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Abstract

Univariate decision trees, commonly used since the 1950s, predict by asking ques-
tions about a single feature in each decision node. While they are interpretable,
they often lack competitive predictive accuracy due to their inability to model fea-
ture correlations. Multivariate (oblique) trees use multiple features in each node,
capturing high-dimensional correlations better, but sometimes they can be diffi-
cult to interpret. We advocate for a model that strikes a useful middle ground:
bivariate decision trees, which use two features in each node. This typically pro-
duces trees that not only are more accurate than univariate trees, but much smaller,
which offsets the small increase in node complexity and keeps them interpretable.
They also help data mining by constructing new features that are useful for dis-
crimination, and by providing a form of supervised, hierarchical 2D visualization
that reveals patterns such as clusters or linear structure. We give two new algo-
rithms to learn bivariate trees: a fast one based on CART; and a slower one based
on alternating optimization with a feature regularization term, which produces the
best trees while still scaling to large datasets.

1 Introduction

In many ways, decision trees stand alone in the statistical machine learning literature. They use con-
ditional computation by design: an input instance follows a single root-leaf path, without using the
rest of the tree parameters, which makes inference time extremely fast. They handle the multiclass
case directly, without the need for one-vs-all or one-vs-one approaches, as each leaf can be labeled
with a particular class. Finally, decision trees are perhaps most valued because of their interpretabil-
ity, together with a handful of models (such as logistic regression, generalized additive models and
scorecards). The way they achieve a prediction follows a sequence of simple questions about the
input features which is quite close to human reasoning. A decision tree can be explained and audited
at a global level by simple inspection.

The one serious disadvantage of decision trees is that they usually result in low predictive accuracy.
There are two reasons for that. The first one is a poor data model. A typical decision tree is of
the axis-aligned or univariate type. It means that each decision node or split operates on a single
input feature (e.g. “if x7 > 10 go right, otherwise go left”), which generally limits total number of
features used by a tree. Moreover, correlated features cause tree to grow large, which complicates
interpretability.

The second reason is a poor optimization. A decision tree can be seen as a piecewise constant ap-
proximation, which makes optimization of a loss function over the tree a nonconvex problem. A
conventional greedy recursive partitioning does not optimize a global objective function, rather it
searches for tree structures by optimizing local splits exactly. A recent algorithm, Tree Alternating
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Figure 1: Phase diagram (λ,C) for the Segment dataset. We plot: the proportion of bivariate vs
univariate decision nodes (indicating the regions of pure zero-, uni- and bivariate trees); the number
of decision nodes; and the test error (%). The ellipse indicates the region of best-error trees.

Optimization (TAO) [7], has made it possible to train univariate and (sparse) oblique trees effectively
(which were never successful with CART-like procedures). Unlike recursive partitioning, TAO op-
erates on a well-defined parametric tree model and objective function. At each iteration, it updates
each node’s parameters so the objective decreases. However, a univariate tree (even trained by TAO)
is still a poor data model in many cases, while a (sparse) oblique tree can sometimes be hard to
interpret if it uses many features in each node.

Our goal here is to design decision trees that are more accurate than univariate trees while remaining
highly interpretable and efficient to train. We propose bivariate trees, where each decision node has
zero, one or two features at most. Allowing for two features rather than one significantly increases
the predictive accuracy and decreases the tree size even more significantly, improving interpretabil-
ity, as shown in our experiments.

We believe bivariate trees strike a good tradeoff that can make them very practical. How inter-
pretable are bivariate trees? the ability to learn oblique splits even with two features greatly reduces
the number of nodes and depth of the tree compared to a univariate one, while improving accuracy.
It can also happen that the bivariate split can be understood as a new, meaningful feature on its
own right. Finally, bivariate trees bring another advantage over univariate trees: we can show a
2D scatterplot at each decision node on its two selected features, which behaves like a hierarchical
2D linear discriminant analysis. This shows information between-class (how specific classes are
separated from each other), as well as within-class (such as clustering or linear structure).

More detailed literature review on tree-based approaches and other pairwise-interaction models can
be found in Appendix (sections A.2 and A.1). Our experiments in section 3 compare univariate,
bivariate and oblique trees in terms of accuracy, model size and interpretability.

2 Learning bivariate trees

Consider a K-class problem with dataset of size N with D-dimensional input features
{(xn, yn)}

N
n=1 ⊂ R

D×{1, . . . ,K}. Consider a binary decision tree (each decision node has exactly
2 children) with a set of decision nodes Ndec, a set of leaves Nleaf, and N = Ndec ∪Nleaf. We define
a routing function in each decision node i ∈ Ndec as fi(x; θi): R

D → {lefti, righti} ⊂ N which
sends a sample x to either its left or right child. We use bivariate decision nodes where routing func-
tion makes hard decisions fi(x; θi) = lefti if wijxj +wikxk + bi < 0, otherwise righti, and the
learnable parameters are θi = {wi, bi}, where ‖wi‖0 ≤ 2 ensures splits of no more than 2 features.
Each leaf i ∈ Nleaf contains a constant label classifier that outputs a single class ci ∈ {1, . . . ,K}.
We collectively define the parameters of all nodes as Θ = {(wi, bi)}i∈Ndec

∪{cj}j∈Nleaf
. The predic-

tive function of the entire tree T (x;Θ) guides a sample x along a single path from the root through
a sequence of bivariate decision nodes to exactly one leaf, which provides the classification output.

We consider the following objective function over all the parameters of a tree of given structure,
where L(·, ·) is the 0/1 loss:

E(Θ) =

N
∑

n=1

L(yn, T (xn;Θ)) + λ
∑

i ∈ Ndec

φ(wi) s.t.

{

‖wi‖0 ≤ 2,
i ∈ Ndec

(1)
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and we introduce the following, new type of regularization:

φ(wi) =

{

C, if ‖wi‖0 = 2

‖wi‖0, if ‖wi‖0 < 2.
(2)

The feature cost regularization term (2) is critical in allowing not just bivariate splits but also uni-
variate ones and pruning nodes. It imposes a cost of 0, 1 or C for each zero-, uni- or bivariate node
(figure 1).

