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ABSTRACT

Unsupervised Domain Adaptation (UDA) is crucial for reducing the need for
extensive manual data annotation when training deep networks on point cloud
data. A significant challenge of UDA lies in effectively bridging the domain
gap. To tackle this challenge, we propose Curvature Diversity-Driven Nuclear-
Norm Wasserstein Domain Alignment (CDND). Our approach first introduces a
Curvature Diversity-driven Deformation Reconstruction (CurvRec) task, which
effectively mitigates the gap between the source and target domains by enabling
the model to extract salient features from semantically rich regions of a given
point cloud. We then propose Deformation-based Nuclear-norm Wasserstein
Discrepancy (D-NWD), which applies the Nuclear-norm Wasserstein Discrepancy
to both deformed and original data samples to align the source and target domains.
Furthermore, we contribute a theoretical justification for the effectiveness of D-
NWD in distribution alignment and demonstrate that it is generic enough to be
applied to any deformations. To validate our method, we conduct extensive exper-
iments on two public domain adaptation datasets for point cloud classification and
segmentation tasks. Empirical experiment results show that our CDND achieves
state-of-the-art performance by a noticeable margin over existing approaches.

1 INTRODUCTION

Adopting deep neural network on point cloud representation learning has led to significant success in
various applications, including robotics Maturana & Scherer|(2015));Duan et al.| (2021), autonomous
vehicles Mahjourian et al.| (2018); [Cui et al.| (2021), and scene understanding |Zheng et al.| (2013));
Zhu et al.|(2017). Most works rely on supervised learning|Su et al.|(2015);|Wu et al.| (2015));|Q1 et al.
(2017) and assume that training and testing data are sampled from the same distribution. However,
acquiring labels for training data is both time-consuming and labor-intensive. Moreover, testing data
may be from a different distribution w.r.t. training data in real-world scenarios, known as ‘domain
gap’. Unsupervised domain adaptation (UDA) offers a solution to tackle these issues by utilizing
knowledge transfer from source domains with annotated data to target domains with only unlabeled
data. Although UDA is well studied for 2D planner data, e.g., images, UDA for 3D point clouds has
not been explored extensively due to challenges such as irregular, unstructured, and unordered nature
of 3D point cloud data. Such irregularities exacerbate geometric variations between the source and
target domains compared to the 2D planner data and make extending existing solutions nontrivial.

To address the above challenges, we propose Curvature Diversity-Driven Nuclear-Norm Wasser-
stein Domain Alignment (CDND). Our first contribution is a deformation reconstruction method
that leverages curvature diversity in different regions of a point cloud for domain alignment. We
evaluate curvature diversity based on the entropy that captures the saliency of each region. This
metric is then used to select regions for deformation and reconstruction. Unlike previous methods
such as|Achituve et al.|(2021)), our approach strategically selects regions based on their information
content. Also, distinct from [Zou et al.| (2021)), which selects regions with high curvature and clas-
sifies them into a fixed set, we select regions with low curvature diversity and focus on deforming
and reconstructing these regions rather than classifying them. Our method avoids deforming se-
mantically rich regions and enables the feature extractor to focus on extracting features from these
regions. Our second contribution is the Deformation-based Nuclear-norm Wasserstein Discrepancy
(D-NWD). Unlike NWD, D-NWD incorporates features from both original and deformed samples
when aligning the source and target domains. While including features from deformed samples cre-
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ates a diverse and robust feature space that may improve model generalization under domain shift,
our primary contribution lies in the theoretical analysis of D-NWD. This analysis demonstrates that
D-NWD can reduce the domain gap between the source and target domains, showcasing its effec-
tiveness. Our analysis also illustrates that D-NWD is generic enough to be used for any deformation
method, not just the one presented in this paper. Experiments on common benchmarks for both
classification and segmentation show that our approach achieves state-of-the-art performance.

2 RELATED WORKS

Domain Adaptation on Point Clouds. Despite extensive works on UDA for 2D planner image
data/Ganin & Lempitsky|(2015);/Tzeng et al.|(2017); Mansour et al.[(2008)), only a limited number of
studies |Qin et al.|(2019); |Achituve et al.|(2021);|Shen et al.|(2022);Zou et al.|(2021) address UDA in
point clouds and non-planner data spaces as extending methods for 2D data for point clouds in non-
trivial. Qin et al.|Qin et al.[(2019) introduce PointDAN that integrates both local and global domain
alignment strategies. They also provide the PointDA benchmark for point cloud classification under
the UDA setting. Achituve et al. |Achituve et al.|(2021) propose a domain alignment technique that
involves reconstruction from deformation and incorporates PointMixup |Chen et al.[ (2020). They
also introduce the PointSegDA benchmark for point cloud segmentation under the UDA setting.
Zou et al. Zou et al| (2021) utilize two geometry-inspired self-supervised classification tasks to
learn domain-invariant feature. Shen et al. [Shen et al.| (2022) introduce a self-supervised method
for learning geometry-aware implicit functions to handle domain-specific variations effectively. Our
work differs from these approaches by proposing more sophisticated self-supervised learning tasks
and a generic theoretical framework, leading to state-of-the-art performance.

Optimal Transport for Domain Adaptation. The Wasserstein metric, known for encoding the
natural geometry of probability measures within optimal transport theory, has been extensively stud-
ied for its application in domain adaptation due to its nice properties. Gautheron et al.|Gautheron
et al.| (2019) propose Wasserstein Distance Guided Representation Learning to leverage the Wasser-
stein distance to enhance similarities between embedded features. [Lee et al.| (2019) and |Gabourie
et al. (2019) propose to use the sliced Wasserstein discrepancy instead of L; distance in Maximum
Classifier Discrepancy |Saito et al.| (2018)) to achieve a more geometrically meaningful intra-class
divergence. Additionally, CGDM |Du et al.|(2021) introduces cross-domain gradient discrepancy to
further mitigate domain differences. DeepJ-DOT |Damodaran et al.| (2018) utilizes a coupling ma-
trix to map source samples to the target domain. Gautheron et al. Gautheron et al.|(2019) propose a
feature selection technique that addresses the domain shifts problem. Moreover, Xu et al. Xu et al.
(2020) develop reliable weighted optimal transport, which uses spatial prototypical information and
intra-domain structure to evaluate sample-level domain discrepancies, resulting in a better pairwise
optimal transport plan. Finally, Fatras et al. |Fatras et al.|(2021) present an unbalanced optimal trans-
port method combined with a mini-batch strategy to efficiently learn from large-scale datasets. In
this work, we developed our D-NWD based on another previous method, NWD |Chen et al.| (2022).

3 PROPOSED METHOD

We begin by defining the unsupervised domain adaptation problem and then we provide an overview
of our UDA approach, called Curvature Diversity-Driven Nuclear-Norm Wasserstein Domain Align-
ment (CDND), in Section[3.1] Next, we detail our main contributions: (1) the Curvature Diversity-
based Deformation Reconstruction method (CurvRec), as discussed in Section [3.2] and Section[3.3]
and (2) the Deformation-based Nuclear-norm Wasserstein Discrepancy (D-NWD) in Section
Following in Section[d] we present our theoretical contribution of D-NWD.

3.1 PROBLEM FORMULATION

We consider a source domain with labeled samples and a target domain, differing from the source,
with unlabeled samples. Our goal is to develop a UDA model to accurately predict labels for the
target domain using both the source labeled dataset and the target unlabeled dataset. Let S represent
the source domain, where X' denotes the i-th batch of samples and y° their corresponding labels.
Similarly, let 7 represent the target domain, where X/ is the i-th batch of samples. The feature
space induced by S and 7 is denoted by ©,. In addition, we introduce deformed domains S¢ and
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T4, with their feature space ;. We assume €2, and €2 to be disjoint and 2, U Q4 < R™. A point
cloud from the source domain is denoted as x, € R™*3 and from the target domain is =, € R"*3,
where n is the number of points. The corresponding deformed point clouds are denoted by x¢ and
xf, respectively.

