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ABSTRACT

Among the most commonly utilized parameter-efficient fine-tuning (PEFT) meth-
ods, LoRA and its variations have achieved significant popularity. The Vector-
based Random Matrix Adaptation (VeRA), one typical variant, utilizes random
weights and projections to reduce the number of trainable parameters greatly.
However, it requires additional GPU memory and computational resources, prob-
ably resulting in a lack of scalability that leads to performance bottlenecks in com-
plex tasks. Besides, the inappropriate initialization of random matrices may affect
model performance. To address these problems, we propose a new method called
Vector Segmented and Recombined Adaptation (SeRA). SeRA segments input
vectors into sub-vectors for individual dimensionality reduction, then introduces
a square matrix to combine the information from the reduced sub-vectors, and fi-
nally expands the dimensionality independently to adapt the size of pre-trained
model. SeRA allows for flexible increase of trainable parameters to enhance
performance in complex tasks, and avoids the problem caused by random ma-
trices initialization. Through evaluations on the image classification, cross-modal
image-text retrieval, instruction-tuning and GLUE benchmark, we demonstrate
the scalability and efficiency of SeRA. Furthermore, we utilize Singular Value
Decomposition on the adaptation matrices of SeRA, to analyze how the informa-
tion characteristics of the matrices change in different ranks and tasks. The results
can serve as the guide for selecting appropriate parameter amounts in different
tasks.

1 INTRODUCTION

With the rapid development of intelligent models, the demands for them from society and commerce
have become increasingly diverse. Although general models like GPT-4 (OpenAI, 2023) can meet
most daily needs, there is still considerable room for improvement in specialized domains. For
example, Codex (Chen et al., 2021), which is a code generator developed by OpenAI based on GPT,
demonstrates superior performance to general models after being fine-tuned on open-source code
data from GitHub.

Compared to full-parameter fine-tuning, LoRA (Hu et al., 2022) is a simple and efficient fine-tuning
method. It introduces low-rank matrices, updating only a small number of parameters while keeping
most pre-trained parameters fixed, to achieve good performance in specific tasks. Many variants of
LoRA have been proposed to enhance parameter efficiency or performance. VeRA (Kopiczko et al.,
2024), a recently proposed efficient LoRA variant, uses “scaling vectors” to adjust frozen random
matrices shared across layers, achieving comparable performance with only one-tenth parameters
compared to LoRA. Although models utilizing random weights and projections can significantly
reduce parameter usage (Peng et al., 2021; Ramanujan et al., 2020), the fixed, randomly initialized
matrices still occupy GPU memory, increasing resource consumption, which may limit its scalabil-
ity. We report VeRA’s GPU memory consumption in the Appendix B. Additionally, experiments
show that VeRA may fail to converge under certain seed initializations.

In recent fine-tuning study, MELoRA (Ren et al., 2024) and MoSLoRA (Wu et al., 2024) have
demonstrated remarkable advantages in terms of parameter efficiency and flexibility, respectively.
MELoRA achieves efficient feature extraction by segmenting and reducing the dimensionality of
the input vector, while MoSLoRA introduces a matrix adjustment mechanism to bolster the model’s
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adaptability to intricate tasks. Drawing inspiration from the multi-head attention mechanism, this
paper proposes a novel method Vector Segmented and Recombined Adaptation (SeRA), which for-
mally integrates these two techniques. SeRA features two key steps as follows. (1) Vector seg-
mentation: the input vectors of the fine-tuning layers are split into several sub-vectors. SeRA
independently reduces and expands their dimensionalities, reducing the number of SeRA’s param-
eters. (2) Sub-vector aggregation: after dimensionality reduction, a square matrix is introduced
to adjust the reduced sub-vectors. This process is equivalent to expanding their dimensionalities
and adding them together, which fuses the information of the sub-vectors, ensuring performance
while maintaining efficiency. This method aims to provide a flexible and efficient solution that can
navigate the evolving complexity of tasks. Take the autonomous driving image classification task
as an example, a fine-tuning method is required to quickly adapt to data changes in order to iterate
the model in the early stages of training, which requires the method to be highly efficient; as the
scale of the task increases, the lack of scalability may lead to performance bottlenecks. We design
increasingly complex classification modes to simulate the real situation for experiment, and show
that SeRA can adapt well to this increasingly complex task.