2.1 The better algorithm: bivariate TAO

In equation (1), the loss function is additively separable over the training samples, and the regulariza-
tion term is additively separable over the nodes. This renders it suitable for alternating optimization
over the tree nodes (on a tree of given structure), which results in monotonic descent and conver-
gence in a finite number of iterations. The idea is based on two theorems: separability condition
and reduced problem (RP) over a node. First, define the reduced set Ri ⊂ {1, . . . , N} as the train-
ing instances that reach the node i ∈ N . Separability condition implies that equation (1) can be
separated and optimized over parameters of any non-descendant nodes (located on the same depth)
independently and in parallel. This is a result of tree making hard decisions (Ri ∩ Rj = ∅ for any
non-descendant nodes i and j). Reduced problem over a node states that optimizing equation (1)
over parameters of the given node i ∈ N reduces to simpler, well-defined problem involving its
reduced set Ri. RP is different for decision nodes and leaves:

Leaf Equivalent to optimizing the top-level objective (1) over parameter ci on Ri. Exact solution:
the majority class of the samples in Ri: ci = argmaxk∈{1,...,K}

∑

n∈Ri
L(yn, k).

Decision node The objective (1) can be equivalently reduced to the following 0/1 loss binary clas-
sification problem:

Ei(wi, bi) =
∑

n∈Ri

L(ȳn, fi(xn;wi, bi)) + λφ(wi) s.t. ‖wi‖0 ≤ 2 (3)

where L is the 0/1 loss and ȳn ∈ {left, right} is a pseudolabel assigned to training
instance xn to indicate the child that yields a lower loss value. The loss is computed by
propagating xn down the corresponding child.

2.1.1 Solving the reduced problem over a decision node

The problem can be solved exactly in O(N3D2) by enumerating every possible split (= linear di-
chotomy on the N instances) over all

(

D
2

)

feature combinations. Unfortunately, this is very costly.
We propose a faster, approximate solution which shows good results on practice.

Solution 1: Lbiv (bivariate solution) of eq. (3) s.t. ‖wi‖0 = 2, bi ∈ R is achieved at θbiv
i =

{wbiv
i , bbiv

i }. Define W ∈ R
2×H is a small set of line orientations sampled uniformly by rotating

it around the origin. For each point in the reduced set we project all pairwise feature combinations
onto line orientations Xbiv

i = XiSW where Xi ∈ R
|Ri|×D are points in the reduced set Ri, and

S ∈ R
D×2 is a selection matrix for feature combinations. Vectorization allows a GPU utilization

for faster computation. The solution can be computed using thresholding over features of Xbiv
i . The

resulting bias can be interpreted as an optimal split of the points projected onto selected orientation
wl to minimize number of misclassified instances in Ri. We repeat this process for each pair of
features and find best solution w

biv
i , bbiv

i , where w
biv
i is a sparse vector. Pseudocode is in Fig. 7 and

an illustration in Fig. 6.

Solution 2: Luniv (univariate solution) of eq. (3) s.t. ‖wi‖0 = 1, bi ∈ R is achieved at
θ

univ
i = {(0, wuniv

i )T , buniv
i }. It is computed simply by thresholding over original features. For the

decision node i ∈ Ndec algorithm selects one feature to split points in Ri in order to minimize
eq. (3).

Solution 3: L0 (zero-variate solution) of eq. (3) s.t. ‖wi‖0 = 0, bi ∈ {−1,+1} is achieved at

θ
0

i = {0, b0i }. This indicates that all samples in Ri are sent to the left (b0i = −1) or the right
(b0i = 1).
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Table 1: Comparison between bivariate, univariate and oblique trees for classification. Each tree
was selected by cross-validating its hyperparameter and this was repeated 3 times over random
training/validation sets. We report training and test accuracy (% ±stdev); average depth ∆, node
count n and number of features f per node (we omit f = 1 and 2 for univariate and bivariate
trees, respectively); and average runtime (seconds or “timeout”). We indicate with color green best
and blue second best result for test accuracy and node count over the univariate and bivariate trees
(ignoring the oblique trees). Almost without exception across several datasets of varying types,
our bivariate TAO tree is both most accurate and smallest compared to any other univariate tree or
bivariate tree. The reduction in depth and number of nodes, and the corresponding simplification of
the tree, is drastic, typically several times fewer nodes (17 times smaller on the MiniBooNE dataset).

Dataset . . . . . . . . . . . . . . . . bivariate . . . . . . . . . . . . . . . . . . . . . . . . univariate . . . . . . . . . .oblique . .
TAO CART BiDT CART C5.0 TAO

House 16H
(11464,16,2)

training (%) 87.1±1.55 89.45±0.00 90.42±0.23 86.2±0.0 91.98±0.55 86.55±1.10
test (%) 85.6±0.07 84.73±0.05 85.6±0.17 83.4±0.0 83.06±0.32 85.47±0.51
∆/#nodes/f 7/35 10/107 10/115 8/75 15.05/245 4/13/14.9
runtime (s) 30 21 15 0.2 0.1 24

Electricity
(32702,8,2)

training (%) 98.97±2.80 95.80±0.80 96.14±1.20 99.10±0.00 95.04±0.43 98.1±1.8
test (%) 89.38±0.12 86.05±0.05 87.91±0.06 87.80±0.16 88.64±0.42 90.23±0.19
∆/#nodes/f 23.0/1083 24.0/1741 22.3/1881 30.0/6366 17.25/2615 10/249/6.8
runtime (s) 300 81 393 0.9 0.9 134

MiniBooNE
(62048,50,2)

training (%) 92.36±0.00 96.02±0.02 - 96.61±0.02 95.88±0.07 91.98±0.15
test (%) 91.16±0.00 90.68±0.03 - 90.25±0.03 89.84±0.10 91.43±0.12
∆/#nodes/f 11.0/105 15/831 - 19.3/2012 15.65/1787 10/133/16.8
runtime (s) 1200 1000 timeout 5.2 6.4 3000

SUSY
(600000,18,2)

training (%) 80.71±0.00 81.35±0.00 - 81.45±0.00 80.90±0.00 81.10±0.00
test (%) 79.51±0.00 79.01±0.00 - 78.90±0.00 79.10±0.00 80.3±0.00
∆/#nodes/f 17.0/1077 21/2780 - 24/4389 16.25/3227 12/983
runtime (s) ≈2h ≈1h timeout 40.2 35.2 ≈2h

The solution of the RP can be summarized as follows:

θ
∗
i =







θ
biv
i , if Lbiv + λC < min(Luniv + λ, L0)

θ
univ
i , if Luniv + λ < min(Lbiv + λC,L0)

θ
0

i , if L0 ≤ min(Lbiv + λC,Luniv + λ)

We break the ties always in favor of a model with lower number of parameters. The separability
condition allows us to optimize E in parallel for the parameters of any group of nodes that do not
have a parent-child relationship starting from deepest one and proceeding to the root in reverse BFS
order, while keeping the parameters of the remaining nodes fixed. Some decision nodes will opt for
not using a feature, hence being redundant (since it directs all input instances to the same child) and
candidates for eventual removal in a postprocessing step at the end of the training. This means that
bivariate TAO indeed achieves pruning, or equivalently learns the tree structure (subject to being a
subset of the initial tree’s structure).