The pipeline of our CDND is presented in Figure [T} Our model first uses a feature extractor E to
obtain shape features from both source and target point clouds. To minimize domain gaps and en-
sure domain-invariant features, we: (1) use a curvature diversity-driven deformation reconstruction
task using a reconstruction decoder hgsy, and (2) employ the D-NWD to align domains through a
classifier C. The aligned features are then used for downstream tasks, i.e., cloud classification and
segmentation. The model is trained using source-labeled and target-unlabeled data.
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Figure 1: Plpehne of CDND. The inputs are the source batch X and target batch X;. We first
deform them into X and Xt using Curvature Diversity-Based Deformation. Next, X, X;, X s, and
X, are sent into a feature extractor. The features of deformed samples are fed into a reconstruction
decoder to reconstruct the deformed regions. For domain alignment, both original and deformed
features are sent to D-NWD. Aside from the two losses shown in the figure, a cross-entropy loss is
computed on X and X s with labels. An NWD loss E;WD on X; and X ¢ 1s also computed to ensure
prediction consistency between the target original and deformed pairs.

3.2 CURVATURE DIVERSITY-DRIVEN DEFORMATION

To extract domain-invariant features shared by both source and target domains, Achituve et al. pro-
posed deformation reconstruction |Achituve et al.| (2021)). Specifically, there are three deforma-
tion strategies introduced in |Achituve et al.[(2021) for deforming point clouds, i.e., volume-based,
feature-based, and sample-based, according to the way of dividing point clouds into regions for
deformation.

Although the strategies mentioned above use different techniques to select regions for deformation,
they all randomly divide a point cloud into regions and uniformly select regions based on their
spatial locations or arrangements. However, this approach may not be optimal as regions within a
point cloud vary in their semantic richness, i.e., some regions contain more semantic information.
These semantically rich regions are crucial for tasks such as classification, as they have more distin-
guishable characteristics. For instance, to differentiate a point cloud of a plant from that of a lamp,
focusing on the leaves and flowers — which have richer semantic information — would be more
effective than focusing on the flower pot, which is similar to the base of a lamp. Thus, deforming
regions with richer semantic information causes the point cloud to lose semantic meaning, making
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it difficult for a classifier to classify it. To encourage the feature extractor to prioritize regions with
rich information, we propose deforming regions that are less semantically rich. This strategy helps
learning to extract features from the most informative or salient regions of a point cloud.

To evaluate the richness of semantics, we propose using curvature diversity as a measurement. Fol-
lowing Zou et al.|Zou et al.[(2021)), we compute point cloud curvature using PCA |Abdi & Williams
(2010). Specifically, we first select a small neighborhood around each point and apply PCA to
determine the principal directions and their eigenvalues. The curvature is then calculated as:
|)\min|
C= Sk o M
S Al

where A, is the smallest eigenvalue of the matrix, and K is the number of eigenvalues. Larger
variation in curvature indicates a more intricate geometry and more significant shape changes within
aregion. The fourth lamp sample in the bottom row of Figure|T]illustrates this property: regions with
warmer colors represent areas of higher curvature diversity. To measure the diversity or variation
of curvature in a region, we propose to use entropy of curvature. Entropy effectively captures the
variability and complexity of the curvature, allowing us to quantify the richness of semantics within
a region. Formally, we use the following measure the curvature diversity:

J o — mi Ri J o VN Ri
Chin = mln,{cg}izl y  Cmax = maXv{Ci }1‘:1
cleRi cleRri
A d—d . & : o
— i min _ j _
Cg,norm - 73 j _10’ H(Cgorm) = - Z Cg,norm . 10g(Ci7norm +1x 10 )
Cinax — Cppyp + 1 x 10 ot

where, cf represents the curvatures of the i-th point in the j-th region of the point cloud which

contains N, points in total. To standardize these values, we first calculate cf]'m and c,jnax, which
are the minimum and maximum values of all curvatures within a region, respectively. Using these

values, we then normalize the curvature values to be in [0, 1], denoted as {c] ,}. Then, we
calculate the curvature diversity H (cﬂorm) by applying entropy

For the curvature diversity-driven deformation, we adopt the following steps. First, we use Farthest
Point Sampling (FPS) Moenning & Dodgson| (2003) to sample %k points as centers of k regions.
Then, for each center point, we use k-Nearest Neighbor (k-NN) to select m nearest points, i.e., each
region is formed by a center point along with these m nearest points. Next, we select the IV regions
with the smallest curvature diversity to deform. To deform these selected regions, we replace all the
points within these regions with new points. These new points are generated by sampling from a
Gaussian distribution, where the mean is set to the average position of all the original points in that
region, and the variance is set to 0.001. In Figure X, and X, represent the deformed samples, and
the points shown in grayscale are those drawn from the Gaussian distribution.

3.3 DEFORMATION RECONSTRUCTION LOSS

After deforming the selected regions, we obtain a deformed point cloud ¢ from the original z.

The deformed input ¢ is processed by the feature extractor F to generate E(x?), which is then
passed to a reconstruction decoder hggy. to reconstruct x. The self-supervised loss Lgs; minimizes

the distance between hss (F(z?)) and . We use the Chamfer distance in Lsgr., focusing on the
original points in = within the deformed region R and their reconstructions from 2. Formally, let

I < {1,2,...,m} represent the indices of the points in z N R, and we define Lgg| as:
L= >, D ({mibier, {hss(B(a"))ibier ), 3
(zd,2)eSUT

where z; is the i-th point in the point cloud x and the Chamfer distance D is defined as :

_ . _ 2 . _ 2
D(Ri, R2) = ), moin fa—b3+ > min b a3, @

a€R, bRy

where D(R;, Ry) measures the discrepancy between point cloud regions Ry, Ry = R3. Note that
we reconstruct only the deformed regions to reduce computational resources and time.

'Rigorously speaking, {cf sorm 18 an un-normalized distribution without being divided by a partition func-
tion or normalization constant, but it does not affect our claim of curvature diversity.
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3.4 DOMAIN ALIGNMENT VIA D-NWD

The curvature diversity-driven deformation reconstruction helps reduce the domain gap between the
source and target domains. To further complete classification or segmentation tasks in the presence
of domain gap, we propose D-NWD align domains, as inspired by the Nuclear-norm Wasserstein
discrepancy (NWD) Chen et al|(2022). A brief overview of NWD is provided in Appendix [A] Our
D-NWD objective is defined as:

WN(Vsost,Viopa) = sup By o IOl =Bz oy O] )
e xllL <K svs ot

where K is the Lipschitz constant. Here, v, .« and v, ,« are probability measures defined over
Q, Uy, for the features from samples in original and deformed source and target domains. We align
the probability measure of features from original and deformed samples in the source domain with
that of the target domain. Our motivation is that taking features from deformed samples into account
would provide a richer, more robust feature space, reduce overfitting, and increase the model’s
adaptability to variations inherent in real-world data. This differs from NWD, which aligns v, and
v, defined over (2, the probability measures for the features from samples in original source and
target domains. Empirically, our objective in Eq. [5|be approximated by Lp.xwp:

1 QB 1&g
Loxwp = ﬁ; ICU) s« — ﬁti; IC(fo)ll ©)

where C' denotes the classifier, and || - |4 represents the nuclear norm. fi ~ v, . represents the
features for the i-th source batch and f; ~ v, . represents the features for the i-th target batch.
The ratio between the original samples and deformed samples is 1:1. In practice, we obtain the
original and deformed samples by first sampling from the original domain, and then generating the
corresponding deformed versions. The alignment is then performed through a min-max game as:

min max £D-NWD (7)
E C

To avoid alternating updates, we employ a Gradient Reverse Layer |Ganin et al.| (2016), following
the approach in|Chen et al.|(2022), to make the learned features discriminative and domain-agnostic.