Hu et al. (2022) has shown that for tasks requiring only minor parameter adjustments to achieve
good performance, increasing the rank of trainable adaptation matrix does not improve performance.
However, many studies have argued that increasing the rank of the adaptation matrix leads to better
model performance in memory-intensive tasks, so to analyze the reasons for this, we conducted
experiments across tasks with different ranks with SeRA. By applying singular value decomposition
(SVD) to the fine-tuned adaptation matrix, we aim to explain this phenomenon from the perspective
of singular vector subspaces and singular values. ALL in all, the key innovations and contributions
of this paper are as follows:

• We propose SeRA, a scalable and efficient method that avoids the problems caused by
random weights and projections. We demonstrate its effectiveness through image classi-
fication, cross-modal image-text retrieval, instruction-tuning, and natural language under-
standing (GLUE), as well as its scalability in the image classification.

• Using SeRA, we conducted experiments across tasks with varying ranks, applying sin-
gular value decomposition (SVD) to analyze how the rank of adaptation matrix affects
information and performance across different tasks. This analysis will aid in selecting the
appropriate number of trainable parameters for different tasks.

2 RELATED WORK

Multi-Head Attention (MHA) Multi-Head Attention (MHA) is a core component of the Trans-
former model, first introduced by Vaswani et al. (2017). It enhances the model’s ability to capture
complex patterns by computing correlations in different subspaces in parallel across multiple atten-
tion heads. Each head learns distinct attention patterns, and the results are concatenated and pro-
jected back to the original dimension. This mechanism significantly improves the model’s capability
to capture global information. Subsequent research has further expanded the theory and applications
of MHA. For instance, Cordonnier et al. (2020) demonstrated that multi-head attention has the ca-
pability to approximate convolutional kernels, providing additional insights into its representational
power. Various optimization strategies for MHA have been proposed, such as hierarchical attention
mechanisms (Yang et al., 2020) and sparse attention mechanisms (Child et al., 2019), which pri-
marily aim to improve computational efficiency and model adaptability. SeRA introduces a novel
lightweight adaptation approach by segmenting input vectors, which is closely related to the group-
ing computation concept in multi-head attention (MHA). Additionally, the matrices in SeRA share
the same optimization design objectives as the projection matrices in MHA, further enhancing the
model’s representational capacity across different tasks.

Vector-based Random Matrix Adaptation (VeRA) VeRA is a more efficient method than
LoRA, which achieves efficient training by introducing trainable “scaling vectors” and freezing
random matrices during training, achieving comparable performance to LoRA in GLUE with only
one-tenth of LoRA’s parameters. However, despite the low number of fine-tuned parameters in
VeRA, the random matrix still needs to be involved in the computation and save the activations
in the GPU. When the “scaling vectors” are relatively large, the random matrix takes up a lot of
memory, limiting the scalability of VeRA.
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Recent different variants of LoRA Since LoRA was introduced, numerous improved variants
have been proposed, with previous work focusing on three main areas: Firstly, enhancing LoRA’s
parameter efficiency, which further reduce parameter usage without sacrificing performance (Zhou
et al., 2024; Zhang et al., 2023a; Kopiczko et al., 2024; Ren et al., 2024); Secondly, addressing the
limitations of LoRA’s low-rank update in certain tasks by increasing the matrices’s rank without
adding extra trainable parameters (Jiang et al., 2024; Wu et al., 2024); Lastly, improving LoRA’s
performance through optimized training strategies (Hayou et al., 2024; Zhang et al., 2023b; Liu
et al., 2024). While many optimization strategies can be applied simultaneously, balancing the
goals of parameter efficiency and scalability remains a challenge. An scalable and efficient method
capable of handling tasks of varying complexity forms the foundation of our proposed SeRA.

3 METHOD

3.1 METHOD STRUCTURE

In the specific implementation of the multi-head attention (Vaswani et al., 2017), the matrix is di-
vided into several matrix blocks after isometric mapping. Each matrix block is regarded as a head,
this method divides the original vector space into several vector subspaces for attention computation.
No additional trainable parameters are introduced which means higher parameter efficiency. Each
head represents information of different spaces after being computed by the attention function. The
way to combine them is to expand their dimensionalities then add them directly by adjusting the
square matrix Wo for both steps. If we want to increase the expressiveness of model, just increase
the number of heads. Based on above two points, the structure of SeRA is shown in Figure 1, and
the matrix expression is shown in the Equation 1 and Equation 2.

h = xW0 + x∆W = xW0 + xACB (1)

A =


A1 0 · · · 0

0 A2
. . . 0

...
. . . . . .

