∈Γ

N∑
i=1

∫ 1

α=0

∂F (γ(α))

∂γi(α)

∂γi(α)

∂α
dα+ λ

∫ 1

α=0

∥γ(α)− γIG(α)∥ dα, (5)

where λ is the coefficient that balances the two terms, N is the number of features (or pixels), and Γ
contains all possible paths of DDPath.

In Definition 4, the traditional path is replaced with our DDPath, and in practice, the Γ is implemented
by repeating random sampling loops. Therefore, the first term of Eq. (5) aims to find a better denoising
path γ(α) that avoids those regions causing noisy explanations, and the second term ensures the
diffusion path does not deviate severely off the shortest path, decreasing the likelihood of crossing
areas that are too out-of-distribution.

4.2 Axiomatic Properties of DDPath-IG

In this section, taking DDPath-IG as an example, we show that it satisfies the axiomatic properties
in [8]. First, the DDPath-IG satisfies the sensitivity that the image differs from the noisy baseline,
and then the partial derivatives of differing features are non-zero. Second, the DDPath is agnostic
to the architecture of DNNs so that the DDPath-IG also satisfies the completeness that

∑N
i Ai =

F (x) − F (x′) [27, 28, 8]. Third, the calculation of partial derivatives of DDPath-IG follows the
chain rule so that the attributions are invariant to network implementations, therefore the DDPath-IG
satisfies the implementation invariance. Fourth, recall that the IG is the unique path method that is
symmetry-preserving (Theorem 1 in [8]), the DDPath-IG also maintains this property.
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Algorithm 1 Algorithm of DDPath-IG.
Require: Target image x and its label y, the initial noisy baseline x′ randomly sampled from a

Gaussian; target model F (·), diffusion trained classifier hϕ, the diffusion model Eθ, total number
of step T .

Return: Attribution for the target image x: A = 1
T

∑T−1
t=0 gt.

1: for t = 0 to T − 1 do
2: if t == 0 then
3: xt = x′ ▷ Noise baseline
4: else
5: xt = x′

t ▷ Sampled image in t− 1 step
6: end if
7: ρ = 1− t

T , κ = t
T ▷ Scaling coefficients

8: µ̂θ(x) = ρ · µθ(x) + κ · Σ∇xt
log pϕ(y|xt). ▷ Update sampling mean

9: x′
t ∼ Nt(µ̂θ(x),Σθ(x)). ▷ Sampling

10: gt =
∂(F (xt))

∂xt
. ▷ Calculate gradients

11: end for

4.3 Implementation with Classifier-Guided Diffusion Sampling

To ensure clarity, we reiterate that this paper concentrates on establishing a correlation between the
attribution path and the reverse diffusion process. Specifically, we implement the DDPath-IG with a
pre-trained diffusion model trained with classifier guidance [16]. The algorithm of DDPath-IG is
shown in Algorithm 1, and the algorithms of DDPath-BlurIG and DDPath-GIG are provided in the
Appendix. The implementation of the integral is also approximated by the Riemman approximation,
taking DDPath-IG as an example:

A = lim
T→∞

T∑
t=1

∂F (xt)

∂xt
· t
T
xt. (6)

For the classifier-guided diffusion sampling in [16], the sampling mean µ̂θ(x) = µ +
sΣ∇xt

log pϕ(y|xt) scales the classifier gradient term with s that corresponds to the sampling
steps t. However, in this work, the proposed denoising path should guarantee consistency between
the baseline and the target image. Therefore, in Definition 2, the sampling mean is centered at the
image x while the classifier gradients are calculated via step-wise intermediate images xt, and we
use a simple scaling scheme with ρ and κ:

ρ = 1− t

T
, κ =

t

T
. (7)

This scheme is reasonable in that at the very beginning of sampling, we do not expect the mean to
shift severely ensuring less data distribution shift. For the variance term, the gradients ∇xt

are noisy
because of the inaccurate predictions at initial steps. With the increase of t, more accurate gradients
can be obtained by more correct predictions. Hence, the sampling means µ̂θ(x) become mainly
dominated by this gradient of step-wise inputs, demonstrating that the DDPath progressively enables
the increasing prediction scores by preserving data distribution along the path.