3.5 OVERALL LosSs

In addition to deformation and domain alignment loss defined in Eq. [3|and Eq. [/| we use a cross-
entropy loss L¢rs on both original and deformed source domain samples for supervised training:

1 O Py i
LcLs = N, ;1£CE(C(fs)7ys) ®)

Since we have no access to the ground-truth labels for the target domain data, it is impossible to use
the supervised cross-entropy loss as in Eq. [§|on samples from 7 and 7. One straightforward alter-
native is to adopt pseudo-labels as in [Fan et al.| (2022)); Liang et al|(2022); [Zou et al.|(2021)); |Shen
et al.[(2022)). However, this strategy has the risk that the classifier might mistakenly predict target
samples as the major classes of the source domain. Instead, we use NWD to ensure consistency in
predictions between 7 and 7. Thus, we define a target domain loss Ly, as:

= i ICU I — % IC(fia) )
NWD = Z )l = 3 Z )|

where ftid ~ 14a denotes the deformed target domain batch and f} ~ v; denotes the original target
domain batch. Combining Eq. 3] Eq.[8] Eq.[7]and Eq. 0together, our overall objective loss is:
min alcrs + vLssL
E,hgsy,C (10)
mEin max B1Loxwp + B2Lwp

where «, 7, 51, f2 are weighting hyperparameters that can be tuned using the target domain val-
idation set. When computing the overall loss, the additional term Ly, which corresponds to
W (D¢, Dya), does not influence our theoretical contribution of D-NWD, the bound in Egq. The
reason is that Eq. [14|specifically focuses on Wi (94,54, P41 ), Which is empirically represented by
Lp.nwp. The term Wiy (D4, D4a) (or ‘CIZI—WD) is irrelevant in this context, as its influence is not directly
related to the bound’s conditions (or the empirical measures) being considered.
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4 THEORETICAL ANALYSIS

We provide a theoretical justification for our Deformed-based Nuclear-norm Wasserstein Discrep-
ancy (D-NWD). Following Ben-David et al.| (2006) and |Chen et al.| (2022), we perform our anal-
ysis in a binary classification scenario, which can be easily adapted to multi-class classification
through reduction techniques such as one-vs-all |Rifkin & Klautau| (2004)) or one-vs-one [Allwein
et al| (2000) approaches. Consider {C' : R™ — [0,1]} as a set of source classifiers within the
hypothesis space H. The risk or error of classifier C' on the original source domain is defined as
es(C) = Ef, ., [|C(fs) — ysl|], where y; is the label associated with the feature f,. We then de-

fine £5,54(C) = E; _, [IC(fs) = Gs[], where g is the label associated with f,. Similarly, we

define €4(C), 4 4a(C) as the risks on the target domain. The optimal joint hypothesis is defined
as C* = argming e, ,4(C) + €:(C) which minimizes the combined risk across v, .« and v;.
Our Theorem 1 demonstrates that the expected target risk ;(C') can be bounded by the D-NWD
on vy ga and vy e, W (Vs sd, Vppa). Building on Theorem 1, we derive Theorem 2. Theorem
2 establishes that £;(C') can be bounded by D-NWD on empirical probability measures 7, ,,a and
Diipdr, W (Dglsd, Dera). We prove Lemma 1 and 4 to support our proof of Theorem 1 and 2.
Backgrounds of 1-Wasserstein distance and NWD are in Appendix[A] All proofs are included
in the Appendix B}

Lemma 1. Let (Q, F1,v1) and (o, Fa,v2) be two probability spaces, where Q1,8 are two
disjoint sample spaces. Let p1,ps € [0,1] be constants such that p1 + pa = 1. Let (Q3,F3) be a
measurable space, where F3 is the o-algebra on Q3 = Q1 U Qa. Then, the measure vs defined on
the measurable space (§3, F3) as:

VS(A) =p1U1(AﬁQl)-i-pgllz(AﬁQQ)7 VAe F3 €8}
is a probability measure on ({23, F3).

Theorem 1. Let (Qy, Fp,Vs), (QayFa,Vsd), (o, Fo,vt), and (Qq, Fa,via) be four probability
spaces, where Q, and Qg are disjoint and ), U Qg < R™. With the results of Lemma 1, let
(QoUQq, Fu, Veusa) and (Qo U Qyq, Fuu, Veea ) be two probability spaces with probability measures
defined as vy g0 = 1/2vs + 1/2v,0 and vy = 1/2v4 + 1/2v,a. Specifically, when sampling from
Viogd, there is an equal probability of 1/2 to sample from vy or vwa. Similarly, sampling from
Vg sd gives an equal probability of 1/2 to draw from v, or vea. Let K denote a Lipschitz constant.
Consider a classifier C € H1 and an ideal classifier C* = argming e,,44(C) + £,(C) satisfying
the K-Lipschitz constraint, where H1 is a subspace of the hypothesis space H. For every classifier
C' in H1, the following inequality holds:

e1(C) < 26,,.4(0) + 4K - Wi (v, ads Veozad) + 1 (12)
where n* = 2e,,,a(C*) + &, (C*) is the ideal combined risk and is a sufficiently small constant.
Definition 3 (L;-Transportation Cost Information Inequality). Djellout et al.| (2004) Given
n > 0, a probability measure v on a measurable space (S, F) satisfies Ty (n) if the inequality

Wa(v,v) < %H(y’h/) (13)
where H(V'|v) = (log %dl/ holds for any probability measure V' on (Q, F), and W1 represents
the 1-Wasserstein distance.

Lemma 3. (Corollary 2.6 in Bolley & Villanil (2005)) For a probability measure v on a measurable

space (2, F), the following statements are equivalent:

* v satisfies T1(n) inequality for some 1) that can be explicitly found.
* v has a square-exponential moment, i.e., there exists o > 0 such that

f exp(ad(z,y)?) dv(z) is finite
Q
for any y € ). Here, d is a measurable distance over §.
Lemma 4. Let (1, F1,v1) and (Qa, Fo,v2) be two probability spaces, where Q1 and Qs are

disjoint. Let py,ps € [0, 1] be constants such that p; + pa = 1. Let p1, p2 € [0, 1] be constants such
that p1 + po = 1. Define a new measure vs on a measurable space (23, F3), where Q3 = Q1 U Qa:

1/3(14) =p1I/1(AﬁQ1)+p2V2(AﬁQQ), VAE]'—:;
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Suppose that v, and vy each has a square-exponential moment for some a1, as > 0, respectively.
Then, vs is a probability measure (according to Lemma 1), and vs has a square-exponential moment
Sfor some 0 < oo < min(ay, az).

Theorem 2. (Theorem 2 of [Redko et al.| (2017)) Under the assumption of Theorem 1, let (2, U
Qa, Fu, Vsusa) and (Qo U Qq, Fu, Vppa ) be two probability spaces with v, ,a = 1/2v5 + 1/204a
and vy e = 1/2v + 1/2v44, where vy, Vga, V4, Via each has a square-exponential moment. From
Lemma 3 and 4, vy g satsifies T1(ns) for some ns and vy a satsifies Ty () for some n;. Let
F, = {fiyNe, and F; = {fi} be two sample sets of size Ny and Ny drawn i.i.d from v,

. ~ 1 Ng ~ 1 Ny . ..
and vy a, respectively. Uy .a = ~ pIniet 5}3;- and Uy e = N It 6];; are associated empirical

probability measures. Then, for any n' > n and ' < min(ns,n;), there exists a constant Ny

depending on n' such that for any § > 0 and min(N,, Ny) = Ny max(é’(",+2), 1), with probability
at least 1 — 6, the following holds for all C':

N N 2 1 1 1
et(C) < 26,,,a(C) + 4K - W (Dyga, Pyopa) +0* + 4K - 4 /? log 5 (4 / A +4/ ﬁt) (14)

where n* = 2e,,5a(C*) + £,(C*) is the ideal combined risk and is a sufficiently small constant.