...
0 0 · · · Asplit

 B =


B1 0 · · · 0

0 B2
. . . 0

...
. . . . . .

...
0 0 · · · Bsplit

 (2)

Figure 1: Structure of the SeRA. The input vector is
split into several blocks (i.e. split = 4) and each
block is reduced in dimensionality by the matrix Ai.
The information fusion is performed by the matrix C,
and then each block is expanded in dimensionality by
the matrix Bi.

We define the input vector as x ∈ Rdin

and the output vector as h ∈ Rdout , Firstly,
the input vector is divided into split sub-
vectors: Split (x) = [x1, · · ·xsplit] where

xi ∈ R
din
split i = 1, 2, 3 · · · split and then

calculated by A. This process involves
reducing the dimensionality of each sub-
vector separately: xiAi = cini , where cini ∈
R

r
split and Ai ∈ R

din
split×

r
split . From a lo-

cal perspective, all reduced sub-vectors form
r-dimensional intermediate vector. From a
global perspective, the whole input is re-
duced to r-dimensional intermediate vector
through matrix A. The formula can be ex-
pressed as:

xA = cin = Concat
(
cin1 , · · · , cinsplit

)
(3)

where cin ∈ Rr, A ∈ Rdin×r and A is a
sparse matrix with a block diagonal struc-
ture. After dimensionality reduction, the
data will be calculated by matrix C. The
role of the matrix C is to expand each of the
reduced sub-vectors to r-dimensionality and
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then accumulate them, which acts like the matrix Wo in the multi-head attention. Finally, expand
the dimensionality of the data through matrix B to adapt size of pre-trained model. This calculation
is symmetrical to the calculation of the matrix A. Consistent with LoRA, we scale the x∆W by α
which is a constant.

3.2 PARAMETER COUNT ANALYSIS

The number of parameters fine-tuned by SeRA for a particular layer is |Θ| = din×r1
split + dout×r1

split +r21
while the number of parameters fine-tuned by VeRA is |Θ| = dout+ r2. Due to r1 ≪ din and r1 ≪
dout but r2 is much bigger, the trainable parameters of both SeRA and VeRA can be compressed
very little. However the number of parameters that VeRA needs to store in the gpu during training is
|Θ| = dinr2+doutr2+r2+dout, which takes up a huge amount of gpu memory while SeRA is still
|Θ| = din×r1

split + dout×r1
split + r21 . This confirms that SeRA uses less gpu memory than VeRA for the

same number of fine-tuned parameters. In addition, we must clarify that although the drawbacks of
VeRA in this regard may not be obvious in the context of small models with low parameter counts
fine-tuning, for example, in the face of some progressively complex project contexts (e.g., self-
driving road environment recognition) VeRA can not be scaled up from simple business scenarios to
complex business scenarios, and when the size of the task increases, VeRA will cause performance
bottlenecks due to the bottleneck of gpu memory. Then we must switch to other methods, resulting
in switching costs. SeRA is able to adapt to tasks of arbitrary complexity and maintain method
consistency throughout the project process.

Note that in SeRA, split|r must be satisfied, which means r = α× split and α is a positive integer.
Then, the number of fine-tuned parameters of SeRA is |Θ| = (din + dout)×α+r2. The two factors
affecting the trainable parameters, the size of the pre-trained model and the rank of the adaptation
matrix, are independent of each other, allowing SeRA to flexibly adjust the rank according to the
size of pre-trained model.

4 EXPERIMENTS

In this section, we present a series of experiments to evaluate SeRA. split = r is used by default
unless the settings of split are mentioned. We begin by comparing our method to VeRA and other
baselines on the RSCD (Zhao et al., 2023), which is the autonomous driving image classification
task. We designed three gradually complex classification modes to simulate the gradually compli-
cating situations in reality. Results demonstrate the scalability and efficiency of our method. Next,
we turn our attention to cross-modal image-text retrieval using the CLIP model (Radford et al.,
2021). We found that SeRA has excellent performance in this task. We then explore fine-tuning the
LLaMA-3 model (AI@Meta, 2024) in the context of instruction tuning (Ouyang et al., 2022). Addi-
tionally, we evaluate SeRA in GLUE benchmark and perform singular value decomposition (SVD)
analysis. Finally, an ablation study highlights the importance of each component in our method.