2.1.2 Regularization path

For K-class classification problem with N training samples define N1 ≥ N2 ≥ · · · ≥ NK , where
N1 is a number of samples in the most populous class. Considering that empty feature solution of
the RP we can derive λφ(wi) ≥ L0 − Lbiv ∈ {0, 1, . . . , N −N1}. The term λφ(wi) can be inter-
preted as the maximum allowed number of misclassified samples by a decision node. Knowing the
minimum difference in 0/1 loss between empty feature solution and current best solution (univariate
or bivariate) for each decision node we can calculate next significant λ in regularization path. This
way full regularization path can be computed much faster.

We provide details on computational complexity of the algorithm as well as its extension for CART
and regression task in Appendix (section A.3.1, section C.4 and section C.3)

3 Experiments

We provide all necessary details about hyperparameters, implementations of different algorithms
and additional experiment results etc. in the appendix. We present quantitative analysis in Table 1,
Table 2 and Table 3 as well as tree size and performance comparison relative to training set size in
figure 2.s

4



0 1 2 3 4 5 6
0

0.5

1.0

1.5

2.0

2.5

N × 105

CART

C5.0
ours

#
d

ec
.
n

o
d

es
×
1
0
3

0 1 2 3 4 5 6

20.6

21.2

21.8

22.4

23

N × 105

E
te

st
(%

)

0 1 2 3 4 5 6

100

101

102

103

N × 105

R
u

n
ti

m
e

(s
)

Figure 2: Number of nodes, test error and training time for univariate CART and C5.0 and bivariate
TAO trees as a function of the sample size (subsampled from the SUSY dataset). Univariate trees
(CART, C5.0) grow in size proportionally to the sample size, indicating a suboptimal training and
pruning. Bivariate TAO tree slowly grows in size but eventually stops, indicating it has reached a
sufficient model size
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Figure 3: A bivariate TAO tree on the Segment dataset, plotted in 3 columns so it fits. Each decision
node shows a scatterplot of its instances onto its two features. Each node shows the number of
training instances reaching it (|R| and their 0/1 loss (L).

3.1 Segment dataset

Consider now fig. 3, which shows a bivariate TAO tree on the Segment dataset, a standard UCI
benchmark for classification. It has 1963 instances training, 19 continuous features and 7 classes
(balanced). Each class is an original color image and each feature is a local descriptor based on
3×3 patches (listed in the appendix, table 5). The bivariate tree has 25 nodes (12 decision nodes,
13 leaves), depth 10, and a training and test error of 1.53% and 2.59%, respectively. The univariate
CART tree with lowest test error (not shown) is much bigger: 128 nodes, depth 15 and test error
3.99%. If we tune CART post-pruning to achieve 25 nodes, the error increases to 7.5%. Inspecting
the bivariate tree reveals a wealth of information about the data, as we discuss next. Such insight
would not be possible with black-box models such as forests or neural nets.

Global level structure The tree is heavily lopsided, having depth 10 but only 13 leaves. This
means for most decision nodes one or both children is a leaf, so the IF-THEN-ELSE rules corre-
sponding to the tree are almost perfectly tail-recursive. This makes them more interpretable, and
faster at inference (many leaves have low depth).

A consequence of the lopsided structure is that several classes, accounting for over 50% of the
dataset, are processed in a cascade way, and the tree makes early decisions for them (with very short
rules). For example, class 3 is decided at the root (node A) after a single bivariate decision, with
zero training error. Classes 5, 4 and 0 are also decided in a single root-leaf path each after 2, 3 and 5

5



decision nodes (one of them univariate), respectively, with near-zero training error. Classes 1, 2 and
6 are harder to separate and require deeper rules.

The tree has performed a significant feature selection: it uses only 10 features (0 1 5 6 7 9 10 12 15
18) out of the total 19. Since the tree has 12 decision nodes, it could use up to 24 distinct features,
but it uses fewer. This is driven by the optimization we apply, which globally updates all the tree
parameters. In contrast, a univariate tree with 12 decision nodes would be forced to use at most 12
features no matter what, because it can have only one in each node. In order to use sufficiently many
features, a univariate tree has to be overly deep, which limits their interpretability.

Local level structure We show a scatterplot at each decision node projecting the instances reach-
ing it onto its two features and showing the boundary of the split. The scatterplots show the power of
bivariate splits (most obviously in nodes E, G, J, etc.). Using univariate splits would require a deep
sequence of splits. More importantly, the scatterplots provide a form of supervised dimensionality
reduction, like a linear discriminant analysis but tree-structured, which is very helpful for visual-
ization. It is also directly interpretable because the projection is directly on two original features
(rather than a complex function of all the features). For example, nodes C and E show a distinct
cluster structure in classes 4 and 0, respectively. Although we were not able to obtain original im-
ages of Segment dataset, we conjecture that these clusters might correspond to objects of different
color. Nodes E, G and K all use a bivariate split on features (10,12) and show a clear linear, parallel
structure over multiple classes. Features 10 and 12 correspond to average amount of red and green
color of the region. Bivariate split can be interpreted as a mixture of these two colors. Samples of
class 0 in node E can be separated from other samples by measuring the amount of this mixture and
thresholding it using bias.

All nodes use bivariate splits except nodes B and F, which use a univariate split. For plotting purposes
only (so we can show a 2D scatterplot), we include feature 0 (region centroid column) as the vertical
axis in those nodes. This has the serendipitous effect of showing that all classes show a linear
structure along feature 0.

Note how some bivariate splits are able to separate out one class from the others cleanly (e.g. nodes
A, B, C and E). But, in general, this is not possible with a linear decision boundary and it requires
further partitioning down the tree. For example, nodes D and E show a sequence of two splits that
separate class 0 from the rest. Thus, we should generally expect that a given decision node will have
some classes straddling both sides of the boundary.