In Equation {14} n* are sufficiently small constants for relevant domains with consistent labels be-
cause C* is the error corresponding the ideal classifier. The term % log 3 (4 [N T 4 /N%) is also

a small constant when Ny and N; are large. ¢,,,4(C) is minimized by a supervised classification
loss, since source domain samples have labels. Therefore, the primary objective of our UDA task
is to minimize our D-NWD on 7, ,4a and D, e, Wn (D sa, Py ). Hence, minimizing D-NWD
can improve the model’s performance on samples from the original target domain 7. Note that we
do not claim that our bound (Eq. is tighter than the one in Theorem 2 |Chen et al.| (2022)), which
aligns 7, and 7, the empirical probability measures of features from samples in S and 7. In fact,
a direct comparison between the two bounds is not feasible, as they apply to different probability
measures: (Vg g, Ve ) for D-NWD and (75, ;) for NWD. Rather than providing a tighter bound,
our theoretical contribution lies in the fact that, regardless of the deformation method used, optimiz-
ing the D-NWD on ¥, ,« and 7, can effectively reduce the error on the samples from 7. In other
words, D-NWD mitigates the negative effects of domain gaps and enhances performance on 7T, as
NWD does. However, unlike NWD, D-NWD includes features from deformed samples. This in-
clusion accounts for a more diverse and robust feature space, improving model generalization under
domain shifts. Our empirical results show that with carefully designed deformation techniques, like
our proposed CurvRec, D-NWD can outperform NWD in practice.

5 EXPERIMENTS

We evaluate our method on the PointDA-10 |Qin et al.| (2019) dataset, a domain adaptation dataset
for point cloud classification, and on PointSegDA |Achituve et al. (2021), a dataset for point cloud
segmentation. For the PointDA-10 dataset, we compare our approach against the recent state-of-the-
art methods for point cloud domain adaptation, including DANN Ganin et al.|(2016), PointDAN Qin
et al.| (2019), RS |Sauder & Sievers| (2019), DefRec+PCM |Achituve et al.| (2021), GAST Zou
et al|(2021), and ImplicitPCDA [Shen et al.|(2022)). Additionally, we incorporate Self-Paced Self-
Training (SPST) into GAST, ImplicitPCDA, and our method, as SPST is originally included in
both GAST and ImplicitPCDA. For the PointSegDA dataset, we compare our method with RS, De-
fRec+PCM, GAST, ImplicitPCDA, and Adapt-SegMap [Tsai et al.|(2018). We exclude SPST
for this dataset. The reason is in Appendix For both datasets, we also evaluate two upper
bounds: Supervised-T, which involves training exclusively on labeled target samples, and Super-
vised, which uses both labeled source and target samples. Additionally, we assess a lower bound,
Unsupervised, which utilizes only labeled source samples.

5.1 DATASETS

PointDA-10 consists of three three domains: ShapeNet-10 |Chang et al.[ (2015, ModelNet-10 [Wu
et al.| (2015), and ScanNet-10 Dai et al| (2017, each sharing ten distinct classes. PointSegDA
consists of four domains: ADOBE, FAUST, MIT, and SCAPE. These domains share eight distinct
classes of human body parts but vary in point distribution, pose, and scanned humans.
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5.2 TRAINING SCHEME

Following the literature, we use DGCNN as the feature extractor Achituve et al.|(2021) for fair com-
parison. We train the model of each method three times using distinct random seeds for initialization
and report the average accuracy and standard deviation. To ensure a fair comparison, we maintain
the same seed for data shuffling and use the Adam optimizer |Kingma & Ba|(2014) for optimization.
For hyperparameter settings, please refer to Appendix D] for the details.

Models MS MS* SM SS* S*M S*S Avg
Supervised—T 93'9i0~2 78'4i0~5 96'2i0~1 78-4i0.6 96.2i0,4 93'9i042 89.5
Unsupervised 83.3+0.7 438+2.3 755+1.8 425+41.4 63.8+3.9 64.24+0.8 62.2
DANN 75340.6 41.540.2 62.541.4 461428 533412 63.241.2 57.0
PointDAN 82~5i0.8 47'7i1-0 77.010_3 48.512_1 55.610_6 67.212_7 63.1
RS 81.541.2 35245.9 71.941.4 39.840.7 61.043.3 63.643.4 58.8
DefRec+PCM 81.7+0.6 51.8+40.3 78.6+0.7 54.540.3 737+1.6 711414 68.6
GAST 82.3+0.6 53.0+1.1 72.6+1.9 47.6+1.5 64.6+1.5 66.8+0.6 64.5
GAST+SPST 8454105 541418 80.1+4.6 46.7+0.6 81.541.7 66.7+1.1 68.9
ImpliCitPCDA 79‘5i0-4 41'7i1-3 72'9i 1.0 47.512_9 67.615.2 66.4i0_9 62.6
ImplicitPCDA+SPST 81.342.2 33.2413.4 73243.4 38.0+4.6 66.9i7_7 75.0+2.7 61.3
CDND 84.140.3 58.710.8 76.240.0 557+1.0 751415 72.04+1.9 70.3
CDND+SPST 854111 57.6+1.3 85.012.2 545411 82.610.7 74.64 4.4 73.3

Table 1: Performance results (accuracy) on PointDA-10 dataset.

Models MS MS* SM Ss* S*™M S*S Avg
NWD 833407 467417 155418 489105 6381309 667419 642
DefRec 834405 469423 45400 463106 677123 640108 640
DefRec+NWD 83'4i0-5 51.21»3.0 74'5i0«9 53'7i3~8 67'7i2~3 68.5i2‘4 66.5
DefRec+D-NWD 83.410_5 53.112_3 74.5-_;.(](9 54'6i1«0 67'7i2»3 67.410‘1 66.8
CLI[‘VRCC(S)*High 83.8i0_9 52‘0i1-4 78'0i1-0 45'9i3-8 72‘5i1-4 66.711_1 665
CurvRec(S)-Low 831400 530410 749408 447412 T48100 659102  66.1
CurvRec(En)—High 82.91»1.5 52.1i0,4 77'0i043 46'7i1~0 70'9i0~5 65.8i0.4 659
CurvRec(En)-Low 841103 522413 762400 S01igs 751415 664415 674
CurvReC(En)—L0w+PCM 83.010_5 53.711_0 74-010.6 54'8i1«1 73'8i1»1 76.810_9 69.4
CurvRec(En)-Low+NWD 84.11¢.2 54342.2 76.2+40.0 527421 751415 70.6+2.2 68.8
CDND (CurvRec(En)-Low+D-NWD) 84.11¢.3 58.710.8 76.240.0 557410 751415 72.041.9 70.3

Table 2: Ablation study results (accuracy) on PointDA-10 dataset.

Models FA M FS MA MF MS AF AM AS SA SF SM AVG

Supervised 80.9+7.281.840.382441.280.94+7.284.0+1.882411284.0+1.881.840.382.411.280947.2 84.041.881.840.382.3
Unsupervised 78.5+0.460.9+0.6 66.5+0.626.6+3.533.64+1.369.941.238.5+2231.241.430.043.674.14+1.0 684+2.464.5+0.553.6

AdaptSegMap 70.5+3.460.14+0.665.34+1.349.149.754.040.562.847.644.241.73544+0.335.141.470.142.5 67.74+1.463.841.256.5

RS 78.740.560.740.466.9+0.459.645.038442.170.441.044.040.630440.536.640.870.7+0.8 73.041.565.341.357.9
DefRec+PCM  78.850.260.910.563.610.148.150.448.6 2.4 70.110.846.911.033.240.337.640.1 663+1.7 66.5+1.062.610.256.9
GAST 76.7+2.355.041.06034+1.052.144.435240.469.641.243.343.725.943.630.844.057.4510.666.141.364.640.553.1

ImplicitPCDA  47.550.653.241.0 54245 451.131.6 64011556144 244,150 042341 540511 2497551 70.641 455055 5524

CDND 81549.060.740.561440.568.641 447241 467.741.443.640.535.342.240.141.577.540.5:70441.1 65.140.559.9

Table 3: Performance results (mIOU) on PointSegDA dataset.