4.1 IMAGE CLASSIFICATION

This analysis compares the performance of different fine-tuning methods on the image classification
task, choosing the Road Surface Classification Dataset (RSCD) which is a valuable resource for
research in the field of autonomous driving (Zhao et al., 2023). RSCD contains about one million
image data, due to time and budget constraints, we performed a random selection of 10% of the
training data from each category in the RSCD and used the full validation set to test. ViTLarge
(Dosovitskiy et al., 2021), which was pre-trained on 21K imagenet, was chosen as the pre-trained
model.

The RSCD categorizes road surface conditions into three main attributes: friction level, road ma-
terial, and road unevenness. The friction level attribute is subdivided into six categories based on
varying weather conditions: dry, wet, water, fresh snow, melted snow, and ice. The road mate-
rial attribute includes asphalt, concrete, mud, and gravel, while road unevenness is classified into
smooth, slight unevenness, and severe unevenness, depending on the road’s undulation amplitude.
The dataset defines its classes by combining these three attributes. The road material and uneven-
ness annotations are absent when the friction level is fresh snow, melted snow, or ice. Additionally,
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unevenness is not annotated for mud or gravel roads, resulting in a total of 27 combined classes.
We designed three experimental modes to simulate increasingly complex scenarios for autonomous
driving systems: “easy”, “medium”, “full”. The first mode, “easy”, fixes the friction level as dry and
road material as asphalt, aiming to classify the road unevenness into three categories: severe, slight,
or smooth. In the “medium” mode, only the friction level is fixed as dry, all road materials and road
unevenness types are considered, resulting in a total of 8 classes. Finally, the “full” mode classifies
across all categories, with a total of 27 classes.

In all modes, the rank of VeRA is 1024. In the “easy” mode, the rank for LoRA is 8, and for SeRA
is 16. In the “medium” mode, LoRA’s rank remains the same, while SeRA’s rank is increased to
64. In the “full” mode, the rank of LoRA is set to [10, 40, 64], while for SeRA, the split and r
are configured as [8, 8], [128, 128], [32, 256], and [8, 256]. For comparison with MELoRA, we
performed a MELoRA test in “full” mode with the rank set to 1024 and split to 16, which means
that each minilora is a 64-ranked. For all tuning methods, the classification head was fully adjusted
and excluded when calculating the number of parameters, only the query and value layers are fine-
tuned. Full parameter fine-tuning and training only the classification head were chosen as additional
baseline.

Figure 2: From left to right: Easy, Medium, Full. SeRA demonstrated efficiency across all modes,
and due to its scalability, it achieved better performance than VeRA in the “full” mode by adjusting
additional parameters. Note that due to space constraints, we did not include the results of training
only the head in this figure. The results are [75.6, 73.4, 67.7] from “easy” to “full” mode.

From the results in Figure 2, we observe that VeRA maintains high efficiency in the “easy” and
“medium” modes. However, in the more complex “full” mode, its performance lags behind other
methods due to the limited number of adjustable parameters. LoRA shows low efficiency in rela-
tively simple tasks. For MELoRA we used a relatively high rank for the experiment, but the result
is not as good as LoRA and SeRA, which shows that rank is not the only factor affecting the model
performance, but the way of dimensionality reduction and expansion also affect the model perfor-
mance. Notably, SeRA shows outstanding results across all modes, demonstrating high efficiency in
the “easy” and “medium” modes. SeRA performs well in “full” mode, which demonstrates its scal-
ability. Constrained by space limitation, we reported additional experimental results with differnet
datasets in Appendix D, which were able to reach the same conclusion.

4.2 CROSS-MODAL IMAGE-TEXT RETRIEVAL

The cross-modal image-text retrieval task is to search for relevant samples on another modality
(e.g., text) based on query samples in one modality (e.g., image), which mainly involves modal
representation, similarity representation and retrieval algorithms. We use CLIPbase and CLIPlarge as
pre-trained models, and fine-tune them using SeRA, VeRA, LoRA and MELoRA on the MSCOCO
dataset (Lin et al., 2015). Triplet Loss function will be used to optimize these models (Schroff et al.,
2015), which has the advantage that when two inputs are similar, Triplet loss enables better modeling
of details.