The bivariate decision functions can usually be understood as new, meaningful features. For exam-
ple, split in node D can be interpreted as a combination of average amount of red color in the region
and a contrast of adjacent pixels. We assume it can help to distinguish presence of vertical edges of
specific color tone. Some features are repeatedly used (sometimes the same pair of features), indicat-
ing their relevance to separating some group of classes. For example, features 1 (row of the center
pixel of the region) and 9 (average intensity of the region) are critical to separate cleanly first class
3 and then class 4 from the rest. This make sense since it indicates position of the 3 by 3 patch and
its color the intensity. Some features are used only once, deep down the tree and affecting a small
subset of instances, indicating they are needed to make a fine distinction. For example, features 0
and 6 appear only once and together in the deepest node (L). Some bivariate splits could be turned
into univariate ones (eg nodes A and C) but at a higher loss. For example making univariate split at
node A results in 15 more misclassified points.

3.2 Breast Cancer

This is a binary classification task into malignant and bening tumors. Each input instance contains
30 features (listed in appendix table 4) extracted from a collection of cells, specifically, geometric
features about size, shape, etc. (measured from snake-generated cell nuclei boundaries). Each such
feature is very informative on its own and can be readily identified and understood by a radiologist.

Fig. 8 (appendix) shows how our bivariate TAO trees dominate the univariate CART trees by a
significant margin over the range of tree sizes. Fig. 4 shows the best trees in terms of cross-validation.
The univariate CART tree has depth 7, 16 leaves and 6.4% error. The bivariate TAO tree has depth
3, 5 leaves and 2% error. Not only is the bivariate much more accurate, but its small size makes it
easier to understand by simple inspection. It results in only 5 rules vs 16 rules for the univariate tree.

6



univariate CART tree bivariate TAO tree
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1: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)
& (x24 > 2.00) & (x14 > −1.19) & (x1 > 0.17)

then PREDICT 1

2: if (x7 > 0.05) & (x20 > 0.09) & (x10 > 0.58)
& (x24 > 2.00) & (x14 > −1.19) & (x1 ≤ 0.17)

then PREDICT 0

3: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 ≤ 3.20)
then PREDICT 1

4: if (x7 ≤ 0.05) & (x27 ≤ 0.50) & (x16 > 3.20)
then PREDICT 0

5: ...//12 MORE RULES...

1: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 > 2.3)
then PREDICT 1

2: if (x7 + 0.3x10 > −0.1) & (x1 + 9.8x20 ≤ 2.3)
then PREDICT 0

3: if (x7 + 0.3x10 ≤ −0.1) & (x20 + 1.2x27 ≤ 0.7)
then PREDICT 0

4: if (x7 + 0.3x10 ≤ −0.1) &
(x20 + 1.2x27 > 0.7) & (x0 + 3.9x1 > 1.0)

then PREDICT 1

5: else PREDICT 0

Figure 4: Best univariate CART tree and bivariate TAO tree with their sets of rules (Breast Cancer
dataset).

Global level structure The tree structure shows the bivariate tree can represent the whole dataset
only in 5 very simple IF-THEN-ELSE rules. It is notable that the tree performs a significant feature
selection. It uses only 6 features (out of 30). Three of them concern the radius measurements
of nuclei boundaries (mean value, largest value and standard error), and obviously capture size
information about the cells. Two of them concern contour concavities (mean value and standard
error), and obviously capture shape information about the cells (essentially, whether they are circle-
like or have indentations). The last feature is the texture (mean value) of the cell nuclei. The tree
ignores features about smoothness of the contour, area of the cells, perimeter of the cell contour,
fractal dimension, etc. This makes sense since some of those are likely correlated with size and
shape as given by the radius and concavity, and thus are redundant.

Local level structure At a local level in the tree, we can look at specific nodes. The pairwise
combination of features learned in each decision node can be seen as a new, constructed feature,
which is quite meaningful and further improves interpretability. For example, the root of the tree
(which uses as features the largest cell radius and the mean concavity) can be understood as detecting
a cell collection where the cell nuclei boundaries are irregular or unusually large. The root’s right
child uses as features the standard error of radius and concavity, which means it detects high variance
in the shape and size of the cell collection (as opposed to a collection that has uniform shape and size).
Taking these two nodes together, the tree predicts malignancy (rightmost path). This can be done
with the other 4 leaves, each of which is a population (malignant or benign) characterized by a short
path or rule involving very few constructed features that are meaningful. As another example, the
deepest decision node classifies the cell collection as malignant based on a combination of average
size and texture variance irregularities.

4 Conclusion

We have proposed bivariate decision trees as a practically useful tradeoff between univariate trees
and oblique trees. They are highly interpretable because they use two features at most in each
decision node, unlike oblique trees, which use all or many features. Compared to univariate trees,
bivariate trees are much smaller but significantly more accurate. They also can reveal insights about
the data by constructing new, bivariate features that are useful for discrimination; and by providing
a form of supervised, hierarchical 2D visualization at each decision node, which reveals patterns in
the data such as clusters or linear structure. To learn a bivariate tree, we have given two algorithms.
One is very fast, based on greedy recursive partitioning. The other is slower but produces much
better trees, by using alternating optimization of the loss and the node features’ cost globally over
all the tree parameters.
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[33] A. Zharmagambetov and M. Á. Carreira-Perpiñán. Learning interpretable, tree-based projec-
tion mappings for nonlinear embeddings. In Proc. of the 25th Int. Conf. Artificial Intelligence
and Statistics (AISTATS 2022), pages 9550–9570, Online, Mar. 28–30 2022.
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A Appendix / supplemental material

A.1 Related work

Learning trees has long been dominated by greedy recursive partitioning, of which countless ver-
sions exist [6, 28, 21, 30]. This has been more successful with univariate trees than oblique ones
[6, 24], which are rarely used. Indeed, popular types of decision forests use univariate trees, such
as random forests [5] or gradient boosting forests [10, 19]. Many implementations of univariate
trees exist, from scikit-learn to commercial packages such as SAS, SPSS, Matlab or even Excel.
Most univariate trees have a constant prediction at the leaves (class label or regression output), but
there also exist more complex leaf models, such as linear [28], although, again, these are rarely used.