5.3 RESULTS

Results on PointDA. The results are presented in Table [I] We use S* to represent the ScanNet
dataset, M to represent ModelNet, and S to represent the ShapeNet dataset. The CDND model
shows significant improvement over the other approaches on the PointDA-10 dataset with the high-
est average accuracy of 70.3%, outperforming all other models. CDND delivers state-of-the-art
performance on five out of six tasks. It excels in tasks with a large domain gap, such as MS*, S*M,
SS*, and S*S. In these tasks, one domain is a synthetic dataset and another domain is a real-world
dataset. This shows its proficiency in handling complex transformations. Especially, CDND scores
58.7% on MS*, outperforming the second-best method by approximately 6%. Additionally, CDND
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maintains competitive accuracy in tasks with a small domain gap, such as SM and MS, with scores of
84.1% and 76.2%, respectively. With SPST, the performance is further improved, as CDND+SPST
achieves 73.3%, outperforming GAST+SPST by 4.4% and ImplicitPCDA+SPST by 12%. Note
that plain CDND also outperforms both GAST+SPST and ImplicitPCDA+SPST on average. The
strong performance of CDND across various tasks highlights its ability to adapt to diverse domain
challenges, making it a promising choice for point cloud classification in the UDA setting.

Results on PointSegDA. The results are presented in Table [3] We use A to represent the ADOBE
dataset, F to represent the FAUST dataset, M to represent the MIT dataset, and S to represent the
SCAPE dataset. On the PointSegDA benchmark, CDND achieves the highest average score of 59.9,
which surpasses the second-best method, RS, by a margin of 2.0%, which is significant in terms
of mIoU on the segmentation task. Its superior performance is particularly evident in MA and SA
tasks; in the MA task, CDND achieves a mloU of 68.6, outperforming RS by 9%. Similarly, in
the SA task, CDND secures a mloU of 77.5, which is around 7% higher than RS. These results
showcase its adaptability and learning capability. Additionally, in the FA task, CDND achieves a
score of 81.5, even slightly surpassing the supervised baseline. In other tasks, i.e., FM, AS, and SM
tasks, CDND either matches or comes very close to the top-performing models, validating its status
as a consistently high-performing model. The widespread dominance across various tasks on the
PointSegDA benchmark further emphasizes CDND’s effectiveness.

5.4 ABLATION STUDY

To demonstrate the effectiveness of each component of CDND, we conduct ablative studies on
the PointDA-10 dataset. There are several ways to evaluate curvature diversity. While stan-
dard deviation is commonly used to evaluate the diversity of data points, we propose using en-
tropy. We compare our entropy-based approach (CurvRec(En)) with a standard deviation-based
method (CurvRec(S)). To validate our hypothesis that focusing on low curvature diversity re-
gions can improve performance, we investigate the impact of deforming areas with both high
(CurvRec(En)+High, CurvRec(S)+High) and low (CurvRec(En)+Low, CurvRec(S)+Low) diversity.

Effectiveness of CurvRec. From Table 2] when comparing CurvRec(En) variants with CurvRec(S)
variants, CurvRec(En) demonstrates better performance, with a more distinct difference between
CurvRec(En)-High and CurvRec(En)-Low. This suggests that entropy is a superior method for
evaluating curvature diversity in regions. In contrast, there is a much less distinction between
CurvRec(S)-High and CurvRec(S)-Low. Notably, all CurvRec measures outperform DefRec, re-
gardless of whether the focus is on high or low curvature diversity. We hypothesize that deform-
ing regions with high curvature diversity can help the model become more robust to changes in
these areas, potentially improving performance. However, all "Low” outperforms “High”. This
suggests that allowing the feature extractor to concentrate on preserving and learning from the se-
mantically rich regions is more beneficial, as altering semantically rich regions can lead to the loss
of critical information. Compared to the plain NWD, all CurvRec variants perform better than plain
NWD. Specifically, CurvRec(En)-Low surpasses DefRec and NWD by approximately 3%. Though
CurvRec(En)-Low demonstrates better performance overall, it does not outperform our proposed
CDND. CDND (CurvRec(En)-Low +D-NWD), outperforms all CurvRec variants, DefRec variants,
and plain NWD. This highlights the effectiveness of our D-NWD loss. Compared to CurvRec(En)-
Low, integrating with D-NWD improves average performance by 2.9%, with specific gains of 6.5%
on MS*, 5.6% on SS*, and 5.6% on S*S.

Effectiveness of D-NWD. To illustrate the effectiveness of our D-NWD, we compare CDND with
two alternatives: CurvRec(En)-Low+PCM, which replaces D-NWD with PCM (PointMixup), and
CurvRec(En)-Low+NWD. On average, CDND outperforms both methods. Specifically, compared
to CurvRec(En)-Low+PCM, CDND achieves an improvement of approximately 5% on MS*, 1% on
SS*, 1% on MS, and 2% on SM. When compared to CurvRec(En)-Low+NWD, CDND surpasses it
by 4.4% on MS*, 3% on SS™, and 1.4% on S*S. To further demonstrate that our D-NWD can gen-
eralize to any deformation method, we include the results of DefRec+D-NWD and DefRec+NWD.
Compared to plain DefRec, DefRec+D-NWD shows an overall improvement of 2.8%, including
around 6.2% on MS™, and 3.4% on S*S, and a notable 8.3% on SS*. DefRec+D-NWD also out-
performs DefRec+NWD on MS* and SS tasks, as well as on average, demonstrating that D-NWD
has competitive performance compared to NWD across various deformation methods. Note that
D-NWD and NWD effectively improve performance on tasks with large domain gaps, primarily be-
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Figure 2: UMAP visualizations depict pre-activation data representations for the MS* task, with
different colors denoting different classes. The center plot shows the target domain test data repre-
sentations generated from a model trained on the source dataset without any adaptation. The left and
right plots show the source and target domain data representations after adaptation using CDND.

tween real and synthetic dataset pairs such as MS* and S*S. For tasks like MS, SM, and S*M, where
the results are already strong with just CurvRec or DefRec, using D-NWD or NWD does not offer
significant additional benefits. In fact, plain CurvRec and DefRec perform better in these cases, so
we retain the performance of plain CurvRec or DefRec for MS, SM, and S*M.

5.5 ANALYTIC EXPERIMENTS

We conduct analytical experiments to gain deeper insights into the effectiveness of our approach.
Specifically, we assess how CDND impacts the distribution of the target domain in the classifier’s
output space for the challenging ModelNet to ScanNet task (MS*); ModelNet is a synthetic dataset,
while ScanNet is a real-world dataset, making the domain shift between them particularly chal-
lenging. We used UMAP to visualize and compare data representations of validation data from the
source domain, and test data from the target domain both before and after applying CDND. Figure 2]
shows each point as a data representation in the classifier’s output space before softmax activation,
with different colors denoting different classes. The middle plot in Figure [2]illustrates that, prior to
adaptation, the classifier struggles with the target domain data, as points from different classes are
heavily intermixed. However, after applying CDND, the class boundaries become more distinct, and
the distribution of target domain representations aligns well with that of the source domain. This
improvement is visible in the left and right plots of Figure[2] where the arrangement of points shows
a more distinct, consistent pattern across both domains. In other words, we see that the feature space
becomes domain-agnostic. This visualization further demonstrates CDND’s efficacy in reducing
domain shift-induced performance degradation and enhancing class distinction.