We applied rank 8 to LoRA, MELoRA and SeRA on the visual and textual sides of CLIP with any
size, in addition, we performed MELoRA experiments with rank 16. For VeRA, we applied rank
1024 on the textual side and the visual side for CLIPbase, and applied rank 2048 for CLIPlarge. All
methods fine-tuned only the query and value layers. In addition, we choosed full-parameter fine-
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tuning and zero-shot as baseline for comparisons. Each image in this dataset is accompanied by
at least 5 textual descriptions, we used full data from the training set (containing 118,287 images),
and test them on full validation set (containing 5,000 images). We use the recall1 metric to compare
different methods.

Based on results in Table 1, for CLIPbase, SeRA even exceeds the performance of full-parameter
fine-tuning. For CLIPlarge, SeRA exerts the highest performance of all PEFT methods.

Cross-modal image-text retrieval is a key challenge in modal alignment within the multimodal do-
main (Cao et al., 2022). Both text encoders and visual encoders have already learned their respective
modal representations and only need to align them. Generally, various relationships exist between
different modalities. An image can be described in multiple ways of text. It is difficult to deter-
mine which description is most appropriate (Chun et al., 2021). SeRA is capable of capturing and
synthesizing information across multiple vector spaces, enabling it to identify the diverse connec-
tions between images and text in different dimensions. This ability contributes to SeRA’s superior
performance in this task.

Table 1: CLIP base (B) and large (L) with different fine-tuning methods on MSCOCO. SeRA out-
performs several baselines with comparable or fewer trainable parameters.

Method #Trainable
Parameters R1 i2t R1 t2i R5 i2t R5 t2i R10 i2t R10 t2i Sum

B
as

e

Zero-Shot 0M 49.92 30.392 74.6 54.684 83.1 66.144 358.84
FT 151.8M 54.76 37.204 78.54 63.636 86.12 74.004 394.264
LoRA 0.492M 49.92 31.456 75.34 56.204 83.96 67.04 363.92
VeRA 0.080M 53.9 35.416 77.5 60.472 85.86 71.392 384.54
MELoRA 0.061M 52.88 37.796 77.12 64.16 84.92 74.6 391.476
MELoRA 0.123M 52.64 38.524 77.58 64.972 85.48 75.224 394.42
SeRA 0.064M 53.62 38.56 77.56 64.676 86.16 75.124 395.7

L
ar

ge

Zero-Shot 0M 56.1 35.528 79.56 59.836 86.82 70.192 388.036
FT 428.7M 58.22 41.732 81.3 67.04 88.06 76.704 413.056
LoRA 1.081M 56.98 36.024 80.24 60.324 87.42 70.688 391.676
VeRA 0.141M 56.1 35.528 79.5 59.88 86.88 70.208 388.096
MELoRA 0.135M 52.88 41.78 77.18 67.028 85.18 76.752 400.8
MELoRA 0.27M 50.78 41.564 75.0 66.968 83.86 76.54 394.712
SeRA 0.14M 53.38 42.108 77.82 67.28 85.3 76.916 402.804

4.3 INSTRUCTION TUNING

Instruction tuning is a process that involves fine-tuning a pre-trained large language model us-
ing natural language instruction data in a supervised manner. This method aims to enhance the
model’s ability to comprehend and follow specific instructions, thereby improving its performance
on designated tasks (Ouyang et al., 2022). We trained the LLaMA3-8B model using LoRA, SeRA,
MELoRA, MoSLoRA on a cleaned version of the Alpaca dataset (Taori et al., 2023), employing
quantization techniques (Dettmers et al., 2023) to enable operation on a single GPU.