We have found only three papers exploring the idea of bivariate trees, all of them in the context of
greedy recursive partitioning, differing in how they adapt the univariate split search to a bivariate one.
Two early approaches [23, 3] used a variation of CART’s local search for oblique splits. A recent one
[4] used an exhaustive and expensive search for the bivariate split using branch-and-bound. Because
of the underlying greedy recursive partitioning, this still results in large, suboptimal trees.

A parallel line of work on tree learning has focused on non-greedy approaches using exact, brute-
force search. This has taken different forms: mixed-integer optimization [2, 31], dynamic program-
ming in various forms [11] and other forms of combinatorial optimization [26, 25]. While cleverly
designed, all these approaches have the fundamental disadvantage that their worst-case complexity
is exponential on the problem size, so that they become infeasible for a nontrivial tree depth and
number of nodes, or a nontrivial sample size or dimensionality. None of these approaches have
considered bivariate splits.

A final line of work is the use of alternating optimization over the tree nodes, the TAO algorithm
[7]. This has made it possible to optimize a given objective function over all the parameters of a
fixed-structure tree, for tasks such as clustering [13], dimensionality reduction [33], semi-supervised
learning [34], extreme classification [18] or imbalanced classification [15]. The resulting trees are
smaller but more accurate than traditional ones [35], and similar advantages carry over to the forest
setting [8, 32, 14, 12, 9]. Optimally updating a decision node given all other nodes (the reduced
problem) takes the form of a certain 0/1 loss binary classification problem. This is NP-hard for
oblique splits, but can be approximated by a surrogate loss, although this can often produce inade-
quate results. Here, we capitalize on the possibility to use partial enumeration in a 2D space of line
orientations to find a good bivariate split efficiently.

Finally, it is possible to construct a bivariate tree by first applying feature selection to the problem
to select two features globally and then fitting a tree. This gives a bivariate tree that uses the same
two features in each node, which will result in a poor accuracy. We seek bivariate trees where each
node can use any two features.

A.2 Other pairwise-interaction models

Interpretable models based on pairwise interactions have a long history in machine learning, data
mining and statistics. In fact, the idea of bivariate trees is not new (see related work), but it has
never succeeded in practice, due to the lack of an effective optimization algorithm. We provide such
algorithms in this paper and demonstrate how bivariate trees are indeed useful models.

Two widely used pairwise-interaction models are Generalized Additive Models with pairwise inter-
actions (GA2M) and Factorization Machines (FM). A GA2M [17, sec. 9.5], [22] consists of a sum
of univariate and bivariate component functions. A FM [29] is a low-rank bilinear model (the sum
of linear and quadratic terms, where the latter’s matrix is low-rank). These models are interpretable
in that one can inspect the individual terms (e.g. with a 2D heatmap for each GA2M pairwise term).
The FM is especially useful with one-hot encoded categorical data, where each pairwise weight
corresponds to the co-ocurrence of two categories.

In both cases, the total number of pairwise interactions with D features is O(D2), so it is critical
to restrict the actual number of pairwise interactions. This is for interpretability but also to keep
the number of parameters small, so the model can learn from limited sample sizes, often a problem
in practice. In FMs this is achieved by using a matrix of rank K < D for the quadratic term; in
GA2M, by greedily selecting a small subset of interactions. In bivariate trees, we control this by
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globally optimizing the loss plus a regularization term that penalizes the number of nodes, whose
hyperparameter can be cross-validated or selected by hand to achieve a desired tree size. Note that,
unlike FMs and GA2Ms, bivariate trees are able to model more complex interactions due to the
hierarchical structure of the tree (at the cost of making the tree deeper).

How interpretable are bivariate trees? On the one hand, each split involves now two features, so it
is more complex. On the other hand, the ability to learn oblique splits (even with just two features)
greatly reduces the number of nodes and depth of the tree compared to a univariate one, and hence
the number of rules extracted from the tree. This can often make a bivariate tree more interpretable
than a univariate one—a large univariate tree is not only complex, but examining it requires constant
pan and zoom. A bivariate tree is also more accurate, particularly when the label depends on feature
correlations. It can also happen that the bivariate split can be understood as a new, meaningful
feature on its own right. Finally, bivariate trees bring another advantage over univariate trees: we
can show a 2D scatterplot at each decision node on its two selected features, which behaves like a
hierarchical 2D linear discriminant analysis. This shows information between-class (how specific
classes are separated from each other), as well as within-class (such as clustering or linear structure).
We convincingly demonstrate this our experiments by comparing bivariate and univariate trees in
terms of accuracy and tree size, and by exploring in detail two case studies.

A.3 Oblique trees use many features

Here we show that one cannot achieve a bivariate tree by overpenalizing a sparse oblique tree. The
latter, proposed in [7], minimizes the sum of the 0/1 loss plus an ℓ1 penalty λ

∑

i ‖wi‖1 on the
weight vector of each decision node i in the tree, with hyperparameter λ ≥ 0. Fig. 9 shows the
entire regularization path for a sparse oblique tree and a bivariate tree on the Segment dataset. While
the bivariate tree has an average of at most 2 features per node throughout its path, the oblique one
reaches an average of 2 only for very high λ, at which point the tree is very small and has an
enormous error. The reason for this is that, while increasing λ does encourage sparsity of weight
vectors over the whole tree, this sparsity results in some nodes being pruned (whenever wi = 0)
while other nodes use more features. In this dataset, the best trees have about the same error (≈2.5%)
and number of nodes (≈16) for both bivariate and oblique, but the latter using ≈7 features per node.

A.3.1 Regression

This requires just two modifications. First, the reduced problem over a leaf is solved by computing
the mean of the samples in its reduced set. Second, the objective (1) in the decision node is now
reduced to a weighted binary classification (instead of eq. (3)), where the weights are obtained by
sending the sample down each child subtree and computing their respective loss.

Univ.: ∆=8, 15 leaves, 4% error Biv.: ∆=3, 5 leaves, 2% error

x1

x
2

x1

x
2

Figure 5: Partitioning by a univariate (left) and bivariate tree (right). By allowing some feature
correlations, bivariate trees achieve better performance with much smaller trees.

12



xi

xj

4 possible
directions

global optim
um

ap
pr

ox
. o

pt
im

um

Figure 6: Illustration of our approximate solution of the reduced problem at a decision node assum-
ing a selected pair of features (xi, xj). The instances in the reduced set of the node are labeled
according to their pseudolabels (preferred child, left ◦ or right ×). The optimum (in 0/1 loss) linear
classifier is the thick blue line (one misclassification). The approximate optimum found using the
H = 4 possible directions (inset) is the thick red line (two misclassifications). The thin red lines
are all the possible thresholds (passing through midpoints between projected instances) for the red
orientation.