5 Experiments

5.1 Experimental Setup

Datasets. Following previous studies [10, 11, 12], we evaluate the effectiveness of DDPath on the
validation set of ImageNet-1k [30] that contains 50, 000 images of 1, 000 classes. Furthermore, we
conducted a pointing game experiment on MS COCO validation set [31].

Models and baselines. For the classification model, we use ResNet-50 [32] and VGG-16/-19 [29]
as backbone. The baseline attribution methods are Guided-BP [33], IG [8], Smooth IG [9], Blur
IG [10], and Guided IG [11]. All the experiments are implemented by PyTorch [34] and conducted
on an NVIDIA A100 GPU. The number of sampling steps for DDPath methods is 250.
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Figure 3: Comparison of saliency maps and corresponding Insertion and Deletion curves. Image
examples are selected from the ImageNet-1k validation set. The classification model is the pre-trained
VGG-19 [29].

5.2 Interpretation Ability

Following previous DNN interpretation works [35, 6, 7, 36], we compare the Insertion and Deletion
scores and provide the corresponding curves and the saliency maps in Fig. 3. The insertion process
starts with a blurred image, and then iteratively injects original image information (3.6% of total
pixels) into the blurred version, guided by the saliency map values. Regions with higher saliency
scores are prioritized for insertion, gradually revealing the informative parts of the original image and
leading to its full reconstruction. Conversely, deletion identifies relevant pixels (3.6%) in the blurred
image based on the saliency map and replaces them with their corresponding values from the original
image. This process essentially “unmasks” the informative regions by strategically replacing noise
with the original content. In Fig. 3, we can see that the DDPath-IG captures more comprehensive
information and more details of the object, e.g., the birds’ wings and lobster feet. For the insertion
and deletion curves, the DDPath achieves better quantitative insertion AUC values, indicating the
image information progressively injected is more important. Although DDPath does not obtain the
best deletion AUCs, this is trivial to significant improvement on Insertion and better saliency maps.
More saliency maps are provided in Figs. 6 and 7 in Appendix.

5.3 Length of Path

In this section, we investigate the path length (or sampling steps for DDPath). Fig. 4 shows the
saliency maps of different methods at increased steps. With the path length increase, baseline
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Table 1: Quantitative comparisons of different interpretation methods on ImageNet validation set in
terms of Insertion and Deletion. Overall = Insertion - Deletion.

Model Metric Guided
BP IG Smooth

Grad BlurIG DDPath
-BlurIG GIG DDPath

-GIG
DDPath

-IG

VGG-16
Insertion↑ 21.2 21.7 20.9 19.2 22.3 21.2 23.5 25.9
Deletion↓ 15.4 14.8 15.0 13.3 13.5 14.1 13.8 12.7
Overall↑ 5.8 6.9 5.9 5.9 8.8 7.1 9.7 13.2

VGG-19
Insertion↑ 21.8 23.2 21.1 20.6 24.1 22.4 25.6 27.8
Deletion↓ 14.0 13.5 13.8 13.2 14.0 12.4 12.3 12.1
Overall↑ 7.8 9.7 7.3 7.4 10.1 10.0 13.3 15.7

ResNet-50
Insertion↑ 32.2 33.8 32.5 25.6 27.8 36.4 38.9 45.1
Deletion↓ 13.8 13.5 13.2 12.8 12.4 12.5 12.0 12.7
Overall↑ 18.4 20.3 18.3 12.8 15.4 23.9 26.9 32.4

250 500

IG

GIG

DDPath-IG

1005020Step: 300 400

Figure 4: Comparison of saliency maps and corresponding Insertion and Deletion curves obtained
by different methods. Image examples are selected from the ImageNet-1k validation set. The
classification model is the pre-trained VGG-19 [29].

methods are difficult to obtain interpretation performance gains further while achieving attribution
noise reduction. Although they achieve considerable saliency maps at early steps, they still exhibit
a weaker noise reduction effect. IG exhibits little variances on saliency maps which is caused by
linear path. GIG tends to find an adaptive path resulting in less structural consistency along the whole
path. The DDPath-IG provides us with a consistent emergence of the salient regions while preserving
consistent structures of the object. From the curves at the right part in Fig. 4, we can see that DDPath
performs worse at the early stages, and it obtains more improvements by increasing the path length,
however, the baselines gain less.