6 CONCLUSION

We introduced a novel unsupervised domain adaptation approach specifically for point cloud data,
which presents unique challenges due to its intricate geometric structures. Our method, CDND, in-
tegrates curvature diversity-based deformation with Deformation-based Nuclear-norm Wasserstein
discrepancy (D-NWD) to mitigate target domain performance degradation. Our theoretical analy-
sis of D-NWD shows it minimizes an upper bound for target domain model error, thus enhancing
performance. Additionally, the theoretical analysis shows that D-NWD can be applied to any de-
formation method. Experimental results indicate that our approach is highly effective, surpassing
state-of-the-art methods on two major benchmarks. The success of our method in handling large do-
main differences highlights its adaptability and robustness. Ablation studies confirm that both core
components of CDND are essential for achieving optimal performance. Future work could explore
extending our approach to scenarios where both source domain data are not directly accessible due
to privacy or when the two domains share a subset of their classes.

10
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REPRODUCIBILITY STATEMENT

For reproducibility, detailed implementation specifications are available in the Appendix. we have
included our source codes and environment setup instructions in the supplementary materials.
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A REVIEW OF THE 1-WASSERSTEIN DISTANCE AND NWD

We begin the review of Nuclear-norm Wasserstein by introducing 1-Wasserstein distance:

Definition 1 (1-Wasserstein distance)./Adler & Lunz (2018) /-Wasserstein distance quantifies the
minimal cost of transporting mass between two probability measures that are defined on the same
sample space. Let p and v be two probability measures over (). Let (Q, d) be a metric space, where
d(x,y) is distance between two points x and y in Q. W1 (u, v) is formally defined as:

Wi (u,v) = inf f d(z,y) dy(z,y)
Yel'(k,v) Jaxa

where T'(u, v) is the set of all couplings of v and v. A coupling v € T'(u,v) is a joint probability
distribution on ) x Q with marginals |1 and v, meaning:

f J v(x,y) dydx = and J J (z,y)dxdy = v(A), VAeF
Kantorovich-Rubinstein Duality shows that W1 (u, v) can be rewritten as:
Wi(p,v) = sup Epp[h(z)] — Epnn[h(z)] (15)
7)<

where | - ||, is the Lipschitz norm and K is the Lipschitz constant.

The Nuclear-norm Wasserstein Discrepancy (NWD) |(Chen et al.| (2022) belongs to the family
of 1-Wasserstein distances, with a sophisticatedly chosen h. Below, we present the form of h in
NWD. Consider a prediction matrix P € R**¥ predicted by the classifier C, where b represents
the number of samples in a batch and K represents the number of classes. The non-negative
self-correlation matrix Z € RX*X is computed as Z = PTP. The intra-class correlation I, is
defined as the sum of the main diagonal elements of Z, and the inter-class correlation I, is the sum
of all the off-diagonal elements of Z:

K K
=Y\ Ziiy I.= ). Z
i=1 i#j

In the source domain, I, is large, and I. is relatively small because most samples are correctly
classified. Conversely, in the target domain, /, is small, and I, is relatively large due to the lack of
supervised training on the target domain. Hence, I, — I. can represent the discrepancy between the
two domains, as I, — I, is large for the source domain but small for the target domain. Note that
I, = | P|% can be represented as the squared Frobenius norm of P, and thus I, — I, = |P|% —b.
We can rewrite Ps = C(f;) and P, = C(f;), where f, and f; are feature representation batches
from the source and target domains, respectively. From the above analysis, we find ||C|| ¢ gives high
scores to the source domain and low scores to the target domain, so |C| 7 works as a critic function.

Thus, we can set h in Eq.[15]to be ||C| » and represent the domain discrepancy as:

We(vs,v) =  sup  Ep oy [

CUf)lr] = Ep~n lICfD) ]
Nelrle<k
where v, is the probability measure for features of samples in S and v; is the probability measure
for features of samples in 7. To enhance prediction diversity, the Frobenius norm can be replaced

with the nuclear norm which maximizes the rank of P while still being bounded by the Frobenius
norm [Chen et al.|(2022)). Thus, the domain discrepancy can be rewritten as:
Wy (s, ve) = sup  Ep |

Cf)ls] = Epnn [1C(fo) 4] (16)
HCl <k

The Eq.[16|is the formal definition of NWD. It can be approximate by Lnwp:

1 Ny ) 1 Ny )
Lxwp = EZ{ ICU s — ﬁt; 1C(F)

where f! ~ v represents the features for the i-th source batch and f; ~ v, represents the features
for the i-th target batch.

min max LNwp (17)

Then, the distribution alignment is achieved through a min-max game presented in Eq.

2We have 2;[(:1 Z;j=1%Yie{l,---,b}and j € {1,---, K}, and thus I, + I. = b|Chen et al.{(2022).
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B THEORETICAL ANALYSIS: PROOFS FOR THEOREMS

In this section, we first prove Theorem 1, which serves as the foundation for Theorem 2. Our proofs
are structured as follows: we begin by proving Lemma 1, which supports a key assumption in
Theorem 1. Next, we present the proof of Theorem 1. After proving Theorem 1, we prove Lemma
4 and conclude with the proof of Theorem 2.

Definition 2 (Probability Spacce). Durrett| (2019) A probability space is a triple (0, F,v). Q
represents the sample space, the set of all possible outcomes. F represents the set of events and is a
o-algebra, which is a collection of all subsets of ). F is closed under complements and countable
unions. v represents a probability measure on the measurable space (2, F). It is a function v :
F — [0, 1] that assigns to each event A € F a real value v(A) (the probability of A). v satisfies the
following three axioms:

* Non-negativity: For every event A€ F, v(A) = v(J) =0

* Normalization: v(Q)) = 1

* o-additivity (Countable Additivity): For any countable sequence of pairwise disjoint events
A, Az, As, - - € F (where Ay n Aj = J fori # j),

i=1

Lemma 1. Let (21, F1,v1) and (2, Fa,v2) be two probability spaces, where Qq,Qs are two
disjoint sample spaces. Let p1,py € [0, 1] be constants such that p1 + ps = 1. Let (Q3, F3) be a
measurable space, where F3 is the o-algebra on Q3 = Q1 U Qa. Then, the measure v3 defined on
the measurable space (Q3, F3) as:

v3(A) = pivi(An Qp) + para(AnQy), VAe F3

is a probability measure on (3, F3).

Proof. Since vy and v, are probability measures, they satisfy v4(B) = 0 for all B € F;
and v5(C') = 0 for all C' € F;. For any set A € F3, we have:

v3(A) = p1vi(A N Q) + paro(A N Qo)

Given that p1,p2 = 0and v1(A N Q1) = 0 and v2(A N Q) = 0, it follows that v(A) > 0. Thus, v
is non-negative. Then, we need to show that v(Q; U ) = 1. Consider:

1/3(91 ) Qg) = p11/1((91 ) Qg) N Ql) +p21/2((91 V) QQ) N Qg)
Since (21 U Q22) N Q1 = Q4 and (21 U Q) N Qo = N, and v1 (1) = 1 and v5(3) = 1, we have:
Vg(Qlu92)2p1~1+p2~1:p1+p2:1

Thus, v3 is normalized. Let {A4,}7°, be a countable collection of pairwise disjoint sets in F5. The
last part is to show o-additivity:

V3 (U Ai) = Z v3(4;)

By definition of vs,

(U] () o) o ((G2) )

Since the A; are pairwise disjoint, (Ufo 1 AZ-) nQ =~ 1 (4
the o-additivity of v1 and vo:

s

pini ( | (qu N Ql)) =Dp1 2 1/1(147: N Ql)

i=1 i=1

15
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Thus,

o0 [oe]
u3<UAi) Z (A; 0 Q1) +p22y2Am92)

i=1
[e¢]
= > (prva(Ai 0 ) + para(Ai 0 Q)
i=1

Since Vg(Ai) = p11 (Az N Ql) + pQVQ(Ai N Qg), we get:

(U] Lo

Thus, v satisfies o-additivity. Since v satisfies non-negativity, normalization, and o-additivity, by
definition, 5 is a valid probability measure.