B Experiment setup

We use the CART Python implementation in scikit-learn [27]. We grow the tree to its maximum
depth by setting the minsplit parameter to 1 and the ccp alpha complexity parameter to 0, and
determine the optimal pruning parameter on the hold-out set.

We employ an open-source single-threaded Linux version of the C5.0 implementation in C
(https://rulequest.com/download.html). To optimize model performance for each dataset,
we conduct a grid search on the hold-out set to identify the most suitable parameters. We mainly
fine-tune two parameters: -c CF, which governs the pruning severity, and -m cases, which speci-
fies the minimum number of data points required to split a node. It’s worth noting that we maintain
default configurations for all other model parameters. Remarkably, our findings indicate that the
tuned parameter values closely align with the default settings in many instances.

We use an open-source multithreaded implementation of BiDT by [4] written in C++ with Python
interface (https://github.com/fbollwein/OptimizedDecisionTrees). We enable both
univariate and bivariate splits. The resulting tree grows fully and is then pruned either using reduced
error pruning or minimum cost-complexity pruning using the hold-out set.

We implement bivariate TAO in C++ with parallel processing and fine-tune regularization parameters
C and λ. For each experiment we start with C = 1 and increase in with a step of 0.25 until the tree
becomes fully univariate. Through empirical analysis, it was found that algorithm generalizes well
when C falls within the range of 1 and 2.5 across most datasets. Since running algorithm for each
value of λ is computationally costly we perform coarse search with finer steps closer to 0. As it was
discussed in section 3.2 in the main paper, every next value of λ can be calculated for given C. We
generate a fixed subset of line inclinations H uniformly between 0 and 180 degrees and for most
experiments H is set between 30 and 90. We use save values of H for bivariate CART. The initial
tree structure is obtained from fully grown CART tree (univariate or bivariate).

We run our experiments on datasets from UCI ML repository [20] and [16]. For datasets that does
not have separate test set we randomly subsample 20% of the whole dataset for testing. We randomly
select 10% of samples as hold-out set for validation. For experiments, we report average over 3 runs
with stdev for train and test accuracy. We set a timeout of 2 hours for all algorithms on all datasets
except for SUSY (≈600k samples), for which it was increased to 4 hours. Our hardware setup is
Intel Xeon CPU E5-2699 v3 @ 2.30GHz with 256 GB RAM.

C Additional experimental results

C.1 Interaction of C and λ: a phase diagram

Here we give a qualitative understanding of the effect of the feature cost C and the regularization
hyperparameter λ on the size of the tree and the number of features it uses. It can be plotted as a
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input training set {xn, yn}
N
n=1,

binary axis-aligned tree T with given structure and
parameters Θ at the nodes N = Ndec ∪Nleaf

repeat
for i ∈ N
Ri ← reduced set of node i
end if

for d = ∆ downto 0 do
for i ∈ nodes at depth d (can be done in parallel)

if i ∈ Nleaf

ci ← majority class inRi

else
solution of reduced problem eq. (3) for decision node i ∈ Ndec

end if
if Lbiv + λC < min(Luniv + λ,L0)
wi,bi ← θ

biv
i

else if Luniv + λ < min(Lbiv + λC,L0)
wi,bi ← θ

univ
i

else if L0 ≤ min(Lbiv + λC,Luniv + λ)
wi,bi ← θ

0
i

end if
end for

end for
until E(Θ) does not strictly decrease
remove redundant nodes (empty features solution)
return trained T

input training set {xn, ȳn}n∈Ri
of decision node i ∈ Ndec,

matrix of orientations W ∈ R
2×H

for each pair of features j, k ∈ D
for wl ∈W

x
j,k
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b
j,k

l ← optimal thresholding over x
j,k
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θ
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∗ is a sparse vector

of all zeros with corresponding value of wl

at j, k
end if

end for
end for

return θ
biv
i

Figure 7: Pseudocode: bivariate TAO algorithm (top); solution to the reduced problem in a decision
node i (bottom).

“phase diagram” in (λ,C)-space such as that in fig. 1. Inspection of the objective function shows
that, since the loss is always less than N (where N is the sample size), there exists a critical value
0 < λ∗ < N such that the optimal tree for λ ≥ λ∗ consists of a single leaf node with a constant label
(zero-variate tree). Likewise, for small enough λ, all nodes are bivariate if C ≤ 1 (since univariate
splits are no cheaper and less powerful); and there exists a critical value 1 < C∗ ≤ N such that all
nodes are univariate if C ≥ C∗ (since even a single bivariate node is too costly). Trees with both
uni- and bivariate nodes exist for a region (0, λ∗] × (1, C∗], which contains the practically useful
models, where we allow the objective function to determine the optimal uni/bivariate ratio. This
also suggests a simplified training strategy where we fix C to a value a bit over one (on practice,
C ∈ [1.1, 1.5]) and cross-validate λ.

C.2 Accuracy, tree size and number of features

Table 1 shows that, almost without exception across several datasets of varying types, our bivariate
TAO tree is both most accurate and smallest compared to any other univariate tree (CART [6], C5.0
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[28]) or bivariate tree (in particular, BiDT [4]). This is as expected: it uses the more flexible model
and the better optimization. Next best is our other, more approximate algorithm, bivariate CART.
The improvement in accuracy over univariate trees is consistent and varies depending on the dataset
(usually a few percentage points). The reduction in depth and number of nodes, and the correspond-
ing simplification of the tree, is drastic, typically several times fewer nodes (17 times smaller on the
MiniBooNE dataset). In terms of training time, although not as lightning-fast as univariate trees,
our bivariate trees scale well to large datasets (unlike BiDT, which times out, as expected from its
brute-force search). When compared with the oblique trees, bivariate TAO trees are less accurate (as
expected) but there is often little difference. However, oblique trees use quite a lot of features per
node, which makes them more complex. Similar conclusions follow from the results for regression
(table 3).

C.3 Computational complexity

Assume N training samples and a complete tree of depth∆ (having 2∆ − 1 decision nodes). Call Ri

the reduced set of node i. At the start of each iteration we update Ri for each node by propagating
each training instance to its corresponding leaf, which is O(∆N) with space complexity of O(N)
to store indices.