We evaluated models on MT-Bench (Zheng et al., 2023) by generating outputs for a set of 80 prede-
fined multi-round questions and scoring the responses using GPT-4 (OpenAI, 2023). GPT-4 assigns
a score from 1 to 10 for each answer. Then we evaluated models on MMLU (Massive Multitask
Language Understanding) (Hendrycks et al., 2021): A benchmark for multitask language under-
standing covering 57 disciplines, designed to test the model’s generalization across a wide range
of tasks. BBH (Big-Bench Hard) (Srivastava et al., 2023): A challenging subset of the Big-Bench
dataset, used to evaluate the model’s reasoning capabilities in complex tasks. DROP (Discrete Rea-

1Taking R10 i2t as an example, for a given image, calculate its cosine similarity with all text samples and
sort them in descending order. If any of the five texts associated with the image is ranked in the top ten, the
image is considered to have successfully retrieved the target text. Result of this metric is the percentage of
successful retrievals relative to the total number.
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Table 2: Instruction tuning experiment of various methods

Method #Trainable
Parameters MMLU BBH DROP Human eval AVG MT-Bench

SeRAr=64,split=64 3.5M 62.58 43.53 49.21 40.85 49.04 6.50
SeRAr=32,split=16 5.5M 63.12 42.76 49.39 40.85 49.03 6.63
MeLoRAr=64,split=64 2.6M 63.17 42.25 48.83 40.85 48.775 6.50
MeLoRAr=128,split=64 5.2M 63.48 43.01 49.32 37.8 48.40 6.28
MoSLoRAr=16 42.0M 62.46 42.87 48.18 39.63 48.285 6.15
LoRAr=64 167.8M 62.07 42.9 47.35 35.98 47.08 5.68

soning Over Paragraphs) (Dua et al., 2019): A dataset for assessing the model’s ability to handle
discrete reasoning problems in reading comprehension tasks. HUMANEVAL (Chen et al., 2021):
A benchmark for evaluating the model’s performance in code generation, focusing on functionality
and correctness. For more information on the experimental setup, please refer to Appendix E. We
computed their averages except for MT-Bench in the AVG column, results are shown in Table 2.

The experimental results demonstrate the superiority of SeRA in terms of performance of instruction
tuning.

4.4 NATURAL LANGUAGE UNDERSTANDING

We evaluated our method on the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2019) using RoBERTalarge model (Liu et al., 2019). In addition to LoRA and VeRA, we
also compare SeRA to the following baselines. Adapter tuning: Initially introduced by Houlsby
et al. (2019), it involves integrating adapter layers between the self-attention and MLP modules
followed by a residual connection. This configuration, denoted as AdapterH, includes two fully
connected layers and a nonlinearity. A variation, AdapterP by Pfeiffer et al. (2021), employs the
adapter layer only after the MLP module and subsequent to a LayerNorm. LoRA-FA: This baseline
freezes the A matrix during training and is able to reduce the number of parameters by about half
and maintain performance.

For RoBERTalarge, we applied SeRA with ranks of 8 and 16. A and C are initialized using Kaiming
initialization (He et al., 2015), B is initialized with zero. For VeRA, we used the HuggingFace PEFT
implementation (Mangrulkar et al., 2022). To reproduce the VeRA method, we ran experiments with
seeds [42, 64, 128, 256, 512], following the hyperparameter settings in the original paper (Kopiczko
et al., 2024).

Our experimental setup is consistent with Hu et al. (2022). Only the query and value layers are
fine-tuned. Classification head has the same learning rate as the fine-tuning layer, and its trainable
parameters are excluded in the calculation. See Appendix A for specific settings. Due to time and
budget constraints, we omitted the time-consuming MNLI and QQP tasks, and consequently did not
apply the MNLI trick2 to the MRPC, RTE, and STS-B tasks. We conducted five runs with different
random seeds.

Table 3 shows the results. We found that the performance achieved by SeRA on each task is compa-
rable to other methods, but with a smaller number of parameters. For VeRA, we observed training
instability, where the model fails to converge or shows erratic for the MRPC, CoLA, and RTE tasks
on certain seeds. The random seeds primarily influenced the initialization of the frozen matrices,
and suboptimal initialization may lead to difficulties in model training.

4.5 ANALYSIS OF THE EFFECT OF TRAINABLE PARAMETERS ON PERFORMANCE

The experiments above demonstrate that for tasks requiring only minor parameter adjustment to
achieve good performance, increasing the number of trained parameters does not lead to perfor-

2For RoBERTa model and MRPC, RTE and STS-B tasks, Hu et al. (2022) initialized the model with the
best weights finetuned on the MNLI task.
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Table 3: Results for different adaptation methods on the GLUE benchmark. We report Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for the remaining tasks. In all
cases, higher values indicate better performance. Results of all methods except SeRA and VeRA*

are sourced from prior work (Hu et al., 2022; Zhang et al., 2023a; Kopiczko et al., 2024). VeRA*

indicates running under five random seeds. Italics indicate problems with training under certain
seeds.