5.4 Pointing Game on COCO

To evaluate the effectiveness of DDPath in pinpointing the most salient pixels, we conducted a
“pointing game” on the MS COCO 2017 validation set. This approach, similar to those used in Score-
CAM [6] and Group-CAM [7], assesses localization accuracy. We calculated the metric Hits

Hits+Misses
to quantify how well the identified salient pixels coincided with the annotated bounding boxes in
the data, where the “Hits” counts the number of the most salient pixels that fall in the bounding
box, and “Misses” otherwise. Higher scores indicate that DDPath excels at highlighting the most
relevant image regions for the model’s prediction. In Table 2, the DDPath counterparts consistently
outperform the baseline methods, and we argue that this is severely caused by the noisy salient pixels
shifted away from the target objects, i.e., out of the bounding box. For example, in Fig. 3, the GIG of
the first case, GIG and BlurIG in the second case, and SmoothGrad in the third case. Therefore, the
DDPath not only reduces those noises but also avoids the incorrect salient pixels.
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Table 2: Pointing game evaluation on MS COCO 2017 validation set.

Model IG DDPath-IG BlurIG DDPath-BlurIG GIG DDPath-GIG

VGG-16 42.3 44.7 45.0 47.2 45.2 46.3
VGG-19 43.4 45.2 45.3 48.9 44.9 47.1
ResNet-50 45.2 46.9 46.6 50.0 47.2 50.5

5.5 Ablation Study

Scaling scheme. First, we discuss the scaling scheme defined in Eq. (7). The above
experiments involving DDPath used ρ = 1 − t

T , κ = t
T by default, which main-

tains a stably decreased weight for sampling mean. Here, we reverse such scaling as
ρ = t

T , κ = 1 − t
T to enable a smaller mean and larger variance at the initial steps.

Reverse

Reverse Default

Default

Figure 5: Saliency maps by different scaling
schemes.

In Table 3, we compare the two scaling schemes
in terms of Insertion (Ins.), Deletion (Del.), and ac-
curacy information curves (AIC) [17, 11]. We can
see that the Reverse setting performs worse than the
Default, demonstrating that sampling with a smaller
mean and a larger variance at early steps is inferior in
preserving information from the input image. Com-
pared with the baseline methods, the DDPath with
Reverse scaling performs better in AIC and Insertion,
showing the considerable effect of avoiding distri-
bution shift with DDPath. However, DDPath with
Reverse scaling achieves higher deletion values, and
we claim that this is due to the larger initial variance
caused edge detection effect over the whole image,
which compromises the target object. In Fig. 5, the
Reverse results highlight more noises and more edges, neglecting the inner regions of the objects.

Attribution with noise. Here, we compare the manually adding noise with our DDPath. In
Table 4, we implement Noise counterparts for IG, BlurIG, and GIG. SmoothGrad is also a method of
constructing a noisy path. Compared with Table 1, IG-Noise, BlurIG-Noise, and GIG-Noise obtain
slight improvements against the vanilla versions in terms of AIC and Insertion, but they are still
inferior to DDPath versions. This verifies that the DDPath enables better noise reduction and accurate
predictions for the points on the path.

Table 3: Ablation on Scaling Scheme.

Method Scaling AIC↑ Ins.↑ Del.↓
IG - 15.3 23.3 13.5

DDPath-IG Default 18.9 27.8 12.1
Reverse 16.2 24.8 14.5

BlurIG - 20.4 20.6 13.2

DDPath-BlurIG Default 24.5 24.1 14.0
Reverse 20.2 21.9 14.3

GIG - 15.0 22.4 12.4

DDPath-GIG Default 19.7 25.6 12.3
Reverse 17.7 24.5 13.2

Table 4: Comparison of Adding Noise.