We optimize node parameters in reverse BFS order starting with leaves. For each leaf i ∈ Nleaf we
compute label using majority vote in O(|Ri|). For each decision node i ∈ Ndec we first compute
pseudolabels by sending samples of reduces set to the left and right child at O(2∆|Ri|). For uni-
variate split, we sort instance feature values {xnd}n∈Ri

before thresholding. In the final step, we
determine the loss for every bias value similar to how the purest split is computed within recursive
partitioning. It can be done exactly and efficiently through an incremental method, where we calcu-
late the loss for the next bias value based on the loss of the current value. The total computational
complexity for D features is O(D∆|Ri|) + Θ(D|Ri| log |Ri|). For bivariate split the process is

computationally similar to finding univariate split on X
biv
i (described in 2.1) for every pair of fea-

tures. Since H is constant, total computations complexity is O(D2∆|Ri|
2
) +Θ(D2|Ri|

2
log |Ri|).

The total cost of training is dominated by decision nodes. At any depth the union of all reduced sets
is the whole training set. In this case the total computational cost is upper bounded by Θ(∆2D2N2+
∆D2N2 logN). It is worth mentioning that decision nodes at each depth can be trained in parallel,
which drastically reduces running time of the algorithm.
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Figure 8: Test error (on the Breast Cancer dataset) of univariate CART and bivariate TAO trees as a
function of the number of nodes (obtained from the regularization path over their hyperparameter).
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Figure 9: 0/1 loss, number of nodes and average number of features per decision node for bivariate
(left) and oblique trees (right) over their regularization path (Segment dataset).

C.4 The faster algorithm: bivariate CART

Our idea above of partial enumeration over the bivariate splits can be combined with greedy recursive
partitioning (in particular CART). This does not anymore optimize any global objective function and
it produces worse trees than bivariate TAO, but it is much faster. It can be done in two ways. One,
more efficient, is by modifying the CART split step (based on the Gini index) to use the partial
enumeration, in a similar way to the TAO decision node reduced problem above. Another, less

efficient (in memory), is to construct a new, augmented training set with ≤ D +
(

D

2

)

|H | features
in advance and simply run the usual, univariate CART on it. This algorithm works quite well, as
seen in our experiments, resulting in bivariate trees that are quite smaller and generalize better than
univariate CART. Note this algorithm is different from previous work on bivariate trees.

Table 6 presents results of different initialization for bivariate TAO. We use initial tree structure
produced by univariate and bivariate CART proposed in section 3.4. Initializing from bivariate
CART generally results in smaller and better performing final trees. In the main paper we use both
initializations and pick the best one on the validation set.
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Table 2: Comparison between bivariate, univariate and oblique trees for classification. Each tree
was selected by cross-validating its hyperparameter and this was repeated 3 times over random
training/validation sets. We report training and test accuracy (% ±stdev); average depth ∆, node
count n and number of features f per node (we omit f = 1 and 2 for univariate and bivariate
trees, respectively); and average runtime (seconds or “timeout”). We indicate with color green best
and blue second best result for test accuracy and node count over the univariate and bivariate trees
(ignoring the oblique trees).

Dataset . . . . . . . . . . . . . . . . bivariate . . . . . . . . . . . . . . . . . . . . . . . . univariate . . . . . . . . . . oblique . .
TAO CART BiDT CART C5.0 TAO

Breast Cancer
(455,30,2)

training (%) 96.04±1.53 99.12±0.00 96.99±0.10 98.61±0.41 98.9±0.48 98.21±0.79
test (%) 98.25±0.43 98.00±0.00 97.66±0.10 94.73±0.00 95.6±0.67 97.71±1.04
∆/#nodes/f 1/3 3.0/9 1.6/5 4.0/16 5.3/12 3/15/10.3
runtime (s) 4 6 2 0.1 0.1 5

Segment
(1963,19,7)

training (%) 98.47±0.35 97.30±0.00 97.58±0.01 98.76±0.00 98.9±0.10 99.48±0.21
test (%) 97.41±0.14 96.73±0.14 96.06±0.14 96.01±0.47 96.3±0.48 97.58±1.31
∆/#nodes/f 11.0/13 11.0/25 9.0/21 15.0/128 12.25/77 8/271/8.5
runtime (s) 30 13 27 0.1 0.1 20

Optical recog.
(3823,62,10)

training (%) 97.28±0.36 97.65±0.01 98.70±0.50 98.32±1.18 98.5±0.18 97.68±0.59
test (%) 88.48±0.39 87.03±0.02 88.10±0.32 85.32±0.22 86.8±0.23 91.27±1.74
∆/#nodes/f 9.0/54 14.0/149 16.0/188 15.0/358 13.65/335 7/115.8/15.0
runtime (s) 30 233 17 0.3 0.3 10

Spambase
(3910,57,2)

training (%) 96.39±0.08 97.49±0.14 95.34±1.85 97.86±2.91 96.16±0.14 96.55±0.47
test (%) 93.34±0.07 92.19±0.05 92.71±0.53 92.18±0.31 92.2±0.42 94.31±1.22
∆/#nodes/f 14/53 10.0/77 16/161 24.7/362 14.7/77 4/30/42.1
runtime (s) 120 284 208 0.3 0.3 60

Pageblock
(4652,10,5)

training (%) 98.39±0.00 98.41±0.00 99.19±0.40 99.74±0.01 97.7±0.09 95.96±0.12
test (%) 97.93±00 96.83±0.01 96.38±0.06 96.52±0.17 96.54±0.13 96.35±0.41
∆/#nodes/f 8.0/25 18.0/159 4.3/14 18/268 10.05/90 6/39/7.5
runtime (s) 30 21 15 0.2 0.1 39

House 16H
(11464,16,2)

training (%) 87.1±1.55 89.45±0.00 90.42±0.23 86.2±0.0 91.98±0.55 86.55±1.10
test (%) 85.6±0.07 84.73±0.05 85.6±0.17 83.4±0.0 83.06±0.32 85.47±0.51
∆/#nodes/f 7/35 10/107 10/115 8/75 15.05/245 4/13/14.9
runtime (s) 30 21 15 0.2 0.1 24