Method #Trainable
Parameters SST-2 MRPC CoLA QNLI RTE STS-B Avg.

AdptP 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
AdptP 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
AdptH 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
LoRA-FA 3.7M 96 90 68 94.4 86.1 92 87.7
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
VeRA* 0.061M 95.4±0.6 68.9 67.5 94.3±0.2 62.1 91.7±0.4 80.0
SeRA(r=8) 0.1M 95.9±0.3 90.2±0.2 66.6±0.4 94.6±0.1 85.6±0.3 91.8±0.1 87.5
SeRA(r=16) 0.11M 96.0±0. 90.2±0.2 66.3±0.2 94.7±0.1 86.6±0.8 91.8±0.1 87.6

mance gains. However, for more complex tasks, increasing the number of parameters can progres-
sively improve performance. In this section, we applied singular value decomposition (SVD) to the
various rank adaptation matrices fine-tuned with SeRA across different tasks. We analyzed how
the information characteristics represented by different ranks of the adaptation matrix vary in the
context of these tasks.

Firstly, we fine-tuned RoBERTalarge on the RTE task using SeRA with ranks of [8, 16, 32, 64, 128,
256]. The hyperparameter settings remain the same as above except rank.

Table 4: RoBERTalarge fine-tuned with SeRA with different rank, the results show that the perfor-
mance of this task is independent of the number of trainable parameters.

# Parameters 0.1M 0.11M 0.15M 0.29M 0.88M 3.24M

Score 85.5 86.14 86.04 86.64 85.92 86.14

Table 4 shows that the performance does not get better with increasing number of parameters. In
general, there is a large amount of noise and redundant information in the text data, and too many
parameters lead to the model overfitting the training data, which leads to poor performance on the
validation set. The text understanding task tends to focus on the model’s ability to understand the
linguistic structure and inference, rather than simple parameter fitting. The design of the architecture
and the choice of fine-tuning strategy have a more significant impact on the effectiveness of the
model.

For image classification task, “full” mode, which is shown in Figure 2, it is required that the model
can accurately detect the subtle differences in the image. Increasing the number of fine-tuning
parameters usually means that the model has more degrees of freedom to fit the details and features
in the training data, which can improve the performance of the model on the validation set.

To analyze the results of singular value decomposition, we referred to the method which has been
used in the Hu et al. (2022). Given ∆Wr=8 and ∆Wr=128, which are adaptation matrices of rank
8 and 128 from SeRA learned using the same pre-trained model. A singular value decomposition
of them yields the left singular matrices Ur=8 and Ur=128. Calculate how much of the first i sin-
gular vector subspaces of Ur=8 are contained in the first j singular vector subspaces of Ur=128 by
Equation 4.
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φ(∆Wr=8,∆Wr=128, i, j) =
||U iT

r=8U
j
r=128||2F

min(i, j)
∈ [0, 1] (4)

Value 0 means that the subspaces are completely separated and 1 means that the subspaces are
completely overlapped, we give the results for the average of all the query layers and point out in
the Appendix C that the conclusions for the value layer are consistent. We also report the singular
values of the adaptation matrix for analysis.

Figure 3: The left side of the image shows the singular values in descending order of size, and the
right one shows the singular vector subspace similarity between Ur=8 and Ur=128.

Figure 3 shows the results of matrices with rank 8 and 128, which were fine-tuned on the RTE
or RSCD tasks under “full” mode. For the RTE task, the singular values of the rank 8 matrix
are similar in magnitude to the first few singular values of the rank 128 matrix, and both exhibit
a relatively dispersed distribution. In contrast, for the RSCD, the singular values of the rank 128
matrix are more concentrated, with a narrower range of magnitudes. Analyzing from the perspective
of singular vector subspace, the similarity of the first major column singular direction of the rank 8
adaptation matrix for the RTE task with all column singular directions of the rank 128 adaptation
matrix is greater than 0.5, indicating a high overlap in their subspaces. In contrast, for the RSCD
task, the similarity among all column singular directions is low.