Method AIC↑ Ins.↑ Del.↓
IG-Noise 15.8 23.5 13.3
BlurIG-Noise 21.5 20.6 13.6
GIG-Noise 14.3 21.0 12.5
SmoothGrad 16.6 21.1 13.8

6 Conclusion

This paper introduces the Denoising Diffusion Path (DDPath), a novel approach for mitigating
noise accumulation in path-based attribution methods. DDPath leverages the power of diffusion
models to construct a path where noise is progressively removed, leading to significantly cleaner
and more interpretable attributions. We demonstrate that DDPath adheres to essential axiomatic
properties and integrates seamlessly with existing methods like Integrated Gradients, requiring only
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a pre-trained classifier-guided diffusion model. Extensive evaluations showcase the superiority of
DDPath compared to traditional path-based methods, achieving explanations with less noise and
better alignment with the DNN’s decision-making process.

Broader impact and limitation. This paper brought new insights into the attribution of DNNs
with simple implementations, i.e., classifier-guided diffusion, and it will trigger more related research
in this direction by applying more advanced diffusion models. Moreover, it also provides a possible
way of investigating the knowledge of large language models via diffusion models to realize the true
human-understandable vision-language consistent explanations. A key limitation of DDPath is that it
requires a longer path (more sampling steps) than current methods.
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A Appendix

A.1 Algorithms of DDPath-BlurIG and DDPath-GIG

Algorithm 2 Algorithm of DDPath-BlurIG.
Require: Target image x and its label y, the initial noisy baseline x′ randomly sampled from a

Gaussian; target model F (·), diffusion trained classifier hϕ, the diffusion model Eθ, total number
of step T , the t-step Gaussian blur kernels L(t).

Return: Attribution for the target image x, A = 1
T

∑T−1
t=0 gt.

1: for t = 0 to T − 1 do
2: if t == 0 then
3: xt = x′ ▷ Noise baseline
4: else
5: xt = x′

t ▷ Sampled image in t− 1 step
6: end if
7: ρ = 1− t

T , κ = t
T ▷ Scaling coefficients

8: µ̂θ(x) = ρ · µθ(x) + κ · Σ∇xt
log pϕ(y|xt). ▷ Update sampling mean

9: x′
t ∼ Nt(µ̂θ(x),Σθ(x)); x′

t = L(x′
t, t) ▷ Sampling and Gaussian blur on sampled image

10: gt =
∂(F (xt))

∂xt
. ▷ Calculate gradients

11: end for

Algorithm 3 Algorithm of DDPath-GIG.
Require: Target image XI , noise baseline XB randomly sampled from Gaussian, target model F (·),

diffusion trained classifier hϕ, the diffusion model Eθ, total number of step T , gradient of the
function grad(x), target fraction of features to change at each step p ∈ (0, 1].

Return: attr, the attribution for target image XI .
1: dtotal ← ||XB −XI ||1, x← XB , attr ← zeros(size ofXI) ▷ Initilization
2: for t← 1 to T do
3: if t == 0 then
4: x = XB ▷ Assign noise baseline
5: else
6: x = x′

t ▷ Sampled image in t− 1 step
7: end if
8: ρ = 1− t

T , κ = t
T ▷ Scaling coefficients

9: µ̂θ(x) = ρ · µθ(x) + κ · Σ∇xt log pϕ(y|xt). ▷ Update sampling mean
10: x← x′

t ∼ Nt(µ̂θ(x),Σθ(x)). ▷ Sampling
11: repeat until δ ≤ 1
12: yi ←∞, ∀I|xi = XI

i ; dtarget ← dtotal(1− t
T ); dcurrent ← ||x−XI ||1

13:
14: if dtarget = dcurrent then
15: break
16: end if
17: Assign to S the p fraction of features with the lowest absolute gradient values:
18: S ← i||yi| ≤ fraction(p, |y|)
19: dS ←

∑
i∈S |xi −XI

i |; δ ←
dcurrent−dtarget

dS
; temp← x

20: if δ > 1 then
21: xi ← XI

i , ∀ ∈ S
22: else
23: xi ← (1− δ)xi + δXI

i , ∀i ∈ S
24: end if
25: yi = 0, ∀i =∞; attri = attri + (xi − tempi)yi, ∀i ∈ S
26: end for
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A.2 More results of saliency maps obtained by VGG-19

IG Smooth IG Blur IG Guided IG DDPath IGInput

Figure 6: Saliency maps obtained by VGG-19.
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A.3 More results of saliency maps obtained by ResNet-50

IG Smooth IG Blur IG Guided IG DDPath IGInput

Figure 7: Saliency maps obtained by ResNet-50.

15



64x64: C 249.76M, D 1.10G

128x128: C 162.48M, D 1.57G


256x265: C, D 2.06G

512x512: C 207.82M, D 2.08G

256x26564x64 128x128 512x512
Figure 8: Saliency maps generated by DDPath-IG using diffusion models of varying sizes.

A.4 Different diffusion model sizes

To investigate the diffusion model size, we apply the released diffusion models by [16]. Note that
these diffusion models of different sizes correspond to different image resolutions, including 64× 64,
128× 128, 256× 256, and 512× 512. The visualization results can be found in Fig. 8. We can see
that larger models generate larger resolutions of saliency maps, and they illustrate more fine-grained
details.

A.5 Effects on adversarial examples

We applied two approaches to generate adversarial samples, one is the fast gradient sign attack
(FGSM) described by Goodfellow et al. [37], and the other is adding simple Gaussian noise. We
compared the results of IG and DDPath-IG in terms of Insertion and Deletion values, these results and
the saliency maps are shown in Fig. 9. Interestingly, the IG generated saliency maps with degraded
quality, while the DDPath-IG are more robust to adversarial samples (FGSM and Gaussian).

FGSM

Gaussian

Clean

IG IGDDPath-IG DDPath-IG

Ins: 42.3 Del: 3.25 Ins: 45.9 Del: 2.12 Ins: 44.9 Del: 12.5 Ins: 46.3 Del: 10.0

Ins: 34.7 Del: 7.2 Ins: 42.8 Del: 3.63

Ins: 40.23 Del: 6.4 Ins: 44.32 Del: 4.83

Ins: 39.4 Del: 15.98 Ins: 45.52 Del: 11.8

Ins: 41.42 Del: 15.06 Ins: 44.8 Del: 12.0

Figure 9: Saliency maps for adversarial examples generated by FGSM and Gaussian.

A.6 Additional scaling scheme

We evaluated our DDPath by setting ρ = 1 − ( t
T )

a and κ = ( t
T )

a with both a = 0.5 and a = 2,
and we note that the linear scaling used in this paper is equal to that of a = 1. As shown in Table 5,
we can see that the DDPath-IG surpasses the baseline IG among different a values, indicating the
effectiveness of our DDPath. When a = 2, the weight of the mean term decreases slowly at the
early step, ensuring better preservation of the main object in the images. Besides, the weight of the
class-related variance term increases fast at higher steps, enabling better preservation of discriminative
information and object details, and this is consistent with the mechanism of task weights in [38]. In
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contrast, when a = 0.5, the variance weight increases fast at early steps while the noises are still
severe. Hence, the class-related information can be affected by the noises while influencing the
classification results and attribution qualities as shown in Fig. 10. The setting of a = 1 is a trade-off
in our experiments.

Table 5: Scaling with different a values using VGG-19 target model.

Model IG DDPath-IG (0.5) DDPath-IG (1.0) DDPath-IG (2.0)

VGG-16 42.3 44.7 45.0 47.2
VGG-19 43.4 45.2 45.3 48.9
ResNet-50 45.2 46.9 46.6 50.0

a = 0.5 a = 2a = 1

IG DDPath-IGInput

Figure 10: Saliency maps generated by different scaling schemes with a ∈ {0.5, 1, 2}.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions are clearly stated, and we have highlighted the scope of
DNN attribution/interpretation/explanation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed and included in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: this work does not provide theoretical theorems and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we have described the data and algorithms to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The data employed in this study are the publicly available, and the underlying
source code will be released later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the experimental setting and details are clearly stated in the Experiments
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: our results do not involve statistical analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we have stated in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have reviewed NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: in the Conclusion section, we have highlighted that the proposed method can
inspire more research on DNN attribution using diffusion models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: the pre-trained diffusion model used in this paper has been publicly released
on GitHub.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: the code, data, and models were cited in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: no new assets involved.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: no crowdsourcing involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: no potential risks incurred by study participants involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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