Lemma 2 (Lemma 1 Chen et al.| (2022)). Let v,V be two probability measures on (£, F).
Let d(x,y) be the distance between x ~ v and y ~ v'. Wy represents the NWD, and K denotes a
Lipschitz constant. Given a family of classifiers C € Hy and a ideal classifier C* € H satisfying
the K-Lipschitz constraint, where H1 is a subspace of H, the following holds for every C,C* € H,.

|E(C, C*) — E/(C, C*)| < 2K - VVN(Z/l7 Vg)
where e(C, C%) = Eon, [|C(z) — C*(2)[] and '(C, C%) = By~ [|C(y) — C* (y)|]]-

For future notations, we define the following:

53(017 C?) = EfSNUS [

Cl(fS) - CQ(fS)”
foont(C1,C2) =By, [IC1(fy) = Ca( )]

where C, Cs are two classifiers in Hy, We define £;(C1, Cs) and &, 44 (C1, C2) in the same manner.

Theorem 1. Let (0, Fo,vs), (a, Fa,Vea), (Qo,Fo,vt), and (Qq, Fa,vsa) be four proba-
bility spaces, where Q, and Qg are disjoint and Q, U Qg < R". With the results of Lemma 1, let
(QoUQq, Fuy Veisa) and (Qo U Qyg, Fu, Ve ea ) be two probability spaces with probability measures
defined as vy ,ga = 1/2v5 + 1/2v4a and v, e = 1/2v4 + 1/2v44. Specifically, when sampling
Sfrom v, 4, there is an equal probability of 1/2 to sample from vy or va. Similarly, sampling from
Vg d gives an equal probability of 1/2 to draw from vs or vga. Let K denote a Lipschitz constant.
Consider a classifier C € H1 and an ideal classifier C* = argming €,,54(C) + €.(C) satisfying
the K-Lipschitz constraint, where H, is a subspace of the hypothesis space H. For every classifier
C in H;, the following inequality holds:

Et(c) < 265054 (C) +4K - WN(Vsusda Vtutd) + 77*

where n* = 2e,,,a(C*) + £,(C*) is the ideal combined risk and is a sufficiently small constant.
77 SUS y

Proof. Let Z be an indicator random variable that indicates whether the sample ft is drawn
from vy or vya:

* Z = 0 if the sample is from v;a.

e Z =1 if the sample is from v;.

By the Law of Total Expectation, we have:

eota(C,C%) =Ky, [IC(fi) = C*(f1)]
[[C(fs) = C*(fo)l | Z = 0]P(Z = 0)
[[C(fi) = C*(fol | Z =11P(Z = 1)

>

fe~v, pa

+ Eft~z/

tutd
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Substituting P(Z = 0) = pg and P(Z = 1) = py,
erora(C, C¥) :POEftNthdHC(ft) - C*(]Et)‘ | Z =0]
+mEy O —C*(f)l | Z =1]

ftNV,U

Recognize that E ; ) [|C(f:) — C*(fo)| | Z = 1] is the expectation when f; is drawn from v,

Fe~vy oy
e(C.C%) =Ej, JIC() —C*(f)l | 2 =1]
Combining these, we get:

erure(C, C%) :POEftwytuthC(ft) - C*(ft)‘ | Z = 0] + p1e:(C, C*)

iaﬂwcﬂ=§@ [C(f) = C*(f)l | Z = 0] + &(C, C*)

tVyord
Since 2B+ 7[|C(fi) = C*(f)| | Z = 0] >0,

1
;5tvtd (Ca C*) = Et (Cv C*)
1

Substituting p; = 1/2, we obtain:
26,04 (C, C*) = ,(C, C*)
Based on Lemma 2, we have:
|esusa(C, C%) = €100 (C, C%)| < 2K - WN (Vist, Viora)

By triangular inequality,
6,5(0) < St(c*) + €t(c*, O)

Esusd (Ca C*) < Esusd (C) + Esusd (C*)
Then, we can derive:

(
C*) + 26susd (Cv C*) +4K - WN(Vsusd7 Vtutd)
< st(C*) + 25susd (C) + 2€susd (C*) +4K - WN(Vsusda Vtutd)
= 2€susd (C) +4K - WN(Vsusdv Vtutd) + 77*

Definition 3 (L;-Transportation Cost Information Inequality). Djellout et al.| (2004) Given
n > 0, a probability measure v on a measurable space (2, F) satisfies Ty (n) if the inequality

WiV, v) < %H(V'|I/)

where o'
v
H('|v) = | log —dv/
/1) = [ tog . -dv
holds for any probability measure v' on (0, F), where W represents the 1-Wasserstein distance.

Lemma 3. (Corollary 2.6 in Bolley & Villani| (2005)) For a probability measure v on a
measurable space (S, F), the following statements are equivalent:

* v satisfies T1(n) inequality for some 1) that can be explicitly found.

* v has a square-exponential moment, i.e., there exists o > 0 such that

J exp(ad(z,y)?) dv(x) is finite
Q

for any y € Q). Here, d is a measurable distance over ().
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Lemma 4. Let (1, F1,v1) and (Qa, Fa,v2) be two probability spaces, where Q1 and Qs are
disjoint. Let p1,p2 € [0,1] be constants such that p1 + p2 = 1. Define a new measure vs on a
measurable space (23, F3), where Q3 = Q1 U Qg

v3(A) = pivi(An Qp) + para(AnQy), VAeF3

Suppose that vy and vy each has a square-exponential moment:

f exp(ardi (z,y1)%) dvi(z) <0, Yy €
951

J exp(aada(z,y2)?) dva(z) < 0, Vys € Qs
923

for some ay,a0 > 0, where dy is defined over Q) and ds is defined over Q5. Then, v3 is a
probability measure (according to Lemma 1), and vs has a square-exponential moment for some
0 < o < min(ay, ag).

Proof. First, we define d : Q3 x Q3 — R*:

dl(x>y) ifxayeﬂl
d(z,y) = { do(z,y) ifz,yeQs
C if z € Q7 and y € Qs (or vice versa)

where C'is a finite constant chosen to ensure d is a metric on (3. d can be expressed as:

d(.]?, Z/) = dl (.13, y)]-x,yeﬂl + dg(ﬂ?, y)lw,yeﬂg + Clweﬂl,yeﬂz or z€Q2,yeN

where 1 is the indicator function. d; and ds are measurable by assumption. The indicator functions
are measurable because 1 X 1, Q2 X Qq9, and (1 x Qo) U (22 x Q1) are all in the product o-algebra
F3 ® Fs. Therefore, d is a sum of products of measurable functions. Hence, d is measurable. Now,
for any y in €24,

J exp(ad(z, y)?) dvs(x)
Q3

— j | exp(od (,9)") dn (x) + 12 j exp(ad(z, y)?) dva(x)

<m j exp(ady (,9)?) dva (z) + pa j exp(aC?) dvy (x)
Ql QZ

=p f exp(ard (z,y)?) dvi(z) + p2exp(aC?) < o
1951

For any y in Q,
|, exptadia, ) dia)
Qs

~ j expled(r, 1)) dn(x) + 1 j | explady (e )") dv(v)

<p fQ exp(aC?) dvy (x) + po f exp(aada(x,y)?) dvs ()

Qo

= p1 exp(aC?) + pzj exp(agds(z,y)?) dva () < o0
Q2

This proves that v3 has a square-exponential moment for some 0 < o < min(aq, as).

Lemma 5. (Theorem 1.1 of Bolley et al. (2007); Theorem 1 of Redko et al. (2017)) Let
v be a probability measure on (), F) where Q@ < R". v satisfies a T1(n) inequality. Let

U= % Zfil dsi be its associated empirical measure defined on a sample set {fN| of size N
drawn i.i.d from v. Then for any n' > n and 1/’ < n, there exists some constant Ny depending on n'
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and some square-exponential moment of v such that for any € > 0 and N = N max(e_(”/+2), 1),
the following holds:

2
Theorem 2. (Theorem 2 of [Redko et al. (2017)) Under the assumption of Theorem 1, let (2, U
Oa, Fuy Vsusa) and (Qo U Qay Fu, Vioa) be two probability spaces with v, ,ga = 1/2v5 + 1/204a
and vy a = 1/2vy + 1/2v4a, where vs, Vga, vy, Ve each has a square-exponential moment. From
Lemma 3and 4, vy 4 satsiﬁes T (ns) for some ns and v, satsifies Ty (n;) for some 1. Let

= {fz}l = and Fy = {ft} be two sample sets of szze Ny and Ny drawn i.i.d from v, ga
and Vioed, Fespectively. Uy ga = N Zl 1 f@ and Uy e = N ZZ 1 f1 are associated empirical

/
P[Wx(v,0) > €] < exp <—77N€2>

probability measures. Then, for any n’ > n and v < min(ns,n;), there exists a constant Ny
depending on n' such that for any 6 > 0 and min(N, N;) > Ny max(éf(",”), 1), with probability
at least 1 — 6, the following holds for all C':

2 1 1 1
e(C) < 265,5a(C) + 4K - Wi (Dgga, Dyppa) + 0™ + 4K - ngg (4 /E + 4/Nt>

where n* = 2e,,5a(C*) + £,(C*) is the ideal combined risk and is a sufficiently small constant.

Proof. Based on Theorem 1,
Et(c) < 265044 (C) +4K - WN(Vsusda Vtuﬁ) + 77*

As a part of a broader class of Wasserstein distances, W satisfies the axioms of a distance |Villani
et al.| (2009). Hence, Wy satisfies the triangle inequality:

gt(C) < 2Esusd (C) + 4K - WN(Vsusd ﬁsus ) +4K - WN( Vsusds Vtutd) + 77*
< 255usd (C) +4K - WN(Vsusd Vgsgd ) +4K - WN( Vsusds Vtutd)
+ 4K - W (Ppopa, Vyopa) +1°

According to Theorem 1, Q, U €2y € R™. Thus, from Lemma 5,

WN(Vsusd susd ’\ / -~ Og \
Wi (Veotas Dpoga) M*l g \/

W belongs to the family of 1-Wasserstein distance. By the symmetry property of distance,

N . [ 2 1 /1
WN (Dyoras Viora) = W (Vyoga, Dpopa) < W log (6) : ﬁt

Substituting back, we have:

e(C) < 2e,050(C) + 4K - Wiy (Fssts Dropa) + 0% + 4K - l°g( )(\F \F )

C CONVERGENCE ANALYSIS OF D-NWD

In Figure[3] we plot a training curve showing the accuracy and D-NWD loss across epochs to monitor
the model’s performance during training. The left plot represents accuracy over epochs, where the
model’s accuracy improves and fluctuates around 52-55%, considered a strong performance for this
specific dataset. The early improvement followed by consistent performance indicates that the model
is learning to differentiate between classes or features as training progresses and later gradually
converges in terms of accuracy. On the right, the D-NWD loss plot shows a continuous decrease
as training progresses. This indicates that the model is consistently optimizing its objective. As
training continues, the accuracy improvements slow down, and the loss converges toward a stable
value.
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Figure 3: Trianing curve for ScanNet to ShapeNet task from PointDA.
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Figure 4: The performance of CDND with different hyperparameter settings on PointSegDA dataset.

D EXPERIMENT DETAILS

Implementaion Details. Our code is based on the open-source implementation of the De-
fRec+PCM. We trained our three CDND models with seeds {1,2,3} on A100 GPUs. For the
PointSegDA dataset, we fixed the learning rate to be 0.001 and conducted a grid search to opti-
mize the hyperparameters «, -y, 51, and 35 for each task. The specific hyperparameter values can be
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found in Tabled] Similarly, for the PointDA dataset, the hyperparameters are listed in Table[5] The
training time for tasks in the PointDA dataset is approximately 10 hours, resulting in a high compu-
tational cost for hyperparameter tuning. Therefore, we do not tune the hyperparameters extensively.
Similarly, for GAST and ImplicitPCDA, we use the hyperparameters provided in their open-source
code (GAST, ImplicitPCDA) for the PointDA dataset.

However, GAST and ImplicitPCDA have not been tested on the PointSegDA dataset before. When
implementing GAST, we conduct a grid search on the PointSegDA dataset, exploring values of
0.1, 0.2, 0.5, and 1.0 for both L,y and Lj,.. For ImplicitPCDA, we perform a grid search on the
PointSegDA dataset, considering values of 0.1, 0.2, 0.5, and 1.0 for £),. Please refer to the original
papers|Zou et al.| (2021)); [Shen et al.| (2022) for the definitions of L.y, Lioc, and L.

Table 4: Hyperparameters for PointSegDA. Table 5: Hyperparameters for PointDA.
Hyperparameter Values Hyperparameter Values
Learning Rate 0.001 Learning Rate 0.001, 0.0001 (S*M, MS)
a 1.0 a 0.5
¥ [0.05,0.1,0.2,0.5, 1.0] ¥ 0.5
B1 [0.0, 0.05, 0.1, 0.2, 0.5, 1.0] B1 [0.0, 1.0]
B2 [0.0,0.2] B2 0.2

Challenges of Applying SPST with mIoU. The mIOU metric is defined as:

M = number of classes
1 MU TP, T P,, = true positive for class m
mloU = — Z where: ..
M = TP, + FP,, + FN,, F' P, = false positive for class m
F'N,,, = false negative for class m

SPST typically relies on ranking training samples by difficulty and gradually incorporating harder
examples into training. The training samples for point cloud segmentation tasks are points in point
clouds. However, mloU is a global metric that evaluates performance across an entire point cloud,
making it challenging to assign difficulty scores to individual points in a point cloud. The mechanism
of SPST mismatches the per-point cloud, rather than per-point, evaluation criterion of mloU.

E  HYPERPARAMETER SENSITIVITY ANALYSIS

We perform a sensitivity analysis on the PointSegDA dataset. The results are shown in Figure
We select our hyperparameters based on the model’s performance on the validation set of the tar-
get domain dataset. We focus on the hyperparameters with the most values for selection: Curva-
ture diversity-based deformation reconstruction (CurvRec(En)-Low) and D-NWD. For the CurvRec
weight (), we search across 0.05, 0.1, 0.2, 0.5, and 1.0. For the D-NWD weight (1), we explore
0.0, 0.05, 0.1, 0.2, 0.5, and 1.0.

The tasks FA, FM, MF, AF, and SM exhibit relative insensitivity to changes in the CurvRec and
D-NWD weights, as their mIOU values tend to fluctuate within a narrow range, typically around
5%. This suggests that these tasks are more robust to variations in these hyperparameters compared
to others. In general, higher CurvRec weights tend to result in worse performance, particularly
for tasks like FS, MA, and SA, where we observe a drop in mIOU as CurvRec weight increases.
Higher D-NWD weights (e.g., 1.0) generally have a negative impact, leading to a decline in mIOU
for many tasks, including FS, MA, and SF. Lower D-NWD weights (e.g., 0.0 or 0.05) are also
generally associated with worse mIOU performance across tasks like MF, MS, and AS, suggesting
that a lighter emphasis on D-NWD is disadvantageous in these cases. However, moderate D-NWD
weights (e.g., 0.1, 0.2, 0.5) lead to better results, as shown in the MS, AF, AM, SF, SA, and AS
tasks. In summary, a higher CurvRec weight combined with a moderate D-NWD weight enhances
model performance.
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