The perspective of singular value and singular vector subspace jointly illustrate that for text compre-
hension task, the information overlap between low-rank and high-rank matrices is substantial. The
high-rank matrix does not provide more effective information. In contrast, for the image classifica-
tion task in “full” mode, the high-rank matrices yield better performance. The high-rank matrices
contain more effective information so that cannot be equivalently replaced by low-rank matrices.

Overall, for tasks such as RTE that emphasize text understanding, performance primarily hinges on
the inherent capabilities of the pre-trained model. Fine-tuning mainly serves to adapt the model’s
output to align with specific tasks, which is a relatively straightforward process. However, for more
complex tasks, particularly when the pre-trained model lacks exposure to similar data, efficient fine-
tuning methods often encounter performance bottlenecks due to the limited number of trainable
parameters compared to full-parameter fine-tuning. Our supplementary experiments in Appendix D
further validate the conclusions of our analysis.

4.6 ABLATION STUDY

In this section, we conducted ablation study to examine the impact of individual component of
our method. All experiments were performed on the STSB and RTE tasks. We maintained the

9
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Table 5: Freeze A or B on RTE task and the
STSB task respectively.

RANK Parameters RTE STSB

16(standard) 110K 84.2 92.0
16(froze A) 61K 78.2 91.0
16(froze B) 61K 58.7 88.8
64(froze A) 246K 79.9 91.4
64(froze B) 246K 60.3 90.3

Table 6: Train only C matrix with different
rank on RTE task and STSB task.

RANK Parameters RTE STSB

16(standard) 110K 84.2 92.0
8 3K 54.4 77.7
16 12K 55.8 82.5
64 196K 62.6 89.8
128 786K 62.7 88.3

hyperparameters used in previous experiments and only modified the component under investigation
for each test. Each experiment was conducted with 5 random seeds, and we reported the mean
results.

Firstly, we freezed A to train the B and C matrices, and then we freezed B to train the A and
C matrices to investigate the role of A and B matrices in the model. Based on the experimental
results in Table 5, we find that both freezing A or B matrices cause different degrees of performance
degradation. Raising the rank still cannot make up for the degradation of performance. Freezing
the A matrix has less impact compared to freezing the B matrix, which indicates that the B matrix
plays a more important role than the A matrix in SeRA. Freezing the A matrix still allows parameter
adjustments through the C and B matrices, whereas freezing the B matrix leads to huge loss of
information during the upscaling of vectors. This observation is consistent with the findings of
Zhang et al. (2023a).

Secondly, we investigated the role of C matrix in SeRA. Specifically, we frozed the A and B matri-
ces, trained only the C matrix and experimented with several different rank. This process essentially
utilizes random weights and projections like VeRA (Kopiczko et al., 2024). The B matrix is initial-
ized using the same strategy as the A matrix. Table 6 shows the results. Freezing A and B matrices
at the same time causes a severe performance degradation. Increasing the rank of the matrices still
cannot reach the performance of the standard method. This indicates that matrix C needs to be
trained in conjunction with matrices A and B to exert its function. In the RTE task, we observe that
certain random seeds lead to unstable training, with problematic results highlighted in Italics. This
suggests that improper initialization of the random matrix can cause difficulties in model training.

5 CONCLUSION

In this paper, we propose a scalable and efficient PEFT method, called SeRA. It saves a large number
of trainable parameters by segmenting the input vectors into multiple sub-vectors then calculating
them separately, and recombines the information of sub-vectors by introducing a square matrix to
improve the expressive power of the method. The performance of SeRA is demonstrated in a wide
range of experiments. We show that different tasks have different requirements on the number of
trainable parameters, and analyze the reasons from the perspective of singular value and singular
vector subspace. Our method can be combined with a variety of advanced training strategies, such
as AdaLoRA (Zhang et al., 2023b) and LoRA+ (Hayou et al., 2024). The variants of LoRA are rich
and diverse. Investigating how to combine multiple advanced methods to ultimately come up with
a widely applicable and efficient method is a promising research direction in the field of PEFT. In
addition to the visual and textual domains, in this paper, we have also conducted experiments with
SeRA in the multimodal domain with excellent performance. We haven’t completely analyzed the
reasons. It is worthwhile to continue exploring and investigating the superiority of this method in
the multimodal domain.
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