Letter
(16000,16,26)

training (%) 100±1.37 100±0.01 98.40±1.76 94.30±0.01 98.66±0.07 95.43±0.29
test (%) 87.25±0.11 87.25±0.00 86.80±0.37 86.04±0.04 86.76±0.33 90.41±0.31
∆/#nodes/f 35/1314 35.0/2121 37.6/2596 28/3888 16.85/2817 11/2155/8.5
runtime (s) 300 73 12∗ 0.3 0.9 77

Electricity
(32702,8,2)

training (%) 98.97±2.80 95.80±0.80 96.14±1.20 99.10±0.00 95.04±0.43 98.1±1.8
test (%) 89.38±0.12 86.05±0.05 87.91±0.06 87.80±0.16 88.64±0.42 90.23±0.19
∆/#nodes/f 23.0/1083 24.0/1741 22.3/1881 30.0/6366 17.25/2615 10/249/6.8
runtime (s) 300 81 393 0.9 0.9 134

MiniBooNE
(62048,50,2)

training (%) 92.36±0.00 96.02±0.02 - 96.61±0.02 95.88±0.07 91.98±0.15
test (%) 91.16±0.00 90.68±0.03 - 90.25±0.03 89.84±0.10 91.43±0.12
∆/#nodes/f 11.0/105 15/831 - 19.3/2012 15.65/1787 10/133/16.8
runtime (s) 1200 1000 timeout 5.2 6.4 3000

SUSY
(600000,18,2)

training (%) 80.71±0.00 81.35±0.00 - 81.45±0.00 80.90±0.00 81.10±0.00
test (%) 79.51±0.00 79.01±0.00 - 78.90±0.00 79.10±0.00 80.3±0.00
∆/#nodes/f 17.0/1077 21/2780 - 24/4389 16.25/3227 12/983
runtime (s) ≈2h ≈1h timeout 40.2 35.2 ≈2h

Table 3: Like table 1 but for regression, reporting RMSE ±stdev over 3 runs.

Dataset (Ntrain,D,K) . . . . . . . bivariate . . . . . . . univariate oblique
TAO CART CART TAO

airfoil (1002, 5, 1)
0.34±0.13 0.01±0.00 0.52±0.10 3.02±0.29
2.46±0.43 2.72±0.02 2.75±0.62 3.13±0.38

16/252 22/2133 15/479 8/147/3
15 5 1.3 13

abalone (2506, 8, 1)
2.14±0.03 0.39±0.12 2.32±0.11 2.11±0.02
2.24±0.13 2.95±0.38 2.34±0.59 2.18±0.05

2/7 23/903 7/39 6/58.6/6
21 10 0.9 19

cpuact (4915,21, 1)
1.84±0.53 1.74±0.43 2.10±0.71 2.47±0.07
3.11±0.10 3.33±0.31 3.97±1.32 2.71±0.04

10/191 14/327 13/373 6/52.7/13
27 17 1.3 13

ailerons (7154,40, 1)
1.88±0.03 0.71±0.00 1.81±0.12 1.65±0.02
2.03±0.00 2.21±0.00 2.25±0.63 1.76±0.05

5/21 15/50 21/105 6/60.2/13
27 20 1.3 21
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Table 4: List of features of Breast Cancer dataset. Description provided from the official UCI web
page. Index column is used to indicate features in fig. 4 in the main paper.

radius1 radius2 radius3
texture1 texture2 texture3

perimeter1 perimeter2 perimeter3
area1 area2 area3

smoothness1 smoothness2 smoothness3
compactness1 compactness2 compactness3

concavity1 concavity2 concavity3
concave points1 concave points2 concave points3

symmetry1 symmetry2 symmetry3
fractal dimension1 fractal dimension2 fractal dimension3

Table 5: Feature description of Segment dataset. Description provided from the official UCI web
page. Index column is used to indicate features in fig. 3 in the main paper.

Index Description

x0 the column of the center pixel of the region
x1 the row of the center pixel of the region
x2 # pixels in a region = 9
x3 # lines of low contrast that go through the region
x4 # lines of high contrast, greater than 5
x5 contrast of horizontally adjacent pixels in the region
x6 standard deviation of prev. feature
x7 contrast of vertically adjacent pixels
x8 standard deviation of prev. feature
x9 average over the region of (R + G + B)/3
x10 average over the region of the R
x11 average over the region of the B
x12 average over the region of the G
x13 excess red: (2R - (G + B))
x14 excess blue: (2B - (G + R))
x15 excess green: (2G - (R + B))
x16 Value of HSV
x17 Saturation of HSV
x18 Hue of HSV
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Table 6: Comparison between bivariate CART and univariate CART initialization for bivariate TAO.
We report train and test accuracy (%, ±stdev over 3 runs), average depth ∆ of the tree and average
node count.

Dataset (Ntrain,D,K) bivariate univariate
CART init. CART init.

Breast Cancer (455,30, 2)
training (%) 96.04±1.53 99.12±0.01
test (%) 98.25±0.43 97.37±0.12
∆/#nodes 1/3 3.1/9.5

Segment (1963,19, 7)
training (%) 98.47±0.35 99.03±0.30
test (%) 97.41±0.14 97.12±1.10
∆/#nodes 11.0/13 12.0/45.3

Optical recog. (3823,62,10)
training (%) 97.28±0.36 97.17±0.05
test (%) 88.48±0.39 87.65±0.11
∆/#nodes 14.0/61 11.0/123

Spambase (3910,57, 2)
training (%) 96.78±0.08 96.39±0.08
test (%) 92.32±0.07 93.34±0.07
∆/#nodes 11/28 14.0/53

Pageblock (4652,10, 5)
training (%) 98.39±0.00 98.24±0.01
test (%) 97.93±00 97.81±0.01
∆/#nodes 8.0/25 5.0/23

House 16H (11464,16, 2)
training (%) 91.42±1.55 87.1±1.55
test (%) 84.93±0.07 85.6±0.07
∆/#nodes 11/83 7/35

Letter (16000,16,26)
training (%) 98.3±1.37 97.25±1.37
test (%) 87.25±0.11 86.99±0.11
∆/#nodes 35/1314 28/2005

Electricity (32702, 8, 2)
training (%) 98.97±2.80 96.80±0.80
test (%) 89.38±0.12 87.05±0.05
∆/#nodes 23.0/1083 24.0/1141

MiniBooNE (62048,50, 2)
training (%) 94.72±0.00 92.36±0.00
test (%) 91.31±0.00 91.16±0.00
∆/#nodes 13.0/225 11/105
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