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Abstract. Artifacts in MR images can degrade diagnostic utility and
compromise the performance of downstream algorithms. Deep neural net-
works are particularly sensitive to such artifacts and can produce inaccu-
rate or biased outputs. Automated artifact detection is therefore essential
for improving clinical efficiency and ensuring high-quality training data.
In this work, we propose a contrastive learning approach that structures
the embedding space to position images with higher artifact levels closer
to a noise reference. This enables unsupervised artifact detection and
quantification by computing the cosine similarity between the image and
noise embeddings at test time. Extensive experiments showed that our
method outperforms existing unsupervised approaches in detecting vari-
ous types of MR artifacts, including motion, ghosting, aliasing, metal and
gas, on prostate T2-weighted and brain T1-weighted images. In addition,
it achieved the highest performance in motion artifact quantification by
a substantial margin, highlighting its ability to learn rich representations
of artifact severity.

Keywords: MR artifact detection · Image quality control · Contrastive
learning.

1 Introduction

Significant artifacts in an image can make the scan unsuitable for diagnostic ap-
plications, research, or integration into downstream algorithms that aid clinical
decision-making [16]. Deep neural networks (DNNs) are known to be sensitive
to image quality [9, 11], producing inaccurate or biased outputs when images
are compromised by artifacts [22]. An automatic artifact detection system could
improve clinical workflow efficiency by enabling immediate repetition of prob-
lematic scans and reducing the need for human image quality assessment. In
addition, it could remove corrupted images from large datasets, enabling the
training of more robust DNNs [16].
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Current automatic image quality control (IQC) methods often rely on an-
notations generated by human experts [8, 3, 2, 13]. However, manual labeling is
subjective, time-consuming and dataset-specific, which limits the generalization
of these supervised methods. Unsupervised approaches have emerged to over-
come these challenges. RadQy [18], for example, is an open-source IQC tool for
MR and CT images that extracts a series of quality measures, including noise
ratios, variation metrics, entropy and energy criteria. Sciarra et al. [20] trained a
network to predict the structural similarity index measure between synthetically
corrupted and corresponding clean images (SSIM-Regr). Zuo et al. [22] first
trained an encoder to learn artifact representations using contrastive learning
(CLR) and synthetically generated artifacts. Artifact detection was then per-
formed by thresholding the likelihood of the resulting embeddings, as estimated
by a normalizing flow (CLR-NF). However, the method relies on assumptions
about the prevalence of artifact-corrupted images that may not generalize across
datasets. Furthermore, it lacks a mechanism for quantifying artifact severity and
requires training two separate models on disjoint subsets of the training data.

In this study, we propose a novel contrastive learning framework that enables
both detection and quantification of MR artifacts using a single network. Specifi-
cally, we designed a contrastive loss that encourages patches with similar artifact
levels to lie closer in the embedding space, using standard Gaussian noise as a
reference. The contrastive loss encourages alignment between artifact-corrupted
patches and noise samples, while enforcing artifact-free patches to remain dis-
similar from noise. Moreover, the proposed method organizes the space such
that more severely corrupted patches are embedded closer to noise than patches
with less severe artifacts. Since the designed loss structures the embedding space
solely through angular relationships, we defined the artifact score as the cosine
similarity between the noise embedding and the image embedding at test time.
The main contributions of this work are the following.

1. A novel contrastive learning method is proposed that structures the embed-
ding space such that images with higher artifact levels are embedded closer
to a noise reference.

2. A novel unsupervised method for artifact detection is introduced that uses a
single network, without making any assumptions about artifact prevalence.
In addition, it incorporates a mechanism to quantify artifact severity directly.

3. Extensive evaluations were conducted on four test sets spanning two use
cases: prostate T2-weighted (T2w) and brain T1-weighted (T1w) images.
Our method outperformed existing unsupervised approaches in artifact de-
tection and achieved substantially stronger performance in artifact quantifi-
cation.

2 Methods

2.1 Artifact Encoder

Contrastive learning aims to learn discriminative features by comparing query,
positive, and negative examples. In this study, the positive example was selected
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to have the same artifact level as the query, while negative examples were chosen
to differ in artifact severity [22]. Contrastive training of the artifact encoder is
illustrated in Fig. 1. We distinguished between two scenarios, A and B, each
occurring with probability 0.5. In scenario A, query x∗ and positive x+ were
sampled as random patches from the same MR image I. Negative examples
were constructed using two distinct strategies. In the first strategy, synthetic ar-
tifacts were introduced using a randomly selected transform from a set of artifact
generators (e.g., RandomMotion and RandomGhosting from TorchIO [15]). Gen-
erator parameters were sampled uniformly from a predefined range; for example,
translation of 3mm could be drawn from the [2mm, 10mm] interval when us-
ing RandomMotion. Subsequently, Nα random patches were extracted from the
artifact-corrupted version of image I. Artifact negatives, denoted by {x−

α,i}
Nα
i=1,

guide the encoder to focus on artifact-related features while discouraging it from
learning irrelevant information related to contrast or anatomy. In the second
strategy, Nβ random patches were sampled from another MR image, denoted
by {x−

β,j}
Nβ

j=1. Here, we assumed that patches from a different scan exhibit dif-
ferent artifact level. By leveraging patches from real MR images as negatives,
the encoder learns to capture various kinds of artifacts beyond those simulated
during training [22]. In scenario B, we randomly selected an artifact generator
Glow to corrupt image J , yielding Jlow. The query and positive examples were
sampled as two random patches from Jlow. To generate negative examples, we
selected a second artifact generator Ghigh, constrained to produce higher arti-
fact severity than Glow. For instance, if Glow was a RandomMotion transform
with a translation parameter of 1 mm, then Ghigh could be RandomMotion
with a 4 mm translation. Negative examples included Nα patches from high-
artifact image Jhigh and Nβ patches from another MR image. In each scenario,
we generated Nν noise patches from the standard normal distribution denoted
by {xν,k}Nν

k=1.
We trained the artifact encoder f(·) via contrastive learning and used noise as

reference. The proposed contrastive loss L consists of two terms. The first term
is based on the NT-Xent loss [6] and encourages patches with similar artifact
levels to lie closer in the embedding space:

LCLR = − log
exp(sim(z∗, z+)/τ)

exp(sim(z∗, z+)/τ) +
∑Nα+Nβ

i=1 exp(sim(z∗, z−i )/τ)
(1)

where z = f(x) ∈ R2 is the embedding vector for input x, {z−i }
Nα+Nβ

i=1 are all the
negative embeddings, sim(u,v) = u⊺v/∥u∥∥v∥ denotes the cosine similarity and
τ is the temperature scaling parameter. Intuitively, LCLR pulls the positive closer
to the query and pushes negatives apart in the embedding space. The second loss
term encourages alignment between artifact negatives and noise patches, while
enforcing query and positive to remain dissimilar from noise samples:

Lν
CLR = − log

exp(sim(z̄ν , z̄
−
α )/τν)

exp(sim(z̄ν , z̄
−
α )/τν) + exp(sim(z̄ν ,

z∗+z+

2 )/τν)
(2)
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where z̄ν = 1
Nν

∑Nν

i=1 zν,i and z̄−α = 1
Nα

∑Nα

j=1 z
−
α,j , τν denotes the temperature

scaling parameter for the loss term. The artifact encoder was trained using a
weighted combination of the two contrastive loss terms:

L = LCLR + λνLν
CLR (3)

where λν controls the contribution of the second term. In scenario A, L structures
the embedding space so that artifact-corrupted patches are positioned closer to
noise patches than artifact-free patches. In scenario B, it arranges the space
such that more severely corrupted patches are embedded closer to noise than
those with less severe artifacts. Therefore, scenario A encourages the encoder to
learn representations for artifact detection, while scenario B enforces learning
for artifact quantification. Fig. 2(a) visualizes the embedding space, where L2-
normalized embeddings lie on the unit circle.

Query Positive Artifact Negative ( ) Other-Image Negative ( ) Noise ( )

Encoder

Attract

Repel

Low-Artifact Query Low-Artifact Positive High-Artifact Negative Other-Image Negative Noise

Attract
Repel

Scenario A

Scenario B

Fig. 1. Contrastive training of the artifact encoder. Scenarios A and B are sampled with
equal probability. In A, query and positive are random patches from the same scan I.
Artifact negative is a random patch from artifact-corrupted version of I. Other-image
negative is sampled from another MR scan. In B, query and positive are from low-
artifact version of scan J , high-artifact negative is from a heavily corrupted version of
J . In embedding space, query z∗ is attracted to positive z+ and repelled from negatives
z−α and z−β , noise zν is attracted to artifact negative z−α and repelled from z∗ and
z+. During training, multiple negatives and noise patches are sampled per query. In
scenario A, artifact-corrupted patches are positioned closer to noise than artifact-free
ones (artifact detection); in B, patches with high artifact levels are embedded closer to
noise than patches with low artifact levels (artifact quantification).
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2.2 Artifact Score

Since the loss is based on the cosine similarity, the embedding space is structured
solely by angular relationships. At test time, noise patches are generated from
the standard normal distribution and a center crop is extracted from the image.
We defined the artifact score as the cosine similarity between the average noise
embedding and the embedding of the center crop, as shown in Fig. 2(b) using a
single noise patch. Higher score indicates higher artifact level.

(a) Embedding space.
NoiseTest

Trained

Encoder

(b) Artifact score.

Fig. 2. (a) L2-normalized embeddings lie on the unit circle in R2. Artifact negative
z−α is embedded closer to noise zν than query z∗ and positive z+. (b) Artifact score is
defined as the cosine similarity between noise and test image embeddings.

3 Experimental Results

3.1 Datasets

For the prostate T2w use case, the training set comprised 720 and the validation
set 180 scans from the public PI-CAI dataset [19]. We evaluated the methods
on one real and two synthetic test sets. We annotated a private dataset of 177
real-world prostate T2w scans for MR artifacts (Real Multi). The dataset con-
tained retrospectively collected, anonymized clinical data; IRB approval was not
required for secondary use. It included 11 motion, 18 ghosting, 11 metal, 3 alias-
ing and 1 gas artifact cases. We also generated a synthetic multiclass test set
(Synth Multi), in which 600 held-out cases from the PI-CAI dataset constituted
the artifact-free class. For each artifact class, 600 cases were simulated from the
artifact-free scans. Motion and ghosting were generated using RandomMotion
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and RandomGhosting transforms, while aliasing was simulated following the im-
plementation in [16]. Furthermore, we created a synthetic motion-specific test
set (Synth Motion), consisting of moderate and severe motion artifact classes,
each simulated from the 600 artifact-free cases. Scans were first preprocessed by
standardizing their orientation to RAS+, followed by resampling to an isotropic
resolution of 0.6 × 0.6 × 0.6 mm3. Image intensities were rescaled to [−1, 1]
using the [0.25, 99.75] percentiles of each input image, reducing the influence
of extreme intensity values, such as those caused by hip implants in prostate
scans [4]. We used a patch size of 180× 180× 70 to extract query, positive and
negative examples.

For the brain T1w use case, the training and validation sets consisted of 523
and 58 scans from the public IXI dataset [1], respectively. We utilized the public
MR-ART dataset [14] as test set. The dataset contains 436 T1w brain scans from
neurologically healthy adults, each acquired under three conditions: completely
still, mild head motion, and pronounced head motion. Three neuroradiologists
assigned each volume a 3-point motion artifact severity score. We preserved the
original near-isotropic spacing of the IXI dataset (0.9×0.9×1.2 mm3), and used
this resolution during evaluations. After rescaling image intensities to [−1, 1], we
extracted 128× 128× 74 patches for contrastive training.

3.2 Implementation Details and Comparison Methods

In both use cases, a mini-batch contained one query, one positive, ten artifact
negatives (Nα = 10), ten other-image negatives (Nβ = 10) and two noise patches
generated from the standard Gaussian distribution (Nν = 2). We set the tem-
perature scaling parameters as τ = 0.1 and τν = 1. By setting τ < τν , the con-
trastive loss emphasizes stronger attraction between the query and positive than
between artifact negatives and noise samples. We trained a DenseNet121 [10]
model, as implemented in MONAI 1.3.2 [5], using the Adam optimizer [12] with
a learning rate of 10−3. We applied RandomMotion with translation param-
eter [2mm, 10mm] and RandomGhosting with num_ghosts parameter [4, 10] to
generate artifact negative examples. We set λν = 0.5, which controls the con-
tribution of Lν

CLR in the loss. The artifact encoder was trained for 200 epochs
for the prostate T2w and 300 epochs for the brain T1w use case. Model weights
were saved at the lowest validation loss. Trainings were performed on an NVIDIA
GeForce RTX 3090 GPU card with 24 GB memory.

As no public code was available, we re-implemented CLR-NF [22]. For the
prostate T2w use case, we trained the artifact encoder on 150 PI-CAI cases.
RealNVP [7] normalizing flow was trained on artifact embeddings generated on
750 PI-CAI images using the glasflow library [21]. For the brain T1w use case,
the artifact encoder and RealNVP were trained on 100 and 481 IXI scans, re-
spectively. We also re-implemented SSIM-Regr [20]. Lastly, we evaluated RadQy
and reported the results of its best-performing metric among the 15 provided.
For a fair comparison, we applied the same settings as for our method wherever
applicable.
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3.3 Artifact Detection and Quantification

Table 1 presents the artifact detection performance of all methods across the four
test sets. Each row reports the binary classification performance for distinguish-
ing the artifact-free class (label 0) from the corresponding artifact class (label
1), measured by the area under the receiver operating characteristic curve (AU-
ROC). On the MR-ART dataset, our method outperforms all other approaches
for both moderate and severe motion artifacts. On the Real Multi test set, it
achieves superior performance across all artifact types except for ghosting. In
Cartesian sampling schemes, ghosting artifacts appear along the phase-encoding
direction and are more prominent near the edges of the image, where signal
intensity is lower [17]. All methods, except RadQy, apply center cropping dur-
ing inference, potentially excluding artifact-affected regions. Increasing inference
patch size of our method to 360× 360× 140 improved ghosting detection to an
AUROC of 0.83, supporting this hypothesis. Overall, our method demonstrates
the strongest performance on synthetic test sets. Fig. 3 shows axial slices from
artifact-affected scans that were correctly detected by our method.

Table 1. Artifact detection performance of our method compared against RadQy [18],
SSIM-Regr [20] and CLR-NF [22] on four test sets. Each row reports the binary classi-
fication performance for distinguishing between the artifact-free class (label 0) and the
artifact class (label 1) in AUROC. 95% bootstrap CI widths are shown in brackets. Best
performance is highlighted in bold. Underlining indicates that our method performs
statistically significantly better than the second-best method at a 5% level. Statistical
test was conducted using 95% bootstrap CI for the AUROC difference, results were
considered significant if the CI did not include zero.

Test Set Artifact RadQy SSIM-Regr CLR-NF CLR (Ours)

MR-ART (T1w) Mod Motion 0.62 (0.13) 0.55 (0.14) 0.53 (0.14) 0.68 (0.14)
Sev Motion 0.65 (0.12) 0.63 (0.12) 0.61 (0.12) 0.94 (0.05)

Real Multi (T2w)

Motion 0.65 (0.38) 0.61 (0.37) 0.73 (0.28) 0.79 (0.19)
Ghosting 0.86 (0.14) 0.84 (0.20) 0.55 (0.26) 0.27 (0.18)
Metal 0.78 (0.28) 0.66 (0.30) 0.50 (0.35) 0.97 (0.05)
Aliasing 0.78 (0.45) 0.08 (0.16) 0.98 (0.05) 0.98 (0.04)
Gas 0.00 (0.00) 0.45 (0.17) 0.71 (0.15) 0.72 (0.15)

Synth Multi (T2w)
Motion 0.81 (0.05) 1.00 (0.00) 0.92 (0.03) 1.00 (0.01)
Ghosting 0.58 (0.06) 0.92 (0.03) 0.59 (0.06) 0.93 (0.03)
Aliasing 0.59 (0.06) 0.99 (0.01) 0.80 (0.05) 1.00 (0.00)

Synth Motion (T2w) Mod Motion 0.82 (0.05) 1.00 (0.00) 0.93 (0.03) 1.00 (0.01)
Sev Motion 0.83 (0.05) 1.00 (0.00) 0.95 (0.02) 1.00 (0.00)

We evaluated the methods for artifact quantification by computing the Spear-
man correlation between ground truth labels and artifact scores on the MR-ART
and synthetic motion test sets. Table 2 demonstrates that our method signifi-
cantly outperforms other approaches on both datasets.
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(a) (a) (b) (c) (d) (e) 

Fig. 3. Examples of artifacts from the Real Multi (a–d) and MR-ART (e) test sets,
correctly detected by our method. The artifact types shown are: (a) ghosting, (b) metal,
(c) aliasing, (d) gas and (e) motion.

Table 2. Spearman correlation between predicted artifact scores and ground truth
labels for each method, evaluated on two test sets.

Test Set Artifact RadQy SSIM-Regr CLR-NF CLR (Ours)
MR-ART (T1w) Motion 0.23 (0.19) 0.21 (0.18) 0.17 (0.18) 0.72 (0.09)
Synth Motion (T2w) Motion 0.48 (0.08) 0.74 (0.05) 0.66 (0.06) 0.91 (0.01)

3.4 Ablation studies

To assess the contribution of individual components of our method, we con-
ducted ablation studies on the MR-ART dataset. First, we did not include any
other-image negatives during contrastive training (Nβ = 0). Second, we removed
the loss term that structures the embedding space to position noise as reference
(λν = 0). Finally, we excluded scenario B, where the query and positive exam-
ples contain low-severity artifacts. AUROC in Table 3 quantifies performance
in distinguishing artifact-free scans from all motion-affected cases. The results
demonstrate that including all components yields the best performance.

Table 3. Ablation studies for individual components of our method conducted on the
MR-ART test set. Nβ : number of other-image negatives, λν : weight for the second loss
term.

Method AUROC Spearman Corr
CLR (Ours) 0.85 (0.07) 0.72 (0.09)
Nβ = 0 0.70 (0.11) 0.43 (0.17)
λν = 0 0.66 (0.10) 0.41 (0.17)
No Scenario B 0.71 (0.12) 0.39 (0.17)

4 Conclusion

In this work, we proposed a contrastive learning method that structures the em-
bedding space such that images with higher artifact levels lie closer to a noise
reference. This enables unsupervised detection and quantification of various MR
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artifacts in both prostate T2w and brain T1w images. Our method outperformed
existing unsupervised approaches in artifact detection and achieved the highest
performance in artifact quantification by a substantial margin, highlighting its
ability to learn rich representations of artifact severity. Since our method does
not rely on manual annotations, it enables the training of large-scale models
on a diverse range of unannotated datasets. Future work could explore training
a foundation model on multi-sequence, multi-anatomy MR datasets to enable
generalization across diverse use cases. Given the strong artifact detection per-
formance achieved with a lightweight architecture, our method enables fast in-
ference and could be integrated into clinical workflows to flag low-quality scans
for reacquisition or downstream correction